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Abstract The GDT4MAS model is dedicated to the formal specification of agents
and multiagents systems. It has been presented in previous articles [7, 6]. The proof
mechanism relies on proof schemas that generate proof obligations, that is to say
first-order formulae that can be proven (in most cases) by an automatic prover (such
as PVS). In this article, we present a new version of proof schemas that increase the
number of proofs that can be performed.

1 Introduction

The GDT model has been first presented five years ago [7]. This model consists in a
language to formally specify agents, a formal semantics, and a set of proof schemas
to guarantee the correctness of the behaviour specified. It has been extended a few
years later to specify and verify multiagent systems [6].

However, when applying the model and the proof system to concrete case studies,
it appeared that true properties were unverifiable because necessary hypotheses were
lacking. Thus, we propose here a new proof system that provides richer hypotheses.

In the next section, we briefly recall the main concepts of the GDT4MAS model.
In section 3, we present the old proof schema principles, and we illustrate its weak-
nesses. Section 4 is dedicated to the presentation of the new proof schemas. Finally,
section 6 concludes on this new proof mechanism.

2 The GDT4MAS model
2.1 Main concepts

In the GDT4MAS model, the MAS is described by an environment, mainly de-
scribed by variables, and a population of agents evolving in this environment. Each
agent is described as an instance of an agent type. As a consequence, in the rest of
this section, after a short description of the notations we used, we begin by describ-
ing the notion of agent type, and of agent behaviour.
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2.2 Notation

Notation 2.1 (primed and unprimed variable) When the value of a variable v in
two execution states is considered, the value of v in the first state, called the current
state, is written v, and its value in the second state is written v'. For instance, the
action consisting in increasing the value of v by 1 is specified by the postcondition
v =v+1

2.3 Agent Type Specification

Simplified Definition 2.1 (Agent Type) An agent type t is described by a name
(namey), a set of internal variables (V arl), a set of surface variables (V arSy), an
invariant (i;), and a behabiour (by).

In this definition, an internal variable is a variable that only the owner agent can see
and modify (compare it to a private attribute in the object model); a surface variable
is a variable that only the owner agent can modify, but that can be seen by the other
agents (compare it to a private attribute with a public getter method); an invariant is
a predicate defined on the internal and surface variables of the agent type and that
must always be true for every agent of the given type; and the behaviour of an agent
is specified by a Goal Decomposition Tree, defined later in this section.

Simplified Definition 2.2 (Action) An action a is specified by a name (name,), a
precondition (preg), a postcondition (post,), an ns flag (ns,) and a gpf (gpfa). The
precondition is a predicate specifying when the action is enabled, the postcondition
specifies what that action does (r' = x — 1 for instance expresses that the action
decreases the value of x by 1), the ns flag has the value NS (necessarily Satifiable)
if the action is guaranteed to always succeed, and NNS if the action may fail, and
the gpf, the Guaranted Property in case of Failure, is a predicate specifying what is
however guaranteed to be true if the action fails.

Definition 1 (Goal Decomposition Tree (GDT)). A Goal Decomposition Tree de-
scribes the behaviour of the agents of a given type. Each node of this tree is a GDT
goal. The tree structure is defined thanks to the decomposition of each GDT goal
into subgoals.

Definition 2 (GDT goal). A GDT goal g is described by a name (name,), a satis-
faction condition (sc,), a gpf (gpfy), a decomposition, an ns flag (ns,) and a lazi-
ness flag ({4). The satisfaction condition is a predicate specifying what the goal must
establish, the gpf is a predicate specifying what is guaranted to be established if the
execution of the goal fails, the ns flag specifies whether the goal always succeed or
not, and the laziness flag specifies whether the goal decomposition is executed when
the satisfaction condition of the goal is already true when the goal is considered.

