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Abstract

We study the time evolution of a system of N spinless fermions in R3 which

interact through a pair potential, e.g., the Coulomb potential. We compare the

dynamics given by the solution to Schrödinger’s equation with the time-dependent

Hartree-Fock approximation, and we give an estimate for the accuracy of this

approximation in terms of the kinetic energy of the system. This leads, in turn,

to bounds in terms of the initial total energy of the system.

MSC class: 35Q40, 35Q55, 81Q05, 82C10
Keywords: Hartree-Fock, many-body theory, mean-field limit for fermions

I Introduction

The Model. In quantum mechanics, the state of a system of N identical particles is
described by a wave function Ψt which evolves in time t ∈ R according to Schrödinger’s
equation, {

i∂tΨt = HΨt ,

Ψt=0 = Ψ0 .
(1)

Given the (Bose-Einstein or Fermi-Dirac) particle statistics and the one-particle Hilbert

space h, the wave function Ψt is a normalized vector in H
(N)
b := S(N)[h⊗N ], for a

system of N bosons, or in H
(N)
f := A(N)[h⊗N ], for a system of N fermions. Here S(N)
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and A(N) are the orthogonal projections onto the totally symmetric and the totally
antisymmetric subspace, respectively, of the N -fold tensor product h⊗N of the one-
particle Hilbert space h. The dynamics (1) is generated by the Hamilton operator H

which is self-adjointly realized on a suitable dense domain in H
(N)
b or H

(N)
f , respectively.

In the present article we study a system of N spinless fermions in R3, so Ψt ∈ H
(N)
f ,

and h = L2[R3] is the space of square-integrable functions on R3. The Hamiltonian is
given by

H = ν +

N∑

j=1

h
(1)
j + λ

∑

1≤j<k≤N

v(xj − xk) , (2)

where

• the number ν ∈ R is a constant contribution to the total energy. For example, if
we describe a molecule in the Born-Oppenheimer approximation, then ν would
account for the nuclear-nuclear repulsion,

• the coupling constant λ > 0 is a small parameter and possibly depends on the
particle number N ≥ 1 (while our interest ultimately lies in the description of
systems with N ≫ 1, the estimates in this article hold for any N ≥ 1),

• the self-adjoint operator h(1) on h is of the form −a∆ + w(x), where a > 0 and
the external potential w is an infinitesimal perturbation of the Laplacian,

• and v(x) := ±|x|−1 is the Coulomb potential, for x ∈ R3 \ {0}; v(x) = +|x|−1 is
the repulsive case, v(x) = −|x|−1 the attractive case.

The Hamiltonian specified in (2) describes several situations of interest, e.g.:

• Atom. For an atom in the (0th) Born-Oppenheimer approximation with a nu-
cleus of charge Z at the origin, we have repulsive interaction and

ν = 0 , h(1) = −∆

2
− α

Z

|x| , λ = α , (3)

where α > 0 is the fine structure constant whose physical value is α ≃ 1/137.
Note that our system of units is chosen such that the reduced Planck constant
~, the electron mass m and the speed of light c are equal to one, and the charge
of the electron is −e = −√

α. For more details about this choice of units see [45,
p. 21].

• Molecule. More generally, we can consider a molecule with M ∈ N nuclei of
charges Z1, . . . , ZM > 0 at fixed, distinct positions R1, . . . , RM ∈ R3 in the Born-
Oppenheimer approximation. In this case we have

ν =
∑

1≤m<l≤M

αZmZl

|Rm − Rl|
, h(1) = −∆

2
−

M∑

m=1

αZm

|x− Rm|
, λ = α . (4)
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• Particles in a Trap. For electrons in an external confining potential (realized,
e.g., by a laser trap), we have repulsive interaction and

ν = 0 , h(1) = −∆

2
+ w(x) , λ = α . (5)

• Fermion Star. The Hamiltonian also describes systems of gravitating fermions,
e.g., neutrons. In this case the interaction is attractive and

ν = 0 , h(1) = −∆

2
, λ = G , (6)

where G is Newton’s gravitational constant (and recall that we set the mass
m = 0). A better description of a fermion star is achieved by replacing the
non-relativistic Laplacian by the semi-relativistic operator

√
−∆+ 1 .

For these situations the Hartree-Fock description that we are aiming at in this
article and that we describe below can only be expected to hold for very short times
(short relative to the large particle number N). For times of order 1, we have to choose
the coupling constant small in N to see Hartree-Fock behavior (“mean-field scaling”).
There are several possibilities to do that:

• Mean-Field Scaling for Large Volume. Let us first note that for systems
with large volume proportional to N , the kinetic energy is naturally also of order
N . For such a system, the choice

ν = 0, h(1) = −∆

2
+ w(x) , λ =

1

N2/3
(7)

leads to an interaction energy which is of the same order in N as the kinetic
energy (see [50] for a more detailed discussion).

• Mean-Field Scaling for Fixed Volume. For systems with volume indepen-
dent of N , the mean-field limit is naturally coupled to a semi-classical limit. Note
that here the kinetic energy is of order N5/3. Then the choice

ν = 0, h(1) = − ∆

2N1/3
+ w(x) , λ =

1

N2/3
(8)

leads to an interaction energy of the same order as the kinetic energy and non-
trivial mean-field behavior (see in particular [22, 16] for more details).

• λ = N
−1 Scaling. Very often, the term “mean-field scaling” is identified with

the choice λ = N−1. However, comparing with (7) and (8), in the two situations
considered above, we see that this scaling leads to a subleading interaction.

Theory of the Time-Dependent Hartree-Fock Equation. Although (1) admits
the explicit solution Ψt = e−itHΨ0, this explicit form is not useful in practice (from the
point of view of numerics, for example) because of the large number N ≫ 1 of variables,
and it therefore becomes necessary to consider approximations to this equation. One
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such approximation consists of restricting the wave function Ψt to a special class of
wave functions. For fermion systems, the Hartree-Fock approximation is a natural
choice: it restricts Ψt to the class of Slater determinants, i.e., to those Φ ∈ H

(N)
f which

assume a determinantal form,

Φ(x1, . . . , xN) =
1√
N !

det




ϕ1(x1) · · · ϕ1(xN )
...

. . .
...

ϕN (x1) · · · ϕN(xN )


 , (9)

where the orbitals ϕ1, . . . , ϕN ∈ h are orthonormal. We express (9) more concisely as
Φ = ϕ1∧· · ·∧ϕN . In time-independent Hartree-Fock theory, one is interested in deter-
mining the minimal energy expectation when varying solely over Slater determinants
[7, 11, 10, 43, 9], i.e., one is interested in finding

inf
{
〈Φ, HΦ〉

∣∣Φ = ϕ1 ∧ · · · ∧ ϕN , 〈ϕi, ϕj〉 = δij
}
.

One can also study the evolution governed by (1) using Slater determinants, which
gives rise to time-dependent Hartree-Fock theory. Here the basic intuition is that, for
a system containing a large number of particles, the solution will stay close to a Slater
determinant (at least for short times), provided the initial state is close to a Slater
determinant. Turning this intuition into mathematics requires the specification of the
equation of motion of the approximating Slater determinant, as well as a mathemat-
ically rigorous notion of being “close”. For the derivation of the former, one assumes
that the solution to (1) is of the form Φt = ϕt,1 ∧ · · · ∧ ϕt,N , as in (9). It is then
easy to verify that the orbitals ϕt,1, . . . , ϕt,N necessarily satisfy the time-dependent
Hartree-Fock (TDHF) equation, that is the system of N non-linear equations given by

i
dϕt,j

dt
= h(1)ϕt,j + λ

N∑

k=1

(
[v ∗ |ϕt,k|2]ϕt,j − [v ∗ (ϕt,jϕ̄t,k)]ϕt,k

)
, (10)

for j = 1, . . . , N (ϕ̄ is the complex conjugate of ϕ).
The TDHF equation (10) can be rewritten in terms of the one-particle density

matrix pt =
∑N

j=1 |ϕt,j〉〈ϕt,j| with ϕt,j ∈ h and 〈ϕt,j, ϕt,k〉 = δjk as

(TDHF) i∂tpt = [h(1), pt] + λTr2[v
(2), (pt ⊗ pt)(1 − X)] . (11)

Here X is the linear operator on h ⊗ h such that X(ϕ ⊗ ψ) = ψ ⊗ ϕ and Tr2 is the

partial trace (see (23)). Sometimes, we write p
(2)
t = (pt ⊗ pt)(1 − X). In the sequel,

when speaking of the TDHF equation, we refer to (11). The term involving 1 is called
the direct term, the term involving X the exchange term.

Note that the TDHF equation (11) can be written as i∂tpt = [h
(1)
HF (pt), pt], where

the effective HF-Hamiltonian h
(1)
HF (γ) is given by

h
(1)
HF (γ) := h(1) + λTr2[v

(2)(1h⊗h − X)(1h ⊗ γ)] . (12)

Implicitly assuming the existence and regularity of pt, the HF-Hamiltonian h
(1)
HF (pt)

is self-adjoint with the same domain as h(1), and hence the solution to ∂tUHF,t =

4



−ih(1)HF (pt)UHF,t, with UHF,0 = 1, is unitary. This has the important consequence that
(11) preserves the property of the one-particle density matrix pt of being a rank-N

orthonormal projection. In other words, if Φt ∈ H
(N)
f evolves according to the TDHF

equation and Φ0 = ϕ1 ∧ · · · ∧ ϕN is a Slater determinant, then so is Φt, for all t ∈ R.
The TDHF equation for density matrices as in (11) has been studied in [17] for

a bounded two-body interaction. Then the mild solutions of the TDHF equation in
the form (10) have been handled for a Coulomb two-body potential in [21] for initial
data in the Sobolev space H1. This result has been extended to the TDHF equation
in the form (11) in [18, 20]. Note that [18] also handles the case of a more general
class of two-body potentials and the existence of a classical solution for initial data
in a space similar to the Sobolev H2 space for density matrices. In [63] the existence
of mild solutions of the TDHF in the form (10) was proved for a Coulomb two-body
potential with an (infinite sequence of) initial data in L2. For the convenience of the
reader we state the precise results we use about the theory of the TDHF equation
in Appendix A. In [5] the existence and uniqueness of strong solutions to the von
Neumann-Poisson equation, another nonlinear self-consistent time-evolution equation
on density matrices, are proved with the use of a generalization of the Lieb-Thirring
inequality. Another direction in which to generalize the Hartree equations is to consider,
instead of an exchange term, a dissipative term in the Hartree equation; the existence
and uniqueness of a solution for such an equation has been proved in [6].

