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Abstract

Transposable elements (TEs) are mobile, repetitive DNA sequences that are almost ubiquitous in prokaryotic and eukaryotic
genomes. They have a large impact on genome structure, function and evolution. With the recent development of high-
throughput sequencing methods, many genome sequences have become available, making possible comparative studies
of TE dynamics at an unprecedented scale. Several methods have been proposed for the de novo identification of TEs in
sequenced genomes. Most begin with the detection of genomic repeats, but the subsequent steps for defining TE families
differ. High-quality TE annotations are available for the Drosophila melanogaster and Arabidopsis thaliana genome
sequences, providing a solid basis for the benchmarking of such methods. We compared the performance of specific
algorithms for the clustering of interspersed repeats and found that only a particular combination of algorithms detected TE
families with good recovery of the reference sequences. We then applied a new procedure for reconciling the different
clustering results and classifying TE sequences. The whole approach was implemented in a pipeline using the REPET
package. Finally, we show that our combined approach highlights the dynamics of well defined TE families by making it
possible to identify structural variations among their copies. This approach makes it possible to annotate TE families and to
study their diversification in a single analysis, improving our understanding of TE dynamics at the whole-genome scale and
for diverse species.
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Introduction

Transposable elements (TEs) are DNA sequences that can move

and duplicate, autonomously or with the assistance of other

elements, within genomes. TEs have been described as the

‘‘ultimate parasite’’, because of their ability to amplify and invade

genomes for their own ends [1], and as ‘‘selfish DNA sequences’’

[2]. These invasion events play a particularly important role in

eukaryotic genomes, probably because of the smaller population

sizes of eukaryotes than of prokaryotes [3].

TEs are generally classified according to their transposition

mechanism. Those transposing via an RNA intermediate belong to

class I and are referred to as retrotransposons, whereas those

transposing via a DNA intermediate belong to class II and are

called DNA transposons [4]. Class I transposable elements can be

classified into three main orders, LTR retrotransposons (having

long terminal repeats), LINEs (long interspersed nuclear elements)

and SINEs (short interspersed nuclear elements), whereas class II

transposable elements are classified into DNA transposons,

Helitrons and Mavericks [5]. Most TEs encode proteins that

mediate their autonomous transposition. During the course of

evolution, non autonomous elements have emerged from auton-

omous elements. Some are incomplete versions of autonomous

elements, often with insertions/deletions (indels) disrupting their

open reading frames (ORFs). Others are miniature versions

lacking internal sequences but retaining the boundaries of the

original element, making it possible for the autonomous element

machinery to recognize them. MITEs (miniature inverted-repeats

transposable elements) are well known examples of non autono-

mous elements that evolved from class II DNA transposons [6,7].

TEs are now recognized to be a major component of the

structure of the genome and to affect genome size and

chromosomal rearrangements [8–10]. They often account for a

large proportion of the genome: 20% of the 180 Mb Drosophila

melanogaster genome, 45% of the 3.2 Gb human genome, and more

than 80% of the 17 Gb bread wheat (Triticum aestivum) genome

[11]. These dispersed repeats can induce major chromosomal

rearrangements, thereby affecting genome organization. However,

the impact of TEs is not limited to effects on genome structure. As

initially suggested by Barbara McClintock [12], TEs may be seen

as ‘‘controlling’’ elements. They may provide regulatory sequences

with various effects on the adjacent genes. In particular, some

silencing mechanisms involving RNA interference seem to have

emerged primarily as a host response to prevent TE amplification.

Thus, genes located close to TE insertions may be subject to

transcriptional control due to TE repression, resulting in their

epigenetic regulation [13,14]. Moreover, TEs are intrinsically able

to create, modify and re-wire gene regulatory networks [15,16].
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Finally, many cases of exaptation and domestication involving TEs

have been reported [17,18]. For example, there are several lines of

evidence to suggest that the RAG1 and RAG2 genes involved in

V(D)J recombination originated from a hAT DNA transposon that

was domesticated to fulfill this primordial function of the adaptive

immune system [19,20].

The increase in efficiency and decrease in cost of new

sequencing techniques [21] are leading to the sequencing of

increasing numbers of genomes. About 1250 genome sequencing

projects have already been initiated for eukaryotes, including

species with large and repetitive genomes, such as maize [22]. The

efficient and accurate annotation of TEs is therefore essential to

our understanding of their impact on gene function and genome

evolution [23].

If a routine TE annotation procedure is to be efficient, it must

be both rapid and exhaustive, biologically relevant and compu-

tationally tractable. The TE annotation process can be divided

into two phases: (i) the de novo discovery and identification of the

TE families present in the genome studied and (ii) the precise,

comprehensive annotation of TE copies on the chromosomes. For

the second phase, an integrated pipeline has already been

developed and tested [24] and this pipeline has been applied to

several organisms [25–31]. For the de novo discovery phase, several

programs and algorithms based on different assumptions have

been developed, but none has yet proved entirely satisfactory.

Indeed, as pointed out in a previous study [32], some programs

have very low levels of sensitivity or specificity, whereas others

return too short consensus sequence (,1 kb).

In addition to describing the composition and organization of

the genome, TE annotation facilitates the identification of

structural variants providing useful information about genome

dynamics. Several examples of structural variations in TE families

have been reported [33,34] but these variations have generally

been underestimated in genome-wide analyses of TEs. In this

study, we addressed two questions, one concerning the challenges

associated with whole-genome TE annotation, and the other

relating to the identification and characterization of structural

variants from the same TE family. We first compared the existing

computational methods for the de novo identification of TEs in

sequenced genomes, using the high-quality TE annotations

available for the Drosophila melanogaster [24] and Arabidopsis thaliana

genome sequences [29]. We then developed the TEdenovo

pipeline, a tool combining several different programs, including

procedures for the clustering of interspersed repeats, into a single

framework, the REPET package (http://urgi.versailles.inra.fr/

index.php/repet). Finally, by analyzing the D. melanogaster and A.

thaliana genomes with the TEdenovo pipeline, we were able to

obtain new insight into TE dynamics, highlighting structural

variations emerging during the diversification of TE families and

identifying putative new TEs absent from reference databanks.

Results

Comparative analysis of de novo approaches
We developed a three-step approach for comparing the

efficiency of de novo TE detection methods (see [35] for a review),

to provide a robust tool for identifying TEs in eukaryotic genomes:

(i) the self-alignment of the input genomic sequences, (ii) the

clustering of the resulting pairwise alignments, and (iii) the

construction of a multiple alignment for each cluster from which

a consensus sequence is derived (Figure S1). This process generates

a databank of de novo consensus sequences representing putative

TE families present in the genome analyzed, which can be used for

the annotation of individual TE copies. We applied this three-step

approach to the D. melanogaster release 4 and A. thaliana release 9

genome sequences. At each step, we evaluated several programs,

comparing the efficiency with which they identified TEs with the

aid of the high-quality TE sequence databanks (from the Berkeley

Drosophila Genome Project and Repbase Update) and annotations

available for these two reference genomes [24,29].

