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We present an optimization problem that requires to model a multirate system, composed of subsystems with different time
constants. We use waveform relaxation method in order to simulate such a system. But computation time can be penalizing in an
optimization context. Thus we apply output space mapping which uses several models of the system to accelerate optimization.
Waveform relaxation method is one of the models used in output space mapping.

Index Terms—Differential algebraic equations, Electromagnetic coupling, Finite element methods, Optimization methods.

I. INTRODUCTION

IN the framework of the optimization of a multi-physics

system, it is necessary to model the whole system and to

perform a coupling of different numerical models. But mod-

eling of a system including components with very different

time constants is particularly problematic. On one hand, a

strong coupling involves a time discretization according to the

smallest time constant, and thus a large numerical system to

solve and a long computation time. On the other hand, a weak

coupling implies a lack of consistency of the results. In fact,

a model used in optimization has to be as precise as possible

but not too long to be computed because of the huge number

of evaluations which the optimization process requires.

Waveform relaxation method (WRM) [1], [2] is an iterative

process which allows to model each component of the multi-

physics system with respect to its own time constant. This can

reduce computation time, while keeping a good precision since

the method converges to the exact solution [3], [4]. However,

even WRM optimization can be extremely long to execute.

With the aim of reducing more optimization time, an output

space mapping (OSM) strategy [5], [6], [7], [8] can be set

up. This is still an iterative process which requires at least

two models of the same device, but with different accuracy

and computation time. A coarse model, the fastest one, but

the less accurate, is used during optimization. A fine model,

the most time consuming, more precise, is evaluated once per

iteration to correct the other model. Thus, the WRM can be

used to produce the most precise model of the OSM.

The first two parts of this article present the waveform

relaxation method and the output space mapping technique.

In the last part, these methods are applied to the minimization

of a transformer mass, using a finite element model (FEM).

II. WAVEFORM RELAXATION METHOD

WRM allows to model a multi-physics system of which

components have heterogeneous time constants. The system

is split to model each component with respect to its own time

constant. Then the communication between subsystems is done

by an exchange of waveforms. A loop is performed, with a

relaxation at each iteration, until convergence.

Let a Differential Algebraic Equation (DAE) represent a

system on the time domain T = [t0, tf ]:

ẏ(t) = h(y(t), z(t)), (1)

0 = g (y(t), z(t)) . (2)

y : [t0, tf ] 7−→ R
m, z : [t0, tf ] 7−→ R

p,

f : (Rm,Rp) 7−→ R
m, g : (Rm,Rp) 7−→ R

p.

The system is decomposed into r subsystems. Each subsys-

tem i satisfies:

ẏi(t) = hi(y(t), z(t)), (3)

0 = gi(y(t), z(t)), (4)

with

y(t) = [y1(t), . . . , yi−1(t), yi(t), yi+1(t), . . . , yr(t)]
T ,

z(t) = [z1(t), . . . , zi−1(t), zi(t), zi+1(t), . . . , zr(t)]
T .

yi : [t0, tf ] 7−→ R
mi , zi : [t0, tf ] 7−→ R

pi ,

fi : (R
mi ,Rpi) 7−→ R

mi , gi : (R
mi ,Rpi) 7−→ R

pi ,

m =

r
∑

i=1

mi, p =

r
∑

i=1

pi.

Equation (3) is the differential equation of subsystem i, and

(4) is the algebraic equation. In these equations, y are state

variables and z coupling variables.

The WRM produces iteratively an approximation

(ỹk(t), z̃k(t)) of the solution (y(t), z(t)), where k is

the iteration index.
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The initial iteration is fixed using the known values of y
and z at time t0. This is the extrapolation step:

ỹ0(t) = y(t0), z̃0(t) = z(t0), ∀ t ∈ [t0, tf ]. (5)

Then, at iteration k, the DAE (3)-(4) are solved successively

from subsystem 1 to r using Gauss-Seidel relaxation process:

˙̃yki (t) = fi(Ỹ
k
i (t), Z̃k

i (t)), (6)

0 = gi(Ỹ
k
i (t), Z̃k

i (t)), (7)

with

Ỹ k
i (t) = [ỹk1 (t), . . . , ỹ

k
i−1(t), ỹ

k
i (t), ỹ

k−1

i+1
(t), . . . , ỹk−1

r (t)]T ,

Z̃k
i (t) = [z̃k1 (t), . . . , z̃

k
i−1(t), z̃

k
i (t), z̃

k−1

i+1
(t), . . . , z̃k−1

r (t)]T .

The algorithm stops when the norm of the difference

between two successive iterations is smaller than a given

tolerance.

