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ASYMMETRIC WARFARE

XAVIER BRESSAUD AND ANTHONY QUAS

We study a simple two player dynamic game with asymmetric infor-
mation introduced by Renault in [2] and studied by Hörner, Rosenberg,
Solan and Vieille in [1].

At each stage, the system is in one of two state s and s̄, given by
matrices as follows:

s :

(

1 0
0 0

)

and s̄ :

(

0 0
0 1

)

The players simultaneously make a choice: Player 1 plays T(top) or
B(bottom), while Player 2 plays L(left) or R(right). Player 1 receives
the corresponding entry of the matrix describing the current state of
the system, so that if the system is in state s̄ and Players 1 and 2 play
top and left respectively, then Player 1 receives $1, whereas otherwise
he receives nothing.

A crucial aspect of the game is that Player 1 is aware of the state
before choosing his move, whereas Player 2 is never told of the state.
Each player sees the moves of the other, but is not informed of the
winnings (although Player 1 can deduce this information from what is
known to him, whereas Player 2 cannot). The winnings go to Player
1. Thus player 1’s job is to maximize his gain, whereas Player 2’s job
is to minimize the gain.

Player 1 thus faces a tradeoff between short term (he has sufficient
information to optimize his expected payoff in the current turn) versus
long term (if he always plays so as to optimize his payoff in the current
turn, then he reveals the state of the system to Player 2, who can then
use this information to minimize Player 1’s winnings).

The state of the system is assumed to undergo Markov evolution,
where the system stays in its current state between moves with fixed
probability p ≥ 1

2
, or switches with probability 1 − p. The dynamics

governing the switching is known to both players.
The general theory of zero sum games ensures (see e.g. [2]) that there

exist a value v and strategies σ for Player 1 and τ for Player 2, such
that whenever Player 2 uses strategy τ , Player 1’s long-term expected
winnings are at most v; whereas whenever Player 1 uses strategy σ,
his long-term expected winnings are at least v. Thus any strategy

1
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for Player 1 gives a lower bound for the value of the game (by taking
the infimum of the expected long-term gain over all possible counter-
strategies by Player 2). Similarly any strategy for Player 2 gives an
upper bound for the value of the game.

As usual in game theory, the best strategies are often mixed strate-
gies. That is, given all of the information available to a player, his
strategy returns a probability vector distributing mass to the available
moves. Since we intend to work in the limiting case, we identify the fol-
lowing spaces describing the past: X1 = {T,B}Z−

, X2 = {L,R}Z−

and
XS = {s, s̄}Z−

. A strategy for Player 1 can then be formally described
as a map σ from X1 ×X2 ×XS to [0, 1]2, where (σ(x, y, z))1 gives the
probability of playing T if Player 1’s past moves were x, Player 2’s past
moves were y and the system is currently in state s, while (σ(x, y, z))2
gives the probability of playing T if the system is in state s̄. Similarly,
a strategy for Player 2 is a map τ from X1 ×X2 to [0, 1], where τ(x, y)
gives the probability of playing L if Player 1’s past moves were x and
Player 2’s past moves were y.

Our goal, of course, is essentially to find v and the optimal strategies
σ and τ . These, as one expects, drastically depend on p. The answers
for p = 1

2
and p = 1 are straightforward: in the first case, Player

1 always plays as if he were facing a one-shot game and wins with
probability 1

2
while in the other case he can not use his information

and has to play randomly as if he did not have any advantage and wins
only with probability 1

4
. In [1], the authors exhibit a strategy σ∗ for

Player 1 (defined properly in Section 2) and prove that it is optimal
for all 1

2
≤ p ≤ 2

3
. In this setting, they give a closed formula for the

value vp of the game and also provide an optimal strategy τ ∗ for Player
2 (based on a two state automaton). They compute the value of the
strategy σ∗ as the sum of a series for all values of the parameter, hence
providing a lower bound for the value of the game (useful when larger
than 1

4
), while an upper bound is given by the value of the strategy

τ ∗. They compute this lower bound explicitly for specific values of the
parameter p larger than 2

3
. In the very special case p = p∗ solving

9x3 − 13x2 + 6x − 1 = 0 (p∗ ≃ 0.7589), they observe that σ∗ is still
optimal. In this case they also exhibit an optimal strategy for Player 2
(more tricky but still based on a finite automaton). Finally, they raise
the question of the optimality of σ∗ for instance at p = 3

4
. We provide

a negative answer and prove:

Theorem 1. The strategy σ∗ is optimal for p < 0.719 and not optimal
for some p < 0.733.
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Figure 1. Bounds on the value of the game as a func-
tion of the parameter p : it is known from [1] that the
value is between the green and the orange zones: the up-
per bound (green) is given by p/(4p−1); it coincides with
the lower bound (orange) given by the value of strategy
σ∗ up to p = 2

3
; the best known lower bound is the value

of σ∗ (numerically computed) as long as it is greater than
0.25 which is the easy lower bound provided by the uni-
form random strategy; note the special point p∗ ≃ 0.7589
for which the lower bound is exactly the value. The blue
(dark) zone indicates the improvement we make to the
upper bound: σ∗ is optimal up to about 0.72.

Indeed, on the one hand, we prove that σ∗ is optimal and exhibit an
optimal strategy for Player 2 under a condition which is valid up to
some critical value pc which we prove to be larger than 0.719, and, on
the other hand, we exhibit a strategy whose value is higher than that
of σ∗ for some p smaller than 0.733 (so that pc < 0.733). In both cases,
the proofs are based on checking that a certain finite set of inequalities
is satisfied.

The fact that pc ≥ 2
3
was established in [1]. Experimentation strongly

suggests that pc > 0.732, but we have not been able to show this
rigorously. The methods in this article give, for each n, a family (Cn)
of inequalities, such that if p satisfies (Cn) for any n, then σ

∗ is optimal
for p. The proof that σ∗ is optimal up to 0.719 proceeds by considering
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two intervals of parameters and showing that on both intervals, (C9)
is satisfied for all parameters in the interval. Further, if one picks
values of p randomly in the range [0.719, 0.732] and then tests (Cn) for
n = 50, n = 100, . . ., n = 500, an experiment showed that out of 10000
randomly selected p values, for each, at least one of the collections of
sufficient conditions for optimality of σ∗ was satisfied. It seems likely
that for any p0 < pc, there is an n such that the level n conditions are
uniformly satisfied by all p ∈ [2

3
, p0]. Unsurprisingly the first value of

n for which the collection of inequalities is satisfied becomes larger as
p approaches the conjectured pc ∈ (0.732, 0.733) and at the same time,
the number of intervals of p into which the range must be sub-divided
is expected to grow exponentially with n. Accordingly it is evident that
one can go beyond p = 0.719, but continuation requires an increasing
amount of effort for a decreasing amount of improvement.

We conjecture the existence of a really critical point beyond which
σ∗ would in general not be optimal. “In general”, because as already
noticed, and our scheme clearly shows, there are still special values
beyond. Quite surprisingly, we had to introduce tools from dynamical
systems (thermodynamic formalism) to show the optimality of σ∗. The
strategy of Player 2 to which σ∗ is the optimal response turns out to
be a strategy that takes into account all the past moves of Player
1, making it crucial to closely control the behaviour of the orbit of
a certain dynamical system. However, the result relies, above all, on
standard tools of game theory.

The paper is laid out as follows: in Section 1, we introduce classical
tools from game theory. In Section 2, we define properly the strategy
σ∗, prove its basic properties and compute its value for all p. In Section
3, we search for a strategy for Player 2 to which σ∗ would be an optimal
response. We give a system of equations that has solutions for p smaller
than 0.78. Solutions really yield the desired strategies only if they
satisfy a set of inequalities. We find in Section 4 a necessary and
sufficient condition for these inequalities to hold in terms of the pressure
of a potential. We show in Section 5 that the pressure condition is
satisfied for all p less than 0.719023. This ends the proof of the first
part of Theorem 1. In Section 6 we exhibit a strategy for Player 1 with
a larger gain than σ∗ for certain values of p; the smallest such value
of p that we found is smaller than 0.733. This will finish the proof of
Theorem 1.
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1. Tools from game theory

The technical framework that we use to prove these statements is
the study of Markov Decision Processes (MDP). A Markov decision
process is one in which the system moves around a compact state space
Ω, influenced by an agent who can, at each step, choose from one of a
compact (in our case, finite) set of transition probabilities on the state
space, each one with a given one-step payoff. The value of the process
is the maximal long-term expected value of the gain.