One-particle Density Matrix. The notion of proximity of two states we use in this
article is defined by expectation values of k-particle observables, where 1 ≤ k ≪ N .
More specifically, if Ψt ∈ H

(N)
f is the (normalized) solution to (1) and ΦHF,t = ϕt,1∧· · ·∧

ϕt,N , where ϕt,1, . . . , ϕt,N are the solutions to (10), then, for any k-particle operator
A(k) (i.e., for any bounded operator A(k) on h∧k := A[h⊗k]), we wish to control the
quantity

δ
(k)
t

(
A(k)

)
:=

1

‖A(k)‖∞
∣∣〈Ψt, (A

(k) ⊗ 1N−k )Ψt〉 − 〈ΦHF,t, (A
(k) ⊗ 1N−k )ΦHF,t〉

∣∣ .

Here 1N−k denotes the identity operator on h⊗(N−k) and ‖ · ‖∞ denotes the operator
norm on B[h∧k].

It is more convenient to reformulate this approach in terms of reduced density
matrices. We recall that, given Ψ ∈ H

(N)
f , the corresponding reduced k-particle density

matrix is the trace-class operator γ
(k)
Ψ on H

(k)
f whose kernel is given by

γ
(k)
Ψ (x1, . . . , xk; y1, . . . yk)

=
N !

(N − k)!

ˆ

Ψ(x1, . . . xk, xk+1, . . . xN) Ψ(y1, . . . yk, xk+1, . . . xN ) d
3xk+1 · · · d3xN .

(13)

Note that we normalize the reduced density matrices so that Trγ
(k)
Ψ = N !

(N−k)!
. We may

then rewrite δ
(k)
t (A(k)) as

δ
(k)
t

(
A(k)

)
=

1

‖A(k)‖
B(H

(k)
f )

∣∣∣Tr
[
(γ

(k)
Ψt

− γ
(k)
ΦHF,t

)A(k)
]∣∣∣
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and observe that
sup

A(k)∈B(H
(k)
f )

δ
(k)
t

(
A(k)

)
=

∥∥γ(k)Ψt
− γ

(k)
ΦHF,t

∥∥
L1 ,

where ‖ · ‖L1 denotes the trace norm. We are thus interested in bounds on ‖γ(k)Ψt
−

γ
(k)
ΦHF,t

‖L1. In the present article we restrict ourselves to the case k = 1.

Derivation of the TDHF Equation. The derivation of the TDHF equation may be
seen as part of the quest for a derivation of macroscopic, or mesoscopic, dynamics from
the microscopic classical or quantum-mechanical dynamics of many-particle systems as
an effective theory. Let us first discuss some generally interesting examples and then
come to the case of the TDHF equation for fermions.

In the case of the dynamics of N identical quantum-mechanical particles, the time-
dependent Hartree equation, that is the TDHF equation (10) without the exchange
term, was first derived rigorously in [60] for a system of N distinguishable particles in
the mean-field limit. For systems of indistinguishable particles, the case of bosons has
received considerable attention compared to the case of fermions, and several methods
have been developed. The so-called Hepp method has been developed in [41, 35, 36]
in order to study the classical limit of quantum mechanics. It inspired, among others,
[34], where the convergence to the Hartree equation is proved, [57], where the rate
of convergence toward mean-field dynamics is studied, and [2, 3], where the propaga-
tion of Wigner measures in the mean-field limit is studied, with special attention to
the relationships with microlocal and semiclassical analysis. In this direction, with a
stochastic microscopic model, the linear Boltzmann equation was obtained as a weak-
coupling limit in [19] yielding an example for a derivation of an equation with non-local
terms using methods of pseudodifferential calculus. The derivation of the linear Boltz-
mann equation in the earlier work [30], along with the series of works following it, used
a different method based on series expansions in terms of graphs similar to Feynman di-
agrams. The result is valid on longer time-scales than in [19], but with more restrictive
initial data. Other limit dynamics have been obtained, a particularly interesting one
is the weak-coupling limit for interacting fermions for which a (non-rigorous) deriva-
tion of the nonlinear Boltzmann equation has been given in [25]. Series expansion
methods and the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy have
also proved fruitful in other works, e.g., [60, 14, 23, 1, 27, 4, 29, 28]. In [29, 28] the
Gross-Pitaevskii equation, which describes the dynamics of a Bose-Einstein condensate
has been derived. Also for the Gross-Pitaevskii equation the formation of correlations
has been studied in [24], providing information on the structure of solutions to the
Gross-Pitaevskii equation. The techniques developed in [48] to study the weakly non-
linear Schrödinger equation are used in [47] to derive quantum kinetic equations; those
techniques resemble the BBGKY hierarchy methods, but they do not impose the nor-
mal ordered product of operators when considering expectation with respect to the
initial state. The bounds on the rate of convergence in the mean-field limit given in
[34] have been sharpened in [26] using a method inspired by Lieb-Robinson inequalities.
Another method introduced in [33] shows that the classical time evolution of observ-
ables commute with the Wick quantization up to an error term which vanishes in the
mean-field limit, yielding an Egorov-type theorem. Recently a new method based on a
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Grønwall lemma for a well-chosen quantity has been introduced [53, 42] in the bosonic
case, which considerably simplifies the convergence proof for the Hartree equation.

In the fermionic case, the TDHF equation has been derived in [12] in the λ =
N−1 scaling for initial data close to Slater determinants, and with bounded two-body
potentials. The same authors give bounds on the accuracy of the TDHF approximation
for uncorrelated initial states in [13], still with a bounded two-body potential. For the
same scaling, the TDHF equation has been derived in [32] for the Coulomb potential for
sequences of initial states given by Slater determinants. The semi-classical mean-field
scaling from (8) has first been considered in [49] where it is shown that for suitably
regular interactions the Schrödinger dynamics is close to the classical Vlasov dynamics.
The results have been improved in [61]. In [22], in the semi-classical mean-field scaling,
the closeness of the Schrödinger dynamics to the Hartree-Fock dynamics was discussed
and bounds for the Husimi function were given, assuming the potential to be real-
analytic and thus in particular bounded. Up to that point all the method used to
derive the TDHF equation had always been based on BBGKY hierarchies. In [16, 15]
estimates of ‖γN,t − pN,t‖L1 were given in terms of the number N of electrons and the
time t, in the semi-classical mean-field scaling. Their method is based on the Grønwall
lemma, similarly to [53] in the bosonic case. The second article deals with the semi-
relativistic case. The authors pointed out that with a bounded potential, in this scaling,
the exchange term in the time-dependent Hartree-Fock equation does not play a role so
that the time-dependent Hartree-Fock equation reduces to the time-dependent Hartree
equation. In [50], the fermionic Hartree equation in the large volume case is considered
by generalizing the method of [53]. Interactions of the form |x|−s are considered, with
the corresponding λ = N−1+s/3. Under the condition that the Hartree-Fock kinetic
energy per particle is bounded uniformly in time, a derivation of the TDHF equation
is given for 0 < s < 3/5, and for Coulomb interaction with either a mild singularity
cutoff on a ball with radius N−1/6+ε, for any ε > 0, or for the full Coulomb interaction
under certain Sobolev conditions on the solution to the TDHF equation which are not
proven in this work. Explicit bounds in terms of N , the Hartree-Fock kinetic energy
and t are given. Furthermore, in [50], the main result of [16] is reproduced with a
different method than in [16] and written down for weaker conditions on the closeness
of the initial state to a Slater determinant.

Main Estimate of this Article (see Theorem II.1). Given a normalized initial

state Ψ0 ∈ H
(N)
f and the one-particle density matrix p0 ≡ γΦHF,0

associated with a Slater
determinant ΦHF,0 = ϕ1,0 ∧ · · · ∧ ϕN,0, with 〈ϕi,0, ϕj,0〉 being orthonormal orbitals in
H1(R3), γt the one-particle density matrix of the solution Ψt to (1) and pt the solution
to (11) obey the trace norm estimate

1

N
‖γt − pt‖L1 ≤

√
8

√
N2/3

1

N
‖γ0 − p0‖L1 exp(Cλ,N,Kt) +N−1/3

(
exp(Cλ,N,Kt)− 1

)
,

(14)
with Cλ,N,K = 30λ

√
KN1/6, where K is a bound on the kinetic energy of pt which is

assumed to be uniform in time (see (15)).

Discussion of the Results. Roughly speaking, the estimate (14) implies that, start-
ing from a state close to a Slater determinant for the N -body Schrödinger equation
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and from the corresponding one-particle density matrix for the TDHF equation, the
Hartree-Fock approximation is justified up to times of order (λ

√
KN1/6)−1, where K is

the kinetic energy (which, for repulsive systems, is bounded by the total energy of the
system, uniformly in time) and λ the coupling constant. Hence, our assumption on the
initial state is given in terms of energy, and not in the form of “increasing” sequences
of Slater determinants. This assumption seems more natural to the authors as it is
closer to a thermodynamic assumption on the system. In our proof we obtain a rate
of convergence of N−1/6. For the initial data, in order to have convergence, we can
allow states with N−1/3‖γ0 − p0‖L1 → 0 for N → ∞. This means, e.g., that, for any
ε > 0, the initial state can have N1/3−ε particles outside the condensate, i.e., the Slater
determinant structure.

The fact that the estimate (14) is relevant when λN1/6K1/2t is of order one, re-
stricts its applicability to a regime where the kinetic energy dominates the direct and
exchange terms. This implies that the evolution is the free evolution to leading order.
Estimate (14) captures the subleading effect of the direct term on the dynamics and is
thus relevant provided that K ≫ N4/3. We substantiate this by heuristic arguments
in Appendix B. Let us stress that Estimate (14) requires no additional assumption on
the initial states other than the Hartree-Fock kinetic energy to be finite. Furthermore,
Estimate (14) applies to the repulsive or attractive Coulomb interaction, which is very
relevant for many physical systems.

Compared to [32], where also the Coulomb potential was considered, our result
holds for larger time scales. In [32], the λ = N−1-scaling was assumed and, by a
rescaling in time and in space, the result also applies to a large neutral atom (i.e., with
charge N ≫ 1 and λ = α). With the result of [32] the Hartree-Fock approximation
is then justified up to times of order N−2. Assuming we have a state with a negative
energy, the kinetic energy is controlled by a universal multiple of N7/3 (see Sect. II
for more details), and our estimate allows us to justify the approximation up to much
larger times, of order N−4/3. (Note, however, that our estimate deteriorates if the
energy of the state is higher.)

Compared to [16] where the semi-classical scaling (8) is considered, our result allows
us to control the approximation only up to times of order N−1/3, whereas the estimates
in [16] allow one to control the approximation up to times of order 1 (however, only for
bounded two-body potentials). This comes from the fact that we do not assume any
semi-classical structure on the initial data. Note that our strategy is similar to the one
of [16] since we do not use the BBGKY hierarchy but instead make use of a Grønwall
lemma. An important difference lies in the decomposition of the potential: in [16] a
Fourier decomposition is used whereas we use the Fefferman-de la Llave formula.

