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ABSTRACT

Polar codes are a new family of error correction codes for

which efficient hardware architectures have to be defined for

the encoder and the decoder. Polar codes are decoded using

the successive cancellation decoding algorithm that includes

partial sums computations. We take advantage of the recur-

sive structure of polar codes to introduce an efficient partial

sums computation unit that can also implements the encoder.

The proposed architecture is synthesized for several code-

lengths in 65nm ASIC technology. The area of the resulting

design is reduced up to 26% and the maximum working fre-

quency is improved by 25%.

Index Terms— FEC, polar codes, hardware architecture,

successive cancellation decoding

1. INTRODUCTION

Polar codes [1] are a new class of error correction codes.

These linear block codes are proven to achieve the capacity

of any symmetric memoryless channel under successive can-

cellation (SC) decoding [2]. Moreover, for a code of length

N , encoding and decoding computational complexities are

O(N log2(N)). Despite these desirable properties, polar

codes require a very large code length in order to actually

approach the channel capacity (N > 220). Consequently,

the practical interest of polar codes highly depends on the

possibility to design efficient encoders and decoders for large

N values.

Since polar codes invention, several hardware architectures

were proposed. In [1], Arıkan suggests to use a fast Fourier

transform structure to efficiently reuse computations. This

first architecture requires N log2(N) processing elements

(PEs) and as many memory elements (MEs).

Some works then focused on reducing the number of PEs and

MEs in SC decoders [3]. In [4], a line architecture is imple-

mented. It only uses (N − 1) PEs and as many MEs without

affecting the decoding performance and the throughput. In

[5], it is shown that the number of PEs can be further reduced

(64 PEs) with a negligible impact on throughput. This SC

decoder was fabricated in 180nm ASIC technology [6].

Since SC decoding has a low intrinsic parallelism, comple-

mentary works focused on increasing the throughput of SC

decoders. In [7] and [8], lookahead techniques are used to

reduce the decoding latency while using limited extra hard-

ware resources. In [9], a simplification of SC decoding is

proposed in order to reduce the number of computations

without altering error correction performance. Extra latency

reduction technique is investigated in [10] where maximum

likelihood decoding is used to further speedup the decoding

process. However, these low latency decoders have not been

implemented yet.

As shown in [5] and [6], the hardware implementation of SC

decoders is constrained by the partial sums computation unit

which occupies a significant part of the area and limits the

maximum working frequency, especially as N grows. In [8],

an alternative method to compute partial sums is proposed but

was not implemented. In this paper, we show that the partial

sums computation unit can be implemented with a shift reg-

ister structure, lowering hardware complexity and increasing

maximum clock frequency. We also show that the proposed

architecture can be used as a sequential polar code encoder.

The remainder of the paper is organized as follows: in section

2, the polar code construction, encoding and SC decoding

processes are briefly reviewed. In the following section, the

partial sums computation is introduced and a hardware imple-

mentation is proposed. Finally, in section 4, this partial sums

unit is compared with existing implementations in terms of

area and maximum working frequency in ASIC 65nm tech-

nology.

2. POLAR CODES

2.1. Definition and construction

Polar codes are linear block codes of size N = 2n, n being

a positive integer. In [1], Arıkan defined a construction based

on a 2 × 2 binary matrix, denoted as the kernel of the code:

κ =

[

1 0
1 1

]

. The generator matrix of the code is a subma-

trix of the nth Kronecker power of κ, denoted κ⊗n. Thus, for

n = 3 (N = 8),
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Fig. 1. N = 8 polar code encoder graph.
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A polar code with dimension K and codelength N (K ≤ N ),

is denoted as PC(N ,K) whose code rate is R =
K

N
. Assum-

ing a particular successive cancellation decoding algorithm on

the receiver side, the K rows are selected according to the re-

liability of some equivalent channels. In [1], Arıkan described

a method to select these K rows for a binary erasure channel

and a binary symetric channel. The construction was later ex-

tended to the more general binary input memoryless channels

[2]. The reader may refer to [1] for more explanations on the

polarization phenomenon and polar codes definition.

