
HAL Id: hal-00956231
https://hal.science/hal-00956231

Submitted on 6 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast image segmentation by Watershed Transform on
Graphical Hardware

Giovani Bernardes Vitor, Janito Vaqueiro Ferreira, André Korbes

To cite this version:
Giovani Bernardes Vitor, Janito Vaqueiro Ferreira, André Korbes. Fast image segmentation by Wa-
tershed Transform on Graphical Hardware. XXX Iberian Latin American Congress on Computational
Methods in Engineering - CILAMCE 2009, Nov 2009, Armação dos Búzios - Rio de Janeiro, Brazil.
pp.1-14. �hal-00956231�

https://hal.science/hal-00956231
https://hal.archives-ouvertes.fr

FAST IMAGE SEGMENTATION BY WATERSHED TRANSFORM

ON GRAPHICAL HARDWARE

Giovani Bernardes Vitor

Janito Vaqueiro Ferreira

giovani,janito@fem.unicamp.br

Universidade Estadual de Campinas

Faculdade de Engenharia Mecânica

DMC -Departamento de Mecânica Computacional

Rua Mendeleyev, 200

CP 6122 - Campinas, SP, Brasil

André Körbes

korbes@dca.fee.unicamp.br

Universidade Estadual de Campinas

Faculdade de Engenharia Elétrica e de Computação

DCA -Departamento de Engenharia de Computação e Automação Industrial

Av. Albert Einstein - 400

CP 6101 - Campinas, SP, Brasil

Abstract. The watershed transform is widely used for image segmentation on computer vision

applications. However, sequential watershed algorithms are not suitable for fast applications,

once they are one demanding part of several tasks. This paper proposes two parallel algorithms

for the watershed transform focused on fast image segmentation using off-the-shelf GPUs. In

this sense, these algorithms aims for a speedup by mixing several techniques of the fastest

procedures on both sequential and parallel fields. Both algorithms has four major steps, the

parallel version processed on SIMD, and the hybrid version mixing parallel and sequential

approaches. The experimental results obtained show that the hybrid version is faster, taking

advantage of the most appropriate hardware for each task.

Keywords: watershed transform, image segmentation, GPGPU

1. Introduction

The identification of objects on images needs in most cases a pre-processing step, with

algorithms based on segmentation by discontinuity or the opposite, by similarity. Segmentation

itself is not a trivial task, being one of the hardest ones in image processing. Some of its inherent

problems are illumination variation through image sequences, dynamic change of background

where the camera and/or target moves, as well as changes on the topology of the target or its

partial or full occlusion, resulting on a higher complexity of the scene and therefore a more

difficult problem.

There are several methods for instantaneous image segmentation on literature, such as back-

ground subtraction and its variations, which are very robust but restricted to static cameras, not

applicable to a moving scene and camera, the aim of this work. Extraction by shape and colour

also exist, however are more sensitive to the previously mentioned variations. An alternative

is to join multiple techniques, aiming for gain in robustness. Nevertheless, this type of pro-

cess carries a disadvantage on the time required for calculations, exceeding CPU capacity for

instantaneous video processing. Given that need for a robust yet fast procedure, parallel imple-

mentations seem an obvious choice.

One significant part of some segmentation processes goes through the use of a watershed

transform. With the use of special hardware, such as GPUs, it can be calculated faster, once

these are highly specialised and optimised devices for graphic processing. This paper aims

for the development of a watershed transform algorithm suited for GPU processing, developed

with NVIDIA’s CUDA platform, in four major steps. Two algorithms are proposed, a fully

parallel SIMD algorithm and another hybrid approach, taking advantage of the best core for

each necessary task. These proposals are compared with each other and with recently developed

sequential watershed algorithms.

The paper is organised as follows: Sec. 2. revises the state of the art on the watershed

transform algorithms both on sequential and parallel fields. Sec. 3. goes through the implemen-

tation and architecture of GPGPU processing with the CUDA libraries. Sec. 4. exposes both

algorithms developed, explaining its operations. Sec. 5. presents the timing results obtained,

comparing the algorithms. Lastly, Sec. 6. depicts conclusions obtained with this work.