Let us compare our results to [50] where the mean-field scaling for large volume (7)
is considered. Note that there the Schrödinger dynamics is compared to the fermionic
Hartree equation without exchange term. While in [50] other interactions are also
considered, for Coulomb interaction, essentially two results are proven. First, for reg-
ularized Coulomb interaction with singularity cut off on a ball with radius N−1/6+ε for
any ε > 0, convergence of the Schrödinger dynamics to the fermionic Hartree dynamics
is shown in terms of a counting measure αg, with convergence rate depending on the
cutoff. Note, that we use the same measure in our proof, see also Remark III.5, but
we formulate our main result only in terms of the trace norm difference of reduced
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densities. The improvement of our result is that it holds for full Coulomb interaction
without any regularization and, in general, with a better convergence rate. For the
second result in [50] a bound on Tr[(−∆)3+εpt] is assumed. Under that condition con-
vergence for full Coulomb interaction in terms of αg and the trace norm difference is
shown, with rate N−1/2 in the trace norm sense. This bound on Tr[(−∆)3+εpt] was,
however, not proven to hold for t > 0. Compared to that, our result holds for any
initial condition with kinetic energy bounded by CN , without further assumptions,
but only with a convergence rate of N−1/6 in the trace norm sense.

Sketch of our Derivation of Estimates on the Accuracy of the TDHF Ap-
proximation. We derive an estimate on the trace norm of the difference γt − pt
between the one-particle density matrix γt ≡ γΨt of the (full) solution Ψt = e−itHΨ0 of
(1) and the one-particle density matrix pt solving the TDHF equation (11). Our work
is inspired by [53], where one of us developed a new method for bosonic systems which
was generalized to fermion systems in [50] by two of us. The method uses a Grönwall
estimate for a well-chosen quantity called the number of bad particles in [53]. We refer
to the quantity we chose to control as the degree of evaporation Sg. The subscript g
refers to a freedom in the choice of a weight function g which allows us to fine-tune the
distance of ρt (the density matrix of Ψt) to pt in a suitable way. For the simplest choice
g(x) = x, Sg is called the degree of non-condensation in [38, Remark (a) on p. 5], while
in [59] it is called Verdampfungsgrad, which translates to degree of evaporation.

We show that the degree of evaporation Sg is directly related to the trace norm
‖γ−p‖L1. We then calculate the time derivative of Sg and split it into three terms that
we estimate separately. To obtain the estimates we make use of correlation inequalities
which may be seen to be a dynamical version of the correlation estimate presented
in [7]. (See also [38] for an alternative proof of that correlation estimate which does
not make use of second quantization.) While we estimate two of the terms in a way
very similar to [50], our estimate for the remaining term (here called A; in [50] called
(I)) is very different and allows us to treat the full Coulomb potential. This term
is physically the most important, since its smallness is a consequence of cancellations
between the Hartree-Fock and the many-body interaction. The bounds on this term
are the key estimates of this work. They are obtained by using the Fefferman-de la
Llave decomposition formula [31]. We remark that, in view of the generalization of
this decomposition derived in [39, 37], our result applies to a more general class of two-
body interaction potentials. The Lieb-Thirring inequality [46] and Hardy’s inequality
then provide an estimate in terms of kinetic energy. Finally, we note that in many
physically relevant cases the estimate in terms of kinetic energy can be stated in terms
of an estimate on the initial total energy of the system.

Outline of the Article. In Sect. II we state our main result, along with applications
to molecules or the mean-field limit. In Sect. III we introduce the degree of evaporation
Sg and relate it to the difference between the one-particle density matrix of the solution
to our model and the solution to the TDHF equation. We then calculate the time
derivative of Sg and provide bounds for the different contributions, thus proving our
main theorem. In Appendix A we recall some results about the theory of the TDHF
equation.
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II Main Result and Applications

Our main result is an estimate of the trace norm ‖ · ‖L1 of the difference between the
one-particle density matrix of the solution to the many-body Schrödinger equation (1)
and the solution to the time-dependent Hartree-Fock equation (11) in terms of the
kinetic energy of the system. As usual, we denote by H1(R3) the Sobolev space of
weakly differentiable functions with square-integrable derivative.

We henceforth make use of the following notation:

• Let Ψ0 ∈ H
(N)
f be a normalized initial state, and let γt := γΨt be the one-particle

density matrix of the solution Ψt = e−iHtΨ0 to the Schrödinger equation (1) with
Hamiltonian H from (2) (i.e., with Coulomb interaction).

• Let ΦHF,0 = ϕ1,0 ∧ · · · ∧ ϕN,0 be a Slater determinant, with ϕj,0 ∈ H1(R3) and
〈ϕj,0, ϕk,0〉h = δjk, for 1 ≤ j, k ≤ N . Let p0 := γΦHF,0

be the one-particle
density matrix of ΦHF,0 and pt be the solution to the time-dependent Hartree-
Fock equation (11) with initial condition p0.

Theorem II.1. Assume that the kinetic energy of pt is uniformly bounded in time,

K := sup
t≥0

Tr[−∆pt] < ∞ . (15)

Under the assumption of (15) the estimate

1

N
‖γt − pt‖L1 ≤

√
8

√
N2/3

1

N
‖γ0 − p0‖L1 exp(Cλ,N,Kt) +N−1/3

(
exp(Cλ,N,Kt)− 1

)

(16)
holds true with Cλ,N,K = 30λ

√
KN1/6.

The proof of Theorem II.1 is postponed to Sect. III.

Remark II.2. One of the ingredients of our proof is the Fefferman-de la Llave decom-
position of the Coulomb potential [31]

1

|x| =

ˆ ∞

0

16

π r5
(1B(0,r/2) ∗ 1B(0,r/2))(x) dr , (17)

an identity that holds for all x ∈ R3 \ {0}, where 1B(0,r/2) is the characteristic func-
tion of the ball of radius r/2 centered at the origin in R3. A generalization of this
decomposition to a class of two-body interaction potentials v of the form

v(x) =

ˆ ∞

0

gv(r) (1B(0,r/2) ∗ 1B(0,r/2))(x) dr , (18)

with x ∈ R3\{0}, was given in [39] under Assumption II.3 below, and our proof largely
generalizes to those potentials v. More precisely, the assertion of Theorem II.1 holds
true and without any change in the constants, if we replace the Coulomb potential by
any pair potential v that satisfies Assumption II.4 below, which in particular implies
v(x) ≤ |x|−1. Note that the assumption of semi-boundedness of v is only used to ensure
the global existence of a solution to the TDHF equation. One could drop it to study
problems up to the time the solution to the TDHF blows up.
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Assumption II.3. The function v : R3 \ {0} → R has the following properties:

• v is a radial function, and there exists a function ṽ ∈ C3[(0,∞);R] such that
v(x) = ṽ

(
|x|

)
, for all x ∈ R3 \ {0},

• rm dmṽ
drm

(r) → 0, as r → ∞, for m = 0, 1, 2,

• limR→∞

´ R

1
r3 gv(r) dr exists, with gv(r) :=

2
π

d
dr

(
1
r
d2ṽ
dr2

(r)
)
.

Note that g|·|−1(r) = 16
π
r−5 in case of the Coulomb potential which is prototypical for

the following further assumption.

Assumption II.4. (With the same notation as in Assumption II.3.) The function
v : R3 → R satisfies Assumption II.3, |gv(r)| ≤ 16

π
r−5 and, for some µ ∈ R, v(x) ≥ µ

for all x.

Remark II.5. Note that we actually prove a slightly stronger result in Theorem III.8
in terms of the degree of evaporation Sg(t) (with properly chosen g), which is defined
in Definition III.3. The way our result is formulated in Theorem III.8 can directly be
compared to the results in [50].

Remark II.6. Note that the two summands in the square root on the right-hand side
of (16) come from different contributions which we call At, Bt and Ct (and which are
called (I), (II), (III) in [50]), see Proposition III.9. It is interesting to note that all
three terms contribute to the first summand (which is proportional to ‖γ0−p0‖L1) but
only the Bt term contributes to the second summand.

Remark II.7. Note that it is sufficient to prove Theorem II.1 with Ψ0 in H
(N)
f ∩

H1(R3)
⊗N

. A density argument then provides the result for a general Ψ0 in H
(N)
f .

Let us discuss some cases when the assumption that the Hartree-Fock kinetic energy
is uniformly bounded in time is satisfied. In Propositions II.11 and II.12 we give
explicit bounds on the kinetic energy K in terms of the energy expectation value
〈ΦHF,0, HΦHF,0〉 of the initial state ΦHF,0 and the ground state energy for examples
presented in Sect. I. In the case of atoms or molecules this follows from known estimates,
which we now recall.

To formulate these, we denote the energy expectation value and the kinetic energy
expectation value of a normalized wave function Ψ ∈ H

(N)
f ∩ H1(R3)

⊗N
by

E(Ψ) = 〈Ψ, HΨ〉 and K(Ψ) =

〈
Ψ,

( N∑

j=1

−∆j

)
Ψ

〉
.

For atoms and molecules the ground state energy Egs is defined as

Egs = inf
{
E(Ψ)

∣∣∣Ψ ∈ H
(N)
f ∩H1(R3)

⊗N
, ‖Ψ‖

H
(N)
f

= 1 ,

R1, . . . , RM ∈ R3, l 6= m⇒ Rl 6= Rm

}
.

Equipped with this notation, we formulate the coercivity of the energy functional on
the Sobolev space of states with finite kinetic energy:
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Proposition II.8. Consider a neutral atom or a molecule as in (3) or (4). If Egs ≤ 0
then

K(Ψ) ≤
(√

E(Ψ)−Egs +
√
−Egs

)2

≤ 2E(Ψ) + 4|Egs| .

Proof. See [45, p.132].

Using Proposition II.8 along with the conservation of the total energy for both the
Schrödinger equation and the TDHF equation (see Appendix A) we get the following
bound on the kinetic energy.

Proposition II.9. Assume that ΦHF,0 = ϕ1,0∧· · ·∧ϕN,0 is a Slater determinant, with
ϕj,0 ∈ H1(R3) and 〈ϕj,0, ϕk,0〉h = δjk, for 1 ≤ j, k ≤ N . Then, in the case of atoms or
molecules as in (3) or (4),

K := sup
t≥0

Tr[−∆pt] ≤
(√

E(ΦHF,0)−Egs +
√

−Egs

)2

. (19)

Thus, if E(ΦHF,0) ≤ 0 then

K ≤ −4Egs . (20)

We also recall a known bound for the ground state energy, see [46] or [45], whose
units we use.

