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Functional identities for L-series values in positive
characteristic * T

Bruno Anglest & Federico Pellarin®
March 5, 2014

Abstract. In this paper we show the existence of functional relations for a class of L-series introduced by
the second author in [13]. Our results will be applied to obtain a new class of congruences for Bernoulli-
Carlitz fractions, and an analytic conjecture is stated, implying an interesting behavior of such fractions
modulo prime ideals of Fq[6].

1 Introduction, results

Let F, be a finite field having ¢ elements, let 6§ be an indeterminate over F,, A = F,[f] and
K = F,(0). In all the following, we denote by v the §~'-adic valuation normalized by setting
Voo (0) = —1. Let K be the completion of K for v, and let us consider the completion Cy, of an
algebraic closure of K, for the unique extension of this valuation, in which we embed an algebraic
closure K of K. Carlitz’s exponential function is the surjective, Fg-linear, rigid analytic entire
function
expo 1 Coo = Coo
defined by
24"
€XPc (Z) = d_7
n>0 n

where »
do =1, dn=(0" —0)(6" —07)--- (0" —07"), n>0.

The kernel of this function, surjective, is equal to A, where the period 7, unique up to multipli-
cation by an element of F;, can be computed by using the following product expansion

F e 0(-0) 7T [[(1-6"7) ! € (-6)TT Ko, M

=1

once a (g — 1)-th root of —6 is chosen.
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Anderson-Thakur function. This function, introduced in [2, Proof of Lemma 2.5.4 p. 177], is defined

by the infinite product
-1
1 t
w(t)=(-0)7T [ (1 - W) : (2)

i>0

with the same choice of the (¢ — 1)-th root as in (), converges for t € C such that |t| <1 (where
|| is an absolute value associated to vs) and can be extended to a non-zero rigid analytic function
over

Co \ {07 sk > 0}
with simple poles at qu, k>0.
Let ¢ be a variable in C., and let us consider the F;-algebra homomorphism
Xt - A— Fq [t]

defined by formal replacement of 6 by . In other words, x; may be viewed as the unique IF-algebra
homomorphism from A to the ring of rigid analytic functions Co, — Co such that x:(8) = t. More
generally, we shall consider s independent variables and the F,-algebra homomorphisms

Xt; t A= Fyltr,...,ts], i=1,...,s

defined respectively by x:, (¢) = t;. To simplify our notations, we will write x¢(a) for the evaluation
at t = £ of the polynomial function x;(a) at a given element £ € Co. Let a be a positive integer

and let 31, ... 3 be non-negative integers. The following formal series was introduced in [I3]:
LOGH - xeha) =Y > xn(@” - xi(@Pa™ € Kuollt, -, 1)) 3)
d>0 acA+(d)

Here and in all the following, A*(d) denotes the set of monic polynomials of A of degree d. Tt is

easy to see that this series is well defined. As claimed in [I3], Remark 7], this series converges for

all (t1,...,ts) € C2_ to a rigid analytic entire function of s variables t1,...,ts; see Proposition [Gl
The residue of w(t) at t = 0 is —7:

7= —lim(t — O)w(t).

In [I3] Theorem 1], it is proved that

L(x¢,1) = [(EDEO)

Taking into account the functional equation
w(t)? = (7 — O)w(t?)
apparent in (2)), this implies that, for m > 0 integer,

1

Vg 1(t) =7 7 w(t)L(xe, q™) = 0 — T =001




This result provided an awaited connection between the function w of Anderson and Thakur and
the “even” values of the Goss zeta function (or Carlitz zeta values)

) = 22

n>0, n=0 (modg-—1)

where BC,, and II(n) denote respectively the n-th Bernoulli-Carlitz fraction and Carlitz’s factorial
of n, see Goss’ book [I1l Section 9.1]. Indeed, evaluating at t = 0, we get

L(xe,q™) =¢¢™ = 1), m=>1.

More generally, it is proved in [13, Theorem 2] that, if « =1 (mod ¢ — 1) and « > 1, then
Ha = %7QL(Xt7 a)w(t)

is a rational function in Fy(6,t). In [I3], it is suggested that this result could be a source of
information in the study of the arithmetic properties of the Bernoulli-Carlitz fractions. However,
the methods of loc. cit. (based on deformations of vectorial modular forms and Galois descent) are
only partially explicit.

More recently, Perkins [14] investigated the properties of certain special polynomials associated
to variants of the functions L(Xf ,a) with @ < 0 which turn out to be polynomial. He notably
studied the growth of their degrees. Moreover, by using Wagner’s interpolation theory for the map
Xt, Perkins [I5] obtained explicit formulas for the series

L(th"'xtsaa)a Oé>0, OSSSQ; Q=S (mOdq_l)

We quote here a particular case of Perkins’ formulas for the functions L(, «) with « =1 (mod g—

1)

"
L(xt0) = d; (t = 0)(t = 67) - (t =07 )(a — ') Lixe. @), (4)
j=0
where p is the biggest integer such that ¢* < a. It seems difficult to overcome the threshold s < ¢
giving at once expressions for L(xt, - - - Xt,, ) with the effectiveness of Perkins’ results.

