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A GEOMETRICAL FRAMEWORK FOR. THE STATICS
OF MATERIALS WITH MICROSTRUCTURE

REUVEN SEGEV

Department of Mechanical Engineering, Ben-Gurion University,
P. O. Box 653, Beer-Sheva 84105, Israel

Communicated by K. R. Rajagopal

A geometrical framework for the formulations of the invariant mechanical theocries of
materials with microstructure is presented. The suggested framework is based on the
construction of an infinite-dimensional manifold containing the configurations of the
body. Each configuration includes both the macro- and the micro-states of the body.
The notions of forces, stresses, balance laws and latent microstructure are discussed.
Liquid crystals are used as an example.

1. Introduction

While in the usual formulation of continuum mechanics the states of the material
points are described by the places that they occupy in three-dimensional Euclidean
space, in various theories of bodies with microstructure additional parameters are
needed in order to specify the state of the material points. These additional pa-
rameters are sometimes referred to as “internal degrees of freedom” defining the
“microstates.” In some of the examples of theories of bodies with microstructure,?”
the microstates are specified by points on a differentiable manifold rather than the
restricted case of a Euclidean space. Thus, it is natural to study the mechanics of
bodies for which the states of the material points take values on a general differ-
entiable manifold. This is indeed the setting of the framework for the mechanics
of bodies with microstructure suggested by Capriz.? Formulations of some notions
of continuum mechanics in the case where both the body and space are modeled
by differentiable manifolds were given in previous works.%!! The basic notion used
for the formulation of statics in these works is the configuration manifold contain-
ing all the possible configuration of the body. Such a configuration manifold is
naturally infinite-dimensional and its properties reflect the kinematics of the body.
Then, virtual displacements or generalized velocities are defined as tangent vectors
to the configuration manifold and forces are defined as linear forms on the infinite-
dimensional spaces of virtual displacements. In this way the properties of forces



are induced by the kinematics of the system. In particular, stress theory follows
mathematically from the basic definitions.

This paper uses some of the constructions of the works mentioned, applies them
to the case of materials with microstructure and extends some of them. Particular
attention is given to the study of a symmetry group action on the manifold of
microstates. It is within the framework of the geometrical structure of a group
action that notions such as resultants or totals and belance laws may be defined.
Our construction should be compared to a recent work by Capriz and Virga.® An
additional notion that we study from a generalized point of view is that of a body
with latent microstructure.?

The fact that the microstates are valued on a differentiable manifold introduces a
few difficulties in the formulation of the theory in comparison with the formulation of
the mechanics of simple bodies. These difficulties stem from the lack of geometrical
structure available in the Euclidean space and we will illustrate them informally in
the following section. The theory of liquid crystals will serve as a standard example
for the applications of notions introduced.

2. Generalized Mixtures— An Example

Consider a mixture that occupies a fixed region B in the Euclidean space. The mix-
ture comprises n constituents. Each of the constituents occupies the whole region
B, and cP denotes the concentration of the pth constituent. The concentrations
are positive real numbers so that the microstates at each point of the mixture is
described by the collection (¢!, ¢2,... , ¢*) € (R*)". Note that the concentrations
c¥ are just measured quantities and need not have intrinsic physical meaning. For
example, the various constituents may have different colors and the ¢? values could
be the intensities of these colors. It is clear that other means of measuring the
concentrations of the constituents are valid, so the microstates of the system could
be specified by other coordinates or internal degrees of freedom. For example, say
(6', ¥%,..., b™) € (R*)" are other coordinates on the manifold of microstates and
the coordinate transformations (e.g. 5" (c?)) between the two coordinate systems
are differentiable and nonsingular.

Examples for similar mixtures that appear in the literature are the continua
with voids, liquid with bubbles, dilatant granular material discussed by Capriz?
and the mutliphase mixtures discussed by Passman.!® In all these examples the
microstate of a generic body point may be specified by the volume fractions of the
various constituents {or voids), but other parameters, related to them nonlinearly,
may serve as well.

One will tend to define a micro-generalized-velocity or a micro-virtual-
displacement of the point X in the mixture using the ¢? coordinates by §c? and
the corresponding velocity is specified using the b™ coordinates as 86" = b,0cP.
Here, the comma followed by a p denotes partial differentiation of the coordinate
transformation with respect to the ¢? coordinate.



A difficulty in assigning a physical meaning to the collection (§¢?) may be ob-
served: A single collection {6c?) will result in two different collections (66") when
the micro-virtual displacements are at two distinct microstates (c}), (c5). Because
of the nonlinear character of the coordinate transformations, the partial derivatives
b7, in the transformation rule for the virtual displacements will be different. A
micro-virtual-displacement or a generalized velocity may be defined as a tangent to
the manifold of microstates as will be done later,

Even if virtual displacements are defined invariantly we do not have in general
an invariant way to construct an inner product between virtual displacements. Such
an inner product is essential if we wish to define micro-forces as elements of inner
product spaces as suggested by Noll,® Truesdell!® and others. The inner product
between a micro-force and a micro-generalized velocity to evaluate the power cannot
be invariantly performed. A force may be defined as a covector producing the virtual
power from the virtual displacement.

Without additional structure, it will not make sense to compare two virtual
displacements at two distinct microstates or to translate a virtual displacement
from one microstate to another. The same operations cannot be defined for forces
as their properties are derived from those pertaining to generalized velocities. It
follows that the force acting on a material point having a certain state cannot be
added to the force acting on a second material point having another microstate.
Thus, it will not be possible to integrate the force in order to obtain fotals or
resultants as attempted by Capriz and Virga® following the general framework of
Noll® and Truesdell.}4

The micro-configuration of the mixture will be specified by the map ¢? = ¢?(X7)
if we use the ¢? coordinates and by mappings of the form " = 5" (X7) if we use the
b" coordinates (X! denote the coordinates for the body points). The configuration
gradients with respect to the two coordinates systems will be related by b7, = b’,"pcf}.

Various authors (e.g., Capriz? and Passman et ol.!?) obtain the micro-self-force
as the derivative of a potential energy function « with respect to the microstate
and the micro-stress is obtained as the derivative of the potential energy function
with respect to the gradient of the micro-configuration. The relations between the
derivatives of the potential energy functions when using the two different coordinate
systems c? and b" are as follows:
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Hence, the micro-self-force cannot be separated invariantly from the micro-stress
without additional structure.



In the following sections we introduce the geometrical structure needed in order
to overcome the various difficulties described.