Proposition II.10 (Ground state energy of a molecule). For a molecule with nuclei
of charges Z1, . . . , ZM > 0 at pairwise distinct positions R1, . . . , RM ∈ R3, with λ = α,
ν =

∑
m<l αZmZl/|Rm − Rl| as in (4), and Z = max{Z1, . . . , ZM}, the ground state

energy satisfies the bound

0 < −Egs ≤ (0.231)α2N

[
1 + 2.16Z

(M
N

)1/3
]2
.

Proposition II.11 (Neutral atom). In case of an atom with N = Z the ground state
energy satisfies

0 < −Egs ≤ (2.31)α2N7/3 .

Proposition II.12 (TDHF equations without external potential and with repulsive
interaction). For h(1) = −∆/2 and v(x) = |x|−1, the Hartree-Fock kinetic energy is
bounded by the total Hartree-Fock energy (for any λ > 0), which is preserved in time,
i.e.,

K ≤ E(ΦHF,0) .

Finally, let us note that for attractive Coulomb interaction without external field,
we have the bound

K ≤ 2E(ΦHF,0) + Cλ2N7/3 , (21)

which follows from the Lieb-Thirring inequality and which we prove in Appendix B.
Thus, also for attractive interaction, the bounds K ≤ CN in the mean-field scaling for
large volume (7) and K ≤ CN5/3 in the semi-classical mean-field scaling (8) hold, if
the corresponding bounds hold for the total energy.
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III Control of the Degree of Evaporation Sg

We first introduce the degree of evaporation Sg, which is a function of a state on the
Fock space and a one-particle density matrix. We use Sg as an indicator of closeness
of the Hartree-Fock to the Schrödinger quantum state.

III.1 Definition and Properties of the Degree of Evaporation

For A and more generally B(M) (M ≤ N) linear operators acting on h and H
(M)
f ,

respectively, we use the notation

dΓ(A) :=
N∑

j=1

Aj and dΓ(M)(B(M)) :=
N∑

j1,...,jM=1
j1 6=j2...6=jM

B
(M)
j1...jM

, (22)

as operators on H
(N)
f , with Aj acting on the jth factor in h⊗N and B(M) acting on the

jth1 , . . . , j
th
M factors in h⊗N , respectively.

Remark III.1. Although we do not use the fermion creation and annihilation operators
a∗, a, note that (22) coincides with the second quantization dΓ in quantum field theory
in the sense that

dΓ(A) =

ˆ

A(x; y) a∗(x)a(y) dxdy ,

or, more exactly, its restriction to the N -particle sector. Similarly, e.g.,

dΓ(2)(B(2)) =

ˆ

B(2)(x1, x2; y1, y2) a
∗(x2)a

∗(x1)a(y1)a(y2) dx1dx2dy1dy2 .

Let L1(H) denote the space of trace class operators on a Hilbert space H. We use
the partial trace Tr2 : L1(h⊗2) → L1(h) which is defined for B(2) ∈ L1(h⊗2) to be the
operator Tr2[B

(2)] ∈ L1(h) such that

Tr
[
Tr2(B

(2))A
]

= Tr
[
B(2) (A⊗ 1h)] (23)

holds for all A ∈ B(h).
Definition III.2. For an N -particle density matrix ρ ∈ L1

+(H
(N)
f ), i.e., a non-negative

trace-class operator on H
(N)
f of unit trace, the one- (resp. two-)particle density matrix

of ρ is denoted by γρ (resp. γ
(2)
ρ ). It is the operator on h (resp. H

(2)
f ) such that

∀A ∈ B(h) : Tr
H
(N)
f

[ρ dΓ(A)] = Trh[γρA] , (24)

∀B(2) ∈ B(H(2)
f ) : Tr

H
(N)
f

[
ρ dΓ(2)(B(2))

]
= Tr

H
(2)
f

[
γ(2)ρ B(2)

]
. (25)

We note that γρ and γ
(2)
ρ satisfy

0 ≤ γρ ≤ 1 , Trh[γρ] = N , 0 ≤ γ(2)ρ ≤ N , Tr
H
(2)
f
[γ(2)ρ ] = N(N − 1) (26)

(see, e.g., [9, Theorem 5.2]). Further note that we are slightly abusing notation since
the one-particle density matrix was defined for wave functions in Eq. (13), rather than

for density matrices. We thus identify γΨ ≡ γ|Ψ〉〈Ψ|, for all normalized Ψ ∈ H
(N)
f ,

whenever this does not lead to confusion.
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Definition III.3. Let N ∈ N and

SN :=
{
η ∈ L1(h)

∣∣ 0 ≤ η ≤ 1 , Tr[η] = N
}
,

and g be a continuous function from R to R. The map Sg : L1
+(H

(N)
f ) × SN → R+

0

defined by

Sg(ρ, η) := Tr[ρ ĝ] , (27)

where ĝ := g
(
dΓ(1 − η)

)
, is called the degree of evaporation (of ρ relative to η). The

translation of g by k ∈ Z, is denoted by τkg(y) := g(y − k).

Note that when the expression of g is too long to fit under a hat, we write (g)∧

instead of ĝ.

Remark III.4. ĝ := g
(
dΓ(1 − η)

)
is defined using the functional calculus [54, 56].

Remark III.5. The particular case in which η is a rank-N projector is of importance
in the sequel, and we then write

p := η and q := 1 − η .

In this case, only the values of g on {0, . . . , N} are relevant for the definition of ĝ and
the continuity assumption on g can be dropped. We can then give an alternative and
equivalent viewpoint using the orthogonal projections

P (M)
m :=

∑

a∈{0,1}M0
|a|=m

M⊗

ℓ=1

(
(1− aℓ)p+ aℓq

)
= 1{m}

(
dΓ(q)

)

on h⊗M , with |a| = a1+· · ·+aM , for M ∈ N and m ∈ Z. (Note that with this definition

P
(M)
m = 0 for m /∈ {0, . . . ,M}.) We can then write down the spectral decomposition of

dΓ(q),

dΓ(q) =
∑

n∈Z

nP (N)
n , (28)

i.e., P
(N)
n is the projection on the eigenspace of dΓ(q) associated with the eigenvalue

n ∈ Z. It follows that

Sg(ρ, p) =
N∑

n=0

g(n) Tr
[
ρP (N)

n

]
. (29)

In this form we see directly that for ρ = |Ψ〉〈Ψ| we have Sg = αg, where αg is the
functional used in [50, Definition 2.1] to control the closeness of a Hartree-Fock state
to a Schrödinger state. However, note that there is a difference in the choice of nor-
malization. The particular choices of functions, f in [50] and g in our article, are
related through g = N f , such that Sg = Nαf . Note also that for g(x) = x we find
SIdR(ρ, p) = Tr[γρ(1 − p)].
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Remark III.6. For g(x) = x, the functional Sg has been used in [8, 38, 59] in the context
of mean-field approximations for ground states. In [38], Sg is called “degree of non-
condensation” or “the relative number of particles outside the Fermi sea”. For general
g, a bosonic variant of Sg was introduced for the derivation of mean-field dynamics
in [53] and for the derivation of the NLS equation in [52, 51]. For the derivation of
mean-field dynamics for fermions, Sg was introduced in [50]. Note that for g(x) = x

and Ψ0 ∈ H
(N)
f , 2Sg(t) coincides with the quantity 〈UN (t; 0)ξ,NUN(t; 0)ξ〉 in [16] in

case ξ = R∗
νN
Ψ0.

Let us collect some properties of Sg(ρ, η) and show how it relates to the distance of
γρ to η in trace norm. (Note that some of the statements were already proven in [16]
and [50].) We denote the Hilbert-Schmidt norm by ‖ · ‖L2.

Proposition III.7. For η ∈ SN and ρ a density matrix with one particle density
matrix γ, the degree Sg(ρ, η) of evaporation has the properties

inf
0≤x≤N

g(x) ≤ Sg(ρ, η) ≤ sup
0≤x≤N

g(x) , (30)

‖γ − η‖2L2 ≤ 2SIdR(ρ, η) , (31)

g1 ≤ g2 on [0, N ] ⇒ Sg1(ρ, η) ≤ Sg2(ρ, η) , (32)

g 7→ Sg(ρ, η) is linear, (33)

for g, g1, g2 functions from R to R.
If furthermore p2 = p is a rank-N orthogonal projection and g(0) = 0, g(x) ≥ x on

[0, N ], then

1

N
‖γ − p‖L1 ≤

√
8

N
Sg(ρ, p) , (34)

Sg(ρ, p) ≤ sup
0<x≤N

∣∣∣g(x)
x

∣∣∣‖γ − p‖L1 . (35)

Proof. The spectrum of dΓ(q) (restricted to H
(N)
f ) is included in [0, N ], thus

inf
0≤x≤N

g(x) ≤ ĝ ≤ sup
0≤x≤N

g(x) ,

in the sense of quadratic forms. As ρ is a state, Eq. (30) follows.
Equation (31) follows from

‖γ − η‖2L2 = Tr
[
(γ − η)2

]
= Tr

[
γ2 + η2 − 2γη

]

= 2SIdR(ρ, η)− Tr[γ − γ2]− Tr[η − η2] ≤ 2SIdR(ρ, η) .

Equations (32) and (33) follow from the properties of the functional calculus.
For the proof of (34), we first remark that γ−p has at most N negative eigenvalues

(counting multiplicities). This is a well-known consequence of γ− p ≥ −p and the fact
that p is a rank-N orthogonal projection (see, e.g., [55]), but we include its proof for
the sake of completeness: Suppose that γ − p has at least N + 1 negative eigenvalues.
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Then there is a subspace W of dimension N + 1 such that 〈ϕ|(γ − p)ϕ〉 < 0, for all
ϕ ∈ W \ {0}. Since γ ≥ 0, this implies that 〈ϕ|pϕ〉 > 0, for all ϕ ∈ W \ {0}. On the
other hand, the largest dimension of a subspace with this property is N , by the minmax
principle and the fact that p has precisely N negative eigenvalues, which contradicts
the existence of W .

Denoting the number of negative eigenvalues (counting multiplicities) of γ − p by
M , we consequently have that M ≤ N . Let λ1, . . . , λM be these M negative eigenvalues
of γ − p, and λM+1, λM+2, . . . be the non-negative ones. Since Tr[γ − p] = 0, it follows
that

−(λ1 + · · ·+ λM) =

∞∑

m=M+1

λm .

Using the Cauchy-Schwarz inequality and M ≤ N , we obtain

‖γ − p‖L1 =
∞∑

m=M+1

λm −
M∑

m=1

λm = −2
M∑

m=1

λm ≤ 2
√
M

( M∑

m=1

λ2m

)1/2

≤ 2
√
N

( ∞∑

m=1

λ2m

)1/2

= 2
√
N‖γ − p‖L2 ,

and Eq. (34) follows from Eq. (31) and SIdR(ρ, p) ≤ Sg(ρ, p).