2. Watershed Transform

Many definitions for the watershed transform exist in literature (Vincent and Soille, 1991;

Meyer, 1994; Lotufo and Falcão, 2000; Falcão et al., 2004; Bieniek and Moga, 1998; Cousty

et al., 2009) that take different approaches on the problem, such as defining connected compo-

nents via influence zones, shortest-path forests with a custom distance function and locally, by

making paths of steepest descent.

Over the years, several algorithms of watershed have been proposed, according to different

formal definitions and applying different strategies. On this paper, we only focus on those based

on the local condition definition, which requires the less global operations, once it mimics

the behaviour of a drop of water on a surface, easing a parallel implementation. Next, we

discuss those algorithms on their sequential versions and the work on parallel watershed on the

literature.

2.1 Sequential Watershed Algorithms

The recent fastest sequential watershed transform algorithms are the result of the evolution

of the arrowing technique for watershed of Bieniek and Moga (2000) and the union-find one

of Meijster and Roerdink (1998). Several algorithms based on this preliminary works have

been proposed, using variations of the previous procedures, achieving considerable speedups

without loss of precision (Sun et al., 2005; Lin et al., 2006; Osma-Ruiz et al., 2007; Cousty

et al., 2009). These algorithms are all based on evaluating the neighbourhood, intuitively, to

identify the direction of sliding of a drop of water on a surface until it reaches a minimum, and

label the regions where the drops falls into the same minimum.

The work by Cousty et al. (2009) introduced one of the fastest sequential watershed algo-

rithms due to its linear complexity. However, its constraints and style of switching between

breadth-first and depth-first propagation compose a hard problem for a parallel version. On the

other side, its elegant design with the use of sets instead of queues for pixel storage and labelling

suggests a possible path for parallelization.

Osma-Ruiz et al. (2007) proposed an improved algorithm on the sense of pixel visitation

by optimising the preliminary works previously mentioned. Nevertheless, these improvements

required a massive use of queues for synchronisation of pixel visitation. This feature, interesting

for a sequential algorithm, in order to minimise memory access, demands several strategies of

flow control on a parallel implementation, such as locks.

The algorithms of Sun et al. (2005), Lin et al. (2006), Bieniek and Moga (2000) and Mei-

jster and Roerdink (1998) are very similar in the sense of problem approach. Their difference

is on which definition is applied, considering that Lin’s and Meijster and Roerdink’s procedure

applies a label to distinguish pixels where the path of steepest descent is ambiguous between

two or more minima. With the use of explicit loops over every pixel depending only on local

information, these algorithms are good candidates for parallelization, even though not being the

fastest sequential ones.

2.2 Parallel Watershed Algorithms

Given that the watershed transform is a very demanding task, early studies have been de-

veloped on parallel algorithms. Initially, the focus was on typical image processing systems,

where the segmentation represented a time consuming operation (Meijster and Roerdink, 1995;

Bieniek et al., 1997). Roerdink and Meijster (2000) extensively surveyed the literature on this

problem. More recently, the evolution of sequential algorithms along with hardware minimised

this problem. However, for fast applications (e.g. surveillance and navigation) the sequential

algorithms are not fast enough, and the focus of works on parallel watershed algorithms have

changed to this area (Trieu and Maruyama, 2007; Galilée et al., 2007).

The initial work of Meijster and Roerdink (1995) is based on the work of Vincent and

Soille (1991), in the sense of definition and problem approach. The algorithm proposed relies

on a graph transformation, performing the watershed on three steps: convert the image into a

graph, where each vertex is a plateau; perform the watershed on the graph; convert the graph

into the output image. The most important task, the watershed itself, is done by performing a

breadth-first search from the minima, on an iterative flooding.