In the next Theorem, we extend the previous results beyond the mentioned threshold, providing
at once new quantitative information. Let n be a non-negative integer, let us consider the expansion
n=>3y_oniq" in base ¢, where n; € {0,---,q— 1}. We denote by £,(n) the sum of the digits n; of
this expansion: £4(n) = >_._,n;. We have:

Theorem 1 Let o, s be positive integers, such that « = s (mod ¢ — 1). Let § be the smallest
non-negative integer such that, simultaneously, ¢® — o > 0 and s + éq(q‘s —«a) > 2. The formal
series:

s 0—1
. t;
Vas(ti, . oots) =7 “Lxe, - Xt )w(ty) -+ -w(ts)l_[l HO (1 — ﬁ) € Kuolltr, .- ts]]  (5)
i=1 j=
is in fact a symmetric polynomial of Klt1,...,ts] of total degree 6(c, s) such that

5o s) < s (M) .

q—1



This statement holds if & = ¢™ and s > 2 (so that 6 = m) assuming that empty products are equal
to one by convention. In this case, since s = @ (mod ¢ — 1), we have s +£,(¢° —a) =0 (mod ¢—1)
so that in fact, s > max{2,¢ — 1}. The reader may have noticed that the choice « = ¢™ and s =1
is not allowed in Theorem[Il However, as mentioned above, the computation of Vgm 1 is completely
settled in [I3]. This discrimination of the case « = ¢™,s = 1 should not be surprising neither;
similarly, the Goss zeta function associated to A has value 1 at zero, but vanishes at all negative
integers divisible by ¢ — 1.

In Section Bl we will be more specifically concerned with Bernoulli-Carlitz numbers. A careful
investigation of the polynomials V; s and an application of the digit principle ([8]) to the function
w will allow us to show that, for s > 2 congruent to one modulo ¢ — 1,

B, =(s) 'V 4(0,...,0)

is a polynomial of F,[f] (Proposition 24) (E) We don’t know wether B, vanishes or not for general
s. In all the following, a prime is by definition a monic irreducible polynomial in A. We shall then
show the next Theorem, which highlights the interest of these polynomials in 6.

Theorem 2 Let s > 2, s = 1 (mod g — 1). Let us consider the expansion s = Z::O 5iq" of s in
base q. Let d be an integer such that q¢ > s and let p be a prime of degree d. Then:

(_1)5chd—s Hz:O ZZi—qi—l

B, =
II(g? — s)

(mod p).

In this result, I; denotes the polynomial (—1)¢ H?:l (84 —6); we observe that the latter polynomial
is invertible modulo p just as I1(¢% — s). The non-vanishing of B, for fixed s signifies the existence
of an explicit constant ¢ > 0, depending on s and ¢, such that for all d > ¢,

BCyi_y #0 (mod p), for all p such that degp = d. (6)

However, the non-vanishing of B, is also equivalent to the fact that the function

S

L(th T Xtss 1) H(tl - 9)717

i=1

entire of s variables as we will see, is a unit when identified to an element of Coo[[t; —6,...,ts—0]];
we presently do not know how to prove this property for all s. Therefore, the property (@) is linked
with the following conjecture of nature analogue of classical results on the simplicity of the zeroes
of Goss zeta functions and L-series, which should be, we believe, true.

Conjecture 3 Let s > 2 be congruent to one modulo ¢ — 1. Then, locally at t; = -+ =ts = 0,
the set of the zeroes of the function L(x:, -+ Xxt.,1) is equal to the set of zeroes of the polynomial

Hz‘(ti - 9)-

Numerical computations on Bernoulli-Carlitz fractions made by Taelman provide some evidence to
support this hypothesis. The Conjecture follows from Perkins results [I5] in the case s < ¢ and
a = s. The conjecture is also verified if £,(s) = ¢ and o = 1, thanks to Corollary 26

1Note that B; is not well defined



2 Functional identities for L-series

Let d, s be non-negative integers. We begin with the study of the vanishing of the sums
Sd7528d75(t1,...,t5): Z th(@)"'th(@)qu[tla---vts]v
ac A+ (d)

which are symmetric polynomials in %1, ..., ts of total degree < ds, with the standard conventions
on empty products. We recall that, for n > 0,

2
a€l,

equals —1 if n =0 (mod ¢ — 1) and n > 1, and equals 0 otherwise. We owe the next Lemma to D.
Simon [7]. We give the proof here for the sake of completeness.

Lemma 4 (Simon’s Lemma) We have Sq s # 0 if and only if d(¢ — 1) < s.
Proof. Since
S
Sas= p - > [ao+awti+- - +agrtf" +¢),
aoG]Fq aq—1 G]Fq =1
the coefficient ¢, ..., of t1* ---t% with v; <ds (i =1,...,s) is given by the sum:
Z Z o, -+ o,
ap€ly aq—1€F,

The last sum can be rewritten as:

Conws = | D0 || DD arty ] (7

ap€lFy aq—1€F,

where p; is the cardinality of the set of the indices j such that v; = 4, from which one notices that

(notice also that s — . ji; is the cardinality of the set of indices j such that v; = d). For any choice
of o, ..., pa—1 such that >, pu; <'s, there exists (v1,...,v,) such that (7) holds.

If s < d(q—1), for all (v1,...,vs) as above, there exists ¢ such that, in (@), pu; < ¢ — 1 so that
Sa,s = 0. On the other hand, if s > d(q — 1), it is certainly possible to find (v1,...,vs) such that,
in (@), po =+ = pag—1 = ¢ — 1 so that the sum does not vanish in this case. n

As an immediate corollary of Lemma [, we see that the series
Fs:Fs(tla-'-ats):ZSd,s:Z Z th(a)"'XtS(a)
d>0 d>0a€A+(d)
defines a symmetric polynomial of F[t1,...,ts] of total degree at most q5_2 7- In the next Lemma,
we provide a necessary and sufficient condition for the vanishing of the polynomial Fj.