Please notice that in this article, in order to simplify the formulae and their under-
standing by the reader, we only consider non-lazy goals.
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Definition 3 (Goal decomposition). A GDT goal is either a leaf goal or an inter-
mediate goal. In the latter case, the goal is decomposed into one or several subgoals,
thanks to a decomposition operator. A list of decomposition operators can be found
in [7].

Among others, we can introduce the following decomposition operators:

e SeqOr: Sequential Or. It decomposes the parent goal into several subgoals ;.
Subgoals are considered from the the left to the right. If the considered subgoal
succeeds, the parent goal is achieved and the execution of the decomposition is
ended. But if it fails, the next subgoal is considered. If the last subgoal is reached
and fails, the satisfaction condition of the parent goal must be evaluated to know
if it is achieved or not.

e SeqAnd: Sequential And. It decomposes the parent goal into several subgoals
N;. Subgoals are considered from the left to the right. If the considered subgoal
succeeds, the next one is considered. If the last subgoal is considered and suc-
ceeds, the parent goal is achieved. But if it fails, the satisfaction condition of the
parent goal must be evaluated to determine whether the parent goal is achieved
or not.

e SyncSeqOr and SyncSeqAnd: These operators are similar to the SeqOr and
SeqAnd operator, but environment variables can be locked during the whole ex-
ecution of the parent goal decomposition.

e case: The case operator is similar to the switch statement of most imperative
languages: it decomposes a goal into several subgoals, with a choice condition
associated to each subgoal. When the parent goal must be achieved, one of the
subgoals whose choice condition is true is executed.

e iter: This operator decomposes a goal into one subgoal. The achievement of this
subgoal will be attempted as long as the parent goal is not achieved.

2.4 Properties proven by the method

The GDT4MAS method allows to prove several kinds of properties. We first prove
invariant and liveness properties, at the agent-type level and at the system-level. We
recall here that invariant properties are properties that must be always true, and that
liveness properties are properties that must eventually be true. Moreover, the proof-
system of the method verifies that goal decompositions are valid. In this article, we
focus on the proof of decompositions and of invariant properties. This is the topic
of the next section.

3 Previous proof system
3.1 Principles

The main principles of the previous proof system consists in the following steps:

e A context is inferred for each node, in a top-down manner, and from left to right
when oriented operators are used (like SeqAnd and SeqOr);
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e A gpf, Guaranted property in case of failure, is inferred for each NNS goal, in a
bottom-up manner;

e A proof schema is used for each decomposition operator, in order to generate a
proof obligation, that is to say a first-order formula, whose proof can be attempted
by any first-order logic theorem prover.

Consider the GDT presented in figure 1.

x'=y'

SegAnd

X'=x+1 A y'=y ‘:":’y'=y+1 A x'=X‘:“\,‘,

Fig. 1 Simple GDT

Several states can be determined during the execution of this tree. These states
are detailed in figure 2.

Fig. 2 Execution trace

Between states b and c, other agents may act on the environment. So, the solution
we have chosen is a projection of formulae on internal variables. This lead us to the
following context propagation rules and proof schemas for the SeqAnd Operator,
when a goal n is decomposed into ny SeqAnd ns.

3.1.1 Context Propagation rule
On 1 = Cn ( 1)
Chn, = ((Scm)ri)r (2)
In these formulae:

scp, 1s the satisfaction condition of goal n;;
Fri is the projection of formula F on the primed internal variables, preserving
all the properties entailed by F on the primed internal variables. For instance, if
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F=@=2ANy=3ANz">yAy =x+ 1) with x and internal variable and y
an environment variable, we have F,.; = (z =2 Ay =3 Az’ > 3).
e F, is the projection of a formula F onto the right, that is to say on primed vari-
ables, where primes have been removed. For instance, if F = (x =2 Ay =3 Az’ > 3),
we have F. = (z > 3).