2.2. Encoding Process

As any linear block code, polar code codewords are ob-

tained by multiplying a K-bit information vector, D =
[d0, d1, ..., dK−1], with the (K × N )-bit generator matrix

of the code. An alternative encoding process is to build an ex-

tended information vector U which contains the K informa-

tion bits and (N −K) frozen bits (all set to 0). This extended

information vector is built in such a way that information bits

are located on the most reliable positions corresponding to

the K selected rows of κ⊗n. The corresponding codeword X
can then be constructed by calculating X = U × κ⊗n.

A polar code encoder may also be represented graphically as

shown in Fig. 1 for n = 3. It consists of n stages of
N

2
XORs

each. The input vector U , on the left hand side, is propagated
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Fig. 2. N = 2 polar code decoding example.

into the graph in order to get X , on the right. In Fig. 1, a

R = 0.5 polar code is considered; it means that half of the

bits in vector U are frozen bits (set to 0) while the rest of

them are information bits.

2.3. Successive Cancellation Decoding

After being sent over the transmission channel, the noisy ver-

sion Y of the codeword X is received. Each sample yi is con-

verted into log likelihood ratio (LLR) format. These LLRs are

denoted λi, with 0 ≤ i ≤ N − 1. The decoder successively

estimates every bit ui based on the channel observation vector

(λN−1

0 )a and the previously estimated bits (ûi−1

0 )b. In order

to estimate each bit ui, the decoder computes the following

LLR value:

λi,0 = log
Pr(yN−1

0 , ûi−1

0 |ui = 0)

Pr(yN−1

0 , ûi−1

0 |ui = 1)
. (2)

The estimated bit ûi is calculated based on the following rule:

ûi =

{

0 if λi,0 > 0
1 otherwise.

(3)

Since the decoder knows which bits are frozen, if ui is a

frozen bit, then ûi = 0 regardless of λi,0 value.

As proposed by Arıkan in [1], the factor graph representation

of polar codes can be used to efficiently compute the λi,0.

SC decoding can be seen as an instance of belief propagation

decoding where LLRs are propagated on the factor graph of

the code with a particular scheduling. In SC decoding, bits ûi

are processed sequentially and the decision is then fed back

into the graph for the decoding of subsequent bits. In Fig. 2,

the factor graph of a simple N = 2 polar code is represented.

It is composed of a check node (CN or ⊕) and a variable node

(VN or = ). In the LLR domain, the VN function is a simple

addition and the CN function uses product of transcendental

functions. In the perspective of decoder implementation, the

simplified versions of the VN and CN functions are used [5]:

{

a⊕ b = sgn(a)× sgn(b)×min(|a|, |b|)
a = b = a+ b.

(4)

aλ
N−1

0
= [λ0...λN−1]

bû
i−1

0
= [û0...ûi−1]
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Fig. 3. Factor graph for N = 8 polar code.

The decoding process of a N = 2 polar code can be summa-

rized as follows:

{

f(λ0,1, λ1,1) = sgn(λ0,1.λ1,1).min(|λ0,1|, |λ1,1|)
g(λ0,1, λ1,1, û0) = (−1)û0λ0,1 + λ1,1,

(5)

where û0 and û1 are determined according to equation (3).

The g function equation shows that the decoding process of

a polar code depends on LLRs propagating from right to left

(λ0,1;λ1,1) and also on hard decision (û0) propagating from

left to right. The factor graph of a N = 8 polar code is de-

tailed in Fig. 3. The decoder successively estimates the bits

ûi from the computation of LLRs of the indexed edges. The

LLR of edge (i, j) is computed such as:

λi,j =

{

f
(

λi,j+1, λi+2j ,j+1

)

if B(i, j) = 0
g
(

λi−2j ,j+1, λi,j+1, Si−2j ,j

)

if B(i, j) = 1,

(6)

where B(i, j) ≡
i

2j
mod 2, 0 ≤ i < N and 0 ≤ j < n. Si,j

represents the partial sum which corresponds to the propaga-

tion of decisions back into the factor graph. For instance, in

Fig. 3, S1,2 = û1 + û3 (modulo-2 sum).