3. The Geometrical Objects Associated with the Statics of
Materials with Microstructure

In order to describe statics we consider a typical slice of the event space {(or space-
time). In accordance with traditional mechanics we assume that this collection
of simultanecus events is a Euclidean space E and we will denote its tangent {or
translation) space by V. A differentiable manifold M will model the collection of
values that the microstates of the material points may assume. It will be assumed
that M does not have a boundary. The body will be modeled by a compact three-
dimensional submanifold with a boundary B of E.

Example: The manifold of microstates for a liquid crystal

In the continuum theory of liquid crystals the microstates of the material
points describe the lines in space along which the molecules are located. We
identify the physical space with a particular three-dimensional Euclidean space.
Hence, for a particular position in space z of the center of the molecule, the
collection of the microstates of that particular molecule is the collection of all
lines passing through z. Because of the parallelism of the Euclidean space we
may identify the collection of lines passing through a point xz in space with the
collection of lines passing through any other point y. Thus, we may say that
the microstates of the material points are valued in the set P? of lines passing
through a generic point O in the Euclidean space. The set P? is traditionally
called the projective plane and its properties will be reflected in the microme-
chanics of liquid crystals.

The projective plane P? is one of the classical examples of a non-trivial
differentiable manifolds. It is a two-dimensional manifold that cannot be covered
by a single chart and that cannot be embedded in R®. The projective plane may
be described alternatively using Fig. 1 depicting a unit sphere in the Euclidean
space centered at O and a Fuclidean plane tangent to it. Each line through O
intersects the sphere at two diametrically opposite points x, #', and any two
such points on the sphere determine a unique line through O. 1t follows that we
can define P? as the quotient set obtained from the unit sphere centered at O by
the equivalence relation that identifies two points z, ' if they are diametrically
opposite. We also note that any line that is not parallel to the tangent Euclidean
plane intersects it at some point y and can be identified with that point. Lines
parallel to the plane may be identified with imaginary points at infinity.

In order to define the manifold structure on P2 we first choose a Cartesian co-
ordinate system originating at the point O so that the coordinates of a point 2 in
space will be z!, 22, 3. Consider the Euclidean plane z* = —1 and let U denote
the collection of lines that intersect it. With each line we may associate a pair of



Fig. 1. The projective plane
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Fig. 2. A chart on the projective plane.

numbers, (z', %), the first two coordinates of the point of intersection of the
line with the plane (see Fig. 2). Now we may consider the plane z? = —1 and

the set of lines U, that intersect it. Again we can associate with each line in U,

the pair of coordinates (x!, %) of the point of its intersection with the plane.
Lastly, Us is the collection of lines that intersect the ! = —1 plane and with

each line in U3 we associate the coordinates (x2, x3). Clearly, any line intersects



at least one of the planes mentioned and it follows that the sets U, Us, U3 cover
PZ%. Tt can be shown that for the lines that belong to more than one of the sets
Uy, Uz, Us the transformations of coordinates are differentiable and nonsingular.
Thus, P? may be given the structure of a two-dimensional manifold and in the
sequel we will use (n!, n?) to denote the coordinates of an element n of the
projective plane in a chart whose domain contains n.

Denote by pr: V — P? the mapping that associates with any vector in the
tangent space V the line through O on which it is located. Using the charts we
defined above, this mapping gives two out of the three coordinates and is clearly
differentiable.

A virtual motion of a molecule of liguid crystal is a mapping m : R — P2,
Here, we identify the time axis with R. A generalized velocity, or a micro-
velocity, of the molecule at the microstate n is a rate of change of a motion
when it is passing through n. Mathematically, the velocity is a tangent vector
to the configuration space P? at the configuration n, i.e. it is a collection of
motions of the molecule, that have the same derivative at » when we use a
chart in a neighborhood of n to describe the motions by coordinates. Since the
motion is represented in a neighborhood of n by the two functions n!(t), n2(t)
(t represents the time variable), the chart may be used to represent the tangent
vector, or the velocity by the time derivatives ', n2, evaluated at the time g in
which the motion passes through n. The tangent space to the projective plane
at n, T,,P? is a two-dimensional vector space and may be embedded in R3. A
natural embedding of T}, P? in V (the tangent space of the Euclidean space) can
be obtained as follows. Consider a rotating line m(t) with m(ty) = n.

Let p and p’ be the points on that line that have a unit distance from O
and let v and v’ be the velocities of these points at time ¢y (see Fig. 3). These
velocities are clearly perpendicular to the line n and satisfy v = —v/. It is
clear that these velocities determine the tangent to the motion of the line at »
uniquely. Both v and v/ may be specified by a unique vector w € V in the plane
through O which is perpendicular to n. Consider the vectors Op and Oy along
n. Since the vectors v and v/ are perpendicular to Op and Op/, respectively,
there is a vector w such that

v=wxO0p and Vv =wxO0p,

where x denotes the vector product. It is clear that w is perpendicular to
the velocities as well as to the line n. As each such vector w determines a
unique pair of velocities v and v/, the identification of the micro-velocity with
the vector w is complete. It is natural to refer to w as the angular velocity of
the molecule associated with the micro-velocity v. We conclude that we may
identify the tangent space T, P? with the plane in V perpendicular to n. The
tangent bundle of the projective plane, i.e. the collection of all micro-velocities
corresponding to all the microstates will be denoted by TP? and 7 : TP? — P?



Fig. 3. Micro-velocity of a point in a liquid crystal.

will denote the natural projection assigning to each tangent vector the point to
which it is attached.

A geometrical configuration is a contimiously differentiable embedding of the
body in E. A micro-configuration is a continuously differentiable mapping of the
body into the manifold of microstates. A physical configuration is a differentiable
mapping of the body into £ x M such that its first component is a geometrical
configuration. That is, & : B — E x M is a physical configuration if priok: B> F
is an embedding. In the last expression, pr; : E x M — FE is the first natural
projection of the Cartesian product and prs is defined similarly. Clearly, a physical
configuration is an embedding,.

We will denote the coordinates of a point X € B under a local chart by X7,
the coordinates of a point = € E by z* and the coordinates of a microstate v € M
by vP. Thus, a physical configuration will be represented locally by mappings
X1 (24X, v?(XT)).

The collection of all physical configurations will be denoted by @} and will be re-
ferred to as the configuration spece. The collection of geometrical configurations will
be denoted by ¢}; and the collection of all micro-configurations will be denoted by
(2. Since any pair (K1, #2), k1 € @1, k2 € @2, determines a physical configuration
we have Q = ) x Q.