To prove Eq. (35), we observe that g(x) ≤ sup0<x≤N

{∣∣∣g(x)x

∣∣∣
}
x on [0, N ] and thus,

using positivity preservation and linearity, we have

Sg(ρ, p) ≤ sup
0<x≤N

{∣∣∣g(x)
x

∣∣∣x
}
SIdR(ρ, p) .

We conclude with

SIdR(ρ, p) = Tr[γ(1− p)] = Tr[p(p− γ)p] ≤ ‖γ − p‖L1 ,

using again p = p2 and Tr[γ] = N = Tr[p].

Let us now state the main result of this section. Recall that we defined K :=
supt≥0Tr[−∆pt].

Theorem III.8. Assume (15) holds, i.e., the kinetic energy is uniformly bounded, as
in Theorem II.1. Then, writing ρt = |Ψt〉〈Ψt|,

Sg1/3(ρt, pt) ≤ Sg1/3(ρ0, p0) exp
(
30λ

√
KN1/6t

)
+N2/3

(
exp

(
30λ

√
KN1/6t

)
− 1

)
,

(36)

where, for θ > 0, gθ is the function from R to R defined by

∀x ∈ R , gθ(x) := N1−θ x 1[0,Nθ](x) +N 1(Nθ ,∞)(x) . (37)

Note that the function gθ was also used to obtain the results in [50]. Theorem III.8
will be proved in the following subsections. The strategy is to obtain a bound for
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dSt/dt in terms of St and N δ, for some δ < 1, and then integrate it, in the spirit of the
Grönwall lemma.

Before we turn to the proof of Theorem III.8, we show how Theorem III.8 and the
properties of the degree of evaporation imply Theorem II.1, the main result of this
article.

Proof of Theorem II.1. Since g1/3 ≥ IdR on [0, N ], we can apply Eq. (34) to Eq. (36)
which gives

1

N
‖γt − pt‖L1 ≤

√
8

N

√
Sg1/3(ρ0, p0) exp(30λ

√
KN1/6t) +N2/3

(
exp(30λ

√
KN1/6t)− 1

)
.

Equation (35) with g1/3 yields Sg1/3(ρ, p) ≤ N2/3‖γ−p‖L1 which then gives Eq. (16).

The rest of this section is devoted to the proof of Theorem III.8.

III.2 Time-Derivative of the Degree of Evaporation

In this subsection we calculate the time derivative of the degree of evaporation Sg(t) :=
Sg(ρt, pt) and bring it into a form that can be conveniently estimated. Then most of
the following subsections provide bounds on the different contributions to the time
derivative. First, recall the Fefferman-de la Llave decomposition, for x 6= y ∈ R3,

1

|x− y| =

ˆ

R3

d3z

ˆ ∞

0

dr

π r5
Xr,z(x)Xr,z(y) , (38)

of the Coulomb potential, where Xr,z(x) := 1|x−z|≤r is the characteristic function of the
ball in R3 of radius r > 0 centered at z ∈ R3. This formula can also be written as

v(2) =

ˆ

dµ(ω)Xω ⊗Xω , (39)

where ω = (r, z) ∈ R+ ×R3 and
´

dµ(ω) f(ω) :=
´

R3 d
3z
´∞

0
dr
π r5

f(r, z). The form (38)
is convenient for the estimates derived below, but we note that it agrees with (18),
of course. Note that the terms At, Bt, Ct in the following proposition are the same
as (I), (II), (III) in [50, Lemma 6.5]. However, an important difference lies in the
presentation of the At term using the decomposition (38), which enables us to handle
the case of the Coulomb interaction. In the following, ℑ denotes the imaginary part.

Proposition III.9. For all monotonically increasing g : R → R, the time-derivative
of Sg(t) = Sg(ρt, pt) (with the notation from Theorems II.1 and III.8) is

dSg(t)

dt
= λ

(
At + Bt + Ct

)
, (40)

where

At :=

ˆ

2ℑTr
[
dΓ(qtXωpt)

(
dΓ(ptXωpt)− Tr[Xωpt]

)
ρ
[−1,1]
t

]
dµ(ω) , (41)

Bt := ℑTr
[
dΓ(2)

(
(qt ⊗ qt)v

(2)(pt ⊗ pt)
)
ρ
[−2,2]
t

]
, (42)

Ct := 2ℑTr
[
dΓ(2)

(
(qt ⊗ qt)v

(2)(pt ⊗ qt)
)
ρ
[−1,1]
t

]
, (43)
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with qt := 1 − pt, and

ρ[−j,j] := (τ−jg − g)1/2∧ ρ(g − τjg)
1/2∧ . (44)

Before we turn to the proof we note that

qt pt = pt qt = 0 , (45)

since pt is a projection. We further note that, for A, B linear and bounded operators
on h, we have that

dΓ(A) dΓ(B) = dΓ(2)(A⊗ B) + dΓ(AB) . (46)

To prove Proposition III.9 we need several lemmas. We begin with an evolution equa-
tion for ĝ.

Lemma III.10. For any function g : R → R, with ĝ = g
(
dΓ(qt)

)
and h

(1)
HF defined in

Eq. (12),

i∂tĝ = [dΓ
(
h
(1)
HF (pt)

)
, ĝ] . (47)

Proof. First observe that only the values of g on the spectrum of dΓ(qt) are used to
define ĝ. Hence we could as well consider a polynomial which coincides with g on the
spectrum of dΓ(qt). It is then enough to prove that Eq. (47) holds for any monomial
dΓ(qt)

n. It indeed holds for n = 1:

i∂t dΓ(qt) = dΓ(i∂tqt) = dΓ
(
[h

(1)
HF (pt), qt]

)
=

[
dΓ

(
h
(1)
HF (pt)

)
, dΓ(qt)

]
.

Then, for any n ∈ N,

i∂t
(
dΓ(qt)

)n
=

n∑

j=1

(
dΓ(qt)

)j−1 [
dΓ

(
h
(1)
HF (pt)

)
, dΓ(qt)

] (
dΓ(qt)

)n−j

=
[
dΓ

(
h
(1)
HF (pt)

)
,
(
dΓ(qt)

)n]
,

as all the terms but two simplify in the sum.

Next, we need a commutation relation (analogous to [50, Lemma 6.4]) involving ĝ
that enables us to write the time derivative of Sg(t) in terms of a discrete derivative of
g. Recall that τj−kg(x) = g(x− j + k).

Lemma III.11. For integers 0 ≤ j, k ≤ M ≤ N , any function g : R → R, with the
notations of Definition III.3, and h(M) ∈ L(h⊗M),

dΓ(M)
(
P

(M)
j h(M)P

(M)
k

)
ĝ = τ̂j−kg dΓ

(M)
(
P

(M)
j h(M)P

(M)
k

)
. (48)

Proof. First, note that if

dΓ(M)
(
P

(M)
j h(M)P

(M)
k

)
dΓ(q) = τ̂j−kId dΓ

(M)
(
P

(M)
j h(M)P

(M)
k

)
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holds, then Eq. (48) follows by the same argument as in the proof of Lemma III.10.

Using P
(M)
m1 P

(M)
m2 = δm1m2P

(M)
m1 and P

(N)
m =

∑
d∈Z P

(M)
d ⊗ P

(N−M)
m−d (recall that P

(M)
d = 0

for d /∈ {0, . . . ,M}), and without loss of generality singling out the first M variables,

((
P

(M)
j h(M)P

(M)
k

)
⊗ 1⊗N−M

)
P (N)
n =

((
P

(M)
j h(M)P

(M)
k

)
⊗ 1⊗N−M

)(∑

d∈Z

P
(M)
d ⊗ P

(N−M)
n−d

)

=
(
P

(M)
j h(M)P

(M)
k

)
⊗ P

(N−M)
n−k

=
(∑

d∈Z

P
(M)
d ⊗ P

(N−M)
n−k+j−d

)((
P

(M)
j h(M)P

(M)
k

)
⊗ 1⊗N−M

)

= P
(N)
n−k+j

((
P

(M)
j h(M)P

(M)
k

)
⊗ 1⊗N−M

)
.

It follows from the spectral decomposition (28) of dΓ(q) that

dΓ(M)
(
P

(M)
j h(M)P

(M)
k

)
dΓ(q) = dΓ(M)

(
P

(M)
j h(M)P

(M)
k

)∑

n∈Z

nP (N)
n

=
∑

n∈Z

nP
(N)
n−k+jdΓ

(M)
(
P

(M)
j h(M)P

(M)
k

)

=
∑

n∈Z

(n+ k − j)P (N)
n dΓ(M)

(
P

(M)
j h(M)P

(M)
k

)

= τ̂j−kId dΓ
(M)

(
P

(M)
j h(M)P

(M)
k

)
,

which, as discussed above, implies the result.

Proof of Proposition III.9. Without loss of generality we assume that Ψ0 ∈ H
(N)
f ∩

H1(R3)
⊗N

(see Remark II.7). Using the evolution equation for ĝ from Lemma III.10,
we find

dSg

dt
(ρt, pt) = Tr

[
− i[H, ρt]ĝ + ρt (−i[dΓ(h(1)HF (pt)), ĝ])

]

= Tr
[
i[H − dΓ(h

(1)
HF (pt)), ĝ]ρt

]

= λTr
[
i[
1

2
dΓ(2)(v(2))− dΓ(v

(1)
HF (pt)), ĝ]ρt

]

with v
(1)
HF (pt) := Tr2[v

(2)(1−X)(1⊗pt)]. Now, recall that
∑M

m=0 P
(M)
m = 1h⊗M . Inserting

this identity for M = 1 and M = 2 and using Lemma III.11 gives

dSg

dt
(ρt, pt) =

λ

2
Tr

[
i[dΓ(2)(

(
P

(2)
0 + P

(2)
1 + P

(2)
2

)
v(2)

(
P

(2)
0 + P

(2)
1 + P

(2)
2

)
)

− 2 dΓ(
(
P

(1)
0 + P

(1)
1

)
v
(1)
HF (pt)

(
P

(1)
0 + P

(1)
1

)
), ĝ]ρt

]

=
λ

2
Tr

[
i[dΓ(2)(P

(2)
0 v(2)P

(2)
2 + P

(2)
2 v(2)P

(2)
0

+ P
(2)
0 v(2)P

(2)
1 + P

(2)
1 v(2)P

(2)
0

+ P
(2)
1 v(2)P

(2)
2 + P

(2)
2 v(2)P

(2)
1 )

− 2 dΓ
(
P

(1)
0 v

(1)
HF (pt)P

(1)
1 + P

(1)
1 v

(1)
HF (pt)P

(1)
0

)
, ĝ]ρt

]
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= λℑTr
[(

dΓ(2)(P
(2)
1 v(2)P

(2)
0 )− 2 dΓ

(
P

(1)
1 v

(1)
HF (pt)P

(1)
0

))
ρ
[−1,1]
t

]

+ λℑTr
[
dΓ(2)(P

(2)
2 v(2)P

(2)
0 ) ρ

[−2,2]
t

]

+ λℑTr
[
dΓ(2)(P

(2)
2 v(2)P

(2)
1 ) ρ

[−1,1]
t

]
.