Traditionally, the quality of de novo consensus sequences — the

extent to which they correspond to full TE reference sequences

rather than truncated versions — is not assessed. Validation is

instead indirect: researchers annotate a genome sequence with

RepeatMasker, using Repbase Update as TE databank, and

consider the resulting TE annotations as the references. They then

annotate the same genome with RepeatMasker, using the de novo

consensus as TE databank, and consider these TE annotations as

predictions. These two sets of annotations are then compared, by

calculating sensitivity and specificity at the nucleotide level. The

criterion used to estimate the quality of the de novo method is

therefore the extent to which de novo predictions and reference

annotations overlap. However, as we are particularly interested in

TE dynamics, we need to assess the quality of the de novo library

itself, by evaluating the extent to which full ancestral TE reference

sequences are recovered. Such sequences, which originate from

the reconstruction of a given element from its copies, are not only

useful for subsequent TE annotation, but also provide a condensed

view of the TEs in the genome. One way of assessing the quality of

the de novo consensus sequences obtained with our three-step

approach would be to compare these sequences with reference

sequences from the Berkeley Drosophila Genome Project (BDGP)

or Repbase Update databanks. However, it was clear that some of

the reference sequences present in these databanks would not be

present in the genomes analyzed. For example, the ‘‘P-element’’

reference sequence is absent from the genome sequence of the D.

melanogaster strain used here. So, rather than using the reference

databanks directly, we first constructed, for each genome, a

‘‘knowledge-based’’ databank comprising one consensus sequence

per reference TE sequence, based on its genomic copies (see

Methods). For each genome, we then compared each de novo

databank with its corresponding ‘‘knowledge-based’’ databank

through pairwise sequence alignments. We then calculated the

sensitivity Sn*, specificity Sp* and recovery ratio RCC (see Methods

and Table 1). This last index, the RCC ratio, provides a precise

measurement of the number of TE reference elements fully

recovered in the de novo consensus sequences.

Self-alignment of the genomic sequences. The first step in

the three-step de novo approach involves the self-alignment of the

input genomic sequences, corresponding to an all-by-all

comparison of the genome with itself. We evaluated two local

pairwise alignment programs for this first step: a heuristic

algorithm, BLASTER [36] wrapping BLAST [37], and an exact

algorithm, PALS [38] (see Methods). We launched these two

programs, with stringent parameters, on each of the target

genomes, and then applied post-processing procedures to discard

long segmental duplications (see Methods). This resulted in a list of

pairwise alignments corresponding to repeats in the D. melanogaster

and A. thaliana genome sequences. A comparison of the de novo

consensus sequence performances of the BLASTER and PALS

programs (Table 1) showed that BLASTER consistently had a

higher sensitivity (Sn*) and a much higher recovery ratio (RCC). In

most cases, its specificity (Sp*) was also better than that of PALS.

Note that PALS was run with more stringent parameters than

BLASTER as it cannot be used with the same values without

computing time becoming intractable (see Methods). As the

recovery ratio RCC reflects the ability of the de novo approach to

define TE boundaries correctly and, therefore, to recover full-
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length TE reference sequences, we preferred BLASTER over

PALS for the self-alignment step. Moreover, in both genomes,

BLASTER gave a higher genome coverage than PALS (Table S1),

as expected given the lower stringency of its parameters (see

Methods). This first step also generated a lower limit for the

repeats content of the genome: around 7% for D. melanogaster and

13% for A. thaliana.

Clustering of the all-by-all matches. In the second step, we

clustered the results of the all-by-all comparisons, with the aim of

gathering together, within the same cluster, all sequences

belonging to the same TE family. This step is crucial to ensure

the precise definition of repeat boundaries, one of the main

challenges in the de novo detection of TEs. Due to their specific

dynamics during genome evolution, TE families may differ

considerably in terms of copy number, sequence divergence and

insertion/deletion patterns. At this step, the aim is to cluster

together all TE fragments sharing a common ancestor, with the

aim of recovering the ancestral element that transposed in the past.

However, TE copies diverge as they multiply and different copies

may accumulate different modifications. This phenomenon results

in structural variants, as depicted in Figure 1. In this case, the

grouping together of copies from different structural variants

within the same cluster may have the undesirable consequence of

the identification of consensus sequences with some features

specific to one of the structural variants with others specific to

another variant. We therefore tested three programs specifically

implemented for the clustering of interspersed repeats:

GROUPER [36], RECON [39] and PILER [40] (see Methods).

We applied these three programs to the list of matches obtained

in the genome self-alignments, and then applied procedures for

discarding segmental duplications (see Methods). In terms of the de

novo consensuses generated from the resulting clusters (Table 1),

Table 1. Sensitivity and specificity of the programs tested in the three-step de novo approach.

Genome Self-alignment Clustering
Multiple
alignment Sn* Sp* RCC

D. mel. BLASTER GROUPER MAP 80.34% 85.89% 66.20%

D. mel. BLASTER RECON MAP 92.31% 73.17% 66.20%

D. mel. BLASTER PILER MAP 62.39% 84.17% 51.50%

D. mel. PALS GROUPER MAP 73.50% 88.75% 60.30%

D. mel. PALS RECON MAP 90.60% 74.23% 51.50%

D. mel. PALS PILER MAP 53.85% 76.42% 42.64%

A. tha. BLASTER GROUPER MAP 60.33% 82.42% 39.00%

A. tha. BLASTER RECON MAP 73.77% 61.70% 43.50%

A. tha. BLASTER PILER MAP 47.21% 57.33% 32.45%

A. tha. PALS GROUPER MAP 54.75% 88.38% 24.00%

A. tha. PALS RECON MAP 71.80% 66.20% 27.90%

A. tha. PALS PILER MAP 40.00% 59.92% 16.20%

‘‘D. mel.’’ stands for ‘‘D. melanogaster’’ and ‘‘A. tha.’’ stands for ‘‘A. thaliana’’. The three indices Sn*, Sp* and RCC correspond respectively to the measure of sensitivity, the
measure of specificity and the recovery ratio when comparing a databank of TE de novo consensus sequences with a databank of TE reference sequences.
doi:10.1371/journal.pone.0016526.t001

Figure 1. Schematic diagram of the dynamics of a TE family with two structural variants.
doi:10.1371/journal.pone.0016526.g001
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GROUPER and RECON were consistently more sensitive than

PILER. Moreover, GROUPER was systematically more specific

than RECON and PILER, with de novo consensuses from

GROUPER less likely to be artifacts unrelated to TE reference

sequences than those obtained with the other methods. In some

cases, RECON provided a better recovery ratio (RCC) than

GROUPER and PILER, but this ratio was always better for

GROUPER than for PILER. In addition, regardless of the

genome analyzed, the three programs did not necessarily generate

the same number of clusters (Table S2): GROUPER generated

more clusters than RECON, which, in turn, generated more

clusters than PILER. The number of clusters obtained by the de

novo approach was much higher for GROUPER and RECON

than the number of TE families present in the reference databanks

(BDGP or Repbase Update). We suggest that this large number of

clusters reflects the high level of diversity within TE families in

terms of copy divergence and nesting patterns, as assessed by

clustering algorithms.

Multiple sequence alignment for each cluster. The third

step, which consists in the construction of a multiple alignment for

each cluster, is particularly important, because the quality of a

consensus sequence depends on the quality of the multiple

sequence alignment (MSA) from which it is derived. A large

number of programs have been developed over the last ten years

[41], focusing on issues such as the scoring scheme, the use of

templates for secondary structures and computation speed. In our

case, the sequences to be aligned are very similar to each other in

terms of nucleotide substitutions (identity of more than 90%), with

most of the differences between them resulting from indels. The

clusters generated by RECON include sequences of very different

lengths (Table S2). Moreover, depending on the size and TE

content of the genome analyzed, it may be necessary to process

several thousand clusters. We tested only a subset of all the possible

programs, focusing on those most suitable for our requirements:

rapid procedures capable of handling indels. We therefore focused

on progressive MSA algorithms, as these algorithms generate

alignments rapidly. We tested MAP [42], CLUSTAL-W [43],

MAFFT [44] and PRANK [45] (see Methods).

For each of these multiple alignment programs, we used the

matches returned by BLASTER and then clustered by GROU-

PER, RECON or PILER. This comparative study (Table S3)

shows that all the multiple alignment programs gave similar results

in terms of sensitivity and specificity, whether launched after

GROUPER or after PILER. This result was expected, as all the

sequences in these clusters are similar in both composition and

length, making them easy to align. However, PRANK was slower

than the other three programs, rendering it less suitable for large

genome analyses. With RECON, the best results were obtained

with MAP, due to the greater heterogeneity of RECON clusters in

terms of sequence length, rendering alignment more difficult.

