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Hydraulic jumps in two-layer flows with a free surface

A closure relation is proposed for description of hydraulic jumps in twolayer flows with a free surface over a horizontal bottom. Such a relation comes from the momentum equations of each layer which become in a sense conservative when the total momentum and the masses in each layer are conserved. It is also shown that this relation guarantees that the energy flux decreases through the jump.

Governing equations

Consider a flow of two immiscible heavy fluid layers of depths h 1 , h 2 over a horizontal bottom (see Figure 1). In the long wave approximation the following model can be derived [START_REF] Ovsyannikov | Nonlinear problems in the theory of surface and internal waves[END_REF][START_REF] Baines | Topographic effects in stratified flows[END_REF]:

(γ 1 h 1 ) t + (γ 1 h 1 u 1 ) x = 0, (1) 
(γ 2 h 2 ) t + (γ 2 h 2 u 2 ) x = 0, (2) 
γ 1 h 1 (u 1t + u 1 u 1x ) + gh 1 (γ 1 h 1 + γ 2 h 2 ) x = 0, (3) 
γ 2 h 2 (u 2t + u 2 u 2x ) + gh 2 γ 2 (h 1 + h 2 ) x = 0. (4) 
Here γ 1 , γ 2 (γ 1 > γ 2 ) are constant densities, and u 1 , u 2 are velocities in each layer. The gravity acceleration is denoted by g. It was recently shown [START_REF] Montgomery | On the number of conserved quantities for the two-layer shallow water equations[END_REF]Moodie, 2001, Barros, 2006) that, in addition to the mass conservation laws, the only conservation laws admitted by the system are the conservation of the total momentum 

(γ 1 h 1 u 1 + γ 2 h 2 u 2 ) t + (γ 1 h 1 u 2 1 + γ 2 h 2 u 2 2 + E) x = 0, (5) 
γ 1 h 1 u 2 1 2 + γ 2 h 2 u 2 2 2 + E t (6) 
+ u 1 h 1 γ 1 u 2 1 2 + g(γ 1 h 1 + γ 2 h 2 ) + u 2 h 2 γ 2 u 2 2 2 + gγ 2 (h 1 + h 2 ) x = 0,
and the Bernoulli integrals

γ 1 u 1t + γ 1 u 2 1 2 + g (γ 1 h 1 + γ 2 h 2 ) x = 0, (7) 
γ 2 u 2t + γ 2 u 2 2 2 + gγ 2 (h 1 + h 2 ) x = 0. ( 8 
)
Here the "internal energy" E is defined as

E = gγ 1 h 2 1 /2 + gγ 2 h 1 h 2 + gγ 2 h 2 2 /2.
The corresponding characteristic polynomial can easily be derived from (1) -( 4) :

(u 1 -λ) 2 -gh 1 (u 2 -λ) 2 -gh 2 -g 2 γ 2 γ 1 h 1 h 2 = 0. ( 9 
)
The system is conditionally hyperbolic provided the relative velocity w = u 1 -u 2 is small [START_REF] Ovsyannikov | Two-layer "shallow water" model[END_REF][START_REF] Baines | Topographic effects in stratified flows[END_REF][START_REF] Barros | Conservation laws for one-dimensional shallow water models for one and two-layer flows[END_REF][START_REF] Abgrall | Two-layer shallow water systems : a relaxation approach[END_REF]. The hyperbolicity implies a possibility of shock formation (corresponding to hydraulic jumps) even if the initial data are smooth.

A dispersive regularization of (1), ( 2), ( 3) and (4) has been derived in [START_REF] Liska | Nonhydrostatic two-layer models of incompressible flow[END_REF] and studied in [START_REF] Barros | Dispersive Nonlinear Waves in Two-Layer Flows with Free Surface[END_REF] and Barros and Gavrilyuk (2007). In particular, solitary wave solutions of the dispersive equations have been studied in the last two references. For the case where the velocities at infinity in each layer are equal, it has been found that dispersive equations admit "table-top" (and "table-down") internal solitary waves for some singular values of Froude numbers. The amplitude of the free surface waves is, in general, much smaller than the amplitude of internal waves. The half of such a "table-top" soliton can be considered as a regular "hydraulic jump" where the total momentum and the total energy are conserved.