In the case of an exact resolution of (6)-(7), convergence

of the WRM to the exact solution is proven [1], [3], [4]. In

the case of numerical resolution, the convergence is always

effective, but an error is introduced by the discretization

schemes. Equations (6)-(7) are solved numerically by using

the most adapted time-scheme to the subsystem i, so each

subsystem is solved using its own time discretization. We

choose to use a linear interpolation between two discrete

values of a waveform to obtain the value of this waveform

at any time of T .

III. OUTPUT SPACE MAPPING

Computation time of an optimization process depends on the

complexity of the model to be evaluated during the process.

A precise model is often long to simulate, and conversely

a fast model is less accurate. Space mapping techniques

allow to perform a fast and precise optimization by using the

advantages of both models.

The following optimization problem has to be solved:

x⋆
f = argmin

x
f(x) such that kf (x) ≤ 0, (8)

with

f : X → R, kf : X → R
q, X ⊂ R

n.

Objective function f and constraints kf form the fine model,

with both high precision and computation time. A second

model of the same problem is considered: c and kc are the

objective function and constraints of the coarse model, faster

but less accurate. The coarse optimization problem associated

is:

x⋆
c = argmin

x
c(x) such that kc(x) ≤ 0, (9)

with

c : X → R, kf : X → R
q.

The principle of OSM is to optimize with the coarse

problem, then to evaluate the fine model at the solution found

to obtain correction of the coarse model. This process is

applied iteratively. At the j-th iteration of the OSM procedure,

we consider a corrector Oj ∈ R for the objective function

and a corrector Õj ∈ R
q for the constraints. The corrected

problem is:

xj = argmin
x

Oj .c(x) such that Õj .kc(x) ≤ 0. (10)

From the solution xj , new correctors are computed by

evaluating the fine model, so the number of evaluations of the

fine model is equal to the number of iterations. The algorithm

stops when a convergence criterion is satisfied: for example,

when
‖xj − xj−1‖

‖xj−1‖
is less than a given tolerance ε. We can

also use a criterion on the difference between fine and coarse

models. The algorithm is given:

1. j = 0
2. Initial point x0

3. O0 =
f(x0)

c(x0)
, Õ0

i =
kf,i(x

0)

kc,i(x0)
, i = 1, . . . , q

4. while
‖xj − xj−1‖

‖xj−1‖
> ε

4.1. xj = argmin
x

Oj .c(x) s. t. Õj .kc(x) ≤ 0

4.2. Oj+1 =
f(xj)

c(xj)
, Õj+1

i =
kf,i(x

j)

kc,i(xj)
, i = 1, . . . , q

4.3. j = j + 1

OSM implies choosing two models: one coarse and one fine.

In a system of components with heterogeneous time constants,

the WRM is an adapted way to obtain a fine model with a

shorter computing time than a strongly coupled model.

IV. APPLICATION

The OSM strategy is applied to the optimization of a trans-

former. We consider a device composed of a circuit supplying

a transformer (Fig. 1(a)): a pulse width modulation (PWM)

voltage source, an LC filter, a resistor and a transformer.

Two models of this device are necessary to apply the space

mapping.

A. Coarse and fine models

The coarse model is a circuit model of the device (Fig.

1(b)), where the transformer is represented by an inductance

L = µ0µrN
2S

ℓ
, with N the number of turns in the primary

coil, S the section and ℓ the length of the magnetic core.

The fine model is a simulation by WRM where the system

is decomposed into two subsystems (Fig. 1(c)): the circuit

and the transformer. The circuit consists of the PWM voltage

source with the LC filter and a current source. The transformer

is modeled by 3D FEM (only one eighth of the transformer is

modeled, Fig. 2) in vector potential formulation with a voltage

coupling [9], [10]. The source of the circuit is the current iR in

the resistor, and the source of the transformer is the voltage vc
of the capacitor. In the WRM loop, at the k-th iteration, circuit

part is solved with ik−1

R as a source. Voltage vkc is obtained

and used as source for the transformer. This gives ikR, and the

loop goes to the next iteration. For FEM, the magnetic flux

density B is expressed with respect to the vector potential A:



CMP-586 3

B(χ, t) = curlA(χ, t), (11)

χ ∈ D ⊂ R
3, t ∈ T.

By Ampere’s law and the coupling equation we obtain the

following system:

curl

(

1

µ
curlA(χ, t)

)

−N(χ)iR(t) = 0, (12)

d

dt

∫

D

A(χ, t).N(χ)dv +R.iR(t) = vc(t). (13)

where N = J/iR, with J the current density.