Thus, few differences were observed, but MAP clearly outper-

formed the other programs on RECON clusters, making it more

robust than the other programs, whatever the clustering method

used.

Comparison with another approach, RepeatScout. We

evaluated the performance of our three-step strategy, by

comparing it with another approach that also builds a databank

of TE consensus sequences from a raw genome sequence:

RepeatScout [46] (see Methods). We applied the RepeatScout

program on the D. melanogaster and A. thaliana genome sequences,

with the default parameters. It constructed 1770 consensuses for D.

melanogaster and 3417 for A. thaliana. However, these consensuses

were less sensitive and specific than those obtained with the tools

described above (Table S4). This is probably due to the shorter

length of the consensuses identified by RepeatScout (500 bp on

average) than by GROUPER (,2500 bp on average), RECON

(,2000 bp on average) and PILER (,2800 bp on average). We

obtained similar results for both genomes, indicating that this bias

does not seem to be due to the input genome sequences. We

hypothesize that RepeatScout fails to connect TE fragments more

than a certain distance apart, thereby sometimes missing the true

boundaries of a given TE copy. By contrast, GROUPER and

RECON are particularly efficient at this task.

Combination of programs into a robust pipeline,

TEdenovo. Based on the comparative analyses reported

above, BLASTER should be used for the genome self-alignment

step, followed by GROUPER or RECON for the clustering step

and MAP for the multiple alignment step. However, a comparison

of the consensuses obtained with all three clustering methods

clearly showed that each of these methods nonetheless missed

several reference TEs fully recovered by the others (Figure 2). With

the D. melanogaster genome sequence, four ‘‘knowledge-based’’

consensuses were retrieved intact by GROUPER only, and nine

such sequences were recovered by RECON only (Figure 2 A).

Similarly, with the A. thaliana genome sequence, eight ‘‘knowledge-

based’’ consensuses were retrieved intact only by GROUPER,

whereas fifteen were retrieved intact only by RECON (Figure 2 B).

The three clustering methods should therefore be used in

combination, for the accurate identification of TE families in

genome sequences. For this reason, we decided to the three-step

approach within a combined, modular pipeline named

‘‘TEdenovo’’. With respect to the best single method,

GROUPER for D. melanogaster and RECON for A. thaliana

(Table 1), the combined approach, as implemented in the

TEdenovo pipeline, improved the recovery of full-length

‘‘knowledge-based’’ consensus sequences by 20% and 13.5%,

respectively, while maintaining high sensitivity and specificity

(Table S5). The three approaches are combined at the clustering

step, through the launching of GROUPER, RECON and PILER

in parallel. The user may also choose to use PALS rather than

BLASTER at step 1 or the other MSA programs at step 3, and can

even choose to apply only one clustering program at step 2,

although our results suggest that this would not be wise.

Classification of TE consensus sequences and
identification of structural variation within TE families

Classification of the consensus sequences and

elimination of redundancy. The three-step approach

provided us with a set of de novo consensus sequences

corresponding to interspersed sequences occurring at least three

times in the genome studied. A two-step classification procedure

was implemented to add more biological information, to filter out

false-positives and to eliminate the redundancy introduced by the

combined approach. There is a long-standing debate about the

aims of any classification in biology [47], and the case of genomic

repeats does not escape the rule: ‘‘Although the reality is that

repeats […] are a hierarchical evolutionary continuum that defies

classification, it is still desirable to impose a simplistic classification

that pretends that repeat families are distinct, for the purpose of

practical genome annotation’’ [39]. In this spirit, our classification

procedure begins with the detection of TE features in the

consensus sequences, and a decision tree classifying each

consensus as a function of these features is then produced

(Figure 3). In the first step, the procedure identifies terminal

repeats, tandem repeats, poly-A tails and SSR-like tails (simple

sequence repeats). It also aligns the consensus sequences with

known TEs through blastn, blastx and tblastx, and with known

genes from the host genome. The known TEs are those from

De Novo Annotation of Transposable Elements
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Repbase Update, a curated set of TE sequences from numerous

genomes [48]. Our TE classifier uses a customized version of this

databank available from the Repbase Update website (http://

www.girinst.org/repbase/), but any customized databank may be

used, provided that it is appropriately formatted. In the second

step, the procedure implements a decision tree based on the

classification summarized in [5]. For benchmarking purposes,

when analyzing de novo consensus sequences from the D.

melanogaster and A. thaliana genomes, we removed the sequences

known to belong to these species from the Repbase Update

databank, to establish conditions equivalent to those for the

analysis of a new genome.

The classification takes into account the degree of completeness

of the de novo TE consensus (Figure 3). For instance, if a consensus

sequence has the required ‘‘structural features’’ — LTRs (long

terminal repeats), TIRs (terminal inverted repeats) or a tail (poly-A

or SSR-like) — and ‘‘coding features’’ — matches with known

TEs in tblastx and blastx analyses — then it is considered

‘‘complete’’. If it has only one of these two types of features, it is

classified as ‘‘incomplete’’. Moreover, a consensus sequence can be

classified as ‘‘confused’’ if our TE classifier detects features known

to belong to different categories of TEs or, based on the detected

features, its length is outside the range of TEs known to have such

features. If the consensus has no identifiable features, it is classified

as ‘‘not categorized’’. We also used length parameters (Table S6)

benchmarked on the reference databanks — BDGP for D.

melanogaster and Repbase Update for A. thaliana — to improve

differentiation between presumably truncated and full-length

consensus sequences. We also used length parameters when

classifying a sequence having only ‘‘structural features’’, to

determine whether the sequence concerned was a SINE or a

MITE.

Figure 2. Venn diagram showing the gains achieved by combining several clustering programs. (A) Combining the GROUPER and
RECON programs in particular makes it possible to fully recover more TE sequences than each program alone from the D. melanogaster genome. (B)
Same conclusion from the A. thaliana genome.
doi:10.1371/journal.pone.0016526.g002

Figure 3. Simplified decision tree implemented in the TE classifier.
doi:10.1371/journal.pone.0016526.g003
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As shown in Table 2 for D. melanogaster (Table S7 for A.

thaliana), our TE classifier retrieved the appropriate classification

for the reference TEs, thus predicting a correct classification for

de novo consensus sequences. Moreover, each high-level category

of the TE classification (e.g. ‘‘class I LTR-retrotransposon’’,

‘‘class I LINE’’, and ‘‘class II DNA transposon’’) contained

similar proportions of de novo consensus sequences and TE

reference sequences from the BDGP or Repbase Update

databanks. Thus, our procedure efficiently classified de

novo consensus sequences into the appropriate high-level

categories.

The proportion of de novo consensus sequences classified as

‘‘incomplete’’ was high. In D. melanogaster, 75% (45% in A. thaliana)

of the de novo consensus sequences classified as ‘‘incomplete’’ LTR

retrotransposons matched only with known LTR retrotransposons

from Repbase Update but contained no long terminal repeats. All

the de novo consensus sequences classified as ‘‘incomplete’’ LINE

retrotransposons from D. melanogaster (28% of those from A.

thaliana) matched only known LINE retrotransposons from

Repbase Update, but with no polyA-/SSR-like tail. Among the

de novo consensus sequences classified as ‘‘incomplete’’ DNA

transposons, 50% of those from D. melanogaster (32% of those from

A. thaliana) matched only known DNA transposons from Repbase

Update, but with no TIR. Thus, these de novo consensus sequences

are classified as ‘‘incomplete’’ in D. melanogaster mostly because they

lack terminal features, which is not the case for most such

consensus sequences in A. thaliana. Thus, the clustering programs

combined in the TEdenovo pipeline do not generate systematic

bias towards ‘‘incomplete’’ TEs of a given kind.