Bieniek et al. (1997) proposed another parallel algorithm with a modified definition, that

is the local condition watershed transform. In fact, this proposal settles an architecture for a

parallelization, as it approaches the problem on how it should divide the image, generate unique

labels and merge regions, depending on a sequential algorithm executed on each region. The

steps of the algorithm are: split the image on regions; for each region find the regional minima

and generate labels; set temporary labels to pixels of the borders of regions; run a sequential

watershed algorithm on each region; merge the regions processing the pixels with temporary

labels.

Galilée et al. (2007) introduces a new algorithm for parallel watershed transform, stating to

be the first that does not require minima detection as a first step prior to definition of catchment

basins. However, a first sequential step for attributing a distinct label for each pixel is necessary,

which is in fact its address in raster scan. The algorithm itself is defined as a single procedure

with state management and message passing, for status updating of the pixels. This way, pixels

that cannot be processed with only local information, the plateaus, wait for neighbourhood data

messages to arrive in order to decide which label is taken.

Following the line of work on fast applications, Trieu and Maruyama (2007) developed an

algorithm for FPGA architectures based on the sequential algorithm of Sun et al. (2005). The

use of queues and stacks for synchronisation on this algorithm is substituted by a process of

stabilisation of geodesic distance values and labelling, reading the memory always sequentially,

on raster or anti-raster scan order. The plateau resolution is done by explicitly calculating the

geodesic distances. Minima are labelled independently on a pixel basis, with merging of these

sub-regions deciding for the minor label.

On the next section the GPU processing is discussed on its implications on parallel pro-

gramming and on the algorithm proposed on this paper.

3. GPU Processing

The performance gain in the capacity of GPU (Graphics Process Unit) devices in the last

years is no longer exclusive to graphics processing, as it becomes an excellent alternative for

general purposes, where the CPU’s known speed limits are broken with the insertion of this

many-core programming paradigm. Also, the range of applications of parallel nature, the gain in

speed compared to conventional computers, the simplicity and practicality in use and acquisition

of this technology has drawn great attention from the scientific community.

As an example, the GeForce 8800, a card of the NVIDIA’s G8 series of graphics cards.

This graphics card has 128 units of calculation (called multiprocessors), distributed on 8 vector

processors. It is an architecture similar to that found in clusters of CPUs, but confined to a single

hardware device, and as such requires a style of programming called SIMD (Single Instruction

Multiple Data). For this card, execution times of up to 100 times faster than the CPU time in

classical programs as a multiplication of matrices have been obtained (Cooperman and Kaeli,

2009). A study by NVIDIA presented a chart comparing the computational power of an Intel

CPU, measured in peak GFlops, to the NVIDIA graphics cards, where the most modern GPU

architecture delivers performance up to 6 times higher than the CPUs (NVIDIA, 2009a).

To explore the potential of the GPU, a different paradigm of programming should be used,

called programming flow. Data are packaged in streams and the arithmetic calculations are

kernels operating on them. Excerpts of programming that have enormous arithmetic rates can

be shared in order to use the most of the GPU. Baggio (2007) characterises the structure of

algorithms as follows: (1) the parallel sections of the program are identified and implemented

with a kernel, which is a share of the GPU to process arrays of data in parallel on different

processors; (2) the organisation of these data should follow a hierarchy for the best arrangement

of processing cores, as shown in Fig. 1.

A note to consider is that the data within the block must perform the same process, as a

SIMD architecture. This simple and necessary routine for GPU programming does not always

fit into some problems because they can not be arranged in parallel, thus these may not benefit

of the acceleration of GPUs. On the other hand when working together with CPU and GPU,

the gains are significant. On this line, NVIDIA developed an architecture called CUDA that

enables the structuring involving sequential and parallel programming, where some sections

are sequential and others parallel, depending on the problem.

Figure 1: Structuring of data for implementation in parallel

3.1 CUDA

The CUDA architecture is a language binding to the C/C++ language for general purpose

parallel implementation. CUDA consists of a runtime library extended from C. Its main ab-

straction is based on the hierarchy of thread groups, memory sharing and synchronisation. Key

elements of CUDA are common C/C++ source code with different compiler forks for CPUs

and GPUs; function libraries that simplify programming; and a hardware-abstraction mecha-

nism that hides the details of the GPU architecture from programmers (Halfhill, 2008). As a

complex topic out of the scope of this paper, the reader is referred to the work of Nickolls et al.