3.1.2 Guaranted Property in case of Failure

In the GDT4MAS model, the achievement of an agent goal may fail (it can a con-
sequence of the behaviour of another agent in the system for instance). When a
goal execution fails, the situation reached is however not completely chaotic; cer-
tain properties are guaranted to be true. For instance, if an agent has to open a door
and it fails, it is not magically teleported into another room. So, we associate to each
goal that may fail (NNS goal: Non-Necessarily Satisfiable goal) a Guaranted Prop-
erty in case of Failure (or GPF). This property is inferred from leaf goals thanks to
GPF propagation schemas.

3.1.3 Proof schema
When we defined the proof schema for the SeqAnd operator, we considered that the
proof obligation should contain three types of variables:

e unprimed variables, corresponding to the value of variables in state a on figure 2;

e primed variables, corresponding to the value of variables in state d on figure 2;

e temporary variables, corresponding to the value of variables in state c on figure 2.
These variables are subscripted by ¢mp and are computed from the satisfaction
condition of the first subgoal, after a projection on the internal variables in order
to take into account the fact that other agents may have modified environment
variables between states b and c.

Thus, we demonstrated that the following proof schema was valid:

e Nia ANCy A (Ttmp(scm))ri A T,;mp(scm) — s8¢y, 3)
Where:

1. 1s the invariant of the environment;

14 is the invariant of the agent;

(), is the context of node n;

T'"P(F) is the transformation of formula F where each primed variable be-
comes unprimed and subscripted by tmp. For instance, TP (z = ¢’ + 1) =
L = Ytmp + 1;

o T, (F) is the transformation of formula F where each unprimed variable be-

comes subscripted by tmp. For instance, Tt/mp(x =y +)=zmp =y +1;

3.2 Limits

3.2.1 Projections
The main limit of the approach defined above is that true projections, as defined in
section 3.1.1, cannot be computed automatically. A simplified version can be com-
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puted, by removing each term of the conjunctive normal form containing another
variable that those concerning the projection. For instance, if a projection of the
formula F = (zx=2Ay=4Ax=2z+2Az>3) on x is required, we obtain
F. = (x = 2). However, this formula is weaker that what we would like to obtain
(In particular, the fact that x is greater than 5 is lost).

3.2.2 Weak contexts

As shown in equation 2, The context inferred for a goal is quite weak: it only de-
pends on the execution of the previous goal: its satisfaction condition if the operator
is a Seqand, or its guaranted property in case of failure if the operator is a SeqOr.
But more information could be preserved from the context in which this previous
goal is executed. For instance, if node n is decomposed into 11 SeqAndns, if the
context of node ny is x = y, if x and y are internal variables and if the satisfaction
condition of node n; is sc,, =2’ = x4+ 1Ay = y+ 1, we know that z = y when
node ns is considered. But this cannot be automatically inferred by the contexte
propagation rules.

3.2.3 Weak proof schemas

In the proof schema given in equation 3, some important hypotheses miss. For in-
stance, even if environment variables can be modified between states b and ¢ in
figure 2, the invariant of the environment is preserved. But this is not specified in
this formula.

3.2.4 General observations

Most of the weaknesses highlighted above can be bypassed by re-inforcing satis-
faction conditions of goals. However, this is not a satisfying solution, because it
requires more work to the developper, and it makes the specification more compli-
cated. Thus, it appeared necessary to re-inforce the proof mechanism to solve these
drawbacks.

4 The new proof system

To define the new proof system, we need new notations, that are introduced in the
following section.

4.1 Predicate transformers

Notation 4.1 (At) Let f a predicate. f[i] is a predicate where each non-subscripted
variable in f is subscripted by i.
Example: (x = yo)[1] = (1 = yo).

Notation 4.2 (Between) Let f a predicate. {77 is a predicate derived from f
where each unprimed and unsubscripted variable is subscripted by i and each
primed variable becomes unprimed and subscripted by j.

Example: (y < x ANz’ =x)' 72 = (yo < 1 A 22 = 70).