We then insert the Fefferman-de la Llave decomposition and Eq. (46) in the first term
to get

ℑTr[(dΓ(2)(P
(2)
1 v(2)P

(2)
0 )− 2 dΓ(P

(1)
1 v

(1)
HF (pt)P

(1)
0 ))ρ

[−1,1]
t ]

= 2ℑ
ˆ

Tr
[(

dΓ(2)(qtXωpt ⊗ ptXωpt)

− Tr[Xωpt] dΓ(qtXωpt) + dΓ(qtXωptXωpt)
)
ρ
[−1,1]
t

]
dµ(ω)

= 2ℑ
ˆ

Tr
[
dΓ(qtXωpt)

(
dΓ(ptXωpt)− Tr[Xωpt])

)
ρ
[−1,1]
t

]
dµ(ω) ,

where we used P
(1)
0 = pt, P

(1)
1 = qt, P

(2)
0 = p⊗2

t , P
(2)
1 = qt ⊗ pt + pt ⊗ qt.

III.3 Auxiliary Lemmas

We prove here three lemmas that we frequently need for estimating the terms At, Bt

and Ct from Proposition III.9.
For fermionic systems the following bound on dΓ(A) is well-known. Note that this

is the only point at which the Fermi statistics enter our paper.

Lemma III.12. Let A be a trace-class and self-adjoint operator on a separable Hilbert
space h. Then, as quadratic forms on H

(N)
f ,

dΓ(A) ≤ ‖A‖L1 .

Proof. We use the spectral decomposition A =
∑

j λj |ϕj〉〈ϕj| with λj ∈ R,
∑

j |λj| <
∞, for some orthonormal basis (ϕj)

∞
j=1, and we write any vector Ψ ∈ H

(N)
f as

Ψ =
∑

j1<···<jN

αj1,...,jNϕj1 ∧ · · · ∧ ϕjN ,

where ‖Ψ‖2 = ∑ |αj1,...,jN |2 <∞. Then

〈Ψ, dΓ(A)Ψ〉 = 〈Ψ,
∑

j1<···<jN

(λj1 + · · ·+ λjN )αj1,...,jNϕj1 ∧ · · · ∧ ϕjN 〉

=
∑

j1<···<jN

(λj1 + · · ·+ λjN )|αj1,...,jN |2

≤
∑

j1<···<jN

‖A‖L1 |αj1,...,jN |2 = ‖A‖L1 ‖Ψ‖2 ,

which yields the result.
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We recall the definition of the direct integral of a family (B(x))x∈R3 of operators
on h: [(ˆ ⊕

R3

B(x′1)dx
′
1

)
ψ
]
(x1, x2) :=

[(1 ⊗ B(x1)
)
ψ
]
(x1, x2) , (49)

for any ψ ∈ H
(2)
f .

Lemma III.13. Let A be a bounded non-negative operator on h and (B(x))x∈R3 be a
family of non-negative trace class operators on h. Then

dΓ(2)
(
(
√
A⊗ 1) ˆ ⊕

R3

B(x1)dx1(
√
A⊗ 1)) ≤ dΓ

(√
ATr[B(x)]

√
A
)
. (50)

If A is also trace -class and such that Tr
[√
ATr[B(x)]

√
A
]
<∞ then

dΓ(2)
(
(
√
A⊗ 1) ˆ ⊕

R3

B(x1)dx1(
√
A⊗ 1)) ≤

ˆ

A(x; x) Tr[B(x)]dx . (51)

where A(x, y) =
∑∞

i=1 λiϕi(x)ϕi(y) denotes the integral kernel of A defined in terms of
the spectral decomposition of A.

In particular:
If B(x) = B does not depend on x,

dΓ(2)(A⊗ B) ≤ Tr[B] dΓ(A) . (52)

With w : R3 → R+, w(2) = w(x1 − x2) and p =
∑N

i=1 |ϕi〉〈ϕi|, 〈ϕi|ϕj〉 = δij a rank-N
projector on h, we have that

dΓ(2)
(
(q ⊗ p)w(2)(q ⊗ p)

)
≤ dΓ

(
q(w ∗ f)q

)
≤ ‖w ∗ f‖∞ dΓ(q) , (53)

dΓ(2)
(
(p⊗ p)w(2)(p⊗ p)

)
≤ dΓ

(
p(w ∗ f)p

)
≤ ‖(w ∗ f)f‖1 , (54)

where f(x) := p(x; x) :=
∑N

i=1 |ϕi(x)|2 are the diagonal values of the integral kernel
of p.

Proof. Let Ψ(N) ∈ H
(N)
f . With

Ψ̃
(N−1)
A,x (x1, . . . , xN−1) :=

((1⊗N−1 ⊗
√
A
)
Ψ(N)

)
(x1, . . . , xN−1, x)

and the direct integral representation we get, using Lemma III.12,

〈
Ψ(N), dΓ(2)

(
(
√
A⊗ 1) ˆ ⊕

R3

B(x1)dx1(
√
A⊗ 1))Ψ(N)

〉

= N(N − 1)

ˆ 〈
Ψ̃

(N−1)
A,x ,

(1⊗N−2 ⊗B(x)
)
Ψ̃

(N−1)
A,x

〉
dx

= N

ˆ 〈
Ψ̃

(N−1)
A,x , dΓ

(
B(x)

)
Ψ̃

(N−1)
A,x

〉
dx

≤ N

ˆ 〈
Ψ̃

(N−1)
A,x ,Tr[B(x)]Ψ̃

(N−1)
A,x

〉
dx

=
〈
Ψ(N), dΓ

(√
ATr[B(x)]

√
A
)
Ψ(N)

〉
,
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and Eq. (50) follows. If Tr[
√
ATr[B(x)]

√
A] < ∞, then Eq. (51) follows from Lemma

III.12.
The case with B(x) independent of x is clear.
For the second particular case, observe that the operator (1 ⊗ p)w(2)(1 ⊗ p) can be

written as the direct integral

(1 ⊗ p)w(2)(1 ⊗ p) =

ˆ ⊕

R3

p(τx1w)p dx1

with τx1w(x2) = w(x2 − x1) a translation of w. Then with B(x) = p(τxw)p and A = q
we get Eq. (53), and with A = p we get Eq. (54).

For ρ ∈ L1(H
(N)
f ), let us introduce the shorthand notation

ρ[j] := (g − τjg)
1/2∧ ρ (g − τjg)

1/2∧ , (55)

ρ[−j] := (τ−jg − g)1/2∧ ρ (τ−jg − g)1/2∧ , (56)

with j = 1, 2, and let γ[j] and γ[−j] be the corresponding one-particle and γ[j](k) and
γ[−j](k) the corresponding k-particle density matrices (see also Definition III.2 extended
to non-negative and trace class operators whose trace is not necessarily one). Note that
ρ[j] and ρ[−j] are not states because their trace is not one, and thus γ[j] and γ[−j] do
not necessarily satisfy Eq. (26).

The next lemma shows the advantage we gain from using the function

gθ(x) := N1−θ x 1[0,Nθ](x) +N 1(Nθ,∞)(x) (57)

in the definition of the degree of evaporation. This lemma is analogous to [50, Lemma 7.1],
but note that the use of the functional calculus clarifies the fact that one ultimately
uses only inequalities on functions from R to R.

Lemma III.14. For j ∈ {−2,−1, 1, 2}, any (normalized) state ρ ∈ L1
(
H

(N)
f

)
, and the

function gθ from (57) (with the notation from (55) and (56)),

Tr
[
ρ[j]

]
≤ |j| N1−θ ,

Tr
[
dΓ(q) ρ[j]

]
≤ |j| (|j|+ 1) Sgθ ,

Tr
[
dΓ(2)(q ⊗ q) ρ[j]

]
≤ |j| (|j|+ 1)2 N θ Sgθ .

Proof of Lemma III.14. The inequalities are a direct consequence of the functional cal-
culus, once we observe that dΓ(q) = ÎdR, dΓ(2)(q⊗ q) = dΓ(q)2−dΓ(q) = (IdR · (IdR−
1))∧ and

τjgθ − τkgθ ≤ (k − j) N1−θ ,

IdR · (τjgθ − τkgθ) ≤ (k − j)(k − j + 1) gθ ,

IdR · (IdR − 1) · (τjgθ − τkgθ) ≤ (k − j) (k − j + 1)2 N θ gθ ,

as inequalities of functions from R to R, for −2 ≤ j < k ≤ 2.
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III.4 Bound for At

Let us first estimate the integrand At(Xω) of (41), i.e.,

At(X) := 2ℑTr
[
dΓ(qtXpt)

(
dΓ(ptXpt)− Tr[Xpt]

)
ρ
[−1,1]
t

]
,

where X is an operator on h such that 0 ≤ X ≤ 1.
Proposition III.15. Let X be an operator on h such that 0 ≤ X ≤ 1 and set γ

[−1]
t

⊥
:=

Tr[ρ
[−1]
t ]− γ

[−1]
t . Then

At(X) ≤ Tr[ptX ] Tr[X(2qtγ
[1]
t qt + ptγ

[−1]
t

⊥
pt)] . (58)

Proof. Using the Cauchy-Schwarz inequality and 2ab ≤ a2 + b2, and then Eq. (46) and
Lemma III.12, we get

At(X) = 2ℑTr
[
dΓ(qtXpt)

(
dΓ(ptXpt)− Tr[Xpt]

)
ρ
[−1,1]
t

]

≤ Tr
[
dΓ(qtXpt) dΓ(ptXqt) ρ

[1]
t

]
+ Tr

[(
Tr[ptX ]− dΓ(ptXpt)

)2
ρ
[−1]
t

]

≤ Tr
[
dΓ(2)(qtXpt ⊗ ptXqt) ρ

[1]
t

]
+ Tr

[
dΓ(qtXp

2
tXqt) ρ

[1]
t

]

+ Tr[ptX ] Tr
[(
Tr[ptX ]− dΓ(ptXpt)

)
ρ
[−1]
t

]
. (59)

For the first term on the right-hand side of (59), we apply the Cauchy-Schwarz in-
equality again and obtain

Tr
[
dΓ(2)(qtXpt ⊗ ptXqt) ρ

[1]
t

]
= Tr

[(
qt
√
X ⊗ pt

√
X
) (√

Xpt ⊗
√
Xqt

)
γ
[1](2)
t

]