In order to apply the basic geometrical framework, consisting of a configuration
manifold, its tangent bundle containing the virtual displacements (or generalized
velocities) and the cotangent bundle containing the {generalized) forces, to the
statics of materials with microstructure, we have to specify a manifold structure
for the configuration space ). The basic results concerning manifolds of mappings



that we will use later can be found in the works of Eliasson,* Hirsch® and Palais.?
These results are briefly reviewed in the next section.

4. Review of the Basic Results on Manifolds of Mappings

Consider a manifold without a boundary § and a compact manifold R and denote
by CY(R, S) the collection of continuously differentiable mappings B — S. {For
example, C'(B, M) = Q2.) In constructing a manifold structure for C'(R, §) it is
convenient to use the pullback h*7g : h*Ts — R of the tangent bundle 75 : Ty — S
by a mapping h € C'(R, §), which is a vector bundle over R. For each r € R,
the fiber (h*T), is the tangent space Tj(,)S (the tangent space to § at A(r)). A
section u of h*rg5 : A*Ts — R is a mapping u : B — h*Tg such that h*7g ou = idg.
We will denote the collection of differentiable sections of h*rg : h*Tg — R by
C'(h*rs). A section © € C'(h*7g) may be identified with a mapping 4: R — TS
satisfying 75 o @ = h. The vector fleld 4 is defined by (r) = u(r) € Ty()S and
the identification is possible by definition, (h*T5s), is the tangent space T}y S. A
mapping 4 : R — TS satisfying 75 04 = h, will be referred to as a vector field along
h and may be conceived as an infinitesimal variation of h. If h is any mapping
R — 8, a vector field & : R — TS along h induces a section u € C(h*7g) by the
same identification. In the case where % is an embedding, h*rg : h*Ts — R may
be identified with the restriction of T'S to A(R). A section % : § — TS induces
naturally a section w ok of the vector bundle h*rps. We will use the notation A* for
the mapping C'(rg) — CY(h*7ar) such that h*(u) = how.

Denoting by »* local coordinates in R and denoting by (s?, b9) the coordinates in
a natural chart in T'S, the coordinates in a local natural chart in A*Ts will be of the
form (r*, b?). A section u of the pullback will be locally of the form r* — (¢, B2(r%)).

The vector space C'(h*7g) like any other vector space of C! sections of a vector
bundle can be endowed with the structure of a Banachable space using the C! norm
in the local charts. The collection of mappings C'(R, S) can be given a structure
of a Banach manifold and the tangent space at any mapping h € C'(R, §) can
be identified with the Banachable space C*(h*rg). The identification of C*(h*rg)
with the collection of differentiable vector fields along h implies that we can iden-
tify tangent vectors in T,C1(R, S) with vector fields along h. In the context of
kinematics, these vector fields are interpreted as fields of generalized velocity or
virtual displacements. The collection of embeddings of R in § is an open subset
of CY(R, S) if we use the C" topology. It follows that the tangent space to the
manifold of embeddings at h is again C1(h*1g).

The jet bundle J(h*rg) : J(h*Ts) — R is the fiber bundle over R whose fiber
at r € R is the collection of values that a first order Taylor expansion of sections of
h*rg at r may have. Thus, if dim(R) = m and dim(S) = n, at any r € R the fiber
J(h*Ts), is isomorphic to R™ x L{R™, R™). The jet extension mapping

j: CHh*1s) — C*(J(h*Ts))

assigns to each section u of h*rg the section of the jet bundle whose value at



any point is the first order Taylor expansion of u at that point. Thus, assum-
ing that u is represented locally by r* — bP(r?), then j(u) is represented locally
by 7t = (rf, b7(r%), B(r?)). Clearly, the jet extension mapping j : C'(h*7s) —
CY(J(h*7s)) is linear and injective. Its local representatives are norm preserving
by the definitions of the C° and C! norms.

All these definitions and results hold in the case of the statics of materials
with microstructure for both ¢y which is the set of embeddings of B in E and for
Q2= CI(B » M )

5. The Representation of Forces by Stresses

In this section we want to examine the most general implications of the definition
of a force at the configuration x € @} as a continuous linear functional defined on
the space T,.Q. Since @ = ¢ x (=, at any configuration x = (K1, k2), (T*Q)x =
(T*Q1)x, X (T*Q2)x,. It follows that a force f € TeQ is of the form (fy, f2) €
(T*Q1)x, X (T*Q2)x,, so that for a generalized velocity u = (ug, ) € T,.Q =
(T*Q1)w, X (T*Q2)rys flu) = fi(u1) + fo(uz). Since T'Q; is a particular case of
TQs, it is sufficient firstly to study the properties of forces as linear functionals
defined on tangent spaces of the form TQs = C'(h*1as). Hence, a microforce, the
second component of a force, is a continuous linear mapping f : C1(h*1p) — R. In
the sequel, where no confusion can occur, we will omit the index 2 when considering
objects related to the microstructure.

The basic property of forces implied by the definition above is the represen-
tation of forces by stresses.!! Since the jet extension mapping j : C'(h*Ta) —
CO(J(h*Tar)) is injective, linear and preserves any norm induced by local charts, it
follows that any force f may be represented by an element ¥ € C°(J(h*7a))* in the
form f = j*(X). Here, j* : C°(J(h*1p))* — CY{h*T1ar)* is the adjoint of the jet ex-
tension mapping. That is, for every force f there is an element £ € CO(J(h*ar))*,
called a stress representation of the force, such that f = j*(X). The definition of
the adjoint implies that for a stress representation X of the force f we have f = Loj
so that f(u) = Z(j(u)) for all u € C*(h*7as) = ThQ2. As a result of the fact that
j is not surjective, we cannot expect the representation to be unique so that two
different stresses may represent the same force. The equation f = 7*(X) is a gener-
alized form of the equilibrium eguation of continuum mechanics and the condition
f(u) = Z(j(w)} is a generalized form of the principle of virtual work in continuum
mechanics.

Stresses are linear functionals on spaces of continuous sections of the vector
bundle J(h*7pr) and as such (see previous work!! and references therein) they are
measures over the body valued in the dual bundle J(h*r)*. Henceforth, we will
refer to elements of C°(J{(h*Tar))* as stress measures. If the stress T represents the
force f we have

flu) = j; j(u)ds, forall we CHh*rm)=TaQ:.