Lemma 5 If s > 1, then, Fs, =0 if and only if s=0 (mod g — 1).

Proof. We will use several times the following elementary observation : let G € Coo[t1,...,ts] and
let S1,...,8s C Fglg (Fglg denotes the algebraic closure of F,, embedded in C) be infinite sets
such that G vanishes on S7 X --- x S;. Then G = 0.

Let us assume first that s =0 (mod ¢ — 1). The hypothesis on s implies that

Yo xula)xe(a) = —Sas.
a€A,degy(a)=d

We denote by A(< d) the set of polynomials of A of degree < d and we write

Goo= Y xul@)--xu(a).

acA(<d)
We then have:
G_=s =—F..
Let us choose now distinct primes p1,...,ps of respective degrees di,...,ds > s/(¢—1) and f =
p1---ps. Forall i =1,...,s, we choose a root (; € Fglg of p;. Let us then consider the Dirichlet
character of the first kind x = x¢, - - x¢,. We have:
FS(<17"'7CS) = _Gq%l,s(glu"'ugs)
= - > xl
a€A(<s/(¢—1))
= - > x(a)
a€A(<dr++ds)
= - Y «xl
a€(A/fA)*
= O7

by [16], Proposition 15.3]. By the observation at the beginning of the proof, this implies the vanishing
of Fs. On the other hand, if s Z 0 (mod ¢—1), then F;(6,...,0) = ((—s) the s-th Goss’ zeta value
which is non zero, see [10, Remark 8.13.8 1].

O

2.1 Analyticity

The functions L(x¢, - - - Xt., @) are in fact rigid analytic entire functions of s variables. This property,
mentioned in [I3], can be deduced from the more general Proposition [ that we give here for
convenience of the reader.
Let a be a monic polynomial of A. we set:
__a —1 —1
(a) = Doz, (@) €1+07F, 0]

Let y € Z,, where p is the prime dividing ¢. Since (a) is a 1-unit of K., we can consider its

exponentiation by y:
@' =3 ()@ - 1y e R [,



Here, the binomial (g) is defined, for j a positive integer, by extending Lucas formula. Writing
the p-adic expansion Y, yip" of y (v; € {0,...,p — 1}) and the p-adic expansion .,_, j;p’ of j
(j: € {0,...,p — 1}), we are explicitly setting:

y\ . Yi
() -116)
Note that, for a € A, we have a continuous function: Z, — Koo,y — (a)¥. We also recall, from [IT,

Chapter 8], the topological group Soc = CX X Z,,. For (z,y) € Se and d, s non-negative integers,
we define the sum

Sd,s(«I,y) :deS(xvy)(tla"'atS) :xid Z th(a)"'th(a)<a>y exidKOO[tla"'atS]v
a€A+(d)

which is, for all z,y, a symmetric polynomial of total degree < ds.
Let us further define, more generally, for variables ¢1,...,ts € Co and (z,y) € S, the series:

L(th . 'th;xvy) = st,s(xay)(tla cee 7t5)'
d>0

For fixed choices of (z,y) € Seo, it is easy to show that

L(Xh .o 'th;xuy) S (Coo[[th '7ts]]7

and with a little additional work, one also verifies that this series defines an element of the standard
Tate Coo-algebra Ty, . ;. in the variables t1,...,ts. Of course, if (z,y) = (0%, —a) with a > 0
integer, we find

L(Xt, - x2,50% —a) = L(xt, --- Xt ).

The next Proposition holds, and improves results of Goss; see [12, Theorems 1, 2]).

Proposition 6 The series L(xt,,---,Xt.;%,Yy) converges for all (t1,...,ts) € C5 and for all
(x,y) € Seo, to an entire function on C5, X S in the sense of Goss [I1l, Definition 8.5.1].

The proof of this result is a simple consequence of the Lemma below. The norm || - || used in
the Lemma is the supremum norm of Ty, ;

s*

Lemma 7 Let (z,y) be in Soo and let us consider an integer d > (s—1)/(¢—1), with s > 0. Then:

M—E%ﬂ—l

1Sa,s(z, )|l < | =g~ ,
where for x € R, [x] denotes the integer part of x.

Proof. Let us write the p-adic expansion y = > -, c,p", with ¢, € {0,...,p — 1} for all n.
Collecting blocks of e consecutive terms (where ¢ = p¢), this yields a “g-adic” expansion, from
which we can extract partial sums:

en—1

n
yn = > ap® =) uig' € Lo,
k=0 i=0



where
u; = Z cip = €{0,...,q—1}.
j=ei
In particular, for n > 0, we observe that ¢,(y,) < (n + 1)(¢ — 1). Since
1

Sa,s(Tyn) = 20 Z Xt (a) -+ x¢. (a)a?™
a€At(d)
1 n n
= WSdT(tl,...,ts,H,...,9,9‘1,...,9‘1,...,9‘1 ,...,9q )
xd@dyn — —_——— ——— —_——

ug times w1 times Uy, times
with r = s+ £4(yn), if d(g —1) > s+ £4(yn), we have by Simon’s Lemma [2t
Sa,s(z,yn) = 0.