≤
√
Tr

[
(qtXqt ⊗ ptXpt) γ

[1](2)
t

] √
Tr

[
(ptXpt ⊗ qtXqt) γ

[1](2)
t

]

= Tr
[
(qtXqt ⊗ ptXpt) γ

[1](2)
t

]
= Tr

[
dΓ(2)(qtXqt ⊗ ptXpt) ρ

[1]
t ] . (60)

Using Lemma III.13 yields in turn

Tr
[
dΓ(2)(qtXqt ⊗ ptXpt) ρ

[1]
t ] ≤ Tr

[
p2tX ] Tr

[
dΓ(qtXqt) ρ

[1]
t

]

= Tr[ptX ] Tr
[
Xqtγ

[1]
t qt

]
. (61)

For the second term on the right-hand side of (59), we observe that

Tr[dΓ(qtXp
2
tXqt) ρ

[1]
t ] = Tr[Xp2tXqtγ

[1]
t qt] ≤ Tr[ptX ] Tr[Xqtγ

[1]
t qt] ,

and for the third term on the right-hand side of (59),

Tr[ptX ] Tr
[(
Tr[ptX ]− dΓ(ptXpt)

)
ρ
[−1]
t

]
= Tr[ptX ] Tr[(Tr[ρ

[−1]
t ]pt − ptγ

[−1]
t pt)X ] ,

which yields (58).
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We now give a bound on the integral
´

At(Xω)dµ(ω) using the estimate from Propo-
sition III.15 on At(X). To get good estimates we take g to be gθ as in Eq. (37). We
use the notation

fHF (x) := pt(x; x) ≥ 0 , (62)

where pt =
∑N

i=1 |ϕi,t〉〈ϕi,t|, with 〈ϕi,t|ϕj,t〉 = δij and pt(x; y) :=
∑N

i=1 ϕi,t(x)ϕi,t(y),
which allows us to rewrite the traces as integrals. For example,

Tr[ptXr,z] =

ˆ

|x−z|≤r

fHF (x) d
3x .

Observe that
´

fHF = N and that the quantity
´

f
5/3
HF appearing in Proposition III.17

is controlled by the Lieb-Thirring inequality, as is discussed in Sect. III.7.
Before we give the bound for At, let us prove an auxiliary lemma. Let Ac denote

the complement of a set A and recall that B(0, R) denotes the ball of radius R centered
at 0 in R3.

Lemma III.16. For 1
p1

+ 1
p2

+ 1
s
= 2, with 1 ≤ pj, s ≤ ∞, measurable functions

χ, f1, f2 : R
3 → R and v(x) = |x|−1,

ˆ

(χ v)(x− y) f1(x) f2(y) d
3x d3y ≤ ‖f1‖p1 ‖f2‖p2 ‖χ v‖s .

Additionally, for s < 3,

‖1B(0,R) v‖s =
( 4π

3− s

)1/s

R3/s−1 ,

and, for s > 3,

‖1B(0,R)c v‖s =
( 4π

s− 3

)1/s

R3/s−1 ,

with the convention that
(

4π
∞−3

)1/∞

:= 1.

Proof. The first relation follows directly from applying Hölder’s and Young’s inequali-
ties. The second and third relations follow directly from integration.

With the ingredients above we can give a bound on At.

Proposition III.17. The estimate

At ≤ 5−5/6 72 π1/3N1/6
∥∥fHF

∥∥5/6

5/3
Sgθ (63)

holds.

Proof. By Proposition III.15,

At ≤ 2

ˆ

Tr[ptXω] Tr[qtγ
[1]
t qtXω] dµ(ω) +

ˆ

Tr[ptXω] Tr[ptγ
[−1]
t

⊥
ptXω] dµ(ω) . (64)
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We now explicitly use the Fefferman-de la Llave decomposition of the Coulomb
potential. Then, we find that for any non-negative trace-class operator h, using
´

h(y; y)dy = Tr[h], Hölder’s inequality and Lemma III.16 in the end (where we dis-
tinguish between the short-range and the long-range part of the potential) gives us
that
ˆ

Tr[ptXω] Tr[hXω] dµ(ω) =
1

π

ˆ

Tr[ptXr,z] Tr[hXr,z]
dr

r5
d3z

=
1

π

ˆ (ˆ

|x−z|≤r

fHF (x) d
3x
)(ˆ

|y−z|≤r

h(y; y) d3y
) dr
r5
d3z

=

ˆ

1

|x− y|fHF (x) h(y; y) d
3x d3y

≤
(
‖1B(0,R) v‖5/2 ‖fHF‖5/3 + ‖1B(0,R)c v‖∞ ‖fHF‖1

)
Tr[h]

≤
(
(8π)2/5R1/5‖fHF‖5/3 + R−1‖fHF‖1

)
Tr[h] .

Optimizing with respect to R > 0 yields

R = (8π)−1/355/6‖fHF‖5/61 ‖fHF‖−5/6
5/3 ,

so that (recall ‖fHF‖1 = N)

ˆ

Tr[ptXω] Tr[hXω] dµ(ω) ≤ 5−5/66(8π)1/3
(ˆ

f
5/3
HF

)1/2 (ˆ
fHF

)1/6

Tr[h]

= 5−5/612π1/3 ‖fHF‖5/65/3N
1/6 Tr[h] .

We now apply this inequality to (64), i.e., with h = qtγ
[1]
t qt and with h = ptγ

[−1]
t

⊥
pt. It

follows from Lemma III.14 that

Tr[qtγ
[1]
t qt] = Tr[qtγ

[1]
t ] = Tr[dΓ(qt)ρ

[1]
t ] ≤ 2Sgθ , (65)

Tr[ptγ
[−1]
t

⊥
pt] = Tr[pt]Tr[ρ

[−1]
t ]− Tr

[
dΓ(pt)ρ

[−1]
t

]
= Tr

[
dΓ(qt)ρ

[−1]
t

]
≤ 2Sgθ . (66)

This proves (63).

III.5 Bound for Bt

We estimate Bt in the same fashion as in [50, Lemma 7.3]. Note, that for this term
and the Ct term it is not necessary to use the Fefferman-de la Llave decomposition.

Proposition III.18. The estimate

Bt ≤ 21/3π2/3
∥∥fHF

∥∥5/6

5/3
N1/6

(
6Sgθ +N1−θ

)
(67)

holds.

Proof. We estimate the Bt term by using the Cauchy-Schwarz inequality to arrive at a
three-particle term.
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Recall that ρ
[−2,2]
t is a rank one operator, i.e., ρ

[−2,2]
t =

∣∣Ψ[−2]
〉〈
Ψ[2]

∣∣. For a linear

operator A on h, j ∈ {−2, 2} and almost every x ∈ R3, we define the vectors Ψ̃
[j]
A,x ∈

H
(N−1)
f by

Ψ̃
[j]
A,x(x1, . . . , xN−1) := (1⊗N−1 ⊗ A)Ψ[j](x1, . . . , xN−1, x) .

Inserting the form of v(2) as a direct integral into the expression of Bt in Eq. (42) yields

Bt = ℑ
〈
Ψ[−2], dΓ(2)

(
(qt ⊗ 1) ˆ ⊕

R3

qt(τx1v)pt dx1(pt ⊗ 1))Ψ[2]
〉

= Nℑ
ˆ

R3

〈
Ψ̃[−2]

qt,x , dΓ
(
qt(τxv)pt

)
Ψ̃[2]

pt,x

〉
dx .

Taking the modulus of both sides and using the Cauchy-Schwarz inequality we obtain

Bt ≤
(
N

ˆ

R3

∥∥Ψ̃[−2]
qt,x

∥∥2
dx

)1/2(
N

ˆ

R3

∥∥ dΓ(qt(τxv)pt) Ψ̃[2]
pt,x

∥∥2
dx

)1/2

=
〈
Ψ[−2], dΓ(qt)Ψ

[−2]
〉1/2(

N

ˆ

R3

〈
Ψ̃[2]

pt,x, dΓ(pt(τxv)qt) dΓ(qt(τxv)pt) Ψ̃
[2]
pt,x

〉
dx

)1/2

.

From Lemma III.14 we deduce that 〈Ψ[−2], dΓ(qt) Ψ
[−2]〉 ≤ 6Sgθ . We estimate the

remaining integral using Eq. (46), the Cauchy-Schwarz inequality, Lemma III.13 and
Lemma III.14:

N

ˆ

R3

〈
Ψ̃[2]

pt,x,
[
dΓ(2)

(
(pt(τxv)qt)⊗ (qt(τxv)pt)

)
+ dΓ

(
pt(τxv)qt(τxv)pt

)]
Ψ̃[2]

pt,x

〉
dx

≤ N

ˆ

R3

〈
Ψ̃[2]

pt,x,
[
dΓ(2)

(
(pt(τxv)

2pt)⊗ qt
)
+ dΓ

(
pt(τxv)

2pt
)]
Ψ̃[2]

pt,x

〉
dx

=
〈
Ψ[2],

[
dΓ(2)

(
p⊗2
t (v2)(2)p⊗2

t

)
dΓ(qt) + dΓ(2)

(
p⊗2
t (v2)(2)p⊗2

t

)]
Ψ[2]

〉

≤
(
〈Ψ[2], dΓ(qt)Ψ

[2]〉+ 〈Ψ[2],Ψ[2]〉
)ˆ

R3

(fHF ∗ v2)fHF

≤ (6Sgθ + 2N1−θ)

ˆ

R3

(fHF ∗ v2)fHF .

By the Hardy-Littlewood-Sobolev inequality (see, e.g., [44, Theorem 4.3]) we find
∥∥(v2 ∗ f)f

∥∥
1
≤ 41/3π4/3‖f‖23/2. (68)

We then apply Hölder’s inequality with 1 = 3
4
+ 1

4
to obtain

‖f‖23/2 = ‖f 5/4f 1/4‖4/31 ≤ ‖f 5/4‖4/34/3 ‖f 1/4‖4/34 = ‖f‖5/35/3 ‖f‖
1/3
1 . (69)

Applying this to fHF and ab ≤ (a2 + b2)/2 to the bound we obtained on Bt yields the
result.

III.6 Bound for Ct
Our estimate for Ct is analogous to [50, Lemma 7.3]. Note that for this estimate our
choice of the function gθ is crucial, while in the bounds for At and Bt we could have
used the identity function to obtain the desired estimate. By using gθ with appropriate
θ < 1 we obtain the desired N -dependence in the estimate for Ct.
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Proposition III.19. The estimate

Ct ≤ 4
√
2
∥∥fHF ∗ v2

∥∥1/2

∞
N θ/2Sgθ (70)

holds.