The basic theorem for these processes is the following:

Theorem 2. Let a Markov decision process have compact state space
Ω. Let Π be a compact set of probability transition measures on Ω
(indexed by Ω) and let A : Π → R be a continuous function. Then
there exists v ∈ R and a function V : Ω → R such that

(1) V (ω) + v = max
µ∈Π

(

A(µ(ω, .)) + Eµ(ω,.)V
)

.

We, in fact, need only the (simpler) converse, which we state in the
following form.

Theorem 3. Suppose a Markov decision process has state space Ω (not
necessarily compact). Let Π be a compact set of probability transition
measures on Ω (indexed by Ω) and let A : Π → R. Suppose there exist
v ∈ R and a bounded function V : Ω → R such that (1) is satisfied.

Then for any strategy σ, the expected long-term gain (that is the limit
of the average of the A’s in a sequence of moves) is at most v. If the
strategy is such that for each ω ∈ Ω, the strategy always picks a µ such
that the maximum in (1) is attained, then the strategy has long-term
gain given by v.

To prove this, we define the adapted gain by time n to be G̃n =
V (ωn)+Gn, where Gn is the gain over the first n steps. The condition
guarantees, no matter which strategy is chosen EG̃n+1 ≤ EG̃n + v. If
a strategy is chosen for which (1) is satisfied, then we have EG̃n+1 =
EG̃n + v. The fact that V is bounded ensures that Gn/n has the same
asymptotic behaviour as G̃n/n.

We interpret V (ω) as the relative score of the position ω. This is
there in order to take long-term effects into account. This can be
thought of as answering the question What is the long-term total dif-
ference between starting at some fixed ω0 and starting at ω? This will
be finite under suitable continuity and contractivity assumptions.

The MDP equation therefore says that if I choose the kernel µ giving
the maximum on the right, then my expected gain plus difference in V
values is v.
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The way we use this is as follows. Suppose (for example) Player 2
is looking for an optimal response to a strategy σ for Player 1. From
Player 2’s point of view, the state space is Ω = X1×X2 (the information
to which he has access).

Let us suppose that v ∈ R and V : Ω → R satisfies (1).
Player 2 is then trying to decide between playing L and R. Since he

knows σ, he can compute the expected immediate payoff if he plays
either L or R (Player 2 computes the expected payoff during the round
based on his knowledge of the past, and on the assumption that Player
1 is using σ). An optimal strategy (there may be many) versus σ
is any strategy that always picks the option attaining the minimum
expectation.

We now turn to another frequently used idea in game theory:

Principle. Suppose that

(1) τ is an optimal response to σ; and
(2) σ is an optimal response to τ

Then σ is an optimal strategy for Player 1. Similarly τ is an optimal
strategy for Player 2.

Proof. Let v(s, t) denote the average long-term gain if Player 1 plays
strategy s and Player 2 plays strategy t and let v0 = v(σ, τ)

Since we have assumed that τ is an optimal response to σ, the hy-
pothesis implies that v(σ, τ ′) ≥ v0 for any τ ′. In this sense, σ is an op-
timal strategy for Player 1: it guarantees at least the equilibrium gain
against any opposing strategy. The strategy τ is an optimal strategy
for Player 2: it guarantees that Player 1 can not exceed the equilibrium
gain, no matter what strategy he plays. �

We exploit this principle repeatedly in the remainder of this note.
A symmetry argument explained in [1] shows that for 0 ≤ p ≤ 1

2
,

vp = v1−p. Hence, in what follows we consider the case 1
2
≤ p ≤ 1. We

will be looking mainly at the strategy σ∗ introduced in [1].
In what follows, if Player 1 is assumed to be playing using the strat-

egy σ∗ (to be defined below), we frequently refer to Player 2’s belief
that the system is in state s. This is also sometimes referred to also as
the fictitious probability that the system is in state s. More formally,
this is just the conditional probability that the system is in the state s
given all the information available to Player 2 (that is the sequence of
past moves made by both players), given that Player 1 is using σ∗.

Of course since Player 1 is able to see the same information as Player
2 (and more), he can also calculate Player 2’s belief that the system is
in state s.
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2. The strategy σ∗

The strategy σ∗ that we study for Player 1 is apparently circular
in that the moves that Player 1 makes are based on Player 2’s belief
of the system’s state under the assumption that Player 1 is playing
σ∗! One way to resolve this circularity was introduced in the paper
of Hörner, Rosenberg, Solan and Vieille [1]. Here, the authors used
a finite sequence of moves, rather than an infinite past. In that case,
Player 1 could calculate Player 2’s belief at the nth stage based on the
n − 1 moves that preceded it, and could make the nth move on the
basis of that.

We use an alternative way of resolving the circularity. We introduce
a quantity θ, define its evolution and show retrospectively that θ is
exactly the same as Player 2’s belief assuming strategy σ∗.

We define two maps as follows:

fB(θ) =

{

p2θ−1
θ

+ (1− p)1−θ
θ

if θ ≥ 1
2
;

1− p if θ ≤ 1
2
.

fT (θ) =

{

p if θ ≥ 1
2
;

p θ
1−θ

+ (1− p)1−2θ
1−θ

if θ ≤ 1
2
.

Notice that fB(θ) = 1 − fT (1 − θ). We define a function Φ by setting
Φ(x) to be fB(x) if x ≥ 1

2
and fT (x) otherwise. We set pn = Φn(p) for

all n ≥ 0.
The strategy σ∗ is then defined as follows: Player 1 maintains an

internal ‘state’, θ.

P(playing T) =



















1 if the system is in state s and θ ≤ 1
2
;

1−2θ
1−θ

if the system is in state s̄ and θ ≤ 1
2
;

1−θ
θ

if the system is in state s and θ ≥ 1
2
;

0 if the system is in state s̄ and θ ≥ 1
2
.

Otherwise, he plays B. After playing, his state is updated by the rule
θnew = fT (θ) if he plays T and θnew = fB(θ) if he plays B.

Lemma 4. Suppose that Player 1 is playing strategy σ∗ and that Player
2 is playing an arbitrary strategy τ . If prior to a move Player 1’s state
matched Player 2’s belief that the system was in state s, then the same
holds after the move also.

Observe that the Player 2’s belief would also be the belief of an
external observer aware only of the choices of the players.
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Figure 2. The graphs of θ 7→ Φ(θ) and first points of
the orbit of 1 − p, for values of p ranging from p = 0.66
to p = 0.72 in steps of 0.02.

Proof. Suppose without loss of generality that Player 2’s belief prior to
a move that the system is in state s is θ ≥ 1

2
. By assumption, this is

also Player 1’s state.
Player 2 then anticipates the following possibilities:

• The system is in state s, and Player 1 plays T with probability
θ × (1− θ)/θ = 1− θ

• The system is in state s, and Player 1 plays B with probability
θ × (2θ − 1)/θ = 2θ − 1.

• The system is in state s̄ and Player 1 plays B with probability
(1− θ)× 1 = 1− θ.

If Player 1 plays T, then Player 2 deduces that the system was in state
s (as if the system were in state s̄, he would not play B). Accordingly
the probability that the system is in state s at the next step is p.

Conversely, if Player 1 plays B, then conditioned on this, Player 2
concludes that the system was in state s with probability (2θ − 1)/θ
and in state s̄ with probability (1−θ)/θ. Hence his updated belief that
the system is in state s is p(2θ−1)/θ+(1−p)(1− θ)/θ. In either case,
we see that his updated belief matches the new state of Player 1.
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�

The critical feature of σ∗ that we make use of is the fact that the
expected gain for Player 1 if he plays σ∗ is the same no matter which
strategy is used by Player 2. We demonstrate this in the lemma below.
In view of the Principle above, if one can find a strategy τ , to which σ∗

is the optimal response, then σ∗ and τ are optimal strategies for Player
1 and Player 2 respectively.