This condition is ensured if d(¢ — 1) > s+ (n+ 1)(¢ — 1).
Now, we claim that

g . n+l
1Sa,s(x: ) = Sa,s (@, yn)|| < 2] ~4g~ 7.
Indeed,

Saale) = Saalean) = 3 v @X (1) - () @ -0y

a€A+(d) 3>0

and (y) = (y") for j =0,...,¢" " — 1 by Lucas’ formula and the definition of the binomial, so that
J J

2(0)-()-v]ere

The Lemma follows by choosing n +2 = [d — =7]. O

In particular, we have the following Corollary to Proposition [6] which generalizes [12, Theorem
1], the deduction of which, easy, is left to the reader.

Corollary 8 For any choice of an integer o > 0 and non-negative integers M, . .., M, the function

LOG! - x o) =3 D xu(@™ o, () e
d>0 ac A+ (d)

defines a rigid analytic entire function CZ — Cu.

2.2 Computation of polynomials with coefficients in K

Lemma 9 For all d > 0, we have:

Sq(—a) = Z a”“#0.

a€A+(d)



Proof. This follows from [11] proof of Lemma 8.24.13]. O

We introduce, for d, s, @ non-negative integers, the sum:

Sus(—a) = Y xu(s)xu(a)a™ € K[t, ... L,
a€A+(d)

representing a symmetric polynomial of K[t1,...,ts] of exact total degree ds by Lemma We
have, with the notations of Section 2.1}

des(—oz) = des(ea, —a).
From the above results, we deduce the following Proposition.

Proposition 10 Let o be a fized positive integer. Let | > 0 be an integer such that ¢ —a > 0 and
ly(g"—a)+s>2. Ifby(¢" — @) + s < d(q—1), then:

Sas(—a) =0 (mod H(tj - 9ql)).
j=1

Furthermore, let us assume that s = o (mod ¢ — 1). With | as above, let k be an integer such that
k(g —1) > £,(¢" — @) +s. Then:

k s
3 Sus(—a) =0 (mod J](t; —67)).
d=0 j=1

Proof. Let us write m = £,(¢" — ). We have s — 1 +m < d(q — 1) so that, by Simon’s Lemma
M Sqs—14+m = 0. Now, let us write the g-ary expansion ql —a = ng+ niqg+ -+ n.q" with
n; €{0,...,q— 1} and let us observe that, since ¢/ — a > 0,

1 1
Sas(=a)(tr - tem1,07) = Y e (@) xe s (@)a?
a€At(d)
= Y (@ xe 1 (@xa(@)xes (@)™ - Xgar ()
acA+(d)
= Sperim(ty, . oite1,0,...,0,09 .07 .. 07 .. 07)
N—_——— N——— N———
no times ni times n, times
= 0.

Therefore t, — 09" divides Sa,s(—a). The first part of the Proposition follows from the fact that this
polynomial is symmetric. For the second part, we notice by the first part, that the condition on k
is sufficient for the sum Sg s(—a)(t1,...,ts) to be congruent to zero modulo [];_; (t; — HqL) for all
d > k. It remains to apply Lemma [5l to conclude the proof. N

Proposition 11 Let s,a > 1, s = a (mod g — 1). Let § be the smallest non-negative integer such
that ¢° > a and s + £,(¢° — a) > 2. Then, the function of Theorem [

s 0—1
o t;
Va,s(tla s 7ts) = L(th te 'thua)w(tl) o 'W(ts)ﬂ- H H (1 - W)

i=1 =0



is in fact a symmetric polynomial of Ko[t1,...,ts]. Moreover, its total degree §(«, s) is not bigger
than s (M) — 5.

qg—1

Proof. Let & be the smallest non-negative integer such that ¢° —a >0 and s + £,(¢° — a) > 2. We
fix an integer k such that

k(g—1) > 5+ £4(¢° — ). (8)
We also set: 5
Ny =5+ k=l —0),
q—

Obviously, N(k) > 6. Let I be an integer such that
§ <1< N(k).

We claim that we also have
k(g —1)>s+4,(¢" — o).

Indeed, let us write the g-ary expansion a = ag + a1q + - -+ + g™ with «a;, # 0. Then, § = m if
a=¢"™ and s > 2 and 6 = m + 1 otherwise. If [ is now an integer [ > J, we have

d—a = ¢d—¢+¢—a
1-6—1

= qa(t}—U(Z ql>+q5—a,
=0

where the sum over i is zero if [ = §, and
lo(qd' = a) = (g = 1)(I = 6) + £4(¢° — @)

because there is no carry over in the above sum. Now, the claim follows from (8.
By Proposition [I0] we have, with k as above, that the following expression

s N(k) t. —1 k
Whis,0 1= H H (1 — 0%) std(_a)
i=1 j=6 d=0

is in fact a symmetric polynomial in K[t1,...,ts]. By Lemma B Syqs(—a) € K[t1,...,ts] is a
symmetric polynomial of total degree ds; indeed, the coefficient of t¢---t? is exactly Si(—a).
Hence, the total degree of ZZ:O Sa,s(—a) is exactly ks. The total degree of the product

is equal to s(1 4+ N (k) — d) so that, by the definition of N (k):
deg(Wis.0) = sk—s—sN(k)+sd

= sk—sk—s5—|—55—s—|—s(

_ (oY,

q—1

s+ Ly(¢° — @)
q—1

10



independent on k. We now let k tend to infinity. The Proposition follows directly from the definition
@) of w as an infinite product, the fact that, in (), 70~1/(a=1) e K_ . and the definition of

L(Xt, -+ Xt.r @) 0

2.3 Preliminaries on Gauss-Thakur sums

We review quickly the theory of Gauss-Thakur sums, introduced by Thakur in [17].

