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Abstract. This paper shows that learning by imitation leads to a pos-
itive effect not only in human behavior but also in the behavior of the
autonomous agents (AA) in the field of self-organized creation deposits.
Indeed, for each agent, the individual discoveries (i.e. goals) have an ef-
fect on the performance of the population level and therefore they induce
a new learning capability at the individual level. Particularly, we show
through a set of experiments that adding a simple imitation capability
to our bio-inspired architecture allows increasing the ability of agents to
share more information and improving the overall performance of the
whole system. We will conclude with robotics’ experiments which will
feature how our approach applies accurately to real life environments.
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1 Introduction

Swarm-based systems [1, 2] are now a classical approach to dealing with collective
intelligence problems. In such approaches, to produce global emergent behaviors
for Autonomous Agents (AA) the interaction between agents needs not to be
complex [3, 4]. Based on this idea, researchers have been able to design a number
of successful algorithms in the field of self-organized creation deposits. [5] has
proposed a model relying on biologically plausible assumptions to account for
the phenomenon of the clustering of dead bodies performed by ants. [6] showed
that acting on objects simplifies the reasoning needed by a multi-agent system
and allows the deposit of scattered objects. In the same field of creation deposits
we assume an environment composed of several animats and three plants (A, B
and C). The AA are motivated by the simulation of three types of needs related
to the three plants and each need can be satisfied by a corresponding plant.
The level of each type of need is internally represented by an essential variable,
ei(t) whose value is in [0; 1] and varies with time dei/dt = −αnei(t), where αn

represents the decreasing rate of the essential variable. If a plant from the corre-
sponding type has not been found, the agent dies. Thus, in order to maintain the



satisfaction level of our AA, keep them alive and optimize their planning, instead
of only navigating between the three plants, it would be interesting if the agents
were able to create relevant warehouses. So as to improve the performance of
the system, several benefits can be expected from the imitation capability [7–9].
It can be considered as a powerful skill that would enable the AA to learn and
discover new tasks and places. Learning by imitation is an intuitive and natural
method, it is not only a skill useful for learning but also a way to speed up
the learning process. Therefore, the researchers consider imitation as a powerful
behavior which enables learning by observation even if the imitation was not
intentional (i.e. imitation emerging from the ambiguity of the perception in a
simple sensori-motor system) [7]. The aim of this work is to show the positive
effect of the learning by imitation on the improvement of the performance of the
deposits’ system. To validate our system we performed a series of experiments
with simulated agents and with swarm robots. The remainder of this paper is or-
ganized as follow: in section 2 the bio-inspired architecture is presented. Section
3 describes the behaviors of the AA. Sections 4 and 5 are devoted respectively
to the description of the relevance of the emerging warehouses and to the expla-
nation of the imitation process. Before concluding, section 6 and section 7 are
concerned respectively with the analysis of the positive feedback induced by the
imitation strategy in AA and in swarm robots.

2 The Bio-Inspired N.N Architecture of the Agent

Starting from neurobiological hypotheses on the role of the hippocampus in the
spatial navigation, [10] produced a model of the cognitive map in the hippocam-
pus representing the entire environment and not only the shortest paths to a
given goal. The work of [11] revealed special cells in the rodents’ hippocampus
that strike off when the animal is at a precise location. These neurons have been
called place cells (PC). In our model, we do not directly use PC we rather use
neurons called transition cells (TC) [12]. A transition cell encodes for a spatio-
temporal transition between two PCs consecutively winning the competition,
respectively at time t and t + δt. The set of the PCs and the TCs constitute a
non-cartesian cognitive map. A schematic view of the architecture of our AA is
shown in fig. 1.
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Fig. 1. Model of hippocampo-cortical for the building of an agent cognitive map



To create the PC, the agent takes, a visual panorama of the surrounding environ-
ment. The views are processed to extract visual landmarks. After learning these
landmarks, a visual code is created by combining the landmarks of a panorama
with their azimuth. This configuration serves as a code for PCs. The signals pro-
vided by the EC (the entorhinal cortex) are solely spatial and consistent with
spatial cells activities. Spatial cells activities are submitted to a Winner-Take-
All competition in order to only select the cell with the strongest response at
a specific location. We will subsequently speak about the current location by
indicating the spatial cell which has the highest activity at a given location.
The temporal function at the level of the DG (dentate gyrus) is reduced to the
memorization of a previous location. The acquired association at the level of
CA3/CA1 (the pyramidal cells) is then the transition from a location to another
in addition o the information concerning the time spent on carrying out this
transition. Once the association from the previous location and the new one is
learned, every new entry will reactivate the corresponding memory in the DG.
During exploration of the environment, the cognitive map is gradually created
as the agent moves (see fig. 2).

  (a)  The cognitive map of agent_1        (b) The cognitive map of agent_2

Fig. 2. The cognitive map of two agents at 5104 time steps. The shape of the cognitive
map in (a) and (b) proves that its construction is related to the agent’s own perception.