The singular hydraulic jumps considered for the two -layer shallow water system (1), ( 2), ( 3) and ( 4) are a symplification of ondular bores having nonstationary oscillating tail after the first smooth front representing a solitary wave. Such ondular bores have been intensively studied in one-layer shallow water flows [START_REF] El | Unsteady undular bores in fully nonlinear shallow-water theory[END_REF]Smyth, 2006, LeMetayer, Gavrilyuk and[START_REF] Metayer | A numerical scheme for the Green-Naghdi model[END_REF], however their nonstationary analysis is always absent for the two-layer case.

An old question concerning singular hydraulic jumps in two-layer flows is : what are the Rankine-Hugoniot relations determining such a jump? The mass conservation laws (1), ( 2) and the conservation of the total momentum (5) are obvious candidates. The energy conservation law plays the role of the entropy inequality through the jumps (see the corresponding discussion in the case of one-layer flows in [START_REF] Stoker | Water Waves[END_REF]. Finally, one of the Bernoulli conservation laws can be used, but which one? The same problem appears in two-layer flows between rigid lids (see Baines, 1995, §3.5) where one of the possible closing hypotheses could be to privilege the Bernoulli equation in the contracting layer. However, as noticed in [START_REF] Baines | Topographic effects in stratified flows[END_REF]this assumption can not be strictly correct, as observations show that there is some dissipation occurring in each layer". The use of the Bernoulli laws for the two-layer flows with free surface is thus also questionable.

Studying shear flows in homogeneous fluids, [START_REF] Liapidevskii | Mathematical models of propagation of long waves in non-homogeneous fluids[END_REF] proposed to use the local vorticity to closure the jump relations. In the case of two-layer flows an analogue of such a vorticity is the velocity difference. [START_REF] Ostapenko | Stable shock waves in two layer "shallow water[END_REF] has been proved that if we choose the layer depths h 1 , h 2 , the total momentum γ 1 h 1 u 1 + γ 2 h 2 u 2 and the velocity difference u 1 -u 2 as the basic variables, the domain of convexity of the total energy as a function of such variables is maximal compared with other choices of conservative variables (for example, h 1 , h 2 , u 1 , u 2 ). He considered it as a mathematical argument justifying the choice of the conservation law for the relative velocity. Also, in the case of very weak stratification (γ 1 ≈ γ 2 ), in [START_REF] Liapidevskii | Mathematical models of propagation of long waves in non-homogeneous fluids[END_REF] the choice of the conservation law for the relative velocity has been used to solve the Riemann problem for two-layer flows under a rigid lid. In particular, such a choice allowed them to construct a solution of the Riemann problem in the hyperbolicity region satisfying the Lax stability condition on the hydraulic jumps.

Abgrall and Karni (2009) used the rigid-lid assumption at shocks to study numerically the two-layer flows over topography. The same problem with jump conditions resulting from the classical choice of a linear path through the space state was studied in [START_REF] Mandli | Finite volume methods for the multilayer shallow water equations with applications to storm surges[END_REF]. The jump relations in the last two cases are not, a priori, compatible with the entropy inequality. However, this inequality was always checked a posteriori.

In this paper, we exploit another idea proposed by V. Teshukov in 2007. He remarked that the non-conservative momentum equations for each layer become conservative at the variety where the mass of each layer and the total momentum are conserved. In particular, we will show that such a closure is compatible with the entropy inequality.

Basic relations

We suppose the hydraulic jump is stationary in the reference system moving with the jump. The mass and the total momentum equations ( 1), ( 2), ( 5) can then be integrated :

γ 1 h 1 u 1 = Q 1 = const, (10) 
γ 2 h 2 u 2 = Q 2 = const, (11) 
γ 1 h 1 u 2 1 + γ 2 h 2 u 2 2 + gγ 1 h 2 1 /2 + gγ 2 h 1 h 2 + gγ 2 h 2 2 /2 = M = const. ( 12 
)
Eliminating the velocities, the momentum equation becomes

Q 2 1 γ 1 h 1 + Q 2 2 γ 2 h 2 + gγ 1 h 2 1 /2 + gγ 2 h 1 h 2 + gγ 2 h 2 2 /2 = M = const. (13) 
For given γ 1 , γ 2 (γ 1 > γ 2 ) and small Q 1 and Q 2 , the function

