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Abstract

A closure relation is proposed for description of hydraulic jumps in two-

layer flows with a free surface over a horizontal bottom. Such a relation

comes from the momentum equations of each layer which become in a

sense conservative when the total momentum and the masses in each

layer are conserved. It is also shown that this relation guarantees that the

energy flux decreases through the jump.

1 Governing equations

Consider a flow of two immiscible heavy fluid layers of depths h1, h2 over a
horizontal bottom (see Figure 1). In the long wave approximation the following
model can be derived (Ovsyannikov et al., 1985, Baines, 1995):

(γ1h1)t + (γ1h1u1)x = 0, (1)

(γ2h2)t + (γ2h2u2)x = 0, (2)

γ1h1(u1t + u1u1x) + gh1(γ1h1 + γ2h2)x = 0, (3)

γ2h2(u2t + u2u2x) + gh2γ2(h1 + h2)x = 0. (4)

Here γ1 , γ2 (γ1 > γ2) are constant densities, and u1, u2 are velocities in each
layer. The gravity acceleration is denoted by g.

It was recently shown (Montgomery and Moodie, 2001, Barros, 2006) that,
in addition to the mass conservation laws, the only conservation laws admitted
by the system are the conservation of the total momentum

(γ1h1u1 + γ2h2u2)t + (γ1h1u
2
1 + γ2h2u

2
2 + E)x = 0, (5)
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Figure 1: A physical picture of a two-layer flow with a free surface over a flat
bottom

the total energy
(

γ1h1u
2
1

2
+

γ2h2u
2
2

2
+ E

)

t

(6)

+

(

u1h1

(

γ1u
2
1

2
+ g(γ1h1 + γ2h2)

)

+ u2h2

(

γ2u
2
2

2
+ gγ2(h1 + h2)

))

x

= 0,

and the Bernoulli integrals

γ1u1t +

(

γ1u
2
1

2
+ g (γ1h1 + γ2h2)

)

x

= 0, (7)

γ2u2t +

(

γ2u
2
2

2
+ gγ2 (h1 + h2)

)

x

= 0. (8)

Here the ”internal energy” E is defined as

E = gγ1h
2
1/2 + gγ2h1h2 + gγ2h

2
2/2.

The corresponding characteristic polynomial can easily be derived from (1) - (4)
:

(

(u1 − λ)
2
− gh1

)(

(u2 − λ)
2
− gh2

)

− g2
γ2
γ1

h1h2 = 0. (9)

The system is conditionally hyperbolic provided the relative velocity w = u1−u2

is small (Ovsyannikov, 1979, Baines, 1995, Barros, 2006, Abgrall and Karni,
2009). The hyperbolicity implies a possibility of shock formation (corresponding
to hydraulic jumps) even if the initial data are smooth.

A dispersive regularization of (1), (2), (3) and (4) has been derived in Liska,
Margolin and Wendroff (1995) and studied in Barros, Gavrilyuk and Teshukov
(2007) and Barros and Gavrilyuk (2007). In particular, solitary wave solutions
of the dispersive equations have been studied in the last two references. For the
case where the velocities at infinity in each layer are equal, it has been found
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that dispersive equations admit ”table-top” (and ”table-down”) internal solitary
waves for some singular values of Froude numbers. The amplitude of the free
surface waves is, in general, much smaller than the amplitude of internal waves.
The half of such a ”table-top” soliton can be considered as a regular ”hydraulic
jump” where the total momentum and the total energy are conserved.

The singular hydraulic jumps considered for the two – layer shallow water
system (1), (2), (3) and (4) are a symplification of ondular bores having nonsta-
tionary oscillating tail after the first smooth front representing a solitary wave.
Such ondular bores have been intensively studied in one-layer shallow water
flows (El, Grimshaw and Smyth, 2006, LeMetayer, Gavrilyuk and Hank, 2010),
however their nonstationary analysis is always absent for the two-layer case.