Let p be an irreducible monic polynomial of A of degree d, let A, be the Galois group of the
p-cyclotomic function field extension K, = K(\,) of K, where A, is a non zero p-torsion element of
K8 (the algebraic closure of K in C,). Gauss-Thakur sums can be associated to the elements of
the dual character group ﬁp via the Artin symbol (see [I1], Sections 7.5.5 and 9.8]). If x is in ﬁp,
we denote by g(x) the associated Gauss-Thakur sum. In particular, we have the element ¥, € ﬁp
obtained by reduction of the Teichmiiller character [11] Definition 8.11.2], uniquely determined by
a choice of a root ¢ of p, and the Gauss-Thakur sums g(ﬁgj) associated to its ¢7-th powers, with
j=0,...,d—1, which can be considered as the building blocks of the Gauss-Thakur sums g(x) for
general x € ﬁp.

Definition 12 With p, d, ¥, as above, the basic Gauss-Thakur sum g(ﬁgj) associated to this data
is the element of K& defined by:

Z U (0 q 6(Ap) € Fy[Ap].
sEA,

The same sum is denoted by g; in [IT],[I7]. The basic Gauss-Thakur sums are used to define general
Gauss-Thakur sums associated to arbitrary elements of ﬁp. For instance, if x = xo is the trivial
character, then g( )=1.

The group Ap being isomorphic to Ay, it is cyclic; it is in fact generated by J,. Let x be an
element of A There exists a unique integer i with 0 < i < ¢%, such that y = 191 Let us expand
i in base ¢, that is, let us write i = ig + i1q + -+ + ig—1¢%"* with i; € {0,...,d — 1}. Then,

x =T (05

Definition 13 The general Gauss-Thakur sum g(x) associated to x € ﬁp as above, is defined by:
d—1 ‘
=[] owi)"
j=0

More generally, let us now consider a non-constant monic polynomial a € A. We denote by ﬁa
the dual character group Hom(A, (Fglg)x), where A, is the Galois group of the extension K, of
K generated by the a-torsion of the Carlitz module.

If x is in Aq, we set: Fo(x) = Fq(x(0);6 € Aq) C F2'8. We also write

Fq= Fq(X;X € Aa)

and we recall that Gal(K,(Fq)/K (Fq)) ~ Aq. We observe that A, is isomorphic to A4 if and only
if a is squarefree. If a = p; - - - p,, with py,...,p, distinct primes, then

A ~][A
i=1

11



Let us then assume that a is non-constant and square-free. We want to extend the definition of
the Gauss-Thakur sums to characters in A,. For x € Aq, x # Xo, there exist r distinct primes
p1,---, P, and characters x1,..., X, with x; € Ay, for all j, with

X:XI...XT'

Definition 14 The Gauss-Thakur sum associated to y is the product:

g(x) =9(xa) - 9(xr)-

The polynomial f, = p;y - --p, is called the conductor of x; it is a divisor of a. The degree of f, will
be denoted by d,. If a itself is a prime p of degree d, then F\, =p and d,, = d.

The following result collects the basic properties of the sums g(x) that we need, and can be
easily deduced from Thakur’s results in [I7, Theorems I and II].

Proposition 15 Let a € A be monic, square-free of degree d. The following properties hold.
1. For all 6 € Aq, we have §(g(x)) = x(8)g(x)-
2. If X # xo, then g(x)g(x ") = (=1)™fy.

By the normal basis theorem, K, is a free K[A4]-module of rank one. Gauss-Thakur’s sums
allow to determine explicitly generators of this module:

Lemma 16 Let us write e =, .z 9(X) € Ka. Then :
Kq = K[Ag]na,

and

Ag = A[Aa]naa

where Aq is the integral closure of A in K.
Moreover, let x be in Ay. Then, the following identity holds:

Kq(Fa)g(x) = {x € Kq(Fa) such that for all 6 € Aq,d(x) = x(0)x}. (9)

Proof. Let us expand a in product p; - - - p,, of distinct primes p,;. To show that A, = A[A4]n, (this
yields the identity K, = K[Aq]na) one sees that

Ag Apl XA -®a Aan

because the discriminants of the extensions A, /A are pairwise relatively prime and the fields K,
are pairwise linearly disjoint (see [9, Property (2.13)]). One then uses [3, Théoréme 2.5] to conclude
with the second identity. R

We now prove the identity (@)). We recall that if we set, for x € Ay,

ex = |A—1| 3 ()51 € Fy(x)[Ad]
4l sen,

(well defined because p, the rational prime dividing ¢, does not divide |Ag4l), then the following
identities hold:

12



o e ey = dy ypey (Where dy 4 denotes Kronecker’s symbol),
o for all § € Ag, de, = x(J)ey,
° erﬁﬂ =1.

This yields eynq = g(x). Now, by Kq(Fq) = Kq(Fa)na, we get e, Kq(Fq) = Kq(Fq)g(x). The
second part of the Lemma then follows by observing that if M is an Fq[A4]-module, then

exM = {m € M such that for all § € Ay, dm = x(d)m}.