M (h 1 , h 2 ) = Q 2 1 γ 1 h 1 + Q 2 2 γ 2 h 2 + gγ 1 h 2 1 /2 + gγ 2 h 1 h 2 + gγ 2 h 2 2 /2 (14) 
has only one non-degenerate critical point which is the minimum point. Indeed, consider the function M (h 1 , h 2 ) defined by ( 14). Its Hessian matrix (denoted by M ′′ (h 1 , h 2 )) is positive definite

M ′′ (h 1 , h 2 ) =   2Q 2 1 γ1h 3 1 + gγ 1 gγ 2 gγ 2 2Q 2 2 γ2h 3 2 + gγ 2   > 0 because γ 1 > γ 2 . The minimum point of M (h 1 , h 2
) is defined from the equations :

h 2 1 h 1 + γ 2 γ 1 h 2 = Q 2 1 gγ 2 1 , (15) 
h 2 2 (h 2 + h 1 ) = Q 2 2 gγ 2 2 .
The level curves of M (h 1 , h 2 ) in the vicinity of the critical point are then closed. Consider the total energy

E = γ 1 h 1 u 2 1 2 + γ 2 h 2 u 2 2 2 + gγ 1 h 2 1 /2 + gγ 2 h 1 h 2 + gγ 2 h 2 2 /2.
The partial derivatives of the energy with respect to velocities u i and depths h i define the fluxes of the Bernoulli integrals ( 7), ( 8) and the mass fluxes(1), ( 2) [START_REF] Bridges | Criticality manifolds and their role in the generation of solitary waves for two-layer flow with a free surface[END_REF] :

∂E ∂h 1 = γ 1 u 2 1 2 + g(γ 1 h 1 + γ 2 h 2 ) = R 1 , ∂E ∂u 1 = γ 1 h 1 u 1 = Q 1 , ∂E ∂h 2 = γ 2 u 2 2 2 + gγ 2 (h 1 + h 2 ) = R 2 , ∂E ∂u 2 = γ 2 h 2 u 2 = Q 2 .
The energy flux is given by

D (h 1 , h 2 ) = Q 1 γ 1 R 1 + Q 2 γ 2 R 2 = Q 1 γ 1 Q 2 1 2γ 1 h 2 1 + g(γ 1 h 1 + γ 2 h 2 ) + Q 2 γ 2 Q 2 2 2γ 2 h 2 2 + gγ 2 (h 1 + h 2 ) . ( 16 
)
The Hessian of D is :

D ′′ (h 1 , h 2 ) =   3Q 3 1 γ 2 1 h 4 1 0 0 3Q 3 2 γ 2 2 h 4 2   .
The extremum point of D is given by :

Q 1 γ 1 - Q 2 1 γ 1 h 3 1 + gγ 1 + Q 2 γ 2 gγ 2 = 0, Q 1 γ 1 gγ 2 + Q 2 γ 2 - Q 2 2 γ 2 h 3 2 + gγ 2 = 0.
Or

h 3 1 = Q 3 1 gγ 2 1 (Q 1 + Q 2 ) , ( 17 
)
h 3 2 = Q 3 2 gγ 2 2 γ2 γ1 Q 1 + Q 2 .
Two cases should be distinguished.

• the flow in both layers is in the same direction, i.e. the signs of the mass fluxes are the same. For definiteness, we suppose that the fluxes are positive, i.e. the flow is from the left to the right :

Q 1 > 0, Q 2 > 0. ( 18 
)
• The signs of the mass fluxes are opposite. One can choose, for example,

Q 1 > 0, Q 2 < 0. ( 19 
)
The case ( 19) is more difficult because some additional singularities will appear in (17). In the following we will consider only the case (18). In this case, the extremum point is a minimum point, and the level curves D (h 1 , h 2 ) are also closed.