Moreover, only a few consensus sequences were classified as

‘‘confused’’, facilitating manual curation. For instance, one 635-bp

long consensus sequence built by RECON from the D. melanogaster

genome has long terminal repeats as well as a poly-A tail which is

contradictory according to our classification scheme derived from

[5]. The consensus sequences classified as ‘‘host genes’’ are

detailed in Table S8. The high proportion of unclassified

consensus sequences (‘‘no category’’) reflects the limitations of this

classification scheme. We searched all these consensus sequences

for HMM profiles specific to TEs. We detected fragments of

known TE profiles in only 14% of these unclassified consensus

sequences (data not shown). Several of the other corresponded to

Helitron reference sequences recovered intact within unclassified

de novo consensus sequences. Helitrons are difficult to detect as they

have no clear structural features other than a terminal hairpin

[49]. Nonetheless, our de novo approach recovered all those with at

least three full-length copies in the genome. This confirms the

relevance of the combined de novo approach as implemented in the

TEdenovo pipeline and shows that de novo consensus sequences

may correspond to TEs even if they remain unclassified by this

method.

As shown above, the combination of clustering programs gave

better results than any single program. However, it also provided

redundant consensus sequences. We therefore applied a redun-

dancy elimination procedure, in which we considered a consensus

sequence to be redundant if it was included in another sequence,

over x% of its length, with an identity of more than y%. We first

tested this procedure directly on the whole de novo databank. It

resulted in the loss of many well classified consensus sequences that

were shorter than the misclassified sequences. We therefore

applied the redundancy procedure on the basis of the classifica-

tion. We decided to remove redundant consensus sequences

classified as ‘‘incomplete’’ when they were included within

consensus sequences classified as ‘‘complete’’, but not vice versa.

The ‘‘80-80-80’’ rule [5] has been proposed as a means of

identifying copies from the same TE family: two TE copies may be

considered to belong to the same family if they are aligned, with

80% identity, over at least 80 bp and 80% of their respective

lengths. However, as this rule was originally developed for TE

copies and not for consensus sequences, we also tested more

stringent parameters (Table S9). We found that the best strategy

for obtaining a high-quality de novo databank with a low level of

redundancy was to remove redundant consensus sequences with

more stringent parameters: ‘‘95-80-98’’. This implies that a

consensus sequence is removed if it is included within another

consensus sequence over 98% of its length, with an identity level

exceeding 95%.

Comparison of de novo and knowledge-based TE

annotations. After the first phase of analysis with the

Table 2. TEclassifier results for the classification of D. melanogaster TE sequences.

Classification
Reference TEs from
the BDGP

De novo consensus (with
redundancy)

De novo consensus (without
redundancy)

Class I ‘‘complete’’ LTR retrotransposon 56 150 48

Class I ‘‘incomplete’’ LTR retrotransposon 2 377 209

Class I ‘‘complete’’ LINE 23 117 27

Class I ‘‘incomplete’’ LINE 17 147 57

Class I SINE 0 2 1

Class II ‘‘complete’’ DNA transposon 19 30 13

Class II ‘‘incomplete’’ DNA transposon 2 75 32

Class II MITE 0 8 5

Helitron 1 0 0

SSR 0 8 8

Host genes 0 26 11

Confused 1 20 6

No category 5 341 176

Total 126 1301 593

doi:10.1371/journal.pone.0016526.t002
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TEdenovo pipeline, we used the de novo TE consensus sequence

databank to detect all TE fragments and to reconstruct each TE

copy in the genome of interest. This annotation phase was

achieved with the TEannot pipeline [24] (Figure S2), which is also

part of the REPET package. TEannot combines several programs

for detecting TE fragments, filtering out false-positives and

reconstructing intact TE copies. This process involves the

connection of TE fragments from the same copy, a procedure

also called ‘‘TE defragmentation’’. While improving the

robustness of this pipeline, we notably improved the connection

of TE fragments in the MATCHER algorithm (see Methods). For

a comprehensive analysis of the performance of the de novo

approach presented above, we used the TEannot pipeline on both

the D. melanogaster and A. thaliana genomes, with several databanks

of de novo consensus sequences, each obtained with a specific

combination of programs from the TEdenovo pipeline. We first

discarded the consensus sequences that could be unambiguously

identified as SSRs or host genes. We then compared each

annotation with that obtained with the reference TE libraries from

the BDGP and Repbase Update databanks (Table 3).

In D. melanogaster (Table 3), when using only one clustering

method, the GROUPER databank delivered the annotation

closest to that obtained with the BDGP reference databank in

terms of genome coverage and copy number. Sensitivity was

highest with the RECON databank and specificity was highest

with the PILER databank. The annotation shows high sensitivity

and specificity, together with a high level of genome coverage, for

the combined approach. Similar conclusions were drawn from the

annotations for A. thaliana. An examination of match boundaries

(Figure S3 and Table S10) showed that the clustering methods

were complementary: GROUPER gave the largest number of

exact matches in D. melanogaster whereas RECON gave the largest

number of exact matches in A. thaliana. About RepeatScout,

although the specificity of its annotation is very similar with our

combined approach, its sensitivity is much lower. Moreover, based

only on Table 3, it may appear that using ‘‘RECON’’ gives similar

results than using our combined ‘‘G+R+P’’ approach. However, as

shown above in Figure 2, ‘‘RECON’’ is not able to fully recover

several TE reference sequences which are fully recovered only by

‘‘GROUPER’’, and reciprocally. Biologically speaking, it is better

to recover a full TE reference sequence as one consensus sequence,

rather than several truncated or artifactual consensus sequences.

In this context, not only the ‘‘G+R+P’’ approach builds a better

library of TE de novo consensus sequences, but such a library is also

able to provide reliable TE annotation. Thus, the combination of

clustering methods in the TEdenovo pipeline leads to the

construction of a high-quality TE library delivering annotations

similar to those obtained for manually curated databanks.

We then compared the results of our analyses with those

obtained with RepeatModeler (http://www.repeatmasker.org/

RepeatModeler.html), which combines RECON, RepeatScout,

RepeatMasker and TRF and classifies the consensus sequences

obtained. For D. melanogaster, RepeatModeler generated a library

of 141 consensus sequences, with a sensitivity of 78% and a

specificity of 76%. However, the recovery ratio of RepeatModeler

(RCC = 21%) was much lower than that of the TEdenovo pipeline

(RCC = 72%). This indicates that RepeatModeler recovers only a

few intact TE reference sequences. Similar results were obtained

for A. thaliana, with all three measurements showing lower values

with RepeatModeler than with TEdenovo (Table S11). Running

the TEannot pipeline with the consensus sequences generated by

RepeatModeler resulted in a sensitivity markedly lower than that

for the annotations obtained with the de novo library from the

TEdenovo pipeline, although specificity was slightly higher (Table

S12). The combination of several tools is therefore not sufficient in

itself to improve the results. The way in which the tools are chosen

and combined is determinant. We conclude that the TEdenovo

pipeline achieves a good balance between sensitivity and specificity

in the de novo construction of a TE databank from raw genomic

sequences.

We therefore developed the REPET package available online

(http://urgi.versailles.inra.fr/index.php/repet), into which we

integrated both the TEdenovo and TEannot pipelines, with the

TE classifier described above corresponding to the final step of the

TEdenovo pipeline. The REPET package was specifically

designed to improve speed and tractability by (i) interacting with

MySQL tables at several key points to take advantage of the SQL

language, and (ii) automatically handling jobs launched in parallel

Table 3. TE annotation results obtained with reference databanks and de novo databanks.