If we denote by (27, u?) the coordinates in a local chart in TM so that the
induced local coordinates in h*7as are of the form (X7, u?), the local coordinates in
J(h*ras) are of the form (X7, u?, L) and the local coordinates in its dual bundle
are of the form (X', s4, 7). The evaluation of the action S(w), S € J(h*rar)%,
w € J{h*Tar)x, Is in the form s u? + S;L?. Thus, a stress X can be represented
locally by measures (X, E:,) defined over the domain of a chart. These local rep-
resentatives are combined by means of a partition of unity into a global invariant
element of CY(J(h*7a))*. For the particular case where the jet bundle can be cov-
ered by one chart, the fact that the stress measure ¥ represents the force f, may
be expressed using coordinates of the form

f(u)=/B uqd2q+f3 uf}dﬂi for all u.

The definition of forces does not suggest a way to restrict a given force on a
body to its sub-bodies. By a force system on the body B we mean an assignment of
a force fp to each sub-body P C B. If a stress ¥ is given, the fact that a measure
may be restricted to sub-bodies, implies that ¥ induces a force system such that

fr(u) = fp J{u)ds

for all u defined on P. Therefore, we may say roughly that a stress measure rep-
resenting a given force enables us to restrict the force to the sub-bodies. This
restriction depends on X which is not uniquely determined by the force. However,
it can be shown'!!? that if a force system is given on the body, there is at most
one stress measure that represents the various forces on the sub-bodies. In addi-
tion, conditions for a force system {fp} so that a siress ¥ representing the forces
on the various sub-bodies exists, are given in the above mentioned work.!® These
conditions generalize the classical Cauchy conditions in the following aspects. They
hold for general manifolds, they are not related to the assumption of equilibrium
or an equivalent assumption and they hold for stresses that may be as irregular as
measure in accordance with the general framework presented here. The generalized
Cauchy conditions are as follows:

(i) Additivity. If Py and P, are disjoint sub-bodies of B then for any u €
C'(h*7as)
fP1UP2 (u,P1UPz) =fp (u'lPl) + fP, (UIPZ) .

(ii) Continuity. For any set A in the minimal field containing the collection of
open subsets of the body, any sequence F; of sub-bodies converging to A (in the
sense that for every element x in A there is an integer 4y so that z € P; for every
¢ > ip and every point that is contained in an infinite number of sets in the sequence
is contained in A) and every u € C'(h*7), the sequence fp,(u|p,) converges and
its limit is independent of the particular sequence of sub-bodies P;.



(iii} Boundedness. There is a finite bound K such that for any sub-body P and
any u € C'(h*rm), | fp(ulp)| < Kllulpll.

In that paper it was also shown that if a bounded set function on the collection
of sub-bodies is given then additivity and continuity (in the sense mentioned above)
are sufficient conditions so that the set functions may be extended to a measure on
B uniquely.

While these results are proved for the case where space is R™,'% it may be
shown!! that for a general differentiable manifold, the analytical question of the
consistency of a force systems and a stress may be settled locally, in the domain of
a chart. Hence, all these results apply to the general framework considered here.

We recall that the foregoing analysis considered the microforce fy so that the
basic representation expression may be written specifically as

fz(u2)=]B Fu)ds™

where the subscript M denotes the fact that the stress represents the micro-force
f2. As we mentioned earlier, the representation theorem for the micro-force holds
in particular for the geometric component of the force f; by putting M = E. Thus
we may write

filur) = ]B j(u)d=®,

where the superscript E indicates the stress representing the macro-force f;. The
representation of a force on a body with microstructure can be written therefore as

F(u) = fu(n) + falug) = fB §(ur)dm® + ]B F(u2)d=M .

Using the notation j{u) for the pair (j(u1), j(u2)), = for the pair (2, M) we
may write the representation of forces in the form

flu) = [B )iz,

6. The Decomposition into a Self-Force and a Stress

One would tend to refer to the components X, of the stress measures as the com-
ponents of a vector measure called self-force and to the components £L as the
componemts of a tensor valued measure called the microstress. However, the trans-
formation rules for these entities imply that under a change of coordinates the
transformed components X, depend not only on I, but also on Eé. We conclude
therefore that at this level of generality the stress measure cannot be decomposed
invariantly into a self-force and microstress. The geometric structure needed in
order that such a decomposition can be defined invariantly is a connection on the
manifold M.



A connection on the manifold M enables us to define invariantly the covariant
derivative Vu of a section v : M — TM. The covariant derivative operator is a
linear mapping V : C*(7p) — C°(L(T'M, TM)), where we use C*(7as) to denote
the collection of differentiable sections of T'M and we use C°(L(TM, TM)) to
denote the collection of continuous sections of the tensor bundle of linear mappings
TM — TM. The covariant derivative operator on T'M induces for a given h €
CY(B, M) a covariant derivative

Vi : CYh*rar) — CY(L(TB, h*1a1)),

and hence a connection on h*7py. The components of the Christoffel symbol for
h*Tpy are given by I, = I'2 b7}, where '}, are the components of the Christoffel
symbol for T'M. The components of the covariant derivative of u € C1(h*7ps) are
given therefore by

ufy = uy + T uh]}.

Example: The Riemannian structure of the projective plane

The fact that the tangent planes to P? may be embedded naturally in V,
the tangent space of the Fuclidean space, implies that we may use the inner
product in V' in order to define inner products on the various tangent spaces.
Thus, for a microstate n, two micro-velocities v and v/ belonging to T, P2, the
inner product v - v’ is defined as the inner product of the corresponding angular
velocities w and w’.

Consider an element n of the projective plane and a Euclidean plane perpen-
dicular to the line n at a point p on the line having a unit distance from O (see
Fig. 4). In addition, let z* be a set of Cartesian coordinates in the Euclidean
space whose origin is at @ and such that the first two coordinate axes z! and z2
are parallel to the perpendicular Euclidean plane. Thus, the coordinates ! and
z? of the intersection of any line in P? with the plane serve as coordinates for
a chart in a neighborhood of n. We will refer to this chart as a chart centered
at n.

In order to calculate the components of the metric tensor at n € P?, let
v be an element of T,, P%. As mentioned earlier we identify v with the unique
element w of V' representing it. By our construction, the components of Op are
(0, 0, ~1) and the components of w (which is in the !, z2 plane) are (w!, w?, 0).
It follows that the components of the velocity of point p are (—w?, w!, 0). By
the construction of the chart centered at p, the representatives (v!, v?) of the
micro-velocity v will be given by (v!, v2) = (—w?, w'). In order to evaluate the
components g;; of the metric tensor we use

giv v =v v = w-w

that holds for every two micro-velocity vectors v and v" and the angular velocities
w and ' representing them. Using the relation (v}, v?) = (—w?, w') we may



Fig. 4. A chart centered at n
rewrite the last equation as

911(-012)(_@"2) + 2912(_w2)wrl + gzzwlw'l — wlwn +w2wr2 .
We conclude that in the chart centered at n, the metric tensor is given by
Gap = bap (the Kronecker 6).