(2008) for a detailed view on CUDA programming and modelling.

4. Parallel Watershed Algorithm

In this section we propose an algorithm for fully parallel SIMD implementation and a

hybrid approach, based on both GPU and CPU. Firstly, the motivations and inspirations are

presented. Next, the notation used is explained, and the algorithms depicted and explained.

Lastly, implementation details are pointed out as well as performance considerations.

As presented on Sec. 2., there are several approaches for watershed algorithms. Even

though the evolution of techniques achieved a great speedup in comparison with the first fast

transforms, those are still not enough for applications such as instantaneous video analysis.

Thus, the parallel approach seem obvious to achieve an even greater speedup. Along with the

recent development on GPU parallel processing, presented on Sec. 3., with further optimisation

for image processing, a new field for the watershed transform is seen, taking advantage of this

massive many-core architecture.

This algorithm is inspired in both sequential and parallel previous algorithms presented on

Sec. 2.. Among the sequential ones, the most influential is by Bieniek and Moga (2000), which

inspired on storing the pixel addresses for finding the steepest descent paths on a single step.

The strategy of Galilée et al. (2007) of waiting for neighbourhood data to split non-minima

plateaus is used along with the labelling of minima by neighbourhood evaluation, although in a

different way, without explicit message passing.

Algorithm 1 presents our proposal for a parallel watershed transform. On the course of it,

the statement for all denotes that every iteration can be processed in parallel, in a SIMD way,

and there is a synchronisation step, where the next statement after the for all is only processed

after every parallel process has terminated. The algorithm is divided in four major steps: find

the lowest neighbour of each pixel (direct path of steepest descent); find the nearest border

of internal pixels of plateaus, propagating uniformly from the borders; minima labelling by

maximal neighbour address and pixel labelling by flooding from minima. The input image is

called I , and the output labelled image is called lab, which is also used for storing addresses.

A similar algorithm has been proposed recently, though with modified strategies for labelling

(Körbes et al., 2009).

Algorithm 1: Parallel watershed transform

// First Step

1: PLATEAU ← +∞
2: for all p ∈ D do

3: if ∃q ∈ N(p) : I(q) < I(p) and I(q) = min∀q′∈N(p)I(q′) then

4: lab(p)← −q

5: else

6: lab(p)← PLATEAU

7: end if

8: end for

// Second step

9: while lab is not stable do

10: lab′ ← lab

11: for all p ∈ D : lab(p) = PLATEAU do

12: if ∃q ∈ N(p) : lab(q) <= 0 and I(q) = I(p) then

13: lab′(p)← −q

14: end if

15: end for

16: lab← lab′

17: end while

// Third step

18: for all p ∈ D : lab(p) = PLATEAU do

19: lab(p) = p + 1
20: end for

21: while lab is not stable do

22: for all p ∈ D : lab(p) > 0 do

23: for q ∈ N(p) do

24: if lab(q) > lab(p) then

25: lab(p)← lab(q)
26: end if

27: end for

28: end for

29: end while

// Fourth step

30: while lab is not stable do

31: for all p ∈ D : lab(p) <= 0 do

32: q ← −lab(p)
33: if lab(q) > 0 then

34: lab(p)← lab(q)
35: end if

36: end for

37: end while

For the parallel implementation of the algorithm, some parameters must be defined. The

first one is the number of threads per block, in order to divide the processing and obtain the

best performance. The image block size must be a multiple of the warp size, which is charac-

terised as a minimum group of 64 threads, processed as SIMD by CUDA many-core architec-

ture (NVIDIA, 2009b). Empirically, it is suggested the use of 256 threads as a good choice,

balancing between memory latency, registers and threads.