Genome TE databank
Consensus (having
copies)

TE genome
coverage

Number of
copies Sn Sp

D. mel. BDGP 125 10.51% 31208 NA NA

D. mel. GROUPER 712 10.29% 43699 81.92% 98.12%

D. mel. RECON 437 11.05% 33072 87.77% 97.95%

D. mel. PILER 114 8.87% 32789 74.07% 98.79%

D. mel. RepeatScout 1432 10.86% 42048 85.28% 97.88%

D. mel. G+R+P 568 11.98% 42847 91.43% 97.35%

A. tha. Repbase 318 19.02% 41146 NA NA

A. tha. GROUPER 1237 18.78% 41791 79.29% 95.43%

A. tha. RECON 1004 23.69% 49470 88.75% 91.59%

A. tha. PILER 300 13.14% 34818 56.56% 97.05%

A. tha. RepeatScout 2893 21.95% 68958 82.91% 92.36%

A. tha. G+R+P 1232 22.77% 44059 87.03% 92.32%

‘‘D. mel.’’ stands for ‘‘D. melanogaster’’ and ‘‘A. tha.’’ stands for ‘‘A. thaliana’’. The Sn and Sp columns correspond respectively to sensitivity and specificity results when
comparing two annotations in terms of nucleotide overlaps. ‘‘G+R+P’’ indicates that the three programs GROUPER, RECON and PILER were used to build the databank of
de novo consensus sequences.
doi:10.1371/journal.pone.0016526.t003
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on a cluster via free batch-queuing systems, such as the Sun Grid

Engine (now known as Oracle Gene Engine), relaunching jobs in

cases of cluster node failure. This package is thus specifically

implemented for computationally intensive, genome-wide analyses

that do not compromise the biological relevance of the results (see

Table S13 for details about computation times). As already

pointed out by several authors, tools for de novo TE identification

are ‘‘quite difficult to use, indicating the need for better user

interfaces and auto-optimization’’ [32]. We facilitated the use of

our tools, by concealing technical details behind interfaces, one per

pipeline. The user is also provided with access to a detailed tutorial

and a configuration file with default parameters.

Identification of structural variation within TE families

and manual curation. After annotating the TE copies in both

genomes, we investigated the structural diversity within TE

families, as represented by the large number of de novo

consensus. We focused on the TE families for which the

‘‘knowledge-based’’ consensus was fully recovered by only one

clustering method, GROUPER or RECON, as shown in Figure 2

(see also Table S14 and Table S15). Indeed, the failure of one

method (either GROUPER or RECON) to recover all the TEs

would illustrate differences in the ability of these methods to take

TE structural variations into account. For each of these TE

families, we retrieved genomic copies detected by the de novo

consensus and built multiple alignments (see Methods). Figure 4

(cases a, b, c and d) provides an overview of several of these

multiple alignments displaying extensive structural variations. In

almost all TE families, differences between genomic copies were

observed, due to substitutions and indels. The clustering method

generated different clusters as a function of these differences

and the fragmentation of the copies. Depending on the specific

features of each algorithm, the consensus will correspond to the

complete TE reference sequence or a truncated version of that

sequence.

We then looked for features particular to the TE families for

which the reference sequence was fully recovered by only one

clustering method, being recovered only partially with another

method. We first compared the classification of these TE reference

sequences. In D. melanogaster, the four TE reference sequences fully

recovered only by GROUPER were all LTR retrotransposons,

whereas the nine TE reference sequences fully recovered only by

RECON comprised four LTR retrotransposons, three LINE

retrotransposons and two DNA transposons. In A. thaliana, the

eight TE reference sequences fully recovered only by GROUPER

comprised five LTR retrotransposons and three DNA transposons,

whereas the fifteen TE reference sequences fully recovered only by

RECON comprised six LTR retrotransposons, eight DNA

transposons and one Helitron. There were therefore no clear

differences in the recovery of full-length TE reference sequences

obtained with different clustering methods. We also looked for

differences in terms of copy number. However, the TE reference

sequences fully recovered only by GROUPER or only by RECON

had similar numbers of full-length and truncated copies (data not

shown). Comparisons of de novo consensuses and ‘‘knowledge-based’’

consensuses, as in Table 1, showed that RECON was systematically

the most sensitive method, whereas GROUPER was systematically

the most specific. As a result, several TE reference sequences

displayed partial matches with de novo consensuses from RECON

only. Moreover, almost 50% of the de novo consensus sequences from

RECON lacked both boundaries of the TE reference sequences,

versus less than 20% of the consensus sequences from GROUPER.

Conversely, a de novo library from GROUPER is likely to match

with fewer TE reference sequences, but, when a match does occur,

at least one boundary of the reference is likely to be correctly

retrieved. Consequently, GROUPER and RECON are truly

complementary, making the combined approach implemented in

the TEdenovo pipeline very efficient.

Our TE classifier can combine de novo consensus sequences from

various sources, but manual curation is still required in some cases,

particularly when there are several consensus sequences related to

the same TE family (Table S16). Figure 4 (alignments E to H)

shows several examples in which manual curation of the de novo

consensus sequences identified by GROUPER and RECON for a

given TE family improves the recovery of the reference sequence.

For instance, in Figure 4-E, all consensus sequences from RECON

are truncated before the 39 LTR of the ATLANTYS2 element

whereas the G1184 consensus sequence from GROUPER

connects this LTR with part of the internal region of the element.

In Figure 4-F, two consensuses can be removed, G512 from

GROUPER, a a solo-LTR, and G803, which is chimeric.

Moreover, we can add the internal region of the element present

in G1497, which lacks the 39 LTR, to the truncated R474 from

RECON. A similar strategy can be applied in figures 4-G and 4-

H. Thus, although it is not always possible to recover the full

reference sequence, we can improve the final de novo consensus by

manual curation, making use of the multiple alignment of classified

consensuses to guide informed decision-making.

The TEdenovo pipeline identified putative new TEs in the D.

melanogaster and A. thaliana genomes, despite the intensity with

which these genomes have been studied and annotated manually.

Indeed, we found de novo consensus sequences that were classified

as ‘‘complete’’ TE but had no single match in blastn with known

TE reference sequences from the BDGP or Repbase Update

databanks. Three such sequences were identified in D. melanogaster

(two from GROUPER and one from RECON), and four in A.

thaliana (three from RECON and one from PILER). For example,

in D. melanogaster, a 7.8 kb de novo consensus was classified as a

‘‘complete’’ LTR retrotransposon on the basis of its two long

terminal repeats (each 510 nt long) and its matches with known

LTR retrotransposons from Repbase Update in tblastx and blastx

analyses. Furthermore, this consensus matched two HMM profiles

corresponding to an integrase and an aspartic proteinase. There

were four full-length copies in the genome, two of which retained

their target site duplications. This de novo consensus sequence is

probably non autonomous, as it lacks matches with HMM profiles

corresponding to other LTR retrotransposon genes, and, notably,

displays no match with a reverse transcriptase. However, it has

enough of the typical properties of TEs and enough full-length

copies to correspond to a true TE, rather than a mere segmental

duplication containing TE fragments.