An old question concerning singular hydraulic jumps in two-layer flows is :
what are the Rankine-Hugoniot relations determining such a jump? The mass
conservation laws (1), (2) and the conservation of the total momentum (5) are
obvious candidates. The energy conservation law plays the role of the entropy
inequality through the jumps (see the corresponding discussion in the case of
one-layer flows in Stoker, 1957). Finally, one of the Bernoulli conservation laws
can be used, but which one? The same problem appears in two-layer flows
between rigid lids (see Baines, 1995, §3.5) where one of the possible closing
hypotheses could be to privilege the Bernoulli equation in the contracting layer.
However, as noticed in Baines, 1995, ”this assumption can not be strictly correct,
as observations show that there is some dissipation occurring in each layer”.
The use of the Bernoulli laws for the two-layer flows with free surface is thus
also questionable.

Studying shear flows in homogeneous fluids, Liapidevskii and Teshukov (2000)
proposed to use the local vorticity to closure the jump relations. In the case
of two-layer flows an analogue of such a vorticity is the velocity difference.
Ostapenko (2001) has been proved that if we choose the layer depths h1, h2,
the total momentum γ1h1u1 + γ2h2u2 and the velocity difference u1 −u2 as the
basic variables, the domain of convexity of the total energy as a function of such
variables is maximal compared with other choices of conservative variables (for
example, h1, h2, u1, u2). He considered it as a mathematical argument justi-
fying the choice of the conservation law for the relative velocity. Also, in the
case of very weak stratification (γ1 ≈ γ2), in Liapidevskii and Teshukov (2000)
the choice of the conservation law for the relative velocity has been used to
solve the Riemann problem for two-layer flows under a rigid lid. In particular,
such a choice allowed them to construct a solution of the Riemann problem in
the hyperbolicity region satisfying the Lax stability condition on the hydraulic
jumps.

Abgrall and Karni (2009) used the rigid-lid assumption at shocks to study
numerically the two-layer flows over topography. The same problem with jump
conditions resulting from the classical choice of a linear path through the space
state was studied in Mandli (2011). The jump relations in the last two cases are
not, a priori, compatible with the entropy inequality. However, this inequality
was always checked a posteriori.

In this paper, we exploit another idea proposed by V. Teshukov in 2007. He
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remarked that the non-conservative momentum equations for each layer become
conservative at the variety where the mass of each layer and the total momentum
are conserved. In particular, we will show that such a closure is compatible with
the entropy inequality.

2 Basic relations

We suppose the hydraulic jump is stationary in the reference system moving
with the jump. The mass and the total momentum equations (1), (2), (5) can
then be integrated :

γ1h1u1 = Q1 = const, (10)

γ2h2u2 = Q2 = const, (11)

γ1h1u
2
1 + γ2h2u

2
2 + gγ1h

2
1/2 + gγ2h1h2 + gγ2h

2
2/2 = M = const. (12)

Eliminating the velocities, the momentum equation becomes

Q2
1

γ1h1

+
Q2

2

γ2h2

+ gγ1h
2
1/2 + gγ2h1h2 + gγ2h

2
2/2 = M = const. (13)

For given γ1, γ2 (γ1 > γ2) and small Q1 and Q2, the function

M(h1, h2) =
Q2

1

γ1h1

+
Q2

2

γ2h2

+ gγ1h
2
1/2 + gγ2h1h2 + gγ2h

2
2/2 (14)

has only one non-degenerate critical point which is the minimum point. Indeed,
consider the function M(h1, h2) defined by (14). Its Hessian matrix (denoted
by M ′′(h1, h2)) is positive definite

M ′′(h1, h2) =





2Q2

1

γ1h
3

1

+ gγ1 gγ2

gγ2
2Q2

2

γ2h
3

2

+ gγ2



 > 0

because γ1 > γ2. The minimum point of M(h1, h2) is defined from the equations
:

h2
1

(

h1 +
γ2
γ1

h2

)

=
Q2

1

gγ2
1

, (15)

h2
2 (h2 + h1) =

Q2
2

gγ2
2

.