Lemma 5. The expected gain for Player 1 when playing strategy σ∗ is
independent of the strategy played by Player 2.

Proof. We consider the Markov decision process for Player 2. The state
of the process will be just his fictitious probability, θ, that the system
is in the state s. His action has no effect on the evolution of the state,
and so his chosen move will just be the one with the lower expected
payoff.

Suppose without loss of generality that θ ≥ 1
2
. Then if Player 2 plays

R, then Player 1 gains if the system was in state s̄ (if θ ≥ 1
2
then Player

1 always plays B if the system is in state s̄). The expected gain for
Player 1 from this strategy is therefore 1 − θ. Similarly, if Player 2
plays L, then Player 1 gains if the system was in state s and Player 1
chose to play T. This happens with probability θ × (1− θ)/θ = 1− θ.

Similarly, if θ < 1
2
, the expected gain for Player 1 is θ, independently

of any move played by Player 2.
Hence any strategy has the same expected one-step gain from any

position. The next position attained by the system is independent of
the move made by Player 2. �

Consider the evolution of Player 2’s beliefs. These always belong to
the set

⋃

n≥0 Φ
n{p, 1− p}. Notice that even though p is not explicitly

written, the value of fB(x) and fT (x) depend on p. Since for x ≥ 1
2
, we

have fB(1− x) = 1− fT (x), we have Φn(1− p) = 1− Φn(p) for all n.
When θ ≥ 1

2
, the belief returns to p when the system is in state s

and Player 1 selects T . If θ > 1
2
and the system is in state s̄ (i.e. there

is a mismatch between Player 2’s belief and the state of the system),
Player 1 never selects T . When θ ≤ 1

2
, the belief returns to 1− p when

the system is in state s̄ and Player 1 selects B.
We view this as a ladder with base {p, 1− p} and rungs {pn, 1− pn},

for n ≥ 1, on which the belief follows a Markov chain: at each step,
one either ascends one level, or falls down to the base. Falling off
corresponds to making the choice that returns the state to p or 1− p.
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Lemma 6. If Player 1 plays strategy σ∗, then his long-term expected
gain is equal to the proportion of time spent at the base of the ladder,
irrespective of the strategy played by Player 2.

We can therefore deduce an explicit lower bound (in the form of an
infinite sum) for the value of the game as a function of the parameter
p.

Proof. Consider the evolution of Player 2’s beliefs. These always belong
to the set

⋃

n≥0 Φ
n{p, 1− p}.

Recall from Lemma 5 that if Player 2’s belief is θ, the expected payoff
for Player 1 is given by is min(θ, 1 − θ) independently of the strategy
played by Player 2.

On the other hand, the probability of returning to p or 1 − p from
θ or 1− θ is also min(θ, 1− θ). We verify this in the case θ ≥ 1

2
. The

belief returns to p only if the system is in state s and Player 1 selects
T . The probability of this is 1− θ = min(θ, 1− θ) as required.

Hence from the nth rung of the ladder, the probability of falling off
is min(Φn(p), 1−Φn(p)). This is the same as the expected payoff from
that state. That is, in any position, the expected payoff from the next
turn is equal to the probability of falling off the ladder at the next turn.
We let un = max(Φn(p), 1−Φn(p)) be the complementary probability:
the probability of continuing up the ladder from the nth stage.
One can check that for this Markov chain, the stationary distribution

gives level n probability

πn =
u0 . . . un−1

1 + u0 + u0u1 + u0u1u2 + . . .
.

We do not specify any initial measure, but the renewal structure of the
chain shows that on the long term the gain is described by the invariant
measure, independently of the initial conditions: after a random but
finite amount of time, Player 1 will play so that θ becomes p (or 1−p).

Since in any state, the expected gain is the same as the probability
of ‘falling off the ladder’, we see that the expected gain for Player 1 if
he plays σ∗ is given by

v =
1

1 + u0 + u0u1 + u0u1u2 + . . .
,

irrespective of Player 2’s strategy, where we recall that the quantities
(ui)i≥0 are functions of p. Observe that this expression was already
derived in [1]. �

We give an alternative expression for 1/v in the form of a sum of
matrix products. This is not strictly necessary for what follows, but it
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Figure 3. Player 2’s fictitious probability that the sys-
tem is in state s can be modeled by a ladder: if Player 1
plays B while θ < 1

2
; or T while θ > 1

2
, then the fictitious

probability becomes 1− p or p respectively, correspond-
ing to the bottom rung of the ladder. Note that the nth
rung of the ladder corresponds both to Φn(p) and Φn(1−
p)

is here as it is reassuring to compare this with an expression that arises
later for 1/v.

We will write pn = Φn(p) as a quotient of two polynomials in p:
pn = an/bn, so that p0 = p/1. Also write ǫn = 1 if pn ≥ 1

2
and 0

otherwise.
If ǫn = 1, we have pn+1 = fB(pn), while if ǫn = 0, we have pn+1 =

fT (pn).
If ǫn = 1, we have un = pn = an/bn and

an+1

bn+1

= fB(an/bn) =
p(2an − bn)/bn + (1− p)(bn − an)/bn

an/bn

=
an(3p− 1)− bn(2p− 1)

1an + 0bn
.
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Similarly if ǫn = 0, we have un = 1− pn = (bn − an)/bn and

an+1

bn+1

= fT (an/bn) =
pan/bn + (1− p)(bn − 2an)/bn

(bn − an)/bn

=
(3p− 2)an + (1− p)bn

−an + bn
.

In both cases, we see that un = bn+1/bn. Introducing matrices U1 =
(

3p− 1 −(2p− 1)
1 0

)

and U0 =

(

3p− 2 1− p
−1 1

)

, we have

(

an+1

bn+1

)

= Uǫn

(

an
bn

)

.

Now, taking the product of the un’s, we obtain par téléscopage u0 · · · un =
bn+1/b0 = bn+1. Hence we get the expression

u0u1 · · · un = bn+1 =
(

0 1
)

Uǫn . . . Uǫ0

(

p
1

)

.

Summing over n, we obtain another expression for the average long-
term gain that will accrue to Player 1 if he plays σ∗.

(2)
1

v
=
(

0 1
)

(I + Uǫ0 + Uǫ1Uǫ0 + Uǫ2Uǫ1Uǫ0 + . . .)

(

p
1

)

3. Strategies for Player 2

In [1], the authors showed that σ∗ is optimal for p ∈ [1
2
, 2
3
] and for a

specific value p∗ ≈ 0.758 that is the unique value of p for which p1 >
1
2

and p1 = p3. In both cases, they exhibit a strategy for Player 2 based
on a finite state automaton where transitions in the automaton are
governed by actions of Player 1 and then show that σ∗ is an optimal
response to this strategy. For p > 2

3
, we are going to proceed along

the same lines, except that strategies for Player 2 will be based on a
countable state automaton rather than a finite one. In this section,
we identify strategies for Player 2 that are candidates for this purpose.
The proof that they have the correct property (that σ∗ is an optimal
response to the strategies τp that we construct) is in the next two
sections.

As follows from Lemma 5, any strategy of Player 2 is an optimal
response to σ∗.

In the case 1
2
≤ p ≤ 2

3
, one can check that the range of fB is in

[1 − p, 1
2
], while the range of fT is in [1

2
, p]. Thus the last move of

Player 1 (assuming that Player 1 is using strategy σ∗) is sufficient to
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Figure 4. For p < 2
3
, Player 2’s automaton has two

states, capturing whether he believes it’s more likely the
system is in s or s̄. Which state he is in depends solely
on Player 1’s last move.