Since every linear functional f defined on an inner product space may be
represented by a vector ug so that f(v) = uy - v for any vector v, we conclude
that forces may be identified with tangent vectors in the plane perpendicular to
n. We also note that since the metric tensor is the identity tensor when we use

a chart centered at p, the components of f and the components of u; in such
a chart are the same. Physically, these forces are the torques perpendicular to
the axis of the molecule.

The covariant derivative of a vector field w : P2 — TP2? is a tensor field
Vw over P? whose components relative to a chart are denoted by w®%. The

the relation
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components of Vw are given by wip = wh+ &,w”. The Christoffel symbols
I'g, are induced by the metric structure on P2 and they may be calculated by

Flﬁ = 59"’5(9,@5,:1 + Gas,5 — gaﬁ,.s) .

Writing the relation between the components (v!, v?) of a micro-velocity v
at an element n’ in a neighborhood of n and the components of the angular
velocity representing it, we may find the expression for the metric tensor in a
neighborhood of n. It turns out that the partial derivatives at n of the compo-

nents of the metric tensor in the chart centered at n vanish, and it follows that
the same holds for the Christoffel symbols.



We conclude that the covariant derivative at n is equal to the partial deriva--
tive in the chart centered at n. As a result, lines in the (z!, 2?) plane correspond
infinitesimally to geodesics in P2. In addition, since the inner product is identi-
cal to that of the sphere, the geodesics of P? correspond locally to geodesics on
the sphere.

With the additional structure available, we can replace the jet extension mapping
in the procedure for the representation of forces by stresses by the mapping

Jr: Cl(h,*q-M) — Co(h*TM xg L(TB, h*rar)),
gr{u) = (u, Vyu).

Here, h*1pr x g L(TB, h*Ta) is the vector bundle over B whose fiber at X is the
Cartesian product (h*mp)x X L(Tx B, (h*ta)x). Similarly to j, the mapping jr
is a linear injection which is a homeomorphism of C1(h*7ys) onto its image. We
may conclude that every force f € Cl(h*rp)* is of the form f = j{(X) for some
e Co(h*TM xpg L{TB, h*mp))*.

The dual space C°(h*1y xp L(TB, h*Ty))* contains measures on B valued
in the dual bundle (h*7y xpg L{TB, h*tpy})* = (h*tyu)* xg L(TB, h*ry)* =
(h*Tar)* xp L{h*Ta, T'B). Tt follows that the measure ¥ can be decomposed in-
variantly into two measures: the first is valued in (h*7p)* and we will refer to it
as the self-force, the second is valued in I{h*1py, T B) and we will refer to it as the
microstress measure.

Thus, for the case where M is endowed with a connection the fact that the stress
¥ = (g, X1) represents the force f, may be expressed in the form

Fu) =j:B dEg(u)+L d%(Vyu) for allu.

The actions [d¥o(u) and [d%;(Vju) are expressed in local coordinates in the forms
JuPdZop, [ul}dSi,, respectively. While both uf; and the measures {, are local
representatives that depend on the charts chosen, qu E{p is a local expression which
is invariant under changes of charts and it represents a real measure over the hody
B which we will denote by tr(Vyu o X1) = tr(X; o Vyu). We may write therefore

f(w) = fB d%o(u) + ]B (Vo dS).

If we write specifically fo for the micro-force in the last equation and use ),
M to indicate that the self-force and microstress measure corresponding to the
micro-force we have

Falus) = fB d5M (uy) + [B (Vg 0 M)



The decomposition of the stress into the self-force and microstress measures holds
in particular for the geometrical component of the force as the Euclidean space has
the natural connection induced by the Fuclidean structure. We will use Duy to
denote the covariant derivative of the vector field u; and ©F, Ef'" to denote the
geometric self-force and stress measures. We may write therefore

fl (u]_) = L d)lf(ul) + j;’ tr(Du1 [»} d):}g) .

Thus, the expression for the representation of forces by stresses in the case where
the manifold M is equipped with a connection takes the form

flu) = fB 5B (uy) + fB tx(Duy 0 d5F) + fB dEM () + ]B 60(Vuz o dEM).

7. Symmetry Considerations and the Associated Balance Laws

The notions of a total force and equilibrium cannot be formulated in the general
framework we had so far. The geometrical structure needed for the introduction
of these notions is that of a Lie group on the manifold § = F x M containing the
possible states of the various material points. In fact, we may consider the situation
where a configuration of the body is a mapping & : B — S for a general manifold §
and then specialize it to the case where § = E x M. We will keep the notation Q
for the configuration space of B in § etc.

Assume that a Lie group G acts on the manifold S on the left. Thus, we
have a mapping ¢ : G x § — § such that the restriction ¢, : {g} x § — S is
a diffeomorphism of S for every g € G, and at the identity e of the Lie group,
@ = idpr. The action ¢ induces a left action

P:GxQ—-Q

on the configuration space @ that is given by ®{g, h) = ¢|,0h for every h € Q. The
restriction, @, : G x {h} — Q, will be denoted by ®;,. Its image is the collection
of micro-configurations that may be obtained from A by the action of elements of
the group G.

®(g, h)

NG

h LI
B r 5 r S5

We consider the partial tangent mapping T1¢ : TG % § — TS, and in particular,
its restriction to the identity (T1¢)) : TeG x § — T'S. We denote by #,(T1¢)). :
T.G — C'(ry) the mapping such that for v € S, & € T.G, i1(Ti¢))(€)(v) =



(T1¢)1e(&, v). For each £ in the Lie algebra T.G, i1(T1¢).(§) : S — TS is a vector
field on S. The vector field i, (T1¢)|c(£) generates a vector field u¢ along A defined
by

e =1 {T19) (&) 0 h = h* (i1(T1 ) {8)) .

It follows that, ue = h*(31(T19)(£)) is an element of the tangent space TpQ. A
simple calculation shows that

ug = T(Ps)e(€) 5

where the linear mapping T'(®5)). : TeG — ThQ is the restriction to the Lie algebra
of the derivative of the action of G on the configuration space as restricted to k.

ulf = T((ph)e(é)

Bt ¢ i (T ). (8) S TS

The dual mapping T(tIi';;,)‘I“e : (Th@Q)* — (T.G)* maps forces acting on the body
at the configuration % into elements of the dual of the Lie algebra. We will refer
to elements of the dual of the Liec algebra as generglized resultents and to r =
T(tbh)l*e( ), f € (Tu@2)*, as the generalized resultant of the force f. Thus, if r is
the generalized resultant of the force f, we have

7(€) = F(T(2n)1e(6)) = f(ir(T19)(e (€} 0 B) = flue) .