The level curves of M(h1, h2) in the vicinity of the critical point are then closed.
Consider the total energy

E =
γ1h1u

2
1

2
+

γ2h2u
2
2

2
+ gγ1h

2
1/2 + gγ2h1h2 + gγ2h

2
2/2.
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The partial derivatives of the energy with respect to velocities ui and depths hi

define the fluxes of the Bernoulli integrals (7), (8) and the mass fluxes(1), (2)
(Bridges and Donaldson, 2009) :

∂E

∂h1

=
γ1u

2
1

2
+ g(γ1h1 + γ2h2) = R1,

∂E

∂u1

= γ1h1u1 = Q1,

∂E

∂h2

=
γ2u

2
2

2
+ gγ2(h1 + h2) = R2,

∂E

∂u2

= γ2h2u2 = Q2.

The energy flux is given by

D (h1, h2)=
Q1

γ1
R1 +

Q2

γ2
R2

=
Q1

γ1

(

Q2
1

2γ1h2
1

+ g(γ1h1 + γ2h2)

)

+
Q2

γ2

(

Q2
2

2γ2h2
2

+ gγ2(h1 + h2)

)

. (16)

The Hessian of D is :

D′′(h1, h2) =





3Q3

1

γ2

1
h4

1

0

0
3Q3

2

γ2

2
h4

2



 .

The extremum point of D is given by :

Q1

γ1

(

−
Q2

1

γ1h3
1

+ gγ1

)

+
Q2

γ2
gγ2 = 0,

Q1

γ1
gγ2 +

Q2

γ2

(

−
Q2

2

γ2h3
2

+ gγ2

)

= 0.

Or

h3
1 =

Q3
1

gγ2
1 (Q1 +Q2)

, (17)

h3
2 =

Q3
2

gγ2
2

(

γ2

γ1

Q1 +Q2

) .

Two cases should be distinguished.

• the flow in both layers is in the same direction, i.e. the signs of the
mass fluxes are the same. For definiteness, we suppose that the fluxes are
positive, i.e. the flow is from the left to the right :

Q1 > 0, Q2 > 0. (18)

• The signs of the mass fluxes are opposite. One can choose, for example,

Q1 > 0, Q2 < 0. (19)

The case (19) is more difficult because some additional singularities will
appear in (17). In the following we will consider only the case (18). In
this case, the extremum point is a minimum point, and the level curves
D (h1, h2) are also closed.
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At the minimum points of M (h1, h2) and D (h1, h2)( denoted by MM and
DM , respectively), the velocities of each layer u1, u2 are related to the corre-
sponding depths h1, h2 by (15) and (17). One can prove that the points MM and
DM always belong to the hyperbolicity region (the correponding characteristic
polynomial (9) has three positive and one zero root at these points). The fact
that one of the roots is always zero, is a very important property which is worth
to be discussed in details. Consider the critical curve :

C (h1, h2) =

(

Q2
1

γ2
1h

2
1

− gh1

)(

Q2
2

γ2
2h

2
2

− gh2

)

− g2
γ2
γ1

h1h2 = 0. (20)

obtained from the characteristic polynomial (9) by taking λ = 0.
Theorem 1.If (h1, h2) are extrema of M (h1, h2) and D (h1, h2) defined,

respectivement, by (15) and (17) then C = 0, i.e. they belong to the critical
curve.

Proof. The minimum point of M is defined by (15) and satisfies the rela-
tions

Q2
1

γ2
1h

2
1

= g

(

h1 +
γ2
γ1

h2

)

,

Q2
2

γ2
2h

2
2

= g (h2 + h1) .