Figure 5. For p = p∗, Player 2’s automaton has 4
states. The states correspond to different values of Player
2’s belief that the system is in state s. Transitions be-
tween states are completely determined by Player 1’s
moves.

determine whether Player 2 believes that it is more likely that the
system is in state s or s̄. The strategy τ ∗ proposed for Player 2 is a
mixed strategy, playing L with probability (2p − 1)/(4p − 1) and R
with probability 2p/(4p− 1) if θ > 1

2
and with the reverse probabilities

otherwise (see Figure 4). In [1], is shown that σ∗ is an optimal response
to τ ∗ hence (σ∗, τ ∗) is an equilibrium.

In the case p = p∗, it turns out there are only 4 possible values
attained by Player 2’s fictitious probability that the system is in state
s. Namely, we have 1 − p < fT (1 − p) < fB(p) < p and fT maps
1− p, fT (1− p), fB(p) and p to fT (1− p), fB(p), p and p respectively.
Similarly fB maps 1−p, fT (1−p), fB(p) and p to 1−p, 1−p, fT (1−p)
and fB(p) respectively. [1] shows that σ∗ is an optimal response to a
strategy τ ∗∗ (and hence an equilibrium strategy), given by a 4 state
automaton corresponding to these four values of θ together with rules
corresponding to the above: if Player 1 plays T, then the system moves
one step to the right; if Player 1 plays B, then system moves one step
to the left (see Figure 5). In each state of the automaton, there is an
associated probability distribution on Player 2’s choice of L or R, which
they exhibit explicitly.

Our results are based on exhibiting strategies for Player 2 for which
he plays L and R with non-zero probabilities that depend solely on his
belief that the system is in state s. Since Player 2’s beliefs evolve in
a manner that only depends on the actions of Player 1, we may once
again describe his strategy by an automaton. The principal differences
are: (1) the automaton generally has a countably infinite number of
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Figure 6. A typical automaton for a strategy of Player
2. The states on the left of the diagram are those where
the belief of Player 2 is p or 1 − p. Those in the upper
half of the diagram are those where Player 2 believes it
is more likely the system is in state s. For states in the
upper half of the diagram, if Player 1 plays T, the state
returns to p0 = p, while if Player 1 plays B, the state
advances to the right. In the lower half of the diagram,
if Player 1 plays B, the state returns to 1 − p, while it
advances if Player 1 plays T. The pattern of which arrows
switch sides and which continue depends on p.

states; and (2) the entire structure of the automaton depends on p. An
example of such an automaton is shown in Figure 6.

The pattern of arrows is completely determined by p. The descrip-
tion of the strategy will be complete once we specify for each state, the
probability of playing L. Recall that the states are labelled by (pn)n≥0

and (1− pn)n≥0. If the automaton is in state θ, we will define x(θ) to
be the probability that Player 2 chooses L. In this case, we will say
that (x(θ))θ∈[1−p,p] is the strategy that Player 2 is playing.
As mentioned above, to show that σ∗ is optimal, it suffices to find a

strategy x(θ), to which σ∗ is the best response. We therefore suppose
that a particular strategy x(θ) has been selected by Player 2, and we
ask whether σ∗ is a best response for Player 1. We will show that for
certain p and x(θ), we can solve the equations (1) for Player 1.

The state space that we use for Player 1 will consist of a pair (θ, s),
where θ is Player 2’s fictitious probability that the system is in state s
and s ∈ {s, s̄} is the state of the system.

If Player 1 plays T starting from the state (θ, s), his expected gain is
x(θ) and the system will move to (fT (θ), s) or (fT (θ), s̄) with probability
p and 1 − p respectively. If Player 1 plays B starting from (θ, s), his
expected gain is 0 and the system moves to (fB(θ), s) or (fB(θ), s̄) with
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probability p and 1− p respectively. The transitions from (θ, s̄) are, of
course, similar.

In order for the strategy σ∗ to be optimal, we are looking for a
value v and a relative score function V (s, θ) satisfying (1). We define
G(θ) = V (s, θ) and H(θ) = V (s̄, θ). We will look for solutions re-
specting the symmetry of the game, that is such that G(θ) = H(1−θ).
Similarly, we impose the condition x(1

2
) = 1

2
. Since there is an arbitrary

additive constant, we use it to impose the conditionG(p) = −H(p), and
we define G(p) = −Z. We have chosen the negative sign because we
interpret the relative score to be a measure of Player 2’s lack of knowl-
edge of the state of the system. The greater the distance between his
belief and the actual state of the system, the easier we expect it to be
for Player 1 to exploit this mismatch.

From the form of the strategy σ∗, for σ∗ to be optimal, we require
that both B and T have equal expected gain plus relative score when θ
matches the state (that is when θ > 1

2
and s = s; or θ < 1

2
and s = s̄).

Further this value of expected gain plus relative score should match v
plus the current relative score.

When there is a mismatch (or θ = 1
2
), the v plus the current relative

score should be equal to the expected gain plus relative score if Player 1
plays according to the actual state of the system and this value should
be at least as large as the expected gain plus relative score if Player 1
were to play the opposite move.

In equations, we require if θ > 1
2
,

G(θ) + v = x(θ) + pG(p) + (1− p)H(p)

= pG(fB(θ)) + (1− p)H(fB(θ));

H(θ) + v = (1− x(θ)) + pH(fB(θ)) + (1− p)G(fB(θ))

≥ pH(p) + (1− p)G(p).

(3)

If θ < 1
2
, we require

G(θ) + v = x(θ) + pG(fT (θ)) + (1− p)H(fT (θ))

≥ pG(1− p) + (1− p)H(1− p);

H(θ) + v = 1− x(θ) + pH(1− p) + (1− p)G(1− p)

= pH(fT (θ)) + (1− p)G(fT (θ)).

(4)

Finally, if θ = 1
2
, then the strategy σ∗ tells Player 1 to play T if the

state is s and B if the state is s̄. In either case, the expected gain is 1
2
.
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Hence we have

G(1
2
) + v = 1

2
+ pG(1− p) + (1− p)H(1− p) ≥ pG(p) + (1− p)H(p);

H(1
2
) + v = 1

2
+ pH(p) + (1− p)G(p) ≥ pH(1− p) + (1− p)G(p).

(5)

Using the above, we express x(θ) in terms of the other unknown
quantities:

(6) x(θ) =











G(θ) + v + γZ if θ < 1
2
;

1− (H(θ) + v + γZ) if θ > 1
2
;

1
2

if θ = 1
2
.

Given this, solutions to (3),(4) and (5) are in correspondence with
solutions to the following matrix equations together with some inequal-
ities that we list below.

(7)

(

G(θ)
H(θ)

)

= Aǫ

(

G(Φ(θ))
H(Φ(θ))

)

− v

(

1
1

)

+ (1− γZ)bǫ for θ 6= 1
2

(8) G(1
2
) = H(1

2
) = 1

2
− v − γZ,

where ǫ is 1 if θ > 1
2
and 0 if θ < 1

2
. A0 =

(

γ −γ
1− p p

)

, A1 =
(

p 1− p
−γ γ

)

, b0 =

(

1
0

)

, and b1 =

(

0
1

)

.

Exploiting the symmetries in the definitions of G and H, the inequal-
ities that need to be satisfied from (3), (4) and (5) and to ensure x(θ)
lies in the range [0, 1] are

G(θ) ≥ γZ − v for θ < 1
2

−γZ − v ≤ G(θ) ≤ 1− γZ − v for θ > 1
2

4γZ ≤ 1.

(9)

These inequalities come from (4), (6) and (5) respectively. A crude
calculation shows that A0(p) and A1(p) are contracting for p < 0.788
and so we can iterate (7) to obtain expressions for G(θ) and H(θ)
in terms of which side of the interval iterates of Φn(θ) lie in. Hence
provided (9) are satisfied, it follows that σ∗ is the optimal response to
the strategy for Player 2 given by x(θ).

We will show that the inequalities in (9) are satisfied in certain pa-
rameter ranges by showing that function G is monotone decreasing
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(and hence the function H is monotone increasing). Then to estab-
lish the estimates on ranges of θ values, one can simply show that the
estimates hold at the appropriate endpoints.