T(®n)y.
(T.G)” — (Th@)"

T{(®n)e

TG .0

T(®n)), i*
(T.GY —— (Tu@)* = CY(h*1s)" «——— CUJ(h*7s))*

T(®n)|e . J 0
T.G —— Tp@ =C'(h*1s) —— C°(J(h*75))

Given a stress X, the forces fp induced by the stress X on the various sub-bodies
give the generalized resultants

rp(€) = [P i(ug)dS

on the various sub-bodies. We first note that rp may be regarded as the value of
the set function p defined on the collection of sub-bodies and valued in (T.G)* such
that p(P) = rp. The set function p has the following properties.



(i) For two disjoint sub-bodies P;, P,

AP UP)© = [ s+ [ ituaz

= (p(P1) + p(P2))(£)

so that p is additive.
(ii) If A is a set in the minimal field of subsets of B containing the open subsets
and P; — A, then

oP)©) = [ iz [ iz

which is independent of the particular sequence P; by the properties of X as a
nieasure.

It follows from the results cited earlier'? that the set function p may be extended
to a (T.G)* valued Borel measure on B for which we will also use the notation p.
Using the notation introduced above we may write

APYO = [ dR(G o T@)O),
P
and it follows that the measure p is given by
p(P}=XpojoT(P)..

The measure p may be described as the distribution of the generalized resultant in
the body as induced by the stress X.

r=p(P)

T(&a)).

1 * i 1] * Elp
T.CG WwQ=C (h Ts) — (J(h Ts)) — R

We will say that a force f at the configuration h is G-invariant if the gener-
alized resultant associated with it vanishes. Thus, for a G-invariant force f the
virtual power f(T(®4).(£)) = f(ug) = 0 for each £ in the Lie algebra T.G, i.e. the
virtual power performed by the force vanishes for every micro-virtual-displacement
induced by a symmetric vector field. The equation T(‘I’h)re(f ) = 0, representing
the condition that f is G-invariant is the balance law associated with the group G.



The restriction that the balance law imposes on the stress measure X follows
from the representation of forces by stresses

fw) = [ iwaE =0,
for all £ € T.G, so that we may write the balance law as
o joT(®h)le = (T(®h)1e)"(7* (X)) = 0 € (T.G)",

where (T'(®p)|.)* is the adjoint of the linear mapping T'(®4,)),.

We will say that the stress X is G-invariant if all the forces { fp} it induces on the
various sub-bodies are G-invariant. Hence, for a G-invariant stress the resultants
p(P) vanish for each sub-body P. It follows that the measure p vanishes and the
condition for X is

Tojoh* ot (T1g) =0.

This equation is a generalization of the conditions that the self-force and the an-
tisymmetric part of the stress field vanish in continuum mechanics. It generalizes
these conditions in two aspects. It applies to the general case of a differentiable
manifold acted upon by a Lie group and it holds for stresses as irregular as Borel
measures.

Example: The balance laws for liquid crystals

In this example, in order to simplify the notation, we will fix an origin o € E
so that we may identify F with its tangent space V. It will be evident eventually
that the results are independent of zy. Thus, for lignid crystals, § = V x P2 and
we use the action of the proper Euclidean group G¥ = V x SO(3) on V in order
to induce an action of G¥ on S. Here, SO(3) denotes the proper orthogonal
group.

We will denote by ¢¥ : GF x V — V the action of the Euclidean group
on V. For g = (w, 0) € GF, ¢(g, v) = w + O(v). For the Lie algebra we
have T.G® = V x so(3), where so(3) is the vector space of skew symmetric
linear transformations of V. For an element £ = (7, ¢) € T.G¥, we have
qub‘lEe({;', w) = n + {(w). We will identify an element of { € so(3) with the
axial vector ¢ representing it so that qubl‘f (£, w)=n+¢ xw.

The distribution p® of the resultant geometric force f; represented by the
self-force BF and stress £F is given by

PPP)Q) = [ anfn+¢om)+ [ aepomy,
P p

where we note that { o h1(X) = ¢ % h1(X). Since ¢ is constant over the body,
we may write SF(D({ o hy)) = EF(¢ o Dhy) = ¢ o (Thy 0 £F). We define the



Cauchy stress (geometric stress) s& by s = Th; o ZF and the distribution of
the geometric resultant force may be expressed as

PPN = [ dsm+¢xm+co [ ast

=f dSE(m + ¢ % h1)+2g-f d[sE],
p P

where [sF] is the axial vector valued measured corresponding to the skew sym-
metric part of s¥

The action of the proper Euclidean group on the tangent space to the Eu-
clidean space induces an action of the rotational group SO(3) on the projective
plane. Assume that an element g = (w, O) € G¥ is given. For any line n we
may choose a vector v such that n = pr(v) and define ¢$M(0, n) = pr(O(v)),
where pr is the projection of the tangent of the Euclidean space into P2 de-
fined above. The mapping ¢¥ : SO(3) x P2 — P? is a smooth action of
the rotation group on the collection of lines. Since the inner product on P2
was induced by the inner product in the Euclidean space, it is clear that qtaf‘g
is an isometry of P? for any rotation 0. The partial tangent of ™ at the
identity qubl“f : TeSO(3) x P2 — TP? will generate velocity fields on the pro-
jective plane out of infinitesimal rotations of the Euclidean space. Clearly, for
a given line n in the projective plane and an infinitesimal rotation { € so(3),
the micro-velocity T3¢ (¢, n) is represented by an angular velocity w which
is the component of the infinitesimal rotation vector perpendicular to the line
n. We will use the notation a: so(3) — C(T'P?) for the mapping #;(T16)c
defined earlier. We will also denote by b: so(3) — C°(L{TP?, TP?)) the
mapping such that { — V(a({)}). Finally, we may define the linear mapping
¢ :80(3) = CHTP?) x CUL(TP?, TP2)) by e(¢) = (a(0), b(C)-

For a given element ¢ € so(3), a(¢){n) is represented by the angular velocity
field w¢ on P? which is given by w¢(n) = ¢ — (n® n)¢, where n is a unit vector
{in V) along the line n. Alternatively, using a chart centered at a line ng, the
components of a{¢)(n) in this chart are (u!, u?) = (—¢% — 2%¢3, {* + £1¢%),
where the £ are the coordinates of the generic point n in the chart centered
at ng. (These are the components of the velocity of the point of intersection of
the line n, rotating with angular velocity ¢, with the plane z!, 22.) Using this
chart the local representative of a{()(n) is

1

0 -1 Lo Cz
(1 0 2:1) C
C3

and we will denote the components of the first matrix by aZ(n). Since the
components of the covariant derivative ¥V (a(¢)} = b({) are identical to the partial



derivatives for a chart centered at n, the components of the covariant derivative
b{¢) are given by

ulll =0, u|12 =-¢3, u|21 =3, u|22 =0.
These may be written as b(¢)f; = 63;¢*, where
o (0 -1
LR B
and the rest of the components vanish.