Hence

C =

(

Q2
1

γ2
1h

2
1

− gh1

)(

Q2
2

γ2
2h

2
2

− gh2

)

− g2
γ2
γ1

h1h2

=

(

g

(

h1 +
γ2
γ1

h2

)

− gh1

)

(g (h2 + h1)− gh2)− g2
γ2
γ1

h1h2 = 0.

The minimum point of D is defined by (17) and satisfies the relations

Q2
1

γ2
1h

2
1

=
g (Q1 +Q2)

Q1

h1,

Q2
2

γ2
2h

2
2

=
g
(

γ2

γ1

Q1 +Q2

)

Q2

h2.

Hence

C =

(

Q2
1

γ2
1h

2
1

− gh1

)(

Q2
2

γ2
2h

2
2

− gh2

)

− g2
γ2
γ1

h1h2

=

(

g (Q1 +Q2)

Q1

h1 − gh1

)





g
(

γ2

γ1

Q1 +Q2

)

Q2

h2 − gh2



− g2
γ2
γ1

h1h2 = 0.

The theorem is proved.
Remark 1.The line of equal velocities u1 = u2 which can be written as :

Q1

γ1h1

−
Q2

γ2h2

= 0
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is always above the minimum points of M(h1, h2) and D(h1, h2)in the plane
(h1, h2).

Indeed, consider the minimum point of M(h1, h2). We obtain

Q2
1

γ2
1h

2
1

= u2
1 = g

(

h1 +
γ2
γ1

h2

)

,

Q2
2

γ2
2h

2
2

= u2
2 = g (h2 + h1) .

Hence
Q2

1

γ2
1h

2
1

−
Q2

2

γ2
2h

2
2

= u2
1 − u2

2 = gh2

(

γ2
γ1

− 1

)

< 0,

i.e. u1 − u2 < 0 at the minimum point of M(h1, h2).
Consider now the minimum point of D(h1, h2). We get

Q3
1

γ3
1h

3
1

=
g (Q1 +Q2)

γ1
,

Q3
2

γ3
2h

3
2

=
g
(

γ2

γ1

Q1 +Q2

)

γ2
.

Hence

Q3
1

γ3
1h

3
1

−
Q3

2

γ3
2h

3
2

= u3
1−u3

2 =
g (Q1 +Q2)

γ1
−

g
(

γ2

γ1

Q1 +Q2

)

γ2
= g

Q2

γ2

(

γ2
γ1

− 1

)

< 0,

i.e. u1 − u2 < 0 at the minimum point of D(h1, h2). One can also show that
the point DM is situated above the point MM . In Figure 2, we show a typical
relative position of the curves C =0, M = const, D = const, u1 = u2 and the
minimum points DM and MM at the plane (h1, h2).

Theorem 2. The curves M(h1, h2) = const and D(h1, h2) = const are
tangent at a point of the plane (h1, h2)if and only if at this point u1 = u2 or
C =0.

Proof. Consider the curves M(h1, h2) = const and D(h1, h2) = const
defined by (14), (16)

M(h1, h2) =
Q2

1

γ1h1

+
Q2

2

γ2h2

+ gγ1h
2
1/2 + gγ2h1h2 + gγ2h

2
2/2,

D(h1, h2) =
Q1

γ1

(

Q2
1

2γ1h2
1

+ g(γ1h1 + γ2h2)

)

+
Q2

γ2

(

Q2
2

2γ2h2
2

+ gγ2(h1 + h2)

)

.

The curves are tangent if and only if

0 =
∂M

∂h1

∂D

∂h2

−
∂D

∂h1

∂M

∂h2

=

(

−
Q2

1

γ1h2
1

+ gγ1h1 + gγ2h2

)(

g

(

Q2 +Q1

γ2
γ1

)

−
Q3

2

γ2
2h

3
2

)

−
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M = const

С 0=

h
1

h
2

D = const

M
M

D
M

, ,

,

,

u = u
1 2

Figure 2: A typical behaviour of the curves C = 0, M = const, D = const, and
u1 = u2 is shown. The minimum points DM and MM are always below the line
u1 = u2, and MM is always below DM .
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−