At the minimum points of M (h 1 , h 2 ) and D (h 1 , h 2 )( denoted by M M and D M , respectively), the velocities of each layer u 1 , u 2 are related to the corresponding depths h 1 , h 2 by ( 15) and ( 17). One can prove that the points M M and D M always belong to the hyperbolicity region (the correponding characteristic polynomial (9) has three positive and one zero root at these points). The fact that one of the roots is always zero, is a very important property which is worth to be discussed in details. Consider the critical curve :

C (h 1 , h 2 ) = Q 2 1 γ 2 1 h 2 1 -gh 1 Q 2 2 γ 2 2 h 2 2 -gh 2 -g 2 γ 2 γ 1 h 1 h 2 = 0. ( 20 
)
obtained from the characteristic polynomial ( 9) by taking λ = 0. Theorem 1.If (h 1 , h 2 ) are extrema of M (h 1 , h 2 ) and D (h 1 , h 2 ) defined, respectivement, by ( 15) and ( 17) then C = 0, i.e. they belong to the critical curve.

Proof. The minimum point of M is defined by ( 15) and satisfies the relations

Q 2 1 γ 2 1 h 2 1 = g h 1 + γ 2 γ 1 h 2 , Q 2 2 γ 2 2 h 2 2 = g (h 2 + h 1 ) . Hence C = Q 2 1 γ 2 1 h 2 1 -gh 1 Q 2 2 γ 2 2 h 2 2 -gh 2 -g 2 γ 2 γ 1 h 1 h 2 = g h 1 + γ 2 γ 1 h 2 -gh 1 (g (h 2 + h 1 ) -gh 2 ) -g 2 γ 2 γ 1 h 1 h 2 = 0.
The minimum point of D is defined by ( 17) and satisfies the relations

Q 2 1 γ 2 1 h 2 1 = g (Q 1 + Q 2 ) Q 1 h 1 , Q 2 2 γ 2 2 h 2 2 = g γ2 γ1 Q 1 + Q 2 Q 2 h 2 . Hence C = Q 2 1 γ 2 1 h 2 1 -gh 1 Q 2 2 γ 2 2 h 2 2 -gh 2 -g 2 γ 2 γ 1 h 1 h 2 = g (Q 1 + Q 2 ) Q 1 h 1 -gh 1   g γ2 γ1 Q 1 + Q 2 Q 2 h 2 -gh 2   -g 2 γ 2 γ 1 h 1 h 2 = 0.
The theorem is proved.

Remark 1.The line of equal velocities u 1 = u 2 which can be written as :

Q 1 γ 1 h 1 - Q 2 γ 2 h 2 = 0
is always above the minimum points of M (h 1 , h 2 ) and D(h 1 , h 2 )in the plane (h 1 , h 2 ). Indeed, consider the minimum point of M (h 1 , h 2 ). We obtain

Q 2 1 γ 2 1 h 2 1 = u 2 1 = g h 1 + γ 2 γ 1 h 2 , Q 2 2 γ 2 2 h 2 2 = u 2 2 = g (h 2 + h 1 ) . Hence Q 2 1 γ 2 1 h 2 1 - Q 2 2 γ 2 2 h 2 2 = u 2 1 -u 2 2 = gh 2 γ 2 γ 1 -1 < 0, i.e. u 1 -u 2 < 0 at the minimum point of M (h 1 , h 2 ).
Consider now the minimum point of D(h 1 , h 2 ). We get

Q 3 1 γ 3 1 h 3 1 = g (Q 1 + Q 2 ) γ 1 , Q 3 2 γ 3 2 h 3 2 = g γ2 γ1 Q 1 + Q 2 γ 2 . Hence Q 3 1 γ 3 1 h 3 1 - Q 3 2 γ 3 2 h 3 2 = u 3 1 -u 3 2 = g (Q 1 + Q 2 ) γ 1 - g γ2 γ1 Q 1 + Q 2 γ 2 = g Q 2 γ 2 γ 2 γ 1 -1 < 0,
i.e. u 1 -u 2 < 0 at the minimum point of D(h 1 , h 2 ). One can also show that the point D M is situated above the point M M . In Figure 2, we show a typical relative position of the curves C =0, M = const, D = const, u 1 = u 2 and the minimum points D M and M M at the plane (h 1 , h 2 ). Theorem 2. The curves M (h 1 , h 2 ) = const and D(h 1 , h 2 ) = const are tangent at a point of the plane (h 1 , h 2 )if and only if at this point u 1 = u 2 or C =0.