Last, time discretizations are different in the two subsys-

tems. Because of the PWM, time-step for the first subsystem

is dt1 = 5 × 10−7 seconds, whereas in the transformer part,

time-step is dt2 = 10−3 seconds.

i
L

v
C

i
R

v
PWM

(a) Complete device.

i
L

v
C

i
R

v
PWM

L

(b) Coarse model.

v
C

i
R

i
L

i
R

v
C

dt=5.0e-7 dt=1e-3

v
PWM

i
R

v
C

(c) Fine WRM model.

Fig. 1. The coarse and fine models of the device.

Fig. 2. Mesh of the eighth of transformer used for the FEM.

B. Optimization problem

The aim is to minimize the transformer mass m, and to

impose RMS current value into the transformer. The design

variables are width L and height H of the transformer: all

other dimensions are deduced from this two length (Fig. 3).

These two length form the optimization variables: x = [H,L].
We denote by ic and if the RMS values of current iR,

obtained respectively with the coarse and the fine model. The

optimization problem is:



























min
H,L

m(H,L),

20cm ≤ H ≤ 40cm,
12cm ≤ L ≤ 24cm,
H − 2L

3
> 0,

if = 3 A.

(14)

H

L

d d

d

d

d=
L

3

d

d

d

3

d

3

d

3

Fig. 3. Transformer’s geometry.

OSM algorithm is applied to the optimization problem of

the transformer. Objective function is the same for the two

models, the correction is applied only on the constraint on the

current in the primary coil. At iteration j of the OSM process,

a corrector Õj =
if (x

j)

ic(xj)
is applied to the value ic such that

the following corrected problem is solved:



























min
H,L

m(H,L),

20cm ≤ H ≤ 40cm,
12cm ≤ L ≤ 24cm,
H − 2L

3
> 0,

Õj .ic = 3 A.

(15)

All the optimizations are executed with the corrected coarse

model. The FEM is evaluated once per iteration to compute
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TABLE I
SOLUTIONS AND OUPUTS OF THE OPTIMIZATION PROBLEM

OSM Reference (WRM) Analytical

H 30.8478 30.8248 27.1054
L 12.0000 11.9971 11.9996
if 2.9996 3.0012 2.8051
m 19.7370 19.7113 16.9975

Number of f evaluations 3 90 -

the corrector. The algorithm stops when the difference between

two iterations is small enough. Optimizations use sequential

quadratic programming (SQP) algorithm. This algorithm needs

an initial point to start with. For the first iteration, a random

initial point is used. For the following iterations, the solution

of the previous iteration is used. Five OSM procedures are per-

formed, with five random initial points, and the best solution

is kept. The algorithm used is the following:

1. random point x0

2. while
‖xj − xj−1‖

‖xj−1‖
> ε

2.1. Õj =
if (x

j−1)

ic(xj−1)
2.2. xj = argmin

x
m(x) s. t. Õj .ic(x) = 3

2.4. j = j + 1

1 2 3
0

0.1

0.2

0.3

0.4

0.5

Initial point 1

Initial point 2

Initial point 3

Initial point 4

Initial point 5

Iteration

‖xj
−xj−1‖

‖xj−1‖

Error between two iterates

(a) Evolution of the error between two iterations vs space-mapping iterations.

0 1 2 3
0

20

40

60

80

100

Initial point 1

Initial point 2

Initial point 3

Initial point 4

Initial point 5

Iteration

m (kg)

Mass

(b) Evolution of the transformer mass vs space-mapping iterations.

Fig. 4. Evolution of the error and of the mass vs space mapping iterations.

We compare in Table I the best solution obtained by

using: 1. The OSM strategy. 2. An optimization with the

WRM model. 3. An optimization with the analytical model.

Reference solution is the solution obtained by the optimization

with the WRM model. The OSM process stops at iteration j

when the criterion
‖xj − xj−1‖

‖xj−1‖
is inferior to a given tolerance

ε. The OSM algorithm converges quickly to a solution which

minimize the transformer mass: on the five trials, three itera-

tions maximum are enough to obtain the optimum (Fig. 4(a)),

so FEM is evaluated three times, and the objective function

decreases at each iteration (Fig. 4(b)). The computation time

of the optimization process is considerably reduced due to the

few evaluations of the FEM, but the solution is close to the

reference solution. Compared to the reference solution, the

error on the objective function is 13.77% with the analytical

model but 0.13% with OSM.

V. CONCLUSION

A multirate system is composed of components with very

different time constants that are evaluated many times during

the optimization process. In order to reduce optimization time,

an OSM strategy is applied to solve the problem. Two models

of the system are chosen: an analytical one and a FEM. FEM

is computed using the WRM, which allows to simulate each

subsystem with respect to its own time constant and guarantees

the consistency of the result with a reasonable computation

time. The joint action of OSM and WRM allows to obtain a

solution as accurate as WRM but in a shorter time.
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