Discussion

Combining approaches to build high-quality TE de novo
consensus sequence databanks for sequenced genomes

Transposable elements play a key role in the structure and

evolution of genomes, but their impact remains to be fully

elucidated. If we are to make use of the increasing numbers of

genome sequencing projects to improve our understanding of TE

biology, we will need an efficient, automatic de novo approach for

the annotation of genome TE content. Several methods praised for

their rapidity and low memory requirements, such as the MDR

index [50], and P-clouds [51], provide a good overview of the

repeat content of a given genome. However, they are not precise

enough to provide insight into the functional impact of TEs (see

for instance [52] and [53]). As such, these methods are good

starting points but are inadequate for a full exploration of

biological questions relating to TEs.
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The typical process of TE annotation, as we see it, should

involve the identification of all TE copies throughout the genome

and proceed in two phases. The first step is the construction of a de

novo library of TE consensus sequences representing the TE

families present in the genome. This library is then used to mine all

the TE fragments present in the genome. The TE copies are then

reconstructed, usually nested within each other, to unravel their

intricate evolution. We describe here a new strategy for

constructing databanks of TE consensus sequences by de novo

methods. Our results for the D. melanogaster and A. thaliana genomes

show that an approach combining several clustering programs

provides the best outcome, in terms of sensitivity and specificity,

for the identification of TE families and the annotation of their TE

copies.

Previous studies have already compared tools for de novo TE

identification, either to propose a new algorithm (as for RECON,

PILER and RepeatScout) or to help experimental biologists to use

the most suitable tools for their analysis [32]. In most of these

studies, the results were validated by comparing the final TE copy

annotations in terms of genome coverage, rather than by

evaluating the accuracy of de novo TE consensus sequence

identification. Little attention has been paid to analyses of the de

Figure 4. Extensive structural variations within several TE families. Each image provides an overview of a multiple alignment, a column
being in one color if all the residues within it are identical. In all the images, the first sequence in the multiple alignment (red star) is the TE reference
sequence from a public databank (BDGP or Repbase). For alignments A to D, the second sequence (blue star) is the only de novo consensus in which
the TE reference sequence is fully recovered by only one clustering method. All sequences below (in brackets) are TE genomic copies found by the de
novo consensus analysis. For alignments E to H, the sequences below the TE reference sequence are de novo consensus that require manual curation.
Beside is indicated the program that build them, ‘‘R’’ for RECON and ‘‘G’’ for GROUPER.
doi:10.1371/journal.pone.0016526.g004
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novo databank itself. The use of consensus sequences corresponding

to truncated or artifactual TEs would clearly bias subsequent

annotations. We therefore propose three indices for measuring the

quality of de novo databanks, with respect to reference databanks.

This combined approach was validated by considering the

proportion of de novo consensus sequences corresponding to full-

length reference sequences, with well-defined boundaries.

Classification of TE sequences on the basis of their
biological features and the curation of TE de novo
databanks

The tools typically used for the de novo identification of TE

families provide no additional meta-data about the consensus

sequences they build. Instead, the user has to use other tools to

obtain a putative classification of the sequences obtained. Here, we

implemented a combined de novo approach for the identification of

TE families and developed a dedicated procedure for classifying

sequences on the basis of TE features. We based our TE classifier

on the classification proposed in [5], from class to superfamily,

combining various sources of information about TEs in a modular

manner. This procedure was designed to be run in isolation for the

analysis of any databank of putative TE-related sequences and for

integration into the TEdenovo pipeline, to facilitate its use.

The current version of our tool, TEclassifier, requires further

improvement for the classification of less well known TEs, such as

DIRS-like elements, Penelope-like elements, Crypton elements

and Polintons/Mavericks. However, unlike tools like TEclass [54],

which makes use of the profiles of frequent k-mers from the

Repbase Update databank, our TE classifier guides output

classification by detailing the precise TE features present on the

analyzed sequences, such as terminal repeats and matches with

known TEs. Our tool and REPclass [55] are very similar, but our

TE classifier has several advantages. Being part of the REPET

package, it benefits from the architecture of this package and is

therefore able to handle large databanks, which is often required

when studying large genomes. Moreover, our TE classifier not

only classifies putative TEs, it also makes it possible to filter out

false-positives and to remove redundant sequences present in the

input databank.

In a wider perspective, we considered manual curation, a key

topic in genome annotation. Computer-based predictions for the

annotations of protein-coding genes are now of high quality, but it

remains difficult to predict exon-intron boundaries correctly [56].

Major efforts have been and are being made to improve the

automatic annotation of protein-coding regions, but such efforts

have been much less intensive for other parts of the genome,

including TEs. In this study, we tried to fill this gap by designing

the REPET package for the comprehensive association of all the

meta-data obtained for a given TE family: (i) the de novo consensus

sequences, (ii) the TE features used to classify them, (iii) the all-by-

all comparisons from which they were built, and (iv) the TE copies

they identify on the chromosomes. As a result, the manual curator

can make informed decisions based on the biological features at

hand, and the curated TE consensus databank can be used to

provide a second release of TE annotations.

Efficiency of de novo approaches for recovering ancestral
TEs and their structural variants from ‘‘junk’’

At the core of any de novo approach lies the possibility of

identifying new agents in a given system by searching for their

fundamental properties. In our case, we were confronted with raw

whole-genome sequences containing numerous repeated sequenc-

es of different kinds, some of which have specific features and a

common ancestry. We were interested in identifying, from among

these sequences, TEs — interspersed repeats — and, more

particularly, the ancestral sequences that actually transposed. The

current copies of such sequences are likely to be divergent,

fragmented and nested within each other, as TE families typically

display extensive structural variation (Figure 4 A–D). We showed

in this study that the de novo approach could recover some full-

length TE sequences by correctly collecting together their

fragments, even if no TE feature could be used to classify them.

This was the case here for several Helitron reference sequences in

the A. thaliana genome. Similarly, we were able to identify putative

new non autonomous TEs in the D. melanogaster and A. thaliana

genomes that had all the essential features of TEs but were

nonetheless absent from the reference databanks.

Efficient and robust tools are essential to keep pace with current

whole-genome sequencing programs. Our analyses were per-

formed on small model genomes. However, the de novo approach

and the tools we presented here are scalable, at least to genomes

reaching 500 Mb. Indeed, preliminary versions of the TEdenovo

and TEannot pipelines were used to annotate the TE content of

the 464-Mb aphid genome totalizing 38% of TEs [31]. Moreover,

our tools are modular and almost all steps can be launched in

parallel, thus taking advantage of today’s computer clusters.

Future work will be dedicated to the improvement of the clustering

step in the TEdenovo pipeline in order to provide, also to very

large genomes, the ability to jointly annotate TEs and study their

diversification. For all projects in which the aim is to sequence

large and highly repetitive genomes (e.g. barley, hexaploid wheat),

computational tools, such as the TEdenovo pipeline presented

here, are likely to become increasingly useful for increasing our

knowledge of the evolution of genome structure and the functional

impact of TEs on neighboring genes.

Methods

Genome sequences and TE reference databanks as
benchmark

In 2000, an international consortium driven by the Berkeley

Drosophila Genome Project (BDGP) sequenced, assembled and

annotated the genome of an isogenic y; cn bw sp strain of D.

melanogaster [57], this work now being continued at FlyBase

(http://flybase.org/). In this study, we used the 118.4 Mb release

4 genome sequence corresponding mostly to euchromatin regions.

Release 5 became available in 2006 and corresponds to release 4

with 50.3 Mb of additional heterochromatic regions and minor

sequence corrections. We chose to work on release 4, which

remains the D. melanogaster genomic sequence best annotated for

TEs [24,25], despite the availability of the later sequence.

Flybase provides a set of natural TE sequences experimentally

identified in several Drosophilidae genomes. The latest version of

this data set (bdgp9.41) consists of 179 sequences corresponding to

different TE families, 126 of which have been detected in D.

melanogaster strains. Each of these 126 sequences corresponds either

to a TE copy of the given family present in D. melanogaster or to a

consensus based on TE copies for the family concerned. In the

latter case, consensuses were built either as a mosaic of TE copies

or following a ‘‘majority rule’’ from a multiple alignment. In this

study, these 126 sequences are referred to as ‘‘reference TEs’’. The

aim of the de novo approach presented in this article is to

reconstruct such a library of TE sequences.