Notation 4.3 (Temporal switch) Let f a predicate. f* is predicate derived from
f where each subscript is increased by i.
Example: (x =11 Aya =21) " 2= (x=2_1Ayo=2_1).
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Notation 4.4 (Priming) Let f a predicate. If f contains at least one primed vari-
able, then pr(f) = f. Otherwise, pr(f) is the predicate derived from f where each
unsubscripted variable is primed.

Examples: pr((x = o)) = (' = x¢) and pr((z = o)) = (x = a).

Notation 4.5 (Stability) Let ¢t and agent type with two internal variables via, vib
and one surface variable vs (internal and surface variables are described in the next
section). Then, when one agent a of this type is considered stab'™7 is the predicate
via; = via; A\ vib; = vib; A vs; = vs;.

Notation 4.6 (Untemporalization) Let f a predicate. f* is the formula f in which
all subscripts of value x are removed.
Example: (x1 = 20)¥ = 2 = 1o

Notation 4.7 (Invariant) Let A an agent situated in an environment £. We write:

e 4 the invariant associated to the internal variables of the agent;
e igc the invariant associated to the environment variables;
® g4 the conjunction of i and ig.

4.2 Context inference

In a context formula, it may be necessary to refer to the value of a variable in a
previous state. In that case, the variable is subscripted by a negative integer. The
value in the current state is represented by the variable name neither subscripted
nor primed. For instance, consider the GDT presented in figure 1, and suppose the
context of the root goal is x = y.

In the state in which the right subgoal is considered (with a bold outline in fig-
ure 2), we know that:

e in state a (numbered —2), from the parent goal,  and y are equals; So: x_o =
Y—2;

e between states a and b (numbered —1), the value of x is increased, whereas the
value of y is preserved, and so:z_1 =x_2+ 1 Ay_1 =y_o;

e Dbetween state b and the state in which the right subgoal is considered, if « and
y are internal variables (and thus, cannot be modified by other agents), we have:
T=T_1NY=Y-1.

So, the context of the right subgoal is:
ot — (1',2 :y,Q)A(l',l =x_ 9o+ 1ANYy_ :y,g)
(z=2_1Ay=y-1)

Please notice that this allows to deduce that in the state in which the right subgoal
is considered (state c), we have x = y + 1.
Finally, the new context inference rules are the following:
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Cn, =Cn

_o\ & 4
Cy, = (((OM /\SCNI)O—H /\Stabl—ﬂ/\igA[l]/\igA[Q]>*> ) @

Using such rules, contexts are guaranted to use neither primed variables nor vari-
ables with positive subscripts. Indeed, if its true for C'y:

it is trivially true for C'y, ;
it is true for C'y, because:

- (Cn, A sen, )0_>1 contains variables with negative subscripts from C, , and
variables subscripted by 0 and 1;

— stab'™? contains variables subscripted by 1 and 2;

— iga[l] contains variables subscripted by 1;

— iga[2] contains variables subscripted by 2;

— From the previous facts, the formula

(C, A 01 152 , , o2
Ny A SCNy) A stab 7= Niga[l] Nigal2]

contains variables with negative or null subscripts;
— and so, C, contains variables with negative subscripts or unprimed variables
without subscripts.

4.3 Proof schema

In this new proof mechanism, the context of the right subgoal, in the case of the
SeqAnd operator, contains the essential properties that are guaranted to be true when
the right subgoal is considered. So, as the semantics of the SeqAnd operator is that,
when the right subgoal is executed and succeed, the parent goal must be achieved,
the proof schema associated to the SeqAnd operator only consists in verifying that
when the right subgoal succeeds in its context, then the parent goal also succeeds.
This leads to the following proof schema:

(On, [0] A seQ7t Nigall]) — sey” ™t (5)

In this formula, we can notice that the values of variables in state a of figure 2
are represented by the variables subscripted by —2, values in state b are represented
by the variables subscripted by —1, values in state c are represented by variables
subscripted by 0 and values in state d are represented by variables subscripted by 1.