(

−
Q2

2

γ2h2
2

+ gγ2h1 + gγ2h2

)(

g (Q2 +Q1)−
Q3

1

γ2
1h

3
1

)

=

= −
(Q2γ1h1 −Q1γ2h2)

h3
1h

3
2γ

2
1γ

2
2

(

Q2
1

(

−Q2
2 + gh3

2γ
2
2

)

+ gh3
1γ1

(

Q2
2γ1 + gh3

2γ
2
2 (γ2 − γ1)

))

=

= g2 (Q2γ1h1 −Q1γ2h2)

((

Q2
2

gh3
2γ

2
2

− 1

)(

Q2
1

gh3
1γ

2
1

− 1

)

−
γ2
γ1

)

Hence, the Jacobian matrix is degenerate if and only if

Q2γ1h1 −Q1γ2h2 = 0

or
(

Q2
2

gh3
2γ

2
2

− 1

)(

Q2
1

gh3
1γ

2
1

− 1

)

−
γ2
γ1

= 0.

This is equivalent to relations u2 = u1 or C = 0.

3 Supercritical-subcritical transition

Consider a discontinuous piecewise constant stationary solultion of (1) - (4)

(h1 (x) , h2 (x) , u1 (x) , u2 (x))
T
=

{

(h10, h20, u10, u20)
T
, if x < 0

(h1, h2, u1, u2)
T
, if x > 0

For convenience, we will use the same notations for the right state constant
variables as for the basic variables (without additional indices). The critical
curve C (h1, h2) = 0 is defined by (20). The flow is supercritical if C > 0 and
subcritical if C < 0. Supppose that the flow satisfies Q1 > 0, Q2 > 0 and the
state ”0” at the left is supercritical. The constant states satisfy the relations
(10), (11) and (12). An additional relation is needed satisfying the natural
dissipation inequality (very often called in the context of hyperbolic equations
”entropy inequality”) :

[D (h1, h2)] =

[

Q1

γ1
R1 +

Q2

γ2
R2

]

=

[

Q1

γ1

(

Q2
1

2γ1h2
1

+ g(γ1h1 + γ2h2)

)

+
Q2

γ2

(

Q2
2

2γ2h2
2

+ gγ2(h1 + h2)

)]

≤ 0.

where
[D] = D (h1, h2)−D (h10, h20)

Since the curve D (h1, h2) = D (h10, h20) is closed, the ”entropy inequality”
means that the subcritical state should be inside this closed curve. In particular,
the entropy inequality must imply that the state at the right is subcritical.

For given positive Q1, Q2, we choose (h10, h20) such that the whole closed
curve M (h1, h2) = M (h10, h20) belongs to the hyperbolicity domain (see Figure
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h
2

h
1

M = const

I

II

II

,

,

,

,

,

, , ,,

Figure 3: The hyperbolicity domain is non-colored, while the ellipticity domain
is in gray (we have there two real and two complex conjugate eigenvalues of
the polynomial (9)). The curve M = const is chosen to be entirely in the
hyperbolicity region.
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3). This allows us to avoid additional mathematical difficulties relating to the
interpretation of the solution in the elliptic domain.

The curve M(h1, h2) = M(h10, h20) can be parametrized, if we introduce
the polar coordinates (r, θ) :

h1 = r (θ) cos θ, h2 = r (θ) sin θ, θ ∈
(

θ−, θ+
)

.

Here r (θ) is determined from the third order polynomial coming from the rela-
tion

Q2
1

γ1h1

+
Q2

2

γ2h2

+ gγ1h
2
1/2 + gγ2h1h2 + gγ2h

2
2/2 = M =const.

It has the form

r3g
(

γ1 (cos θ)
2
/2 + γ2 cos θ sin θ + γ2 (sin θ)

2
/2
)

−Mr+
Q2

1

γ1 cos θ
+

Q2
2

γ2 sin θ
= 0.