As a consequence of the above equalities, we have
(

G(θ)
H(θ)

)

= −v(I + Aη0 + Aη0Aη1 + . . .)

(

1
1

)

+ (1− γZ)(bη0 + Aη0bη1 + Aη0Aη1bη2 + . . .),

(10)

where (ηn)n≥0 is the sequence of sides of the interval that θ lands in

when iterating Φ. Noticing that bη + Aη

(

1
1

)

=

(

1
1

)

for η = 0, 1, we

see that the contractions ~y 7→ Aη~y + bη have a common fixed point, so
that applying the contractions in any sequence to any point, one has

convergence to

(

1
1

)

. It follows that bη0+Aη0bη1+Aη0Aη1bη2+. . . =

(

1
1

)

.

It readily follows that we can rewrite (10) :

(11)

(

G(θ)
H(θ)

)

= −v(I + Aη0 + Aη0Aη1 + . . .)

(

1
1

)

+ (1− γZ)

(

1
1

)

.

Recall that (ǫn) is the sequence of sides of the interval that the
particular point p lands in under iteration, rather than an arbitrary
point θ. Define ~w by

~w = (I + Aǫ0 + Aǫ0Aǫ1 + . . .)

(

1
1

)

.

Recall that G(p) = −Z and H(p) = Z, so that substituting this and
the above observations and definitions into (10), we obtain

(

−Z
Z

)

= −v
(

w1

w2

)

+ (1− γZ)

(

1
1

)

Finally, we rewrite this as

(2p− 2)Z + vw1 = 1

2pZ + vw2 = 1.

These equations can be solved to give expressions for v and Z as:

v = 1/(pw1 + (1− p)w2)

Z = (w1 − w2)v/2.
(12)

At this stage, we have proved that

Lemma 7. If 1
2
≤ p ≤ 0.78, Equation (6) together with (11) and

(12) define a function (x(θ))θ∈[0,1]. If it satisfies Inequalities (9) then
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(x(θ))θ∈[p,1−p] yields a strategy for Player 2 to which σ∗ is a best re-
sponse.

Notice that we now have a second, apparently independent equation
for v. For reassurance, we verify that the expressions are, in fact, equal.
Starting from this second expression, we have

1/v =
(

p 1− p
)

(I + Aǫ0 + Aǫ0Aǫ1 + Aǫ0Aǫ1Aǫ2 + . . .)

(

1
1

)

=
(

1 1
)

(I + AT
ǫ0
+ AT

ǫ1
AT

ǫ0
+ AT

ǫ2
AT

ǫ1
AT

ǫ0
+ . . .)

(

p
1− p

)

Notice that
(

1 0
1 1

)

AT
ǫ

(

1 0
−1 1

)

= Uǫ,

for ǫ ∈ {0, 1}.
Accordingly, we can rewrite the expression for 1/v as

(

1 1
)

(

1 0
−1 1

)

(I + Uǫ0 + Uǫ1Uǫ0 + Uǫ2Uǫ1Uǫ0 + . . .)

(

1 0
1 1

)(

p
1− p

)

=
(

0 1
)

(I + Uǫ0 + Uǫ1Uǫ0 + Uǫ2Uǫ1Uǫ0 + . . .)

(

p
1

)

.

This expression matches the one that we found in (2).

4. Conditions for monotonicity

To prove that the inequalities (9) are satisfied (in a range of values of
p) we are going to show that G (and H) are monotonic, and we control
the boundary values. In this section, we show that they follow from a
pressure condition for a given potential for the dynamical system Φ.

Write | · | for the Euclidean norm on R
2. We can check that for

p . 0.788, the matrices A0 and A1 are contractions of R2. Let α < 1
be the contraction constant, so that |Aǫx| ≤ α|x|
Define the space, L∞ = L∞([1 − p, p],R2), of measurable R

2-valued
functions on [1−p, p] with norm given by ‖X‖ = ess supθ∈[1−p,p] |X(θ)|.

We then define an operator, L, on L∞ by

(13) LX(θ) = Aǫ(θ)X(Φ(θ))− v

(

1
1

)

+ (1− γZ)bǫ(θ)

Notice that ‖LX − LY ‖ ≤ α‖X − Y ‖, so that L is a contraction
of L∞, a complete metric space. Hence, by the Banach contraction
mapping theorem, L has a unique fixed point, X∗. Let Xn = Ln0.
Write ∆f(θ) for limt→θ+ f(t) − limt→θ− f(t). By symmetry, we see

that ∆Xn(
1
2
) is a multiple of ( −1

1 ) for all n. From the contraction
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Figure 7. The graphs of θ 7→ x(θ) for values of p rang-
ing from p = 0.6625 to p = 0.7325 in steps of 0.01.
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mapping theorem, there exists M > 0 such that |∆Xn(
1
2
)| ≤M for all

n. From (13), we observe that for θ 6= 1
2
,

(14) ∆Xn(θ) = Aǫ(θ)∆Xn−1(Φ(θ)).

Taking 0 to be the zero function, we have ‖Ln0−X∗‖ → 0. Notice
that Xn has discontinuities only at pre-images of 1

2
of order at most n

and is piecewise constant between discontinuities.
We now use ideas originating from Ruelle’s thermodynamic formal-

ism (see Walters’ book [3] for an accessible introduction) – our presen-
tation is, in fact, self-contained – it should be readable without any
knowledge of thermodynamic formalism. We show that if a certain se-
ries is convergent (this corresponds to a thermodynamic pressure being
negative), then X∗ is of pure jump type. At the same time, we show
that G is monotonically decreasing and H is monotonically increasing.

We use a technical result independent of our specific context:

Lemma 8. Let (ak) be an sequence in [0, 1] with ak 6= ak′ for all k 6= k′

and let bk be a summable sequence of non-negative numbers. Suppose
that (fn) is a sequence of real-valued functions defined on [0, 1], each
of pure jump type. Suppose further that the only discontinuities of
(fn) occur at the a′ks and that |∆fn(ak)| ≤ bk for each k and n. If
‖fn − f‖∞ → 0, then f is of pure jump type with discontinuities only
at the ak’s. The magnitude of the discontinuity of f at ak is bounded
above by bk.

Proof. Denote V f the total variation of f and VIf the variation of f
on the interval I. Notice that the fn have uniformly bounded variation
and hence f has bounded variation also. Hence if it has a unique (up
to additive constants) Lebesgue decomposition as a sum fd + fc where
fc is continuous and fd has only jump-type discontinuities. For any
ǫ > 0, there exists a K such that

∑

k≥K bk < ǫ. Letting I1, . . . , IM be
any disjoint collection of intervals avoiding the ak’s with k < K, we see
that

∑M
i=1 VIif < ǫ. In particular, we deduce V fc < ǫ for arbitrary ǫ so

that fc has pure jump type. We also deduce that fd cannot have any
jump discontinuities other than at the ak’s and the result is proven. �

Suppose that θ > 1
2
. Then we have Φ(θ) = fB(θ) = (3p − 1) − γ/θ

and we calculate

A1

(

Φ(θ)− 1
Φ(θ)

)

=
γ

θ

(

θ − 1
θ

)

.

Similarly, if θ < 1
2
, we have

A0

(

Φ(θ)− 1
Φ(θ)

)

=
γ

1− θ

(

θ − 1
θ

)

.
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If t ∈ Φ−n(1
2
), let θi = Φn−i(t) and let ǫi = ǫ(θi). The above shows

Aǫi

(

θi−1 − 1
θi−1

)

=
γ

max(θi, 1− θi)

(

θi − 1
θi

)

.

Combining these equalities gives

(15) Aǫn · · ·Aǫ1

(

−1
2

1
2

)

=
n
∏

i=1

γ

max(θi, 1− θi)

(

θn − 1
θn

)

.

Since 1− p ≤ θn ≤ p for all possible choices of t and using (14), one
obtains

∣

∣∆Xk(θn)
∣

∣ ≤ C

n
∏

i=1

γ

max(θi, 1− θi)
.