In order to give to the reader an intuitive meaning for this proof schema, it can
be explained as follows:

e We consider the case where the second subgoal, Vs, is executed, which occurs
when its context C'y, is verified. We assign to the state the number 0;
e We only consider the case where this subgoal succeed, reaching another state

numbered 1, hence the formula sc?\zl;
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e We also know that in this new state, the environment variable and the agent vari-
able are true. So we have the hypothesis ig 4[1];

e Finally, if all these hypotheses are true, the satisfaction condition of the parent
goal must be established between the state in which the parent goal execution has
begun (numbered —2) and the state in which the execution of the second subgoal
ends (numbered 1).

4.4 Guaranted Property in case of Failure

In the previous proof system, GPF were inferred in a bottom-up manner from leaf
goals. This characteristics presented at lease two drawbacks:

e The GDT must be completely specified to be proven. Indeed, leaf goals must be
known to infer GPF of intermediate goals, and these GPFs are required to prove
the correctness of the GDT, as they are used in some proof schemas;

e The GPF inferred may be very complicated and may hold many non-necessary
hypotheses, that may reduce the success rate of automatic provers.

So, in the new proof system, it is asked to the developper to explicitely give
GPF of each node, as he has to do for satisfaction condition. This is not a harder
work than specifying satisfaction condition, and it makes the system quite more
compositional. However, it must be checked that the given GPF are entailed by the
behaviour specified. Thus, we must give GPF inference rules and we have toverify
that the GPF given by the developper is entailed by the GPF inferred from the GDT.

For the SeqAnd operator, the parent goal may fail either when the first subgoal
fails (in that case, its gpf is verified in the context of the execution of the first sub-
goal) or when the second subgoal fails (the gpf of this subgoal is then verified in the
context of the execution of this seconde subgoal). So we have:

(Cny A gpfw,)
infopf = V o ©
(Cn, [0] A gpf i, [0])

We can notice that in the formula corresponding to the inferred gpf of a goal,
unprimed variables correspond to the values of the variables when the execution of
the goal begins, and primed variables correspond to the values of the variables when
the execution of the goal ends.

We have now to prove that the specified gpf is correct. Thus, for each NNS goal,
we must establish that when the decomposition fails (that it to say, the inferred gpf is
true), either the parent goal is achieved or its gpf is true. Hence the following proof
schema:

infgpf v — (sen V gpf §) (N

5 Related works

Several works deal with the formal specification of multi-agent systems, but just a
few consider the formal verification of their specification. Moreover, most of these
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systems use model-checking [1, 8, 5]. The most recent and promising work in this
area is surely the Agent Infrastructure Layer (AIL) [3] and its connection with AJPF
(Agent JPF), an adaptation of the Java Path Finder model-checker. AIL is a kind of
intermediate language that can be used to give a formal semantics to most BDI
agent languages (such as AgentSpeak or MetateM). JPF is however not a very effi-
cient model-checker. Although there are best model-checkers such as SPIN [4], this
technique is not well-suited to massive multi-agent systems, where the state-space
is too huge, especially because of the great interleaving possibilities between agent
actions, and as a consequence, only systems with few agents manipulating boolean
concepts can be proven. On the other hand, the system we propose make possible
the automatic verification of huge systems, manipulating complex data using an any
existing first-order theroem prover (it has been tested with PVS [9] and krt [2]).

6 Conclusion

The previous proof system for GDTAMAS agents was of course valid, but it was
difficult to perform proofs with intuitive goal specifications: the satisfaction condi-
tions that the developper had to give had to be really proof-oriented, and using the
model was not really feasible by a developper who did not know all the details of
the proof process. With the new principles presented in this article, the specification
task is more independant from the proof process. Of course, the developper must be
well-heeled with the predicate logic, but it it not necessary for him to understand
how the proof works. Using the method is thus easier. Moreover, the number of
proofs that can be performed is increased.
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