Proof. Consider the curves M (h 1 , h 2 ) = const and D(h 1 , h 2 ) = const defined by ( 14), ( 16)

M (h 1 , h 2 ) = Q 2 1 γ 1 h 1 + Q 2 2 γ 2 h 2 + gγ 1 h 2 1 /2 + gγ 2 h 1 h 2 + gγ 2 h 2 2 /2, D(h 1 , h 2 ) = Q 1 γ 1 Q 2 1 2γ 1 h 2 1 + g(γ 1 h 1 + γ 2 h 2 ) + Q 2 γ 2 Q 2 2 2γ 2 h 2 2 + gγ 2 (h 1 + h 2 ) .
The curves are tangent if and only if 

0 = ∂M ∂h 1 ∂D ∂h 2 - ∂D ∂h 1 ∂M ∂h 2 = - Q 2 1 γ 1 h 2 1 + gγ 1 h 1 + gγ 2 h 2 g Q 2 + Q 1 γ 2 γ 1 - Q 3 2 γ 2 2 h 3 2 - M = const С 0 = h 1 h 2 D = const M M D M
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--

Q 2 2 γ 2 h 2 2 + gγ 2 h 1 + gγ 2 h 2 g (Q 2 + Q 1 ) - Q 3 1 γ 2 1 h 3 1 = = - (Q 2 γ 1 h 1 -Q 1 γ 2 h 2 ) h 3 1 h 3 2 γ 2 1 γ 2 2 Q 2 1 -Q 2 2 + gh 3 2 γ 2 2 + gh 3 1 γ 1 Q 2 2 γ 1 + gh 3 2 γ 2 2 (γ 2 -γ 1 ) = = g 2 (Q 2 γ 1 h 1 -Q 1 γ 2 h 2 ) Q 2 2 gh 3 2 γ 2 2 -1 Q 2 1 gh 3 1 γ 2 1 -1 - γ 2 γ 1
Hence, the Jacobian matrix is degenerate if and only if

Q 2 γ 1 h 1 -Q 1 γ 2 h 2 = 0 or Q 2 2 gh 3 2 γ 2 2 -1 Q 2 1 gh 3 1 γ 2 1 -1 - γ 2 γ 1 = 0.
This is equivalent to relations u 2 = u 1 or C = 0.

Supercritical-subcritical transition

Consider a discontinuous piecewise constant stationary solultion of ( 1) -( 4)

(h 1 (x) , h 2 (x) , u 1 (x) , u 2 (x)) T = (h 10 , h 20 , u 10 , u 20 ) T , if x < 0 (h 1 , h 2 , u 1 , u 2 ) T , if x > 0
For convenience, we will use the same notations for the right state constant variables as for the basic variables (without additional indices). The critical curve C (h 1 , h 2 ) = 0 is defined by ( 20). The flow is supercritical if C > 0 and subcritical if C < 0. Supppose that the flow satisfies Q 1 > 0, Q 2 > 0 and the state "0" at the left is supercritical. The constant states satisfy the relations (10), ( 11) and ( 12). An additional relation is needed satisfying the natural dissipation inequality (very often called in the context of hyperbolic equations "entropy inequality") :

[D (h 1 , h 2 )] = Q 1 γ 1 R 1 + Q 2 γ 2 R 2 = Q 1 γ 1 Q 2 1 2γ 1 h 2 1 + g(γ 1 h 1 + γ 2 h 2 ) + Q 2 γ 2 Q 2 2 2γ 2 h 2 2 + gγ 2 (h 1 + h 2 ) ≤ 0.
where

[D] = D (h 1 , h 2 ) -D (h 10 , h 20 )
Since the curve D (h 1 , h 2 ) = D (h 10 , h 20 ) is closed, the "entropy inequality" means that the subcritical state should be inside this closed curve. In particular, the entropy inequality must imply that the state at the right is subcritical.

For given positive Q 1 , Q 2 , we choose (h 10 , h 20 ) such that the whole closed curve M (h 1 , h 2 ) = M (h 10 , h 20 ) belongs to the hyperbolicity domain (see Figure 3). This allows us to avoid additional mathematical difficulties relating to the interpretation of the solution in the elliptic domain.