In order to apply Lemma 8, we therefore need to establish the in-
equality

(16)
∑

n

∑

θ∈Φ−n( 1
2
)

n−1
∏

i=0

γ

max(Φi(θ), 1− Φi(θ))
<∞.

Defining Zn to be
∑

θ∈Φ−n( 1
2
)

∏n−1
i=0 (γ/max(Φi(θ), 1 − Φi(θ))), the

pressure (of the function f(θ) = log
(

γ/max(θ, 1− θ)
)

with respect to
the transformation Φ) is precisely lim supn→∞(1/n) logZn. In particu-
lar, the negativity of the pressure is a sufficient condition (and is very
close to a necessary condition) to ensure that X∗ is of pure jump type.
The jumps satisfy ∆X∗(θ) = Aǫ(θ)∆X

∗(Φ(θ)). By (15), they are all of
the same sign.

Now provided the pressure is negative and p is not a pre-image of 1
2
,

we check using (7) that G(1
2

+
) = γZ − v, G(1

2

−
) = 1− 3γZ − v so that

∆G(1
2
) = 4γZ − 1. On the other hand, the total of all discontinuities

(all of the same sign) is −2Z. In order for these to have the same sign,
one sees that Z > 0 and 4γZ < 1. The function G(θ) is therefore a
decreasing function.

Now to check (9), it suffices to show that G(1
2

−
) ≥ γZ − v, G(1

2

+
) ≤

1−γZ−v and G(p) ≥ −γZ−v. The first two of these follow from the
fact that Z > 0 and 4γZ < 1. To verify the last inequality, we note
that the above contraction argument works outside the range [1−p, p],
so that G is monotonic on all of [0, 1]. Since Φ(1) = p, we apply (7) to
see that G(1) = −γZ − v, so that the third inequality is satisfied by
monotonicity.
Assembling the facts above, we arrive at the following.
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Corollary 9. Suppose p is such that the condition (16) is satisfied.
Then σ∗ is an optimal strategy for Player 1.

Reviewing the steps above, we see that we made use of the assump-
tion that Φn(p) 6= 1

2
for all n. (If p is a preimage of 1

2
, then the expres-

sions for G(1
2

+
) and G(1

2

−
) are not valid as G and H are discontinuous

at p and 1− p).
In the case where p is a preimage of 1

2
, the essential modification is

to show that G(1
2

+
) − G(1

2
) = G(1

2
) − G(1

2

−
). The matrix equalities

(7) then ensure that at preimages, x say, of 1
2
, one has that G(x) is

the averages of G(x−) and G(x+) (and similarly for H). This allows
us to deduce monotonicity and verify inequalities on entire intervals by
checking at a finite collection of points as before.

5. Pressure bounds

In this section, we find ranges of p where (16) is satisfied.
Since the map Φ satisfies the symmetry Φn(1 − t) = 1 − Φn(t), we

will study instead the map α(t) = max(Φ(t), 1 − Φ(t)) as a map from
[1
2
, 1] to itself. Notice that Φ(t) < 1

2
if and only if t < 2

3
. The map can

therefore be expressed as:

αp(t) =

{

2− 3p+ γ/t if t < 2
3
;

3p− 1− γ/t if t ≥ 2
3
.

We denote the left branch by f and the right branch by g. As
previously noted γ, α, Φ, f and g all depend on p. Let ψ(t) = γ/t
and write ψ(n)(t) = ψ(t)ψ(α(t)) · · ·ψ(αn−1t). We then check that the
summability condition (16) is equivalent to

∑

n

Zn(p) <∞; where(17)

Zn(p) =
∑

t∈α−n( 1
2
)

ψ(n)(t).(18)

We do this by showing lim sup 1
n
logZn(p) < 0 in various ranges of p (or

in thermodynamic language, the function logψ has negative pressure
with respect to α in those ranges of p).

We partition [1
2
, p] into sub-intervals, counting possible transitions

between pairs of intervals, and over-estimating ψ on the intervals to
give a rigorous, finitely-calculable estimate for the pressure in various
ranges of p.
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In principle, this should work by taking finer and finer partitions up
to pc ≈ 0.7321. We give a proof on a smaller range of p-values, subject
to checking a manageable number of polynomial inequalities.

It turns out that for p in the range [2
3
, pc], the map α is renor-

malizable. Letting pi = αi(p) (so that p0 = p), one can check that
1
2
< p1 < p2 < p and α([1

2
, p1]) = [p2, p] and α([p2, p]) = [1

2
, p1].

The map t 7→ α(t) is strictly decreasing on [1
2
, 2
3
] and strictly in-

creasing on [2
3
, p], and satisfies α(2

3
) = 1

2
. To demonstrate the above

renormalization, one needs to verify the inequalities

p1 ≤ 2
3

(19)

p3 ≤ p1.(20)

Suppose that [1
2
, 1] is partitioned into intervals J0, . . . , Jk−1. Let

βi = maxx∈Ji ψ(x). Let mij = maxy∈Jj #{x ∈ Ji : α(x) = y}. Let A be
the k × k matrix with entries aij = βimij. Then we claim that

lim sup
n→∞

1
n
logZn(p) ≤ log ρ(A),

where ρ(A) denotes the spectral radius. Hence in order to establish
that Z(p) < ∞, it suffices to exhibit a finite partition such that the
corresponding matrix A has spectral radius less than 1.

To establish the claim, notice that there are at mostmi0i1mi1i2 . . .min−1in

nth order preimages x of a point y in Jin with the property that
αt(x) ∈ Jit for each 0 ≤ t < n. For each such preimage, the largest
possible contribution to the sum is βi0 . . . βin−1

, so that we see

Zn(p) =
∑

t∈α−n
p ( 1

2
)

ψ(n)
p (t) ≤

∑

i

(An)ij,

where j is the index of the interval containing 1
2
. This establishes the

claim.

5.1. The range (2/3,0.70237758). In this range, we are able to give
a particularly simple bound. We divide [1

2
, p] into three sub-intervals:

J0 = [1
2
, p1], J1 = [p1, p2] and J2 = [p2, p].

By the above, we have αp(J0) ⊂ J2 and αp(J2) ⊂ J0. One checks
that 2

3
∈ J2.

Given this, we see that α(J1) ⊂ J0 ∪ J1. Since αp is unimodal, and
the critical point lies outside J1, we see the restriction of αp to J1 is
monotonic.

Recall that ψ(t) = γ/t and notice that ψ is bounded above by 2γ =
4p− 2 which is strictly less than 1 for p ≤ pc ≤ 3

4
.
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Figure 8. The graphs of θ 7→ α(θ) and first points of
the orbit of p, for p = 0.685, p = 0.7023..., p = 0.709...
and p = 0.719.... The renormalizablity of θ 7→ α(θ) may
be seen from the fact that in each of the graphs points
to the right of the fixed point are mapped to the left of
the fixed point and vice versa.

2

1

0

Figure 9. Transitions with 3 intervals in the range 2
3
<

p < 0.70237758.

Since α is monotonic on J0 and J1, we have m02 = m10 = m11 = 1,
so that A11 and A10 are both given by γ/p1, while A02 = γ/1

2
= 2γ.

Finally, m20 = 2 and A20 = 2γ/p2.
It’s well known that the spectral radius of a matrix is the maximum of

the spectral radius of its communicating components. The component
containing 1 has spectral radius A11 = γ/p1, while the component
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Figure 10. Full 9 interval transition diagram for 2
3
<

p < 0.709637. The double arrow signifies that m50 = 2
.

containing 0 and 2 has spectral radius (A02A20)
1/2 = 2γ/

√
p2. We have

A11 < 1 for all p, and 2γ/
√
p2 < 1 in the range 2

3
< p < 0.70237758.

(At the endpoint of the interval, 2γ/
√
p
2
becomes 1).

5.2. The range (2/3, 0.709636). Here, and in the next range, we
divide [1

2
, p] into 9 sub-intervals. In this range, we check that the fol-

lowing inequalities are satisfied:

1
2
< p7 < p3 < p5 < p9 < p1 < p2 <

2
3
< p6 < p4 < p8 < p.