In 2000, 115 Mb of the 125 Mb genome of A. thaliana accession

Columbia had been sequenced, assembled and annotated [58].

For our analyses, we used the 119 Mb of A. thaliana release 9

genome sequences available from the TAIR website (http://www.
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arabidopsis.org/). For A. thaliana, a similar set of reference TEs is

present in the Repbase Update databank. We used the library

derived from this databank for previous studies [29] and

containing 318 TE sequences.

We annotated both genomes with the TEannot pipeline [24]

using the reference databanks cited above. We then constructed a

consensus for each reference sequence, from the multiple

alignment of copies when at least three copies longer than

100 bp were present (Table S17). For D. melanogaster, a consensus

could be obtained for only 117 of the 126 reference sequences in

the BDGP databank, referred to as a ‘‘knowledge-based’’

consensus: 68 of these sequences corresponded exactly to their

reference element, the others being truncated. For A. thaliana, it

was possible to construct 305 ‘‘knowledge-based’’ consensuses for

the 318 TE reference sequences in the Repbase Update databank:

154 corresponded to the entire element and the others were

truncated. These consensuses were collected into ‘‘knowledge-

based’’ databanks. As such, they represent the upper limit of what

can be retrieved with the de novo methods compared in this study

(Table S18).

De novo detection of TEs
A three-step approach forms the backbone of our analysis: (i)

self-alignment of the genomic sequences, (ii) clustering of the

resulting matches, and (iii) multiple alignments of each cluster to

build a consensus (Figure S1). Different programs may be used at

each step, leading to several possible combinations. For each

combination, we compared the de novo consensus with the set of

reference TEs. Other methods are also available for constructing a

consensus for comparison with the ‘‘knowledge-based’’ databanks

constructed as described above.

When comparing a de novo databank with a ‘‘knowledge-based’’

databank, it is not possible to calculate the number of false-

negatives, i.e. the de novo consensus sequences incorrectly classified

as not related to a TE because these consensus sequences are not

present in the de novo library. The usual definitions of sensitivity

and specificity are therefore not directly applicable. We estimated

sensitivity by calculating the proportion of ‘‘knowledge-based’’

consensus sequences matching de novo consensus sequences (noted

Sn*). We then estimated specificity by considering the proportion

of de novo consensus sequences matching ‘‘knowledge-based’’

consensus sequences (noted Sp*). The observation of a de novo

consensus that matches a ‘‘knowledge-based’’ consensus, both

aligned along their entire lengths (+- 5%) indicates that this de novo

consensus retrieved the exact and entire ‘‘knowledge-based’’

consensus. A recovery ratio (noted RCC for ‘‘complete-complete

ratio’’) can be calculated as the number of ‘‘knowledge-based’’

consensus sequences exactly retrieved by a de novo consensus,

divided by the number of reference sequences exactly retrieved by

a ‘‘knowledge-based’’ consensus. In D. melanogaster, 68 reference

sequences (of the 126 in the BDGP databank) were exactly

retrieved by a ‘‘knowledge-based’’ consensus, and 154 such

sequences (of the 318 in Repbase Update) were exactly retrieved

in A. thaliana. As an illustration, in D. melanogaster, if a given de novo

method recovers 60 entire ‘‘knowledge-based’’ consensus sequenc-

es from a given genome, RCC would be 88% (60/68).

First step: self-alignment of the genomic sequences. The

first step is the self-alignment of the genomic sequences in an all-

by-all manner. We compared two programs, BLASTER [36] and

PALS [38] for this purpose. BLASTER is a wrapper for the

BLAST softwares [37]. It was used for comparisons at the genome

scale. It begins by cutting long queries into batches and launching

them in parallel against the subject databank. The second

program, PALS, implements a filter algorithm. It first finds all

exact matches of length q between the query and subject

sequences. It then restricts the search by identifying regions

(parallelograms in the alignment matrix) containing a number of

hits above a given threshold. Finally, if these regions have a length

above a given threshold, PALS develops a chain of hits for each

region, aligns the nucleotides and returns the coordinates of the

resulting matches. For BLASTER, we kept matches with E-value

below 102300, a length exceeding 100 bp and an identity

exceeding 90% (parameters ‘‘-E 1e-300 -L 100 -I 90’’). For

PALS, we used the default parameters: identity exceeding 94%

and a length of more than 400 bp (parameters ‘‘-length 400 -pctid

94’’). If the same parameters were used for BLASTER (identity

.90% and length .100 bp), the computations took too long, even

when launched in parallel. If the parameters length .100 bp and

identity .94% were used with both programs, BLASTER still

gave better results (data not shown).

When all the matches had been retrieved, we discarded all those

that were more than 20,000 bp long. This procedure was designed

to filter out repeats corresponding to long segmental duplications.

The issue of short segmental duplications was addressed in the

next step. To speed up the computations, the input genome

sequences were cut into chunks of length 200 kb with 10kb

overlaps. These values are parameters of the tool and can thus be

changed easily, according to the genome size, its repeat content, as

well as technical details such as the number of nodes in the

computer cluster. Each chunk was then aligned against the whole

set of chunks, in parallel. Finally all the matches were collected

together and redundant matches were filtered out.

Second step: clustering of the resulting pairwise

alignments. The matches obtained in the first step were then

clustered, and we tested three different programs for this step:

GROUPER ([36], parameters ‘‘-j -C 0.95 -Z 3 -X 2 -G -1’’), RECON

([39], default parameters) and PILER ([40], parameter ‘‘-trs’’).

As TEs are frequently inserted within each other, GROUPER

first aims at retrieving the full-length copies by connecting their

fragments via a dynamic programming algorithm applied to the

pairwise alignments. It links together, in chains, the matches

corresponding to fragments belonging to the same TE copy but

interrupted by indels. It then uses single-link clustering to gather

similar chains of matches into the same cluster, using a high-

coverage constraint (95%), and merges chains corresponding to

the same locus. The use of a high-coverage constraint makes it

possible to identify different structural variants from a given TE

family (Figure 1): two copies from two different variants overlap by

less than 95% threshold, and are therefore assigned to different

clusters. The previous version of GROUPER suffered from the

high redundancy among clusters, preventing its usage in practice

on large genomes. Therefore, we implemented a new procedure

that specifies, during the single-link clustering step, if a chain of

matches is fully included within another one, as is often the case

with non-autonomous TEs with respect to their autonomous

counterparts. Once the clusters are built, we now remove those

having less than a given number of members not included in any

others (option ‘‘-X 2’’).

RECON uses a different strategy, first trying to infer the ancestral

TE copies, named ‘‘elements’’, from all the fragments at each locus.

It does this by single-link clustering with a low-coverage constraint

(50%), followed by an additional procedure focusing on the

aggregation of endpoints to ensure the correct handling of

composite elements, such as segmental duplications. It then gathers

the ‘‘elements’’ into families again by single-link clustering, but this

time with a high-coverage constraint (90%), and a procedure is then

applied to deal with families that are related but different, based on

length ratio and similarity thresholds.
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We also tested the PILER suite of programs. In this work,

‘‘PILER’’ refers systematically to PILER-DF, which focuses on

interspersed repeats. PILER first defines ‘‘piles’’ as lists of matches

covering a maximal contiguous region. It then globally aligns these

piles, rather than the individual matches themselves. This prevents

bias towards the shortest match in the pile. Finally, piles that

cannot be globally aligned with each other over 95% of their

length are gathered into clusters.

All these three programs, GROUPER, RECON and PILER,

return a set of clusters to which we applied several filters. First, we

removed the clusters with fewer than three members. This

discarded most of the short segmental duplications. Second, for

large clusters, we retained only the 20 longest sequences, as keeping

all the sequences would not add much information for the building

of a consensus and would even introduce noise (data not shown).