The curve M (h 1 , h 2 ) = M (h 10 , h 20 ) can be parametrized, if we introduce the polar coordinates (r, θ) :

h 1 = r (θ) cos θ, h 2 = r (θ) sin θ, θ ∈ θ -, θ + .
Here r (θ) is determined from the third order polynomial coming from the relation

Q 2 1 γ 1 h 1 + Q 2 2 γ 2 h 2 + gγ 1 h 2 1 /2 + gγ 2 h 1 h 2 + gγ 2 h 2 2 /2 = M =const.
It has the form

r 3 g γ 1 (cos θ) 2 /2 + γ 2 cos θ sin θ + γ 2 (sin θ) 2 /2 -M r + Q 2 1 γ 1 cos θ + Q 2 2 γ 2 sin θ = 0.
(21) One of the roots of this polynomial is always negative (hence, non-physical), the two other roots are real and positive : r 1 (θ) < r 2 (θ), for θ ∈ (θ -, θ + ). The union of these two brunches form a smooth closed curve M = const in the plane (r, θ) : 4). Consider now the stationary non-conservative momentum equations ( 1), (2) for each layer :

r 1 (θ -) = r 2 (θ -), r 1 (θ + ) = r 2 (θ + ) (see Figure
γ 1 h 1 u 1 u 1x + gh 1 (γ 1 h 1 + γ 2 h 2 ) x = 0, γ 2 h 2 u 2 u 2x + gh 2 γ 2 (h 1 + h 2 ) x = 0.
They become conservative along the curve M = const. Indeed, the nonconservative product h 1 (h 2 ) x is now :

h 1 (h 2 ) x = r(θ) cos θ dr(θ) dθ θ x sin θ + r(θ)θ x cos θ =   r 2 (θ) 2 sin θ cos θ + 1 2 θ θ * r 2 (θ)dθ   x = =   h 1 h 2 2 + 1 2 θ θ * r 2 (θ)dθ   x .
Analogously,

h 2 (h 1 ) x = r(θ) sin θ dr(θ) dθ θ x cos θ -r(θ)θ x sin θ =   r 2 (θ) 2 sin θ cos θ - 1 2 θ θ * r 2 (θ)dθ   x = =   h 1 h 2 2 - 1 2 θ θ * r 2 (θ)dθ   x . M = onst с С 0 = h 1 h 2 q + q - q + с q - с - Figure 4:
The momentum curve M = const can be parametrized in polar coordinates in the plane (h 1 , h 2 ).

Here θ * is any constant belonging to (θ -, θ + ). Finally, one of the following conserved quantities can be chosen:

Q 2 1 γ 1 h 1 +g   γ 1 h 2 1 2 + γ 2   h 1 h 2 + 1 2 θ θ * r 2 (θ)dθ     = Q 2 1 γ 1 h 10 +g   γ 1 h 2 10 2 + γ 2   h 10 h 20 2 + 1 2 θ0 θ * r 2 (θ)dθ     = M 1 , Q 2 2 γ 2 h 2 +g   γ 2 h 2 2 2 + γ 2   h 1 h 2 2 - 1 2 θ θ * r 2 (θ)dθ     = Q 2 2 γ 2 h 20 +g   γ 2 h 2 20 2 + γ 2   h 10 h 20 2 - 1 2 θ0 θ * r 2 (θ)dθ     = M 2 .
This system is compatible with the total momentum. Indeed, summing them we obtain

M 1 + M 2 = M.
We can choose the conservation of the local momentum M 1 (or M 2 ) as an additional closure relation. We have now to check if the corresponding state is in the subcritical region, and that the "entropy inequality" is satisfied. For definiteness, we choose the local momentum equation of the first layer. Obviously, this relation does not depend on the choice of θ * . Finally, for a given supercritical state h 10 , h 20 we have to find a subcritical state h 1 , h 2 from the following system of equations : 4 Solution algorithm to find the subcritical state