Another parameter is the memory access. For this development, the texture memory is

proposed, given its benefits compared to both global and constant memory. Some of these

are (NVIDIA, 2009a): hardware-based linear interpolation and border management; potential

higher bandwidth, once its cached. An observation is that the shared memory is used to store

intermediary results, given that the texture memory is read-only.

Based on this approach, an image is taken as a grid divided in 16x16 pixels blocks, resulting

in up to 256 threads. The image loaded on the CPU is copied to the texture memory of the GPU,

where it is then processed via kernel access. The kernels were developed in two ways. The first

is for step 1, which is based on texture memory access with block division as mentioned above,

outputting its results to global memory. For the further steps, the other kernel demands a special

approach, once pixel evaluation is highly guided by its neighbours. In effect, each block must

include a border, containing neighbour pixels of the block, for correct processing. Fig. 2 shows

the modelling used for each image block.

Figure 2: Border behaviour to include neighbours outside of the block

To load data into blocks with edge, some parameters must be defined as the block size and

grid, the window of data is processed and the radius of the edge in each axis. Considering

coalescent data access, the block dimension is kept on 16x16, the grid obtained by the division

between the size of the image processing window, whose value is 14x14. At that point, each

block processes 196 threads, with other 60 inactive threads, were these data is processed by

adjacent blocks. As the pixel depends on its nearest neighbors, the radius of the edge is set to

1. Using these parameters in hand with internal variables of the kernel, can obtain the index

responsible for managing data in each block. As shown in the example below:

Definition of the index in the X axis to load the data with edge

// Definition of the parameters

1: #define RANGEW 14

2: #define KERNELRADIUS 1

3:
...

4: const int rangeStartx = BlockIdx.x ∗RANGEW ;
5: const int loadPosx = (rangeStartx−KERNELRADIUS) + threadIdx.x;

6:
...

Once the data is loaded from the global memory to shared memory, the results are stored

on output global memory, ensuring that border results do not overlap (Podlozhnyuk, 2007).

Along with these specifications, the algorithm is dependant on stabilisation steps, which

are verified on the CPU. As the experimental results presented on Sec. 5. show, these steps

contribute heavily for degrading the performance of Algorithm 1. Therefore, we propose a

second algorithm, on a hybrid approach, were steps 1 and 2 are the same as Algorithm 1,

processed on the GPU, and steps 3 and 4 are modified versions, processed on the CPU, achieving

better performance. These steps follow general strategies of minima (connected component)

labelling and path labelling found on algorithms such as Bieniek and Moga (1998), Osma-Ruiz

et al. (2007) and Lin et al. (2006).

Algorithm 2: Hybrid watershed transform

// First Step

// Same as first step of Algorithm 1

1: PLATEAU ← +∞
2: for all p ∈ D do

3: if ∃q ∈ N(p) : I(q) < I(p) and I(q) = min∀q′∈N(p)I(q′) then

4: lab(p)← −q

5: else

6: lab(p)← PLATEAU

7: end if

8: end for

// Second step

// Same as second step of Algorithm 1

9: while lab is not stable do

10: lab′ ← lab

11: for all p ∈ D : lab(p) = PLATEAU do

12: if ∃q ∈ N(p) : lab(q) <= 0 and I(q) = I(p) then

13: lab′(p)← −q

14: end if

15: end for

16: lab← lab′

17: end while

// Third step

18: basins← 1
19: for p ∈ D do

20: if lab(p) = PLATEAU then

21: lab(p)← basins

22: basins← basins + 1
23: QUEUEPUSH(p)

24: while QUEUEEMPTY() = False do

25: q ← QUEUEPOP()

26: for u ∈ N(q) do

27: if lab(u) = PLATEAU then

28: lab(u)← lab(p)
29: QUEUEPUSH(u)