Third, for GROUPER, we filtered the sequences resulting from

connected matches (i.e. chains) with a cumulative length greater

than 20 kb and spanning more than 30 kb of the genome, as such

sequences probably corresponded to segmental duplications.

Third step: multiple alignments and consensus

construction. Finally, for each cluster, a multiple sequence

alignment (MSA) was constructed, from which a consensus was

derived. We compared several programs: MAP ([42], parameters

‘‘gap-size = 50 mismatch = 28 gap-open = 16 gap-extend = 4’’),

CLUSTAL-W ([43], default parameters), MAFFT ([44],

parameter ‘‘–auto’’) and PRANK ([45], parameter ‘‘-F’’). The

consensus was constructed by applying a majority rule discarding

columns in which all but one sequence had a gap.

MAP was specifically designed to handle long gaps. Such gaps

frequently occur when aligning TE copies of different lengths from

the same TE family. In this program, gaps are not penalized

beyond a given length. CLUSTAL-W is a well known progressive

MSA algorithm, and was the first to propose position-specific gap

penalties. MAFFT addresses the issue of CPU time by using Fast

Fourier Transform for the rapid detection of homologous

segments. It also implements a normalized similarity matrix that

is said to perform better for alignments with sequences of different

lengths. This program was the fastest MSA program we tested.

PRANK takes into account the phylogenetic information

contained in indels to distinguish insertions from deletions, to

position them properly and avoid the overestimation of deletions.

This sophistication renders PRANK much slower than MAP (10

times slower for a typical cluster containing 16 sequences of 8 kb

each).

Other approaches. Other methods have also been proposed.

We tested REPEATSCOUT [46] and RepeatModeler (Smit and

Hubley unpublished), both with default parameters. RepeatScout

begins by keeping high-frequency strings of length k, called k-mers.

The program initially takes the most frequent k-mer and sets the

consensus as being the k-mer in question. Based on the multiple

alignment of all its occurrences, the program extends this consensus

one nucleotide at a time, in both directions, according to a specific

scoring function. For correct definition of the consensus boundaries,

the scoring function is designed to allow extension of the consensus,

even if shared by some alignments, but not all. Once the consensus

can be extended no further, the program detects all its occurrences

in the genome, and updates the initial table of k-mer frequencies

accordingly. This procedure is applied iteratively for each k-mer

with a frequency above a given threshold.

Classification of TE consensus and the elimination of
redundancy

We implemented a two-step TE classifier. The first step detects

structural features of the consensus, such as terminal repeats,

tandem repeats, and polyA or SSR-like tails, using programs from

the REPET package (TRsearch, polyAtail) or elsewhere (TRF,

[59]). It also searches for matches with known TEs, by blastx,

tblastx and blastn analysis, and for matches with known genes

from the host’s genome, by blastn analysis. The second step is

based on a decision tree (Figure 3) classifying each consensus

according to its length and features. The classification and the

evidence underlying the classification are delivered as output. Any

program looking for other TE features, such as Helitron hairpins,

could easily be integrated into this framework.

We eliminated redundant consensus sequences, by discarding

all those included within another consensus sequence, for at least

x% of their length, and with at least y% identity. We tested several

values for x and y: 95-98, 90-90 and 80-80. We tested this

procedure with and without taking into account the classification

of the sequences.

Genome-wide annotation of TE copies
A combined pipeline named TEannot for the genome-wide

annotation of TE copies is already available [24] (Figure S2). As

input, it takes the genome sequences and a databank of TE

sequences, typically that generated by the TEdenovo pipeline. It

then launches BLASTER [36], RepeatMasker (http://www.

repeatmasker.org/) and CENSOR [60], to map the TE sequences

against the genome. False-positives are filtered out by applying the

same procedure to shuffled genomic sequences. More precisely,

the genomic sequences are randomized using the ‘‘shuffle’’

program of the HMMER package (http://hmmer.janelia.org/).

The TE reference sequences are then mapped onto these shuffled

sequences with BLASTER, RepeatMasker and CENSOR, with

the score for each match recorded. Finally, the matches between

the TE reference sequences and the true genomic sequences are

filtered according to these scores. Whereas in a previous version of

the pipeline we used the highest score obtained on randomized

genomic sequences to filter false-positives, we now use the 95%

quantile of the scores obtained on the randomized sequences. This

improvement prevents excessive filtering, using a single, very good

match on randomized sequences, much better than most others.

This change slightly increases TE coverage over previous

estimations.

Once the matches were filtered, we began to reconstruct the TE

copies, to obtain a true annotation of TE copies and not of TE

fragments only. In this pipeline, two steps are used to connect

several TE fragments belonging to the same TE copy: MATCH-

ER [36] and the ‘‘long join’’ procedure. As in the de novo library, a

TE family may be represented by several consensus sequences

corresponding to each of its structural variants. We improved these

tools to take this into account. In terms of vocabulary, we define a

‘‘TE fragment’’ as a match between a TE consensus sequence and

a genomic sequence, whereas we define a ‘‘TE copy’’ as a chain of

matches, each match in the chain being a TE fragment. Note that

a full-length TE copy may correspond to two TE fragments,

which, when connected together, correspond to the full TE

consensus sequence.

In the previous version of MATCHER, we began by combining

the matches found by all three algorithms mentioned above. When

two consensus sequences overlapped at a given locus, we retained

the sequence with the highest score and truncated the other. We

then connected the remaining matches by dynamic programming.

In the current version of MATCHER, we first connect the

matches by dynamic programming and then filter out overlapping

chains of matches. A match that might have been filtered out in

the previous version may not be filtered out in the current version,

if it is chained with another match, thereby improving fragment
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connections. TE annotations would be improved by taking into

account chains of matches (whole TE copies) rather than TE

fragments (single matches).

Once matches are connected by MATCHER, the TEannot

pipeline also detects microsatellites by launching and combining

the results of TRF [59], Mreps [61] and RepeatMasker. All TE

copies are then combined with microsatellite coordinates to filter

out short TE matches fully recovered by microsatellites.

In the same spirit, we improved the ‘‘long join’’ procedure. We

previously sorted the chains of matches on the basis of length, as a

proxy for the age of the TE copies. The rationale behind this was

that a TE copy may disappear slowly due to small deletions,

becoming shorter over time. We now estimate the age of a TE

copy by calculating the ratio of match identity to match length,

summing this ratio for all matches in the chain.

Finally, we compared the annotations obtained with de novo

libraries and reference databanks, by calculating genome coverage

and TE copy number, together with sensitivity and specificity, in

terms of nucleotide overlaps (Figure S3). A high sensitivity

indicates that the annotation based on de novo consensus sequences

misses few TE nucleotides (false-negatives). A high specificity

indicates that the de novo annotation identifies few non-TE

nucleotides (false-positives).

Reconstruction of TE families
We compared the patterns of diversification between TE families,

by mining the genome with the de novo consensus sequences, using

BLAT [62] for the rapid identification of well conserved genomic

copies. We then constructed a multiple alignment with the TE

reference sequence from the public databank, the de novo consensus

sequence and the genomic copies identified with this sequence (see

Figure 4 A–D). For the identification of TE families represented by

several de novo consensus sequences, we clustered de novo consensus

sequences with BLASTCLUST from the NCBI-BLAST suite ([63],

parameters ‘‘-S 0 -L 0.8 -b F -p F’’). We then added the best TE

reference sequence corresponding to each cluster, and finally built a

multiple alignment. The addition of the reference sequence after

clustering prevents the de novo consensus sequences from being

clustered together solely because they overlap with the same

reference sequence. This procedure can therefore be used to assist

manual curation for newly sequenced genomes without known

reference sequences. Multiple alignments were checked by eye,

using Jalview [64].
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