(21)
One of the roots of this polynomial is always negative (hence, non-physical), the
two other roots are real and positive : r1(θ) < r2(θ), for θ ∈ (θ−, θ+). The union
of these two brunches form a smooth closed curve M = const in the plane (r, θ)
: r1(θ

−) = r2(θ
−), r1(θ

+) = r2(θ
+) (see Figure 4). Consider now the stationary

non-conservative momentum equations (1), (2) for each layer :

γ1h1u1u1x + gh1(γ1h1 + γ2h2)x = 0,

γ2h2u2u2x + gh2γ2(h1 + h2)x = 0.

They become conservative along the curve M = const. Indeed, the non-
conservative product h1(h2)x is now :

h1(h2)x = r(θ) cos θ

(

dr(θ)

dθ
θx sin θ + r(θ)θx cos θ

)

=





r2(θ)

2
sin θ cos θ +

1

2

θ
∫

θ∗

r2(θ)dθ





x

=

=





h1h2

2
+

1

2

θ
∫

θ∗

r2(θ)dθ





x

.

Analogously,

h2(h1)x = r(θ) sin θ

(

dr(θ)

dθ
θx cos θ − r(θ)θx sin θ

)

=





r2(θ)

2
sin θ cos θ −

1

2

θ
∫

θ∗

r2(θ)dθ





x

=

=





h1h2

2
−

1

2

θ
∫

θ∗

r2(θ)dθ





x

.
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M = onstс

С 0=

h
1

h
2

q
+

q
-

q
+

с
q
-

с
-

Figure 4: The momentum curve M = const can be parametrized in polar
coordinates in the plane (h1, h2).
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Here θ∗ is any constant belonging to (θ−, θ+). Finally, one of the following

conserved quantities can be chosen:

Q2
1

γ1h1

+g





γ1h
2
1

2
+ γ2





h1h2

2
+

1

2

θ
∫

θ∗

r2(θ)dθ







 =
Q2

1

γ1h10

+g





γ1h
2
10

2
+ γ2





h10h20

2
+

1

2

θ0
∫

θ∗

r2(θ)dθ







 = M1,

Q2
2

γ2h2

+g





γ2h
2
2

2
+ γ2





h1h2

2
−

1

2

θ
∫

θ∗

r2(θ)dθ







 =
Q2

2

γ2h20

+g





γ2h
2
20

2
+ γ2





h10h20

2
−

1

2

θ0
∫

θ∗

r2(θ)dθ







 = M2.

This system is compatible with the total momentum. Indeed, summing them
we obtain

M1 +M2 = M.

We can choose the conservation of the local momentum M1 (or M2) as an addi-
tional closure relation. We have now to check if the corresponding state is in the
subcritical region, and that the ”entropy inequality” is satisfied. For definite-
ness, we choose the local momentum equation of the first layer. Obviously, this
relation does not depend on the choice of θ∗. Finally, for a given supercritical
state h10, h20 we have to find a subcritical state h1, h2 from the following system
of equations :

Q2
1

γ1h1

+
gγ1h

2
1

2
+
gγ2h1h2

2
+
gγ2
2

θ
∫

θ0

r2(θ)dθ =
Q2

1

γ1h10

+
gγ1h

2
10

2
+
gγ2h10h20

2
, (22)

Q2
1

γ1h1

+
Q2

2

γ2h2

+gγ1h
2
1/2+gγ2h1h2+gγ2h

2
2/2 =

Q2
1

γ1h10

+
Q2

2

γ2h20

+gγ1h
2
10/2+gγ2h10h20+gγ2h

2
20/2.

(23)
Here

θ0 = arctan

(

h20

h10

)

, θ = arctan

(

h2

h1

)

,

and r(θ) is given by (21).

4 Solution algorithm to find the subcritical state

The following particular parameters were chosen to calculate the constantM(h10, h20):

h10 = 0.45, h20 = 0.045, Q1 = 10, Q2 = 1.1, γ1 = 10, γ2 = 9.5.