3. PARTIAL SUM COMPUTATION

When implemented in hardware, an SC decoder is composed

of three main units: the processing unit (PU), the memory

unit (MU) and the partial sums unit (PSU). The PU consists

of several processing elements (PEs) used to compute f and

g functions. The MU stores the computed LLRs (λi,j) in reg-

ister banks during the decoding process. The third unit, the

PSU, computes the partial sums required by PEs to calculate

the g functions.

In [5], a semi-parallel SC decoder was synthesized for several

N values. Synthesis results show that the MU takes about

75% of total decoder area while the rest of the design cost is

mainly due to the PSU. In fact, the PU area becomes negligi-

ble (<1%) as N grows (N > 213). As stated in [5], the MU

cost can be drastically reduced by using RAM blocks instead

of register banks. Consequently, the most complex part is then

the PSU. Furthermore, in [5] and [6], it is noticed that the crit-

ical path of the SC decoder is in the PSU and the maximum

working frequency decreases as N increases. Therefore, hav-

ing an efficient implementation of the PSU would benefit to

the SC decoder area and clock frequency.

3.1. Existing partial sums implementations

As depicted in Fig. 3, there are
N

2
log2(N) partial sums to be

computed. When a bit ûi is obtained, the PSU should update

all Si,j that include this current bit. For example, in Fig. 3,

when û2 is available, the partial sums {S2,0;S0,2;S2,2} have

to be updated by ”XORing” their current values with û2. All

the remaining partial sums should however keep their current

values.

It was shown in [5] that some partial sums can share the same

D-Flip-Flop (DFF) thus reducing the required storage space

from
N

2
log2(N) to (N−1) DFFs. In this work, an Indicator

Function (IF) is defined in order to indicate whether each

DFF should be updated with the current ûi or not. The IF

is implemented by some combinational logic that generates

(N − 1) bits necessary to control the accumulation in the

(N − 1) DFFs. As reported in [5], the hardware complex-

ity of the IF-PSU increases linearly with N . Moreover, the

number of logic gate stages in the critical path also increases

with N . This translates into a reduction of the maximum

frequency as N grows.

In [8], a recursive construction of a PSU called the feedback

part (FB-PSU) is proposed. To the best of our knowledge,

this architecture has not been implemented. However, from

the description of the structure one can observe that the

FB-PSU is composed of (n − 1) stages. Each one of them

contains Dl =
(

N

2log2(N)−l+1 + N

2log2(N)−l+2 × (2l−2 − 2)
)

DFFs. Therefore the total number of DFFs is
∑n

l=2
(Dl).

Thus
(

N2
−4

12

)

DFFs are necessary to implement the FB-PSU

along with

(

N

2
− 1

)

XOR gates and (N − 2) multiplexers.

Finally, the authors reported that the critical path goes through

(log2(N) − 1) XOR gates and (log2(N) − 2) multiplexers

meaning that the maximum clock frequency is affected as N
grows.

In this paper, a reduced complexity PSU architecture is de-

scribed. The critical path includes few logic gates which

enables to reach a high working frequency. Moreover, the

proposed structure can also be used as a sequential polar code

encoder.

3.2. Shift-register-based partial sums computation unit

(SR-PSU)

During SC decoding process, a maximum of N
2

g functions

can be performed in parallel. Therefore, we propose to store
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the partial sums in an N
2

bit register. In addition to the N
2

DFFs, it consists of N
2

XOR gates, N
2

AND gates and a matrix

generation unit whose structure is detailed in the next section.

Fig. 4 details the proposed partial sums computation structure

for N = 8.

In this architecture, each DFF Rk receives the value of Rk−1

which is first added (XOR) with the current decoded bit ûi if

the control bit ci,k = 1. This architecture can be devised for

any code length N according to the following rule:
{

R0 ⇐ ûi AND ci,0
Rk ⇐ Rk−1 XOR (ûi AND ci,k) if k > 0

(7)

In Fig. 4, the current value of the shift-register is given for

each step. A step corresponds to the generation of a new bit

ûi. This structure generates all the required partial sums (bold

values in Fig. 4). This shift-register structure was selected so

that all partial sums required by a PE are all generated in the

same DFF. It means that this SR-PSU can be included in a

line SC decoder by simply connecting the N
2

PEs to a single

DFF Rk. This avoids any extra multiplexing logic to route the

partial sums to the PEs. This PSU can then be used as such

for a tree or a line SC decoder. For the semi-parallel architec-

ture, some multiplexing logic is required, exactly like in [5].