30: end if

31: end for

32: end while

33: end if

34: end for

// Fourth step

35: for p ∈ D do

36: if lab(p) <= 0 then

37: q ← p

38: while lab(q) <= 0 do

39: q ← −lab(q)
40: end while

41: u← p

42: while u 6= q do

43: v ← u

44: u← −lab(u)
45: lab(v)← lab(q)
46: end while

47: end if

48: end for

The procedures used for minima and path labelling on Algorithm 2 optimise performance

given some conditions explained here. For most images, regional minima are composed by

more than a few pixels, making the stabilisation step for minima labelling on Algorithm 1 take

several turns, while on Algorithm 2 this analysis is done only once, and pixels receive its final

labels as soon as visited. The same is valid for step 4, where long paths on Algorithm 1 take its

length in number of turns to complete the labelling, while on Algorithm 2 pixels are visited only

twice to receive its final labels. However, for step 2 a sequential approach would not improve

the performance, as the border propagation is done similarly, though with a queue that restricts

the set of pixels that are processed. Another consideration is that on every turn until stabilisation

on Algorithm 1, each pixel is visited and processed, slowing its convergence. Along with these,

CUDA is well suited for hybrid approaches, as mentioned on Sec. 3.1, and that improves the

performance as seen on Sec. 5..

5. Experimental Results

For the experiments, was tested 4 different kinds of images on sizes ranging from 64x64 to

2048x2048, collecting 10 samples from each image to account for the overall average measured

in each step. The data presented as follows is the average of the experiments, scaled to millisec-

onds (ms). The sequential algorithm implemented is a modified version of Lin et al. (2006),

which operates also on four steps very similar in purpose to those proposed on Algorithms 1

and 2, but without the watershed label, for matters of equivalence of definitions. Table 1 shows

the performance for the sequential algorithm, processed on the CPU. These results were ob-

tained on a computer with an AMD Phenom II X3 (2.6Ghz 7.5Mb Cache) with 4Gb RAM and

a GeForce GTX295 with 1792Mb. Only one GPU core was used for the GPU processing.

Was applied watershed transform on an image 2D. An example is shown the popular image

of Lena using the algorithm on the gradient and hmin (reconstructive filter the minimum) of the

image. Fig. 4 presents the results of watershed regions delimited by contours of the areas.

64x64 128x128 256x256 512x512 1024x1024 2048x2048

Step 1 0,1821 0,7256 3,1650 11,9489 45,8002 171,0729

Step 2 0,2751 1,1016 4,3633 17,8430 72,6984 306,1431

Step 3 0,0386 0,1897 0,4629 1,6862 4,4622 17,0799

Step 4 0,0554 0,1597 0,9337 3,5642 15,5848 70,0675

Total 0,5511 2,1765 8,9249 35,0422 138,5456 564,3633

Table 1: Sequential algorithm processed on the CPU

Table 1 shows that for the sequential algorithm, the first two steps are severe bottlenecks,

greatly degrading the performance, specially on larger images. Moving to the fully parallel

implementation on the GPU, developed according to Algorithm 1, Table 2 shows that the bot-

tleneck on step 1 is completely mitigated, whereas for step 2 the performance depends on image

size, though showing small improvements. However, for steps 3 and 4, the algorithm fails on

achieving speedups, in fact, these steps contribute heavily for a poor overall performance.

64x64 128x128 256x256 512x512 1024x1024 2048x2048

Step 1 0.8645 0.9912 1.5086 3.3537 10.0368 37.8606

Step 2 0.2746 0.6246 2.2040 9.8523 56.3876 358.0210

Step 3 0.0671 0.1438 0.7173 4.1557 25.6360 405.1396

Step 4 0.2757 0.6314 2.0385 12.2949 21.6591 763.2722

Total 1.4820 2.3909 6.4683 29.6566 113.7195 1564.2934

Table 2: Parallel algorithm processed on the GPU

The observation that steps 1 and 2 of the parallel algorithm are more suited for GPU,

and that steps 3 and 4 are more suited for the CPU, led to the hybrid algorithm, proposed on

Algorithm 2. With the union of these steps, the resulting implementation achieved the time

measurements of Table 3

64x64 128x128 256x256 512x512 1024x1024 2048x2048

Step 1 0.8645 0.9912 1.5086 3.3537 10.0368 37.8606

Step 2 0.2746 0.6246 2.2040 9.8523 56.3876 358.0210

Step 3 0.0386 0.1897 0.4629 1.6862 4.4622 17.0799

Step 4 0.0554 0.1597 0.9337 3.5642 15.5848 70.0675

Total 1.2330 1.9652 5.1091 18.4564 86.4713 483.029

Table 3: Hybrid algorithm processed on the GPU+CPU

With the data collected on these three tables, a comparison may be done, checking the

effective gain in time performance. This evaluation is seen on Table 4, where the algorithms are

put aside and the relative gain is calculated for the average total time for each image size tested.