2.4 An intermediate result on special values of Goss L-functions
Let x be a Dirichlet character of the first kind, that is a character
X1 (A/aA)* — (F5%)%,

where a is a non-constant squarefree monic element of A which we identify, by abuse of notation,
to a character of Aq still denoted by x, of conductor § = f,, and degree d = deg, f.
Let s(x) be the type of x, that is, the unique integer s(x) € {0,---, ¢ — 2} such that:

X(Q) =¢*™  forall ¢ € .

We now consider the special value of Goss’ abelian L-function [11], Section 8]:
L) = ) x(@)a™®, a=1.
acAt
The following result is inspired by the proofs of [1, Proposition 8, VII] and [4, Proposition 8.2]:
Proposition 17 Leta > 1, a = s(x) (mod q—1). Then there exists an element B, 1 in F,(x)(0)

such that :
L, x)9(x) _ Bay-

e IM(a) ’
where () is the Carlitz factorial of « (see [I1, chapter 9, section 1]).

Proof. The proposition is known to be true for the trivial character (see [I1, Section 9.2]); in this

case, we notice that:
B -1=BC,, a>1, a=0 (modgq-1),

@, X

where we recall that BC,, is the a-th Bernoulli-Carlitz number (see [11, Definition 9.2.1]. We now

assume that x # xo. Since:
expo(z) = 2 H (1 - i) ,

Ta

acA\{0}
We have: . 1
expe(2) - anA z—Ta’

13



Let b € A be relatively prime with § and let o, € Gal(Kj/K) be the element such that o,(\;) =

®p(Af). We have:
1 _ it 1 .
expe(2) — op(A5) N Z Zntl <Z o af)"+1> 2"

n>0 a€A

Therefore, we obtain:

n+1 a
Z L - Z jn+1 ;Cvgﬁ 2

be (e XPe(2) = a(Ap) =T seavio}

Ifn+1=%s(x) (modg—1), we get:

x(a) _
an—i—l - O’
acA\{0}
and if n+ 1= s(x) (mod g — 1), we have:
x(a) _
s —L(n+1,x).
acA\{0}
Thus: .
b *L(1 ;
T x(b) = T f Ez X) -1 (10)
o 2 D) — ) 7

i>1,i=s(x) (mod (¢—1))
But note that by the second part of Lemma

Z x(t) € s OED

oot SPolz) —

Since by Proposition [I5]
g00)g(x ) = (=1,

where d = degy fy, we get the result by comparison of the coefficients of the series expansion of
both sides of ([I0). 0

Remark 18 In the above proof of Proposition [I7, if we set & = 1 and we assume s(x) = 1
(mod ¢ — 1), we have, by comparison of the constant terms in the series expansions in powers of z

in (IQ): )
FHLLX) =— > X(A) € g(x HF,(x)(0).
ve(aziaye o)

Assuming that f is not a prime, by [L6, Proposition 12.6], A is a unit in the integral closure A; of
A in K. Therefore,

s X0 R )

o
be(A/fA)*

and we deduce that
T L(1,x)9(x) € Fq(x)19]-
This remark will be crucial in the proof of Corollary 211
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2.5 Proof of Theorem [

In [5, Theorem 3] (see also [6]), we noticed that the function w can be viewed as a universal
Gauss-Thakur sum. We review this result, which will be used a little later.

Theorem 19 Let p be a prime element of A of degree d and { a root of p as above. We have:

g0 = () w(c), j=0,....d—1.

In this theorem, p’ denotes the derivative of p with respect to 6.
The next Lemma provides a rationality criterion for a polynomial a priori with coefficients in
K, again based on evaluation at roots of unity.

Lemma 20 Let F(t1,...,ts) € Koolt1,...,ts] such that for all (1,...,(s € Fglg, pairwise not con-
Jugate over g,

F(Cla"WCS)GK(Clv'-'aCS)'
Then F(tl,...,ts)GK[tl,...,ts].

Proof. We begin by pointing out that if elements a1, ..., as € Ko are K ®p, Fglg—linearly dependent,
then they also are K-linearly dependent. The proof proceeds by induction on s > 1. For s = 1,
this is obvious. Now, let

i Ass =0 (11)
1=1

be a non-trivial relation of linear dependence with the \; € K @ Fa'8\ {0}. We may assume that
As = 1 and that there exists ¢ € {1,...,s — 1} such that \; ¢ K. Then, there exists

0 € Gal(Ko ® F2'8 /K ) ~ Gal(K ® F2'#/K) ~ Gal(F4'¢/F,)

such that o();) # A;. Applying o on both left- and right-hand sides of (1) and subtracting, yields
a non-trivial relation involving at most s — 1 elements of K., on which we can apply the induction
hypothesis.
We can now complete the proof of the Lemma. Let F' be a polynomial in K[t1,...,ts] not
in Klty,...,ts]. It is easy to show that there exist ay,...,a;, € K, linearly independent over K,
such that
F=a1Pi+- -+ anPpn,

where Py, ..., P, are non-zero polynomials of K[t1,...,ts]. Let us suppose by contradiction that
there exists F' € Koo[t1,...,ts] \ K[t1,...,ts] satisfying the hypotheses of the Lemma. By the
observation at the beginning of the proof of Lemma [l there exists a choice of such roots of unity
C1,.--,¢sand i € {1,...,m} such that P;(¢1,...,(mn) # 0. This means that a4, ..., a,, are K®Fglg-
linearly dependent, thus K-linearly dependent by the previous observations; a contradiction. N