We divide the interval [1
2
, p] into subintervals J0, . . . , J8 as follows:

J0 = [1
2
, p7]; J1 = [p7, p3]; J2 = [p3, p5]; J3 = [p5, p1]; J4 = [p1, p2];

J5 = [p2, p6]; J6 = [p6, p4]; J7 = [p4, p8]; and J8 = [p8, p].
The transitions between the intervals are shown in Figure 10.
There are three connected components, one (the interval J4 by itself)

with radius γ/p1, one (the intervals J2 and J6) with radius γ/
√
p3p6.

Both of these are less than 1 by the above argument. The third com-
ponent is illustrated in Figure 11 and consists of two loops of period
4 sharing a common pair of vertices. The spectral radius of this com-
ponent is the fourth root of the sum of the product of the multipliers
around the two loops. That is, the spectral radius of this component
is given by

γ

(

1

p5p2

(

2
1
2
p8

+
1

p7p4

))1/4

.

This quantity is less than 1 in the given range.
Notice that the principal component has period 4 because the origi-

nal map is twice renormalizable.
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Figure 11. Principal component for 2
3
< p < 0.709637

4
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8062
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Figure 12. The transitions in the range 0.709637 < p < 0.719023.

5.3. The range [0.709637,0.719023]. In this parameter range, the
map is only once renormalizable. At 0.709636979, there is a coincidence
p3 = p5 (so that all odd iterates beyond the third coincide; all even
iterates beyond the fourth coincide).

The right end point of the interval, 0.7190233023, occurs when p9
hits 1

2
. On the parameter interval [0.709636979, 0.7190233023], the

functions p 7→ pi are monotone for each 1 ≤ i ≤ 9. The graphs of
the functions do not cross.

In this range, we have 1
2
< p9 < p5 < p3 < p7 < p1 < p2 <

2
3
< p8 <

p4 < p6 < p.
Again, we use these points (excluding p9 and

2
3
) to define a collection

of intervals: J0 = [1
2
, p5], J1 = [p5, p3], J2 = [p3, p7], J3 = [p7, p1],

J4 = [p1, p2], J5 = [p2, p8], J6 = [p8, p4], J7 = [p4, p6] and J8 = [p6, p].
The transitions are 0 → 8; 1 → 7; 2 → 6; 3 → 5; 4 → 2, 3, 4; 5 → 0, 0, 1;
6 → 0; 7 → 1, 2; and 8 → 3 (where repeated transitions correspond to
values of m that exceed 1).

This is illustrated in Figure 12.
The single component consisting of J4 always has multiplier less than

1. The transition matrix of the principal component is given by
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γ























0 0 0 0 0 0 0 2
0 0 0 0 0 0 q5 0
0 0 0 0 0 q3 0 0
0 0 0 0 q7 0 0 0
2q2 q2 0 0 0 0 0 0
q8 0 0 0 0 0 0 0
0 q4 q4 0 0 0 0 0
0 0 0 q6 0 0 0 0























where qi = 1/pi.
We check that q4, q5 and q8 are increasing in the parameter range,

while q3, q7 and q6 are decreasing. Substituting the maximum values of
each of these quantities in the range and also using the maximal value
of γ, we obtain a matrix whose spectral radius is 0.9773, giving the
required bound on the pressure in this range.

In principle it should be possible to extend by smaller and smaller
intervals as long as the pressure remains negative. For example, the
matrix based on using 230 iterates shows that the pressure is negative
for p = 0.7321.

Probably a computer lower bound would show that the pressure is
positive for some value of p not much larger than this.
At this stage, we have proved that

Lemma 10. Strategy σ∗ for Player 1 and Strategy (x(θ))θ∈[p,1−p] for
Player 2 are optimal strategies if 2

3
≤ p ≤ 0.719023.

6. Better than σ∗ after the critical point

Beyond the critical point, we suspect that the strategy σ∗ is often
not optimal, especially when the orbit of 1−p comes close to 1

2
. Indeed,

we propose strategies — far from optimal — which make better than
σ∗ for specific values of p ; we prove this claim completely for 3

4
(which

was an explicit open question); we also show the computation for the
value p = 0.73275300915..

Let p be large enough so that we can expect σ∗ not to be optimal.
We choose k0 so that θ̃ = Φk0(1−p) < 1

2
is close to 1

2
. We also let ǫ > 0

be a small real number.
We modify slightly σ∗ to a strategy σk0,ǫ in the following way: if

θ 6= θ̃, 1− θ̃, then Player 1 plays following σ∗. But if θ = θ̃ (recall that

θ̃ < 1
2
), then Player 1 “perturbs” his reaction by ǫ: he plays T with

probability:

• 1− ǫ if s = s,
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• 1− (1− ǫ) θ̃
1−θ̃

= 1−(2−ǫ)θ̃

1−θ̃
if s = s,

and, if θ = 1− θ̃, he plays T with probability

• (1− ǫ) θ̃
1−θ̃

if s = s,

• ǫ if s = s;

in the case θ = θ̃, the belief is updated as:

• if Player 1 plays T , it becomes : θ̃ǫ := p (1−ǫ)θ̃

1−θ̃
+ (1− p)1−(2−ǫ)θ̃

1−θ̃
,

• if Player 1 plays B, it becomes : 1− pǫ := (1− p)(1− ǫ) + pǫ,

and in the case θ = 1− θ̃,

• if Player 1 plays T , it becomes : pǫ = p(1− ǫ) + (1− p)ǫ,

• if Player 1 plays B, it becomes : p (2−ǫ)(1−θ̃)−1

1−θ̃
+(1−p)(1−ǫ)1−θ̃′

θ̃′
.

The critical aspect in this choice of perturbation of the strategy is
that it enjoys the same property as σ∗, namely that the expected gain of
Player 1 is unaffected by Player 2’s choice of moves. It is this that will
allow us to compute the expected long-term gain of the new strategy.

We shall compare the value of this strategy σk0,ǫ with the value of
σ∗. We are going to prove that

Lemma 11. vp(σk0,ǫ) > vp(σ
∗) if and only if

(21) (1− θ̃)
(

w(Φ(θ̃))− w(θ̃ǫ)
)

> θ̃ (w(pǫ)− (1− ǫ)w(p)) ,

where w stands for w(θ) =
∑∞

k=0 max (Φk(θ), 1− Φk(θ)).

It is straightforward to compute the expected (one step) payoff (given

θ) with this new strategy. When θ 6= θ̃ and θ 6= 1−θ̃, the computation is
the same as for σ∗, i.e. min (θ, 1− θ). Otherwise a similar computation

yields an expected payoff: (1− ǫ)θ̃.

Observe that with the strategy σk0,ǫ, when θ = θ̃, the one-step ex-
pected payoff is a bit smaller than with the strategy σ∗. However, the
update of the belief is slightly different and one may hope that this new
belief puts Player 1 in a better position for the future: in a sufficiently
improved position to compensate for the loss in the one-step expected
payoff. The objective is to show that this is possible for some values of
p.

For this purpose, we have to find an expression for the long term
expected payoff. Whatever Player 2 plays, he sees a Markov chain on
the beliefs (governed by the random changes of the state and the values
of Player 1’s choices). The belief may take the values p and 1− p and
values in the k0 first terms of the orbits of p and 1− p; when it reaches
θ̃, it may jump to the values of the belief after θ̃; namely θ̃ǫ or 1 − pǫ
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1−p

Figure 13. Schematic depiction of the (symmetrized)

Markov chain. At each state other than θ̃, one choice
leads back to the base, and the other goes to the right.

and then continue on their orbits for some random time and then go
back to 1−p or p. It is convenient to further assume that neither θ̃ nor
1− θ̃ belong to the orbits of pǫ and θ̃ǫ. We observe that the symmetry
θ 7→ 1 − θ does not affect either the transitions or the payoff so it
suffices to follow the orbits modulo the symmetry about 1

2
.