As the action of the elements of the Lie algebra on the liquid crystal mi-
crostructure is associated with angular velocities only, it is natural to refer to
the elements of the dual of the Lie algebra as the moments of the micro-force.
Thus, for a given force fo the resulting moments or total moment of the micro-
force over the body is given by r™(¢) = fa(a(¢) o hs). Assume that a self-force

%4 and a microstress measure Y are given on B. Then, the resultant of the
force induced on a sub-body P is given by

PM(P)(E) = [P d=M (a() o ha) + [P 65(Vny (a(C) 0 ha) 0 dSM)
Note that Vx(a(£) o h2)(X)} = Va(£)(h2(X)) 0 The(X), and we may write this

as Vx(a(€) o hy) = (Va(&) o ha) o The. It follows that the expression for the
resultant of the micro-force may be rewritten as

PMP)O = [ dE @O o)+ [ ((Val0) ohs) o Ths 0 ).
P P

We now define the Cauchy microstress measure by s¥ = Thy o £M and using
the notation introduced above we obtain

PP = [ dudt(ale) ota) + f br((B(¢) 0 ha) 0 ds™)
P P

Assuming that the image of P is contained in a chart centered at a line ng and
using the local expressions for ¢ and b we can write r(¢) in the form

pM(P)(f)=<"[ [, asanasioo + [ sao)asy=o).

It follows that the local expression for the mapping (T(®}).}* o j* giving the
total moment of the stress is given by

[ asthaConastion + f 8. (ha(X))ds}™(X) .
P P



We now assume that the stress £ = ((£F, £F), (Z¥, £M)) is G-invariant.
We have

E(P)(E) = fp EE(n+¢ x h) +2¢ - fP d[s®] + fp 42 (a(¢) o ho)

+ f tr((b(¢) o h2) o ds™)
P
=0.
Since we may choose ¢ = 0 and an arbitrary vector n, we conclude immediately
that SF(P) = 0. Since this holds for any sub-body P it follows'3 that £F = 0.
This result clearly corresponds to the balance of forces in mechanics. We consider

now a sub-body P that is contained in a chart centered at some line ng. The
expression for the resultant becomes

2(*-] d[sE]i-l-/ ad(ha(X))dZM (X) +f gi(hz(X))dsg"“(X) =0.
P P P
Substituting ¢* = é'* we obtain
2[sE]1(P) +[ ai"dEgg +f b‘%ldsg{“ =0
P P

and substituting the values of af and bj; we obtain

2[s"[1(P) + ZH(P) =0,
and it follows that [s¥]; + £ = 0. Similarly, for ¢* = §%, the balance law is

2[s"]2(P) - B (P) =0

and we have [s%]; — S¥ =0.
For ¢* = 6%, one obtains

2[sE]3(P)+f (22dZM + o1 d2l) + (M2 — M) (P) = 0.
P

The treatment of this balance law is more involved because of the integral in
the middle term. For short we will use the notation A = 2[s]3 + (sM2 — sM1)
and also p = |E¥| + |Z2|. From the balance law it is clear that the measure A
is absolutely continuous with respect to the measure p. Let A be the Radon—
Nikodym derivative of A with respect to u. We have
<r j dy,
P

|A(P)| = ‘ f fid,u,l = ‘ ] (zodZM + 2,d5Y
P P




where r = sup,cp {|z1], |z2}} is the radius of the image of the set P under the
chart. We conclude that lim,, o A = 0. Hence, denoting the densities of the
various measures with respect to g by superimposed carets we have

2[5715(0, 0) + (31"* - &3)(0, 0) = 0,
and using [sM] for s}2 — s}! we finally obtain that
[8%)s + [s¥) =0

at any point when we use the chart centered at that point. If we assume that
the measures TM, ©F may be represented by smooth densities with respect to
the volume measure in the body, the last equation holds for these smooth axial
vector fields.

The last three balance laws are clearly the balance of moments or moment
of momentum,

It should be noted that by its definition, the Cauchy microstress measure and
its symmetry properties do not represent completely the analogous properties of
the Piola—Kirchhoff stress measures in cases where Thy is not of full rank. This
is in contrast to the situation pertaining to [s¥] where the axiom of material
impenetrability implies that Th, is always of full rank. The simplest analog to
the situation is the example of a collection of forces acting on a body and in
which it happens that all forces are acting at the same point. The balance of
moments will not provide information in addition to the balance of forces.

8. Stresses Represented by Smooth Densities

A particular case of the theory described above is the situation where the stress
measure for either the macro-force or the micro-force may be given in terms of a
smooth density with respect to the volume measure V on B. As done previously
we will consider first the microstress and later we shall specialize the results for the
macrostress. In this context it is assumed that there is a smooth section aM of the
dual of the jet bundle J(h*ar)* such that M = oMV, hence, the representation
of forces by stresses is of the form

Falua) = fB MX)(§(u)(X))dV, forall up € C'(h*7ar) = Tu@a.

Clearly, the density o™ is represented locally in the form (eM(X), o 1(X)). We
will refer to the density o™ as stress field.

In the case where a connection is specified on the manifold M, the assumption
that the stress may be represented by smooth densities implies that there are two
smooth sections o, oM of the bundles (h*Tar)", L(h*1p, TB), respectively, such
that the representation of forces by stresses is of the form

Faluz) = L oM (X)(un(X))AV + [B M (XY (Viua(X))V .