Proof of Theorem [l In view of Lemma 20, we want to show that the polynomial

s 0—1
W t;
Voz,s:ﬂ— L(Xh"'th7a)w(tl)"'w(ts) HH (1_9?) EKoo[tla"' 7ts]
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of Proposition [T takes values in K((y,...,¢s) for all ¢1,...,¢s € Fglg pairwise non conjugate over
F,. Let ((i,...,Cs) be one of such s-tuples of roots of unity and, for i =1,...,s, let p, € A be the
minimal polynomial of (;, so that py,...,ps are pairwise relatively prime. We choose the characters
Yy, so that Uy, (09) = (; for all i. We construct the Dirichlet character of the first kind x defined,
for a € A, by
x(a) = x¢, (@)~ xc, (a).

By Proposition [I7] we have

L(a, x)g(x) Bax—

——t = () A e Fy(0)(0).

~« a—1
i X

Since
L(aaX) = L(XCl o 'XCsaa)a
we get:

VO¢7S(<17 o Gs) = Lo, X)w(cl) w(C)T
Lo, x)g(x) w(G) - w(Cs)

T 9(x)
B, -1 , ,
= (D)= (00) - xe. ()
X
€ K(<17"'7CS)7

where in the next to last step, we have used Theorem [I9 The proof of Theorem [I] now follows from
Lemma O

3 Congruences for Bernoulli-Carlitz numbers
In this Section, we shall prove Theorem [l This is possible because in Theorem [Il more can be said

when a = 1. In this case, one sees that the integer § of Theorem [Ilis equal to zero and s > ¢, so
that, with the notations of that result,

Vi =7 "L(xt, - xt., Dw(t1) -+ w(ts).

In the next Subsection we will show that the above is a polynomial of A[ty,...,ts].

3.1 Functional identities with v =1

We begin with the following Corollary of Theorem [II The main result of this subsection is Propo-
sition

Corollary 21 Let s > 2 be such that s = 1 (mod g — 1). Then the symmetric polynomial V1 s €

Klt1,...,ts] of Theorem[d is in fact a polynomial of Alty,...,ts| of total degree < s*>/(q—1)—s in
the variables t1, ..., ts.
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Proof. Let py,...,ps be distinct primes in A, let us write a = p;---ps and let us consider the
Dirichlet character of the first kind x associated to 9y, - - -¥,, that we also loosely identify with the

corresponding element of ﬁa. Since a is not a prime power, Remark [I8 implies that

7 'L(1,x)9(x) € Fq(x)[0]- (12)

Now, specializing at ¢; = (; the root of p; associated to the choice of characters 9y, foralli =1,...,s,
we obtain

Vis(Cry-e s Gs) = T L(L,X)g(x) € Fq(Gr, -+, 618,

and the result follows from an idea similar to that of Lemma[20] the bound on the degree agreeing
with that of Theorem [T |

3.1.1 Digit principle for the function w and the L-series

We denote by T; the standard Tate C.-algebra in the variable ¢. Let ¢ : Ty — T; be the Cy-linear
map defined by

@ cht" = chtq", cp € Copo.
n>0 n>0

We also set, for N a non-negative integer with its expansion in base ¢, N = Ng+ N1ig+---+ N,.q",
N; € {0,...,(]—1}2

wy(X) = [ (w&)N.
i=0
We then have the next Lemma.

Lemma 22 Let p be a prime of A of degree d and let N be an integer such that 1 < N < ¢ — 1.
The following identity holds:
wn(C) = 1910(%’)]\]9(19;]:\[)7

where ¢ is the root of p that determines the character ¥,.

Proof. This is a direct application of Theorem [T9 Indeed,

d—1 » d—1 » .
wn(¢) = HW(CQI)M = H ﬁp(Up’)qlNigwg )Ni-
i=0 i=0
g

Let X,Y be two indeterminates over K. We introduce a family of polynomials (Gg)4>0 in
F,[X,Y] as follows. We set Go(X,Y) =1 and

d—1
Ga(X,Y) = H(X Y7, d>1.
=0

This sequence is closely related to the sequence of polynomials G,,(y) of |2, Section 3.6]: indeed,
the latter can be rewritten in terms of the former:

Galy) = Ga(T" ,y7), d>1,
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in both notations of loc. cit. and ours (E) The polynomial G4 is monic of degree d in the
variable X, and (—1)9G is monic in the variable Y of degree (¢ — 1)/(q — 1). We now define, for
N = Ng+ Nig+ -+ N,q" a non-negative integer expanded in base ¢, the polynomial

T r i—1
Hy(t) = [[ Gt o) = ] T — o7 )™
i=0 1=0j=0
We also define the quantities associated to N and g:
,Uq(N) = ZNiiqiv
i=0
. N 4(N)
e
q—1 q—1

L(N) = > Nii.
1=0

Lemma 23 Let N be a non-negative integer. The following properties hold.
1. The polynomial Hy(t), as a polynomial of the indeterminate t, is monic of degree piq(N).

2. As a polynomial of the indeterminate 6, Hn(t) has degree y17;(N) and the leading coefficient
is (—=1)fa)

3. We have Hy(0) = II(N) and veo(Hn(0)) = —pq(N), where v is the co-adic valuation of

Coo.