6.1. Invariant measure for the Markov Chain. Let us set Θk(θ) =
max (Φk(θ), 1− Φk(θ)), Θk = Θk(1−p), Θ1

k = Θk(θ
ǫ
0) and Θ2

k = Θk(1−
pǫ). That is,

Θk = max (Φk(1− p), 1− Φk(1− p))

Θ1
k = max (Φk(θ̃ǫ), 1− Φk(θ̃ǫ))

Θ2
k = max (Φk(1− pǫ), 1− Φk(1− pǫ))

We consider a Markov chain on the countable state space {Θk, 0 ≤ k ≤
k0; Θ

1
k,Θ

2
k, k ≥ 0} with transition probabilities :

• If k < k0, Θk → Θk+1 with probability Θk and Θk → Θ0 with
probability 1−Θk.

• If k = k0 Θk0 → Θ1
0 with probability 1− θ̃ and Θk0 → Θ2

0 with

probability θ̃.
• For all k ≥ 0, for i = 1, 2, Θi

k → Θi
k+1 with probability Θi

k and
Θi

k → Θ0 with probability 1−Θi
k.

It is straightforward to compute the invariant measure for this chain.
We denote Πi

n the probability to be at Θi
n (with Θ0 = Θ). Invariance

implies it must satisfiy:
For 1 ≤ n ≤ k0

Πn = Π0

n−1
∏

k=0

Θk.
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For all n ≥ 0

Π1
n = Πk0(1− θ̃)

n−1
∏

k=0

Θ1
k,

and

Π2
n = Πk0 θ̃

n−1
∏

k=0

Θ2
k.

The balance in Θ0
0 implies

(22) Π0 =

k0−1
∑

n=0

(1−Θn)Πn +
∞
∑

n=0

(1−Θ1
n)Π

1
n +

∞
∑

n=0

(1−Θ2
n)Π

2
n.

Since it is a probability measure, it also must satisfy :

(23)

k0−1
∑

n=0

Πn +Πk0 +
∞
∑

n=0

Π1
n +

∞
∑

n=0

Π2
n = 1.

Equality (22) expresses the fact that the return time to the ‘base’

(1− p) is almost surely finite. We introduce notation Q =
∏k0−1

k=0 Θk =

Πk0/Π0 and w(θ) =
∑∞

n=0

∏n−1
k=0 Θk(θ). This latter quantity gives the

ratio of all weights in the sub-tree rooted at θ to the weight of θ. Using
this notation, we can write equality (23) as

Π0

(

k0
∑

n=0

n−1
∏

k=0

Θk +Q(1− θ̃)w(Θ1
0) +Qθ̃w(Θ2

0)

)

= 1.

Hence

Π0 =

[

k0
∑

n=0

n−1
∏

k=0

Θk +Q((1− θ̃)w(Θ1
0) + θ̃w(Θ2

0))

]−1

.

6.2. Expected payoff. The expected payoff can be written as the sum
of the expected payoff (given the state) weighted by the probability of
the state ; namely,

vp(σk0,ǫ) =

k0−1
∑

n=0

(1−Θn)Πn+(1−ǫ)θ̃Πk0+
∞
∑

n=0

(1−Θ1
n)Π

1
n+

∞
∑

n=0

(1−Θ2
n)Π

2
n.

Using (22), we obtain

vp(σk0,ǫ) = Π0 + (1− ǫ)θ̃Πk0 = Π0(1 + (1− ǫ)θ̃Q).

We want to show that for well chosen p, k0 and ǫ, vp(σk0,ǫ) > vp(σ
∗).

We recall that v(σ∗) = 1/w(p). Hence the desired inequality can be
written in the following sequence of equivalent forms:
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Π0

(

1 + (1− ǫ)Qθ̃
)

> 1/w(p);

(

1 + (1− ǫ)θ̃Q
)

w(p) >

k0
∑

n=0

n−1
∏

k=0

Θk +Q
(

(1− θ̃)w(Θ1
0) + θ̃w(Θ2

0)
)

;

(

1 + (1− ǫ)θ̃Q
)

w(p) > w(p)−Q(1−θ̃)w(Θk+1)+Q
(

(1− θ̃)w(Θ1
0) + θ̃w(Θ2

0)
)

.

Cancelling the w(p)’s and dividing through by the common factor
Q, we obtain as a conclusion, that vp(σk0,ǫ) > vp(σ

∗) if and only if

(24) (1− θ̃)
(

w(Φ(θ̃))− w(θ̃ǫ)
)

− θ̃ (w(1− pǫ)− (1− ǫ)w(1− p)) > 0.

This completes the proof of Lemma 11.

6.3. The case p=3/4. When p takes the value 3
4
, the symbolic dy-

namic of (1 − p) starts with 00101010 and Φ7(1 − p) = Φ7(1/4) =

1085/2244 ≃ .4835.... We shall set k0 = 7 and θ̃ = 1085/2244.
Next we estimate w(θ) for the relevant values of θ. First we do it for

1− p and for Φ(θ̃). Recall that w(θ) =
∑∞

n=0

∏n−1
k=0 Θk(θ). The general

term is positive. As soon as k ≥ 1, 1
2
≤ Θk ≤ p. Hence, the remainder

of the sequence is bounded by

∑

n≥N

n−1
∏

k=0

Θk(θ) ≤
(

N−1
∏

k=0

Θk(θ)

)

∑

n≥0

pn

≤

(

∏N−1
k=0 Θk(θ)

)

1− p
≤ pN

1− p
≤ 4

(

3

4

)N

.

We do the computation with N = 50, so the bound on the error
is smaller than 10−10 (and the obvious bound p−N is itself of order
10−7). We obtain with this approximation w(1 − p) ≃ 2.8354 and

w(Φ(θ̃)) ≃ 2.7432.
Then numerical experimentation (see Figure 14) suggests taking ǫ =

0.01. For this value of ǫ, we also compute w(θ̃ǫ) ≃ 2.7305 and w(1 −
pǫ) ≃ 2.8203. This is sharp enough to see the difference between

θ̃
(

w(1− pǫ)− (1− ǫ)w(1− p)
)

≃ 0.0064

and

(1− θ̃)
(

w(Φ(θ̃)− w(θ̃ǫ))
)

≃ 0.0065.

We conclude that

(1− θ̃)
(

w(Φ(θ̃))− w(θ̃ǫ)
)

− θ̃
(

w(1− pǫ)− (1− ǫ)w(1− p)
)

> 10−5,
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Figure 14. Numerical approximation of the graph of
the left side of (21) (vertical axis) as a function of ǫ
(horizontal axis)

so that, according to Lemma 11, we have shown that σ∗ is not op-
timal for p = 3/4. The expected payoff of the alternative strategy
can be computed: we obtain v 3

4

(σ∗) = 0.35267910... and v 3

4

(σ7,0.01) =

0.35267964..., showing a difference between the values of

v 3

4

(σ7,0.01)− v 3

4

(σ∗) ≃ 5× 10−7.

6.4. The case p=0.73275300915. The same computations with k0 =
57 (so that θ0 ≃ 0.49999805...) yield : w(1 − p) ≃ 2.76648483 and

w(Φ(θ̃)) ≃ 2.766474044. Taking for instance ǫ = 0.00015, we obtain

w(θ̃ǫ) ≃ 2.766266543 and w(1− pǫ) ≃ 2.766277325. Hence,

θ̃
(

w(1− pǫ)− (1− ǫ)w(1− p)
)

≃ 1.0373× 10−4

and

(1− θ̃)
(

w(Φ(θ̃)− w(θ̃ǫ))
)

≃ 1.0375× 10−4.

Finally, we compute

(1− θ̃)
(

w(Φ(θ̃))−w(θ̃ǫ)
)

− θ̃
(

w(1−pǫ)− (1−ǫ)w(1−p)
)

≃ 1.72×10−8.

We conclude that, for p = 0.73275300915, vp(σ57,0.00015) > vp(σ
∗). A

direct computation indeed shows that vp(σ
∗) ≃ 0.361469540454542

while vp(σ57,0.00015) ≃ 0.361469540454504, i.e. a difference larger than
3× 10−14. This concludes the proof of Theorem 1.
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