The sections o3, o} are of the forms off, {1, respectively. We will refer to o’,

oM as the micro self-force field and microstress field, respectively.
A standard calculation shows that

! (X)(Vh,u2(X)) = div(od (u2))(X) ~ (div o) (ua(X)),

where the two divergence operators have different meanings: o (u} is a vector field
B — T'B and since B is a submanifold of R? the divergence is that of a vector field in
R?, the divergence of o is the divergence of a tensor field valued in L(h*7as, T B)
using the connection given in M. Using the divergence theorem for div(cM (us)),
we obtain

fatus) = [ (o8t = divolun)av + [ (o} () -nda.
Using the definitions
by = o —diveM : B — (h*tar)*,
ty = (6M)T(n): 8B — (h*7m)",

we have shown that under the assumptions made, the micro-force may be repre-
sented by differential forms bps, tar as above in the form

faluz) = fB bM(Uz)dV+faB tar{ug)dA.

Clearly, the forms by, {3 represent the micro-force fo uniquely. The covector field
bas will be referred to as the micro body force field and the covector field tps will be
referred to as the micro surface force field. In the case where the force f; is given in
terms of a micro body force field bys and a micro surface force field £y, the force is
represented by the self-force field o and a microstress field o/ if the “equilibrium
equation” and boundary conditions

divoM +bpyy =0} in B
(eMYT(n) =ty on 6B

are satisfied.
The analogous results for the macro-force are clearly

divef +bg=0f, in B
(6f)(n)=tg, on 8B

where now the various fields are the classical fields of continuum mechanics and
of is the macro self-force field that vanishes usually (as in the example of liquid
crystals) as a result of symmetry requirements.



9. Latent Microstructure

The term latent microstructure was introduced by Capriz® for the case where the
micro-configuration and micro-velocity of the body is determined by the geometric
configuration and geometric velocity. Here, we only consider statics and do not have
a notion of an “actual” velocity (in contrast to a generalized velocity or a virtual
displacement), the most gereral situation is that the micro-configuration depends
on the geometric configuration. In other words, we can consider holonomic latent
microstructure only. Thus, it is assumed for the statics of material with latent
microstructure, that there is a differentiable mapping

A:QL— Q2

that assigns to each pgeometrical configuration the corresponding micro-
configuration. A curve in ¢, will determine through A a unique curve in » and any
geometrical virtual displacement w; which is a tangent vector to ¢}; will determine
the corresponding micro-virtual displacement us by

Ug = TA('U.}), TA : TQ1 — TQ2 .

Thus, for any geometrical configuration x; € ¢ any micro-force fo € (Ta(x,)Q@2)"
induces a geometrical force f; by

Si=TAf).
Thus, the virtual power will be of the form

f(u) = fi(wa) + fa(ue)
= fi(u1) + f2(TA(u1))
= fi(w) + TA*(f2) (1)
= (fi + TA*(f2))}(u1).

It follows that the statics of a body with latent microstructure may be replaced
by the statics of a simple body in F if any geometrical force f; is replaced by
f1 + TA*(f2).

The description given here is more general than the theory of bodies with la-
tent microstructure given in the works of Capriz!'? in the sense that the latent
microstructure may be nonlocal. This means that the microstate of a material
point X may depend on the geometrical states of material points other than X.
The latent microstructure is local if the microstate of any material point X depends
on the geometrical state of X only.

The question of the locality of the latent microstructure can be discussed in
the framework as suggested by the author.!? In the general case where the latent



microstructure is not necessarily local, the map A depends on the sub-body under
consideration. While so far we discussed configurations of the whole bedy B only,
we will indicate in the rest of this section the sub-body under consideration with
an appropriate subscript. For example, our assumption that the body has a latent
microstructure may be rewritten in the form

Ap:Qp, — Qs .

This assumption means that the micro-configuration of B is determined by the
geometrical configuration of B (and not a larger body). It is natural to extend this
and require that the micro-configuration of each sub-body of B will be determined
by the geometrical configuration of that sub-body. Thus we make the following
assumption,

Microstructure body determinism: The micro-configuration of each sub-body P
is determined by a mapping Ap : Qp, — Q@p,.

This assumption will be meaningless if for a point X that belongs to two sub-bodies,
the microstates of X as determined by the latent microstructure for the two different
sub-bodies will be contradicting. To make the previous assumption meaningful we
have to assume:

Consistency: For any sub-body P of B and a material point X we have
Ap(ryp)(X) = Ap(x1)(X).

It follows from these two assumptions that the microstate of a point X depends
on the configuration at an arbitrary sub-body or an arbitrary open subset of B con-
taining X. These assumptions by themselves are not sufficient in order to guarantee
that the microstate of X depends on the value of the geometrical configuration and
its derivatives at X.

We recall that Q2 = C1(B, M) and that J(C'(B, M)) is the jet bundle over B
whose fiber at any X contains the possible values of tangents at X of mappings in
CY(B, M). Locally, elements of J(C(B, M)) are represented by coordinates of the
form (7, v77). The jet extension mapping j : CY(B, M) - C°(J(C*(B, M))) is
the continuous mapping that assigns to any micro-configuration g the continuous
section of J(C1(B, M)) whose value at X is the tangent of x; at the material point
X (represented by (vP(X), v7{X))).

Earlier we made the assumption that A is differentiable. Therefore the mapping

joh: Q- COJ(CY(B, M)))

is a continuous mapping. In addition, j o A satisfies the assumptions of microstruc-
ture body determinism and consistency above. In the work concerning constitutive
theory,!? mappings such as joA from the geometrical configuration space to a space



of continuous functions on B that are continuous and that satisfy these assump-
tions are considered in the context of the locality of constitutive relations. Using
the results cited,'? it follows that the value of k2 and its tangent at X depends
continuously on the velue of k1 and its tangent at X. In addition, the mapping that
gives the value of ko and its tangent ot X as a function of the corresponding values
of k1, depends continuously on the material point X.

10. Higher Order Theories

Higher order theories are theories where stresses are tensors of orders higher than
2. These are used in order to model some physical phenomena that the traditional
theories cannot describe. In a previous work," it was shown that such theories fit
into the framework presented above very naturally. If we assume that configurations
are C™ mappings with = > 1, rather than the case n = 1 considered here, and we use
the C™ topology, we obtain by the same procedure described above the analogous
higher order theory.!!

In addition, the assumption that configurations are C™ mappings and using the
C™ topology implies also for the case of bodies with latent microstructure that
satisfy the assumptions of microstructure body determinism and consistency above
that the following hold: The value of k3 and its first n tangents (derivatives) at X
depends continuously on the value of k; and its first n tangents at X. In addition,
the mapping that gives the value of k2 and its tangents at X as a function of the
corresponding values of k; depends continuously on the material point X.

Thus, higher order theories extend naturally from the theory presented above.
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