The analysis of Table 4 must highlight two side-effects of GPU+CPU hybrid processing.

The first one is for the smaller size, where this approach took more than twice the time than

CPU GPU GPU + CPU Gain (%)

64x64 0.5511 1.4820 1.2330 -123.75%

128x128 2.1765 2.3909 1.9652 9.71%

256x256 8.9249 6.4683 5.1091 42.75%

512x512 35.0422 29.6566 18.4564 47.33%

1024x1024 138.5456 113.7195 86.4713 37.59%

2048x2048 564.3633 1564.2934 483.0290 14.41%

Table 4: Comparison between algorithms

the sequential algorithm. This is due to memory transfer bandwidth and the GPU clock, sig-

nificantly slower than the CPU clock. This effect is reduced with the increase of image size,

until the larger one tested, which falls into another problem. For this image, the second step is

very time consuming, due to the stabilisation, reducing the gain. However, for average sizes of

images - typically those produced by video cameras - the hybrid approach shows a gain of an

average of 40%, meaning a reduction of time of almost half of the sequential algorithm. Lastly,

we present a graph on Fig. 3, showing the increase of gain with the increase of image size, on

average sizes.

Figure 3: Graphic comparison of average time between algorithms

6. Conclusion

In this paper we proposed two parallel watershed transform algorithms for implementation

on many-core architectures, such as GPUs, and together with a CPU, taking advantage of the

best hardware for each task. We reviewed the state of the art on both sequential and parallel

algorithms and proposed a new one inspired on some techniques presented. Based on the re-

sults obtained on this fully parallel algorithm in comparison with a sequential version, a hybrid

version was proposed, with the first two steps operating on the GPU and the last two on the

CPU. Our algorithms are described along with the discussion of some of the implementation

issues. With the hybrid algorithm, we achieved a significant speedup on images of average sizes

(up to 1024x1024 pixels), being almost twice faster than the sequential algorithm. As the scope

of this project lies on video analysis, with images of sizes closer to 512x512, the average time

obtained of 18ms allows the segmentation to work on a rate of 30fps with extra time for other

processing necessary, such as filtering.

Figure 4: Image of Lena (left), watershed computed on gradient and hmin of the image (right)

References

Baggio, D. L., 2007. Gpu based image segmentation livewire algorithm implementation. Mas-

ter’s thesis, Technological Institute of Aeronautics, São José dos Campos.

Bieniek, A., Burkhardt, H., Marschner, H., Nölle, M., & Schreiber, G., 1997. A parallel

watershed algorithm. In Proceedings of 10th Scandinavian Conference on Image Analysis

(SCIA97), pp. 237–244.

Bieniek, A. & Moga, A., 1998. A connected component approach to the watershed segmen-

tation. In ISMM ’98: Proceedings of the fourth international symposium on Mathematical

morphology and its applications to image and signal processing, pp. 215–222, Norwell, MA,

USA. Kluwer Academic Publishers.

Bieniek, A. & Moga, A., 2000. An efficient watershed algorithm based on connected compo-

nents. Pattern Recognition, vol. 33, n. 6, pp. 907–916.

Cooperman, G. & Kaeli, D., 2009. Gpu programming – syllabus. http://www.ccs.neu.edu/

course/csu610/#syllabus.

Cousty, J., Bertrand, G., Najman, L., & Couprie, M., 2009. Watershed cuts: Minimum spanning

forests and the drop of water principle. IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 31, n. 8, pp. 1362–1374.