3 The Behaviors of the Autonomous Agents

In the context of situated cognition, local rules can lead to create emergent struc-
tures allowing the creation of warehouses relevant to the sorting strategy used by
[5]. We propose local generic rules depending on the number of withdrawals and
deposits of warehouses according to the number of agents perceived. The agent
is indeed ought to favor the creation of warehouses in locations which contain
other agents rather than empty regions. Thus, the perception of local agents is
responsible for controlling the rules of withdrawals and deposits. The condition
for withdrawing is computed by Pr(Taken) = exp−λNA where NA is the number
of agents in the neighborhood, λ is a positive constant: The probability that
an agent needs to take some plant goods increases when it perceives that the



plant is less used by other agents. So, the more agents are near a plant, the
less withdrawal there is and vice versa. The condition for deposits is computed
by Pr(Deposits) = (1 − exp−αNA) ∗ (1 − exp−βt) where α, β are environmental
factors, NA is the number of agents in the neighborhood and t is the time since
the taking: the probability of deposit increases with time and distance from the
origin plant (when the agent is far from the origin plant where it took the last
goods) and it depends on the number of the agents in the neighborhood (when
the current place of the agent is frequented by other agents). For this reason, we
tried to restrict the ability of agents to perceive the environment. Moreover, the
deposit operation is also built on the concept of refueling : the agent puts goods
in the warehouses that already exist.

4 The Emergence of Warehouses

We use an environment with 60 agents (under 20 agents, the system will not be
able to create a fixed number of warehouses in fixed places) and three original
plants. This environment is continuous and in order to cross it diagonally, an
agent needs 200 time steps. This experiment is just a general scenario to describe
the behavior of the agents and the creation of relevant warehouses.

(a) t = 0 time steps     (b) agents in the environment    (c) t= 5980 time steps

(d) t = 6530 time steps       (e) t= 7720 time steps          (f) stable configuration

Fig. 3. The figure shows an example with 3 plants A, B and C whose positions are
fixed and can deliver an unlimited amount of products. They provide warehouses of
3 different kinds (”a” is a warehouse-type A, ”b” is a warehouse-type B and ”c” is
a warehouse-type C). Through the individual deposit process of agents, warehouses
emerge and become stable after a while.

The agents start to move randomly in the environment, with a limited range of
visual perception (see Fig. 3b). While passing through a plant, an agent increases



its level of satisfaction and applies the local rules of taking and transporting a
quantity from the associated product. If the decision of transporting some prod-
ucts is taken, the agent continues its journey. If deposited, goods represent a
new warehouse (which allows 10 visits for agents) permitting others to increase
their satisfaction level. Agents also have the possibility of refueling warehouses
by adding products to them (the available products in the warehouses will in-
crease). This provides stability for warehouses in relevant locations which are
close to several agents in order to prevent loss. However, warehouses which are
abandoned or poorly visited will eventually disappear since the amount of goods
available will decrease rapidly. Fig. 3c and d show the disappearance of isolated
warehouses. When a planning agent tries to reach a warehouse and realizes that
it has disappeared, the agent dissociates the current PC from the formerly-
corresponding warehouse and resets the motivation to 0. Hence the PC does not
fire any more when the agent feels the need for this warehouse. Similarly, when
a new matching warehouse is discovered, the paths leading to the warehouse are
immediately reinforced, modifying the cognitive map synchronously with the en-
vironment. In fig. 3e the AA converges to a stable solution with a fixed number
of warehouses in fixed places at 7720 time steps and remains the same for more
than 20000 time steps (see fig. 3f).

5 The Imitation Process

Collective learning experience gathered by individual agents cannot be of use
to others, if there is no means to communicate information between agents.
One way to add knowledge transmission among agents is to make them able to
imitate one another. Thus, at the individual level, agents can rely on an on-line,
continuous building of a cognitive map whose structure depends on their own
experience and discovery of the environment; and at the social level, they can
take advantage of the ability to imitate one another using simple agent-following
strategies to transmit parts of one agent’s cognitive map to another’s, leading to
some kind of naturally distributed knowledge, similar to what can be achieved
in swarm-intelligence systems, except that shared knowledge does not use the
physical space as repository but uses individual cognitive maps instead. We
implemented and studied a simple imitation strategy based on the azimuth: if a
single agent is visible, it becomes the chosen imitation target; if several agents
are visible, then the chosen target is the closest one to the direction of the agent
which tries to imitate. The decision of imitation is controlled by a probabilistic
function (see eq. 1): the probability of imitation decreases when the number of
discovering of different kind of resources(plants/warehouses) ND increases.