Although this architecture produces partial sums, it also en-

codes an
N

2
-bit vector. In Fig. 4, at step 4, each DFF Rk

contains the bit xN
2 −1−k such that X = U × κ⊗2. A polar

code encoder for a code length of N can then be devised with

N DFFs, N AND gates, (N − 1) XORs and a matrix gen-

eration unit. After bits ui are sequentially shifted during N

clock cycles, the codeword X is contained in the register. To

the best of our knowledge, this is the first reported sequential

encoder for polar codes.

3.3. Matrix generation unit

Let us define the control matrix as C =

[

κ⊗n−1

κ⊗n−1

]

whose

element ci,k is the kth control bit generated at step i. In order

to implement the generation of the matrix, a naive approach

is to store C in a ROM of size N × N
2

. This would be very

complex to implement especially for large N values. For this

reason, a solution based on a linear feedback shift register

(LFSR) is proposed to generate the matrix κ⊗n−1. As shown

in Fig. 4, the matrix generation unit has to produce the rows

of C sequentially. We propose to use an LFSR of size
N

2
to

generate this sequence. In such a structure, the state of the

LFSR at step i corresponds to the ith row of C. By observing

the matrix C, one can verify that:


















ci,0 = 1 0 ≤ i ≤ N − 1

ci+1,k = ci,k−1 XOR ci,k 0 ≤ i < N − 1

1 ≤ k ≤
N

2
− 1

(8)

Let us denote the DFF that generates ci,k as Mk. From Equa-

tion 8, one can deduce that matrix C is generated by applying

the following mapping rule to the LFSR:
{

M0 ⇐ 1
Mk ⇐ Mk XOR Mk−1 if k > 0

(9)
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Fig. 5. Matrix generation unit.

This is illustrated in Fig. 5 where the matrix κ⊗2 is generated

twice which correspond to the matrix C for N = 8.

4. IMPLEMENTATION RESULTS AND

COMPARISONS

To the best of our knowledge IF-PSU [4] is the only imple-

mented partial sums unit in the literature. In this section, SR-

PSU logic synthesis results are provided and compared with

IF-PSU in terms of area and maximum working frequency.

All syntheses were performed using the low power ST Mi-

croelectronics 65nm standard cell library with supply voltage

1.0V and nominal temperature 25°C. The FB-PSU architec-

ture, introduced in [8], was not implemented. However, the

authors give some insights on the hardware complexity and

the critical path depth. These architectural estimations are

used to perform the comparison with the proposed SR-PSU.

4.1. Functional verification and implementation method-

ology

The PSU architecture introduced in section 3 was included in

a tree SC decoder described in VHDL. A set of tree SC de-

coders was generated for different codelengths (23 < N <
210)a. The resulting designs were synthesized in ASIC tech-

nology and validated by post-synthesis simulations with more

than 2500 test vectors. These test vectors were obtained by

a software SC decoder reference simulator that includes an

AWGN channel model. Noisy codewords were generated at

7 different SNR values ranging from 0dB to 3dB. The behav-

ior of IF-PSU and SR-PSU can be considered identical since

in both architectures, ûi is shifted in sequentially and partial

sums are generated in parallel. In order to perform a fair com-

parison, IF-FSU and SR-FSU were synthesized with the same

technology and constraints.

4.2. Hardware complexity

In order to have a fair comparison between the two architec-

tures in terms of area, the clock frequency was set to a rela-

aLarger codelengths were not verified due to very long post-synthesis

simulation runtime
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tively low value (FCK = 500MHz) for the ST 65nm technol-

ogy, so that the synthesis tool does not insert extra buffers or

large cells in the design. Thus, the reported area corresponds

to the minimum achievable hardware complexity. IF-PSU and

SR-PSU designs were synthesized for different codelengths,

210 ≤ N ≤ 214. For both architectures, the reported area is

linear with N . In average, for all investigated codelengths,

the SR-PSU architecture is 12% smaller than the correspond-

ing IF-FSU architecture.