Proof. Using the Cauchy-Schwarz inequality, Lemma III.13 and Lemma III.14 we find

Ct = 2ℑTr
[
dΓ(2)

(
(qt ⊗ qt)v

(2)(pt ⊗ qt)
)
ρ
[−1,1]
t

]

≤ 2
(
Tr

[
dΓ(2)

(
(pt ⊗ qt)

(
v(2)

)2
(pt ⊗ qt)

)
ρ
[−1]
t

]
Tr

[
dΓ(2)

(
qt ⊗ qt

)
ρ
[1]
t

])1/2

≤ 2
(∥∥fHF ∗ v2

∥∥
∞
Tr

[
dΓ

(
qt
)
ρ
[−1]
t

]
4N θSgθ

)1/2

≤ 4
√
2
∥∥fHF ∗ v2

∥∥1/2

∞
N θ/2Sgθ ,

which is the result.

III.7 Kinetic Energy Estimates and Proof of Theorem III.8

In order to estimate ‖fHF‖5/35/3 and ‖fHF ∗ v2‖∞ in terms of the kinetic energy we use
the following inequalities.

Proposition III.20 (Lieb-Thirring Inequality, see [46] or [45, p.73] ). Let γ ∈ L1(h) be
a one-particle density matrix of finite kinetic energy, i.e., 0 ≤ γ ≤ 1 and Tr[−∆γ] <∞.
Then

CLT

ˆ

f 5/3(x) d3x ≤ Tr[−∆γ] , (71)

with CLT = 9
5
(2π)2/3 and where f(x) := γ(x; x) is the corresponding one-particle den-

sity.

Proposition III.21 (Hardy’s Inequality, see [40] or, e.g., [62]). Let γ ∈ L1(h) be a
one-particle density matrix of finite kinetic energy, i.e., 0 ≤ γ ≤ 1 and Tr[−∆γ] <∞.
Then

ˆ

f(x)

|x|2 d
3x ≤ 4Tr[−∆γ] , (72)

where f(x) := γ(x; x) is the corresponding one-particle density.

We now combine the results of Sects. III.2 to III.6 to prove Theorem III.8.

Proof of Theorem III.8. We choose θ = 1
3

so that our bound for Ct is good enough.
Collecting the estimates for the At, Bt and Ct terms from Propositions III.17, III.18
and III.19 and using the kinetic energy inequalities from Propositions III.20 and III.21,
we can continue the estimate for the time derivative of Sg1/3,t from Proposition III.9
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and find (recall that K := supt≥0Tr[−∆pt])

dSg1/3(t)

dt
= λ

(
At + Bt + Ct

)

≤ λ 5−5/6 72 π1/3N1/6

(
5

9
(2π)−2/3K

)1/2

Sg1/3(t)

+ λ 21/3π2/3

(
5

9
(2π)−2/3K

)1/2

N1/6
(
6Sg1/3(t) +N2/3

)

+ λ 4
√
2 (4K)1/2N1/6Sg1/3(t)

≤ 30 λ
√
KN1/6

(
Sg1/3(t) +N2/3

)
. (73)

Integrating this inequality (Grönwall lemma) yields Theorem III.8.

A Some Results about the Theory of

the Time-Dependent Hartree-Fock Equation

In this appendix we recall some known facts about the theory of the TDHF equation.
We begin by stating a theorem summarizing those results proved in [18] which we use.

Theorem A.1. Let E a separable Hilbert space, A : E ⊇ D(A) → E self-adjoint such
that ∃µ ∈ R, A ≥ µ 1. Let M := (A− µ+ 1)1/2 and

HA
k,p(E) :=

{
M−kTM−k

∣∣ T = T ∗ , T ∈ Lp(E)
}
,

equipped with the norm ‖T‖k,p,A = ‖MkTMk‖p where ‖X‖p = Tr[|X|p]1/p for 1 ≤
p < ∞ or ‖X‖B(E) for p = ∞ (we write L∞(E) for B(E)). We adopt the special
notations H(E) := HA

0,∞(E) for the space of bounded self-adjoint operators on E and
HA

1 (E) := HA
1,1(E) for a weighted space of trace-class operators on E.

Let W ∈ B(HA
1 (E);H(E)) be such that

1.
(
W(T )M−1

)
(E) ⊆ D(M),

2.
(
T 7→MW(T )M−1

)
∈ B(HA

1 (E);H(E)),

3. ∀T, S ∈ HA
1 (E) : Tr[W(T )S] = Tr[W(S)T ].

Then

• For any T0 ∈ HA
1 (E) there exists t0 > 0 and T ∈ C([0, t0);H

A
1 (E)) such that,

∀t ∈ [0, t0),

T (t) = e−itA T0 e
itA − i

ˆ t

0

e−i(t−s)A
[
W(T (s)), T (s)

]
ei(t−s)A ds .

Such a function T is called a local mild solution of the TDHF equation and,
provided its interval of definition is maximal, it is unique.
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• If, moreover, T0 ∈ HA
2,1(E) then T ∈ C1([0, t0);H

A
1 (E)) and

{
idT
dt
(t) =

[
A, T (t)

]
+

[
W(T (t)) , T (t)

]

T (0) = T0
.

Such a function T is called a classical solution of the TDHF equation.

• Any mild solution to the TDHF equation satisfies

∀t ∈ [0, t0) , Tr
[
MT (t)M

]
+
1

2
Tr

[
T (t)W(T (t))

]
= Tr

[
MT0M

]
+
1

2
Tr

[
T0W(T0)

]
.

• If ∃k1 ∈ R such that∗

(
T ∈ HA

1 (E) , 0 ≤ T ≤ 1) ⇒
(
W(T ) ≥ k1

)
,

and T0 ∈ HA
1 (E), 0 ≤ T0 ≤ 1, then T can be extended to the entire positive real

axis. Moreover if T0 ∈ H2,1
A (E), then T is the unique global classical solution.

Remark A.2. In [18] the space HA
2,1(E) is not used. They use a space larger than

HA
2,1(E) which is more natural, but less explicit. As it is enough for us to use classical

solutions for initial data in HA
2,1(E) and then use a density result, we restrict ourselves

to this framework.

We now quote a result which, although not explicitly stated in [18], is a direct
consequence of [18] along with [58].

Proposition A.3. The map

HA
1 (E)× [0,∞) → HA

1 (E)

(T0, t) 7→ T (t) ,

where T (t) is the (mild) solution to the TDHF equation with initial data T0, is jointly
continuous in T0 and t.

Indeed the proof of existence and uniqueness in [18] is based on the results in [58]
which also ensure the continuity with respect to the initial data (see [58, Corollary 1.5,
p. 350]).

It was shown in [18] that those results apply to the case E = h = L2(R3), A = −∆,

W(γ) = Tr2
[
v(2)(1 − X)(1 ⊗ γ)

]
,

and v(2) = |x − y|−1. The proof then extends to the case A = h(1) with h(1) =
−C∆ + w(x), where the external potential w is an infinitesimal perturbation of the
Laplacian.

∗There was a typographical error in Assumption iv) in [18], namely, W(T )T ≥ k1 shall be read
W(T ) ≥ k1.
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B Some Estimates of the Direct Term and the Kinetic

Energy

The dynamics is the free dynamics to leading order in the λK1/2N1/6t ∼ 1
regime. We now substantiate by heuristic argument that, in the particular case of
the Coulomb interaction potential, if λK1/2N1/6t is assumed to be of order one, which
is the regime where our estimates are relevant, then the evolution is the free evolution
to leading order. Note that the exchange term is expected to be subleading with respect
to the direct term; we thus neglect the exchange term in the following computation.

We now estimate the effect of the direct term on the time derivative of the average
momentum per particle. We denote the Hartree-Fock density at time t by fHF,t =∑N

j=1 |ϕt,j|2; thus the direct term is the convolution λv ∗ fHF,t. For the absolute value
of the time derivative of the expectation value of the momentum per particle we find,
using |∇v| = 3v2 and (68) with (69),

∣∣N−1∂tTr
(
pt(−i∇)

)∣∣ = N−1
∣∣Tr

(
pt[hHF ,∇]

)∣∣
≤ λN−1

∣∣Tr
(
pt(∇v ∗ fHF,t)

)∣∣
≤ 3λN−1

∥∥(v2 ∗ fHF,t)fHF,t

∥∥
1

≤ CλN−2/3K. (74)

After a time t the effect of the direct term on the momentum is thus expected to be of
order λN−2/3Kt. Since λK1/2N1/6t is assumed to be of order one, the average change
in momentum is of order K1/2N−5/6. Since this is much smaller than the average
momentum of a particle (K/N)1/2, we conclude that the dynamics is, to leading order,
free.

The estimate (14) allows to distinguish the free dynamics and the Hartree-
Fock dynamics to the next order. Again using heuristic arguments we substan-
tiate that, for large enough kinetic energy K ≫ N4/3, estimate (14) allows to distin-
guish the effect of the direct term on the evolution, i.e., our main result shows that
the Hartree-Fock equation gives a better approximation to the Schrödinger equation
than the free equation. This is because our convergence rate is N−1/6 (let us assume
γ0 = p0), i.e., for λK1/2N1/6t of order 1, the error between Schrödinger and Hartree-
Fock dynamics is for any bounded observable of order N−1/6. For K ≫ N4/3 this
rate is much smaller than the average change in momentum estimated above, i.e.,
N−1/6 ≪ K1/2N−5/6.

Estimate on the Kinetic Energy. We prove the estimate (21). Recall that fHF,t =∑N
j=1 |ϕt,j|2 and that the direct term is the convolution λv ∗ fHF,t. First, we use the

conservation of the total Hartree-Fock energy and the fact that the exchange energy is
bounded by the direct energy (which follows directly from applying the Cauchy-Schwarz
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inequality). Then, by Hölder’s inequality, we find

Tr[−∆pt] ≤ E(ΦHF,0) +
λ

2

ˆ

(v ∗ fHF,t)(x)fHF,t(x)d
3x

≤ E(ΦHF,0) +
λ

2
‖v ∗ fHF,t‖∞N .

By splitting the area of integration in space in the convolution product v ∗ fHF,t into
a short-range and a long-range part, using Hölder’s inequality, Lemma III.16 and the
Lieb-Thirring inequality, we find

∥∥v ∗ fHF,t

∥∥
∞

≤ ‖fHF,t‖5/3‖1B(0,R) v‖5/2 + ‖fHF,t‖1‖1B(0,R)cv‖∞
≤ CK3/5R1/5 +NR−1 . (75)

Optimizing with respect to R gives the bound

∥∥v ∗ fHF,t

∥∥
∞

≤ CK1/2N1/6 . (76)

Then, by Eq. (76) and ab ≤ a2

2
+ b2

2
, we find

Tr[−∆pt] ≤ E(ΦHF,0) + Cλ (Tr[−∆pt])
1/2N1/6N

≤ E(ΦHF,0) +
1

2
Tr[−∆pt] + Cλ2N7/3 ,

which proves (21).
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