Q 2 1 γ 1 h 1 + gγ 1 h 2 1 2 + gγ 2 h 1 h 2 2 + gγ 2 2 θ θ0 r 2 (θ)dθ = Q 2 1 γ 1 h 10 + gγ 1 h 2 10 2 + gγ 2 h 10 h 20 2 , (22) 
Q 2 1 γ 1 h 1 + Q 2 2 γ 2 h 2 +gγ 1 h 2 1 /2+gγ 2 h 1 h 2 +gγ 2 h 2 2 /2 = Q 2 1 γ 1 h 10 + Q 2 2 γ 2 h
The following particular parameters were chosen to calculate the constant M (h 10 , h 20 ):

h 10 = 0.45, h 20 = 0.045, Q 1 = 10, Q 2 = 1.1, γ 1 = 10, γ 2 = 9.5.
They determine the curve M (h 1 , h 2 ) = M (h 10 , h 20 ) entirely belonging to the hyperbolicity region. In the following, (h 10 , h 20 ) will mean any generic point at this fixed curve, and not only these chosen particular values. It is more simpler to see the solution structure in the plane (r, θ). The curve C = 0 cuts the curve M = const at points corresponding to angles θ

- c < θ + c such that r q q + q - С 0 = M = onst с с q + q - с Figure 5: A typical behaviour of the curves C = 0, M = const in (r, θ) -plane is shown.
and look for a non-trivial solution θ with r = r 2 (θ). It was found that this value of θ was unique and always satisfied the "entropy inequality". A typical picture is shown in (Figure 6 where S is an initial supercritical state, and J is the corresponding subcritical state. The following property was also established : if the initial supercritical data vary monotonically with respect to the angle θ 0 (they are denoted by points enumerated from 1 to 8 in Figure 7), the same monotonicity is observed for the subcritical states (they are denoted by squares enumerated from 1 to 8) (see Figure 7).

Comparison with other approach based on the Bernoulli integrals

An alternative approach consists in choosing the conservation law for the velocity difference as a closing jump relation : For stationary hydraulic jumps, it corresponds to the conservation of the quantity :

(u 1 -u 2 ) t + u 2 1 2 - u 2 2 2 + gh 2 γ 2 γ 1 -1 x = 0. s J С 0 = D = onst с r M = onst с q q + q - с q + q - с
u 2 1 2 - u 2 2 2 + gh 2 γ 2 γ 1 -1 = const
It can be shown that in both approaches, the "entropy inequality" is satisfied.

For ten points distributed uniformly at the subcritical part of the curve M = const and enumerated in increasing order with respect to θ, the results for the corresponding subcritical states are shown in Figures 8 and9. For both, internal and surface jumps, the amplitudes of jumps obtained by a new method are larger than those obtained by using the difference of the Bernoulli integrals.

One can also numerically prove that in the new approach the following inequality is always satisfied :

h 1 h 10 > h 1 + h 2 h 10 + h 20 (24) 
i.e. the amplitude of the internal jump is always larger than the amplitude of the jump corresponding to surface waves. When the Bernoulli approach is used, the inequality ( 24) is not always satisfied (Figure 10). The inequality (24) corroborates a well-known fact concerning two-layer flows [START_REF] Armi | The hydraulics of two flowing layers with different densities[END_REF] : "two-layer flows with a free surface and small non-dimensional-density difference behave exactly as bounded two-layer flows with the upper boundary level".
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 1 Figure 1: A physical picture of a two-layer flow with a free surface over a flat bottom

Figure 2 :

 2 Figure 2: A typical behaviour of the curves C = 0, M = const, D = const, and u 1 = u 2 is shown. The minimum points D M and M M are always below the line u 1 = u 2 , and M M is always below D M .

Figure 6 :

 6 Figure 6: The supercritical state S and the subcritical state J belong to the same closed solid curve M = const. The state J satisfies the "entropy inequality" : it is inside the dashed closed curve D = const passing by S.

Figure 7

 7 Figure 7: 8 initial states were uniformly distributed at the supercritical part of the curve M = const (shown by points). The corresponding subcritical states are shown by squares.

Figure 8 :

 8 Figure8: The deviation of the internal jump for an array of ten points is shown for a new approach (by dots ) and the Bernoulli approach (by empty dots).
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The hyperbolicity domain is non-colored, while the ellipticity domain is in gray (we have there two real and two complex conjugate eigenvalues of the polynomial ( 9)). The curve M = const is chosen to be entirely in the hyperbolicity region. 
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Figure 10: For the new approach, the amplitude of the internal jump is always larger than the amplitude of the jump corresponding to surface waves (shown by triangles), while for the Bernoulli approach it is not always the case (shown by empty triangles).