The same designs were synthesized for higher frequency val-

ues. In such a case, the synthesis tool optimizes the design

resulting in an increased area. Fig. 6 shows the area re-

duction provided by the SR-PSU architecture for a range of

target clock frequencies. The area reduction is calculated as

ρ = (AreaIF-PSU−AreaSR-PSU)/AreaIF-PSU. The area reduction

significantly increases with the clock frequency and the code-

length. It reaches 26% for N = 4096 and FCK = 769MHz.

For each curve, the highest reported frequency corresponds

to the maximum achievable frequency for the IF-PSU. In the

case of SR-PSU, frequency can be pushed further as seen in

the following section. The different curves show that a signif-

icant area reduction is achieved.

The hardware complexity estimations of FB-PSU are reported

in Table 1 in terms of DFFs, XORs and MUXes as a function

of N . These values are compared with the SR-PSU hardware

complexity. The estimated gate count is obtained by replac-

ing each logic operator (DFF, XOR, ...) with its equivalent

NAND gate count provided by the datasheet of the ST 65nm

ASIC library. The IF-PSU gate count is estimated after the

area synthesis results. For a small code length, N = 1024,

FB-PSU gate count is roughly 440,000 gates while the SR-

PSU architecture only consists of 7,680 gates for the same

codelength. In fact, the very high complexity of the FB-PSU

is due to the number of DFFs that grows with N2, making this

architecture non realistic for large codelengths. Since these

estimations are carried out at a low frequency (500MHz, no

optimization), the SR-PSU and IF-PSU seem to be equivalent.

Nevertheless, as seen in Fig. 6, the IF-PSU area increases



FB-PSU SR-PSU IF-PSU

DFF N2
−4

12
N no data

XOR N
2
− 1 N − 2 no data

MUX N − 2 - no data

AND - N
2
− 1 no data

NAND equivalent
5N2

12
+ 3N

15

2
N

17

2
N

Table 1. Estimated NAND gate count comparison.

more than the SR-PSU.

4.3. Working frequency

In order to estimate the maximum working frequency of IF-

PSU and SR-PSU architectures, all designs were synthesized

under increasing timing constraints until the synthesis tool

fails at meeting the timing constraint. Fig. 7 shows that for

both architectures, the maximum frequency decreases with

N . For each N value, the SR-PSU reaches a higher maximum

frequency than the IF-PSU. This confirms that the proposed

SR-PSU has a shorter critical path than the IF-PSU. A de-

tailed analysis of the synthesized SR-PSU designs show that

the critical path starts from input ûi and ends on each of the N
DFFs. This means that input ûi drives N AND gates result-

ing in a high fanout net. The synthesis tool has to insert extra

buffers on this path in order to meet the timing constraint.

This explains that in spite of the constant logic gate number

included in the critical path, the SR-PSU maximum working

frequency decreases with N .

As mentioned in section 3.1, FB-PSU critical path is com-

posed of (log2(N)−1) XOR gates and (log2(N)−2) MUXes

while the SR-PSU consists of only 1 AND gate and 1 XOR

gate. This should result in a lower clock frequency. In the

FB-PSU, despite the longer critical path, the input ûi has a

smaller fanout which may result in a reasonable frequency.

However the high hardware complexity of the FB-PSU design

makes the routing phase critical and consequently affects the

maximum working frequency.

5. CONCLUSION AND PERSPECTIVES

The hardware implementation of polar code decoders is a de-

cisive step towards their potential inclusion in future digital

telecommunication standards. Recent works paved the way

for the definition of efficient decoder architectures. In current

state of the art polar code successive cancellation decoders,

the limiting element is the partial sums computation unit. In

this paper, we propose a new partial sums computation archi-

tecture with improved working frequency and reduced hard-

ware complexity. The resulting design was verified and syn-

thesized using ASIC 65nm technology and favorably com-
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Fig. 7. Maximum working frequency vs codelength.

pares with state of the art partial sums units. Moreover, we

also showed how this structure can be used as a sequential

polar encoder. This new computation method opens the way

for several interesting research topics such as the extension

of this architecture to higher kernels or the enhancement of

parallelism in this structure.
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