Pr(Imitation) = η exp−ρND (1)

η and ρ are positive values. To better understand the imitation behavior of
agents, fig. 4a shows that the agents represented by triangles, started to move
randomly in the environment. Due to the imitation behavior fig. 4b shows that
subgroups of agents appeared in the environment. According to the curve (d),



this phase coincides with an increase in the number of agents in imitation. Indeed,
the agents try to follow each other so as to localize and learn the resources’
positions. We can also see that some subgroups, have succeeded to discover
the plant A and B and to learn their positions. After discovering all kinds of
resources (where the average time is 505 time steps. However without imitation,
the average time to reach the resources is 1683 time steps) the probability of
the imitation will decrease (see fig. 4c). Thus, the number of agents in imitation
shown by the curve (d) also decreases, since agents are now able to return to the
resources on their own.

(a) Agents before the imitation behavior (b) The imitation behavior of agents (c) Agents after the Imitation behavior

(d)

Fig. 4. The evolution of the agents’ number in imitation through 1000 time steps.

6 The Positive Feedback of the Imitation Behavior

The behaviors of the AA are not deterministic because they do not always pro-
vide the same results on several tests with the same parameters. In order to ob-
tain complete results, we kept the same previous parameters (α = β = 0.3, λ =
0.7, η = 0.1, ρ = 3, ST = 50 and the number of agents is 60) and we conducted
ten tests of AA for each experiment until 20000 time steps (the number of tests
is determined by the statistical Fisher test). Through the imitation behavior we
show that the agents can more rapidly (i) learn the position of the resources (ii)
create a relevant warehouse and (iii) satisfy their needs. Thus, the agents would
be able to improve the performance of the whole system.



6.1 Optimization of Warehouses’ Numbers and Convergence Time

We started to experimentally keep track of the number of warehouses’ visits
when the agents imitate as compared to the number of warehouses’ visits when
the agents do not have imitation capabilities (for 20000 time steps). The average
number of visits to warehouses in the first case (246) is more important than in
the second one (115). This shows that with the imitation behavior, the ware-
houses are more frequented by the agents. We defined the performance of the
deposit system through the convergence time and the number of warehouses in
the environment. The analysis of the agents’ behavior in Table 1 enabled us to
show that due to the imitation behavior the AA were able to deposit a fixed
number of warehouses which can emerge in fixed positions while minimizing the
warehouses numbers and the convergence time without having to use thresholds
in order to limit the number of warehouses nor to specify their locations.

Table 1. Average of warehouses number and convergence time.

Warehouses Number Convergence Time

Without Imitation Behavior 7 9000 time steps

With Imitation Behavior 6 8123 time steps

6.2 Optimization of Agents’ Planning and their Survival Rate.

The AA were also able to create emergent and stable warehouses allowing an
optimization of the planning. Table 2 shows that due to the imitation, agents
can optimize their planning time with the help of relevant warehouses. This
leads to a higher average of satisfaction level. Indeed, based on the imitation,
the AA is able to better optimize the planning time of agents thanks to the
faster learning of the new places of warehouses and to improve their level of
satisfaction. To study the influence of the imitation strategy on the survival
rate of the populations, we used the same environment and launched 20, 30, 40
then 60 agents, and counted the number of agents that survived, or died for not
having found all of the three types of resource. The results show that adding an
imitation capability can dramatically enhance the survival rate of the population
from 45,66% (without imitation behavior) to 60,64% (with imitation). Indeed,
coupling imitation behavior with the cognitive map allows agents to discover
and to learn the position of the resources in the environment more rapidly

Table 2. Optimization of planning time.

Without Imitation Behavior With Imitation Behavior

Planning Time 450 time steps 218 time steps

Satisfaction Level 88.07 91.25



7 The Effect of Imitation Behavior on Swarm Robots

We have also validated the positive feedback of the imitation strategy on a
minimal robotics setup [13] based on the same bio-inspired architecture which
has been validated in real robots in [14] . We conducted 20 experiments (this
number is determined by the statistical Fisher test) composed of an imitator
robot IR (having an imitation behavior) and with a leader robot LR (that has
already learned the position of the goals G1 and G2 with a threshold of vigilance
to learn new places equal to 0.65 and a duration of learning equal to 30 minutes).
Fig. 5a, b, d and e show that the IR tries to follow the LR which is looking
for the goals. Fig. 5c and f demonstrate that the IR succeeded in discovering
both goals during the following of the LR. As in the experiments with AA, this
experience allows us to show through imitation that the IR was able to find both
goals and to optimize the time of their discovery. Indeed, the IR takes 5 minutes
to find both goals. However, a robot moving randomly (without an imitation
behavior) takes 22 minutes (about 4 times more) to discover the two goals.

Fig. 5. The influence of the imitation behavior in swarm robots.

8 Conclusion

In this paper we have tried to show the importance of the learning by imitation
which leads to the improvement of the performance of the whole system. As
a possible application, we have added in [15] customers to the environment in
order to resolve the classical warehouse location problem. We also highlighted
the importance of the imitation strategy in real robots which allows to solve the
navigation task and optimizes the time to explore the plants. As prospects, we
try to study the limits of emergent structures in the real world.
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