They determine the curve M(h1, h2) = M(h10, h20) entirely belonging to the
hyperbolicity region. In the following, (h10, h20) will mean any generic point
at this fixed curve, and not only these chosen particular values. It is more
simpler to see the solution structure in the plane (r, θ). The curve C = 0 cuts
the curve M = const at points corresponding to angles θ−c < θ+c such that

13



r

qq
+

q
-

С 0=

M = onstс

с
q

+
q
-

с

Figure 5: A typical behaviour of the curves C = 0, M = const in (r, θ) - plane
is shown.

θ− < θ−c < θ+c < θ+ (see Figure 5). First, it was numerically shown that for
any initial subcritical state belonging to the curve r1(θ0), θ

−

c < θ0 < θ+c , there is
no non-trivial solution of the system (22), (23) with θ belonging to the brunch
r1(θ), θ

− < θ < θ+. Hence, the solution may be only on the brunch r2(θ),
θ− < θ < θ+. The second step was to present

θ
∫

θ0

r2(θ)dθ =

θ−

∫

θ0

r21(θ)dθ +

θ
∫

θ−

r22(θ)dθ

and look for a non-trivial solution θ with r = r2(θ). It was found that this
value of θ was unique and always satisfied the ”entropy inequality”. A typical
picture is shown in (Figure 6 where S is an initial supercritical state, and J is
the corresponding subcritical state. The following property was also established
: if the initial supercritical data vary monotonically with respect to the angle
θ0 (they are denoted by points enumerated from 1 to 8 in Figure 7), the same
monotonicity is observed for the subcritical states (they are denoted by squares
enumerated from 1 to 8) (see Figure 7).

5 Comparison with other approach based on the

Bernoulli integrals

An alternative approach consists in choosing the conservation law for the veloc-
ity difference as a closing jump relation :

(u1 − u2)t +

(

u2
1

2
−

u2
2

2
+ gh2

(

γ2
γ1

− 1

))

x

= 0.
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Figure 6: The supercritical state S and the subcritical state J belong to the same
closed solid curve M = const. The state J satisfies the ”entropy inequality” :
it is inside the dashed closed curve D = const passing by S.
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Figure 7: 8 initial states were uniformly distributed at the supercritical part of
the curve M = const (shown by points). The corresponding subcritical states
are shown by squares.
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Figure 8: The deviation of the internal jump for an array of ten points is shown
for a new approach (by dots ) and the Bernoulli approach (by empty dots).

For stationary hydraulic jumps, it corresponds to the conservation of the quan-
tity :

u2
1

2
−

u2
2

2
+ gh2

(

γ2
γ1

− 1

)

= const

It can be shown that in both approaches, the ”entropy inequality” is satisfied.
For ten points distributed uniformly at the subcritical part of the curve M =
const and enumerated in increasing order with respect to θ, the results for
the corresponding subcritical states are shown in Figures 8 and 9. For both,
internal and surface jumps, the amplitudes of jumps obtained by a new method
are larger than those obtained by using the difference of the Bernoulli integrals.
One can also numerically prove that in the new approach the following inequality
is always satisfied :

h1

h10

>
h1 + h2

h10 + h20

(24)

i.e. the amplitude of the internal jump is always larger than the amplitude
of the jump corresponding to surface waves. When the Bernoulli approach is
used, the inequality (24) is not always satisfied (Figure 10). The inequality
(24) corroborates a well-known fact concerning two-layer flows (Armi, 1986) :
”two-layer flows with a free surface and small non-dimensional-density difference
behave exactly as bounded two-layer flows with the upper boundary level”.
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Figure 10: For the new approach, the amplitude of the internal jump is always
larger than the amplitude of the jump corresponding to surface waves (shown
by triangles), while for the Bernoulli approach it is not always the case (shown
by empty triangles).
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