Falcão, A. X., Stolfi, J., & Lotufo, R. A., 2004. The image foresting transform: theory, algo-

rithms, and applications. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

vol. 26, n. 1, pp. 19–29.

Galilée, B., Mamalet, F., Renaudin, M., & Coulon, P.-Y., 2007. Parallel asynchronous watershed

algorithm-architecture. IEEE Transactions on Parallel and Distributed Systems, vol. 18, n.

1, pp. 44–56.

Halfhill, T. R., 2008. Parallel Processing with CUDA: Nvidia’s high-performace computing

platform uses massive multithreading. NVIDIA. http://www.nvidia.com/docs/IO/55972/

220401 Reprint.pdf.

Körbes, A., Vitor, G. B., Ferreira, J. V., & de Alencar Lotufo, R., 2009. A proposal for a parallel

watershed transform algorithm for real-time segmentation. In Proceedings of Workshop de

Visão Computacional WVC’2009.

Lin, Y., Tsai, Y., Hung, Y., & Shih, Z., 2006. Comparison between immersion-based and

toboggan-based watershed image segmentation. IEEE Transactions on Image Processing,

vol. 15, n. 3, pp. 632–640.

Lotufo, R. & Falcão, A., 2000. The ordered queue and the optimality of the watershed ap-

proaches. In Proceedings of the 5th International Symposium on Mathematical Morphology

and its Applications to Image and Signal Processing, volume 18, pp. 341–350. Kluwer Aca-

demic Publishers.

Meijster, A. & Roerdink, J. B. T. M., 1995. A Proposal for the Implementation of a Parallel

Watershed Algorithm - CAIP’95, volume 970 of Lecture Notes in Computer Science, pp.

790–795. Springer Berlin / Heidelberg.

Meijster, A. & Roerdink, J. B. T. M., 1998. A disjoint set algorithm for the watershed transform.

In Proc. IX European Signal Processing Conf EUSIPCO ’98, pp. 1665–1668.

Meyer, F., 1994. Topographic distance and watershed lines. Signal Processing, vol. 38, n. 1,

pp. 113–125.

Nickolls, J., Buck, I., Garland, M., & Skadron, K., 2008. Scalable parallel programming with

cuda. ACM Queue, vol. 6, n. 2, pp. 40–53.

NVIDIA, 2009a. CUDA Programming Guide, 2.1. http://developer.download.nvidia.com/

compute/cuda/2 1/toolkit/docs/NVIDIA CUDA Programming Guide 2.1.pdf.

NVIDIA, 2009b. CUDA Technical Training. Volume I: Introduction to CUDA Programming.

http://www.nvidia.com/docs/IO/47904/VolumeI.pdf.

Osma-Ruiz, V., Godino-Llorente, J. I., Sáenz-Lechón, N., & Gómez-Vilda, P., 2007. An im-

proved watershed algorithm based on efficient computation of shortest paths. Pattern Recog-

nition, vol. 40, n. 3, pp. 1078–1090.

Podlozhnyuk, V., 2007. Image Convolution with CUDA. NVIDIA. http://developer.

download.nvidia.com/compute/cuda/sdk/website/projects/convolutionSeparable/doc/

convolutionSeparable.pdf.

Roerdink, J. B. T. M. & Meijster, A., 2000. The watershed transform: definitions, algorithms

and parallelization strategies. Fundam. Inf., vol. 41, n. 1-2, pp. 187–228.

Sun, H., Yang, J., & Ren, M., 2005. A fast watershed algorithm based on chain code and its

application in image segmentation. Pattern Recognition Letters, vol. 26, n. 9, pp. 1266–1274.

Trieu, D. B. K. & Maruyama, T., 2007. Real-time image segmentation based on a parallel

and pipelined watershed algorithm. Journal of Real-Time Image Processing, vol. 2, n. 4, pp.

319–329.

Vincent, L. & Soille, P., 1991. Watersheds in digital spaces: An efficient algorithm based on

immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 13, n. 6, pp. 583–598.