4. We also have, for all ¢ € F2%, vy (Hy(C)) = —pi(N).
Proof. Easy and left to the reader. O

We observe that: 1

d _ q _
©w(t) Gd(tqd,o)W(t) =wgan(t), d>0
so that, with N as above,
wt)V w(t)V
o (t) ) Y (13)

T I, Gt )N Hy(t)

The following Proposition was inspired by a discussion with D. Goss.

2As an aside remark, we also notice that we recover in this way the coefficients of the formal series in K[[7]]
associated to Carlitz’s exponential and logarithm

=S d, (=3
i>0 i>0
because d; = G; (9qi,9) and ; = G;(0,67). Moreover, if p is a prime of A of degree d, we observe that
d

d-1
p=10-¢)=T]0O=0(0,,)) = Gal,9(c0)).
i=0

=1
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Proposition 24 Let s > 2 be an integer. Let M, ..., My be positive integers such that My +--- +
Ms=1 (mod q —1). Then:

Wi(ty,....ts) =7 "Lxp - x, Dwagy (B1) -+ war, () € At ..., ts).
For all i, the degree in t; of W satisfies

i My

deg,, (W) < M; ( =)

1) = nlor)
Proof. We shall write .
H =[] Hu(t).
i=1
We know from Lemma 23] that deg, (H) = p1q(M;). Let us consider the function
V=706 s et () - w (),

so that by ([I3)),
V=WH.

Corollary 21] implies that:
Ve Fq[H,tl, . ,ts]

and we are done if we can prove that H divides V in Fy[0,t1,...,ts].

Let p1,...,ps be distinct primes of A such that |p;| — 1 > M;, and let (3,...,{s be respective
roots of these polynomials chosen in compatibility with the characters ¥,,,...,9,,. Let us also
write

X = 0N g
By Lemma 22]
wiar, (C1) - war, (Cs) = ﬁpl(Upg)Ml "'ﬁps(Up;)MSQ(X)-

Therefore,
W(Cs---,Cs) = %71L(17X)9(X)19p1(0p’1)M1 e 'ﬁps(ap;)Ms-

By @), 7~ 'L(1,x)9(x) € Fq(x)[0], while T];_, ¥y, (op;)" € Fy(x) so that
W(Ch R CS) € F‘Z(X)[e] = F‘Z(Cl? LY 7CS)[9]

Now, H is a polynomial in 6 with leading coefficient in F (see Lemma 23)). Dividing V' by H
as polynomials in 6 we find
V = HQ + R,
where @, R are polynomials in Fy[0,t1,...,ts], and degyR < degyH = ), pu;(M;) (the last in-
equality by Lemma [23]). But for (3, ...,(s as above, we must have Q(0,(y,...,(s) = W(1,...,Cs)
and

R(¢,...,¢s)=0.
This implies R = 0 and thus W = Q € Fy[0,11, ..., ). m
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3.1.2 The polynomials W
By Proposition 24] the function

Wi(t) =7 L(x{, Dws(t) =

is a polynomial of F,[t, 6]. Furthermore, we have:

Proposition 25 Assuming that s > 2 is an integer congruent to 1 modulo ¢—1 and is not a power
of q, the following properties hold.

1. The degree in t of Wy does not exceed s(s —1)/(q— 1) — s — piq(s),

2. the degree in 6 of W is equal to ({4(s) —¢q)/(¢g — 1).
By the remarks in the introduction, we know how to handle the case of s = ¢; we then have
o
6 —ta

Proof of Proposition [23. The bound for the degree in ¢ is a simple consequence of Proposition
and Lemma 23] To show the property of the degree in 6, we first notice that, by Lemma 23] for all
( e Fg'e,

Wi (t) =

l,(s) —q
rn(Wa(Q)) = ~ 1220 (14)
qg—1
The computation of Ws(¢) is even explicit if ( € F,. Indeed, with the appropriate choice of a
(g — 1)-th root of (¢ — ), the fact that x¢ = x¢, [5, Lemma 12] and [I3, Theorem 1],

L(x¢ Dw(Q)?
O = R
L e
TH(C)
Lot
*eq(s)
T(C—0)
q(S)
= (=0 TTO-O T (C—OTT(C—0) T
and
Ws(¢) = =(¢=0) (15)
Let us write: .
W (t) = Z aiti, a; € A.
i=0
By (@A), we have
lq(s) aq
a0 = W, (0) = —(—) " (16)
and for all ¢ € F2'& we have, by (I4),
[Ws(Q)] = laol-
This means that for i = 1,...,g, |a;| < |ag|, and the identity on the degree in 6 follows as well.
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Corollary 26 If {,(s) = q, then Wy = —1.
Proof. Tt follows from (I6) and the fact that |a;| < |ag| for i =1,...,g. O
By Corollary 211 the function

Vis(t1,...,ts) = %_1L(Xt1 c Xty Dw(tr) -+ w(ts)

is, for s =1 (mod ¢ — 1) and s > 2, a polynomial of A[ty,...,ts]. Since

where o(1) represents a function locally analytic at t = 6, the function L(x¢, - - - X¢., 1) vanishes on
the set

where
D, = {(tl, C ,ti,l,ﬂ,tiﬂ, ce ,ts) S (Coo}

In other words, in Coo[[t1 — 6, ... ,ts — 0]], we have

Lixt, Xt 1) = > ey i(ti=0)" - (ts—0), ¢, i €Cx, (17)

where on both sides, we have entire analytic functions (see Corollary [{). This can also be seen,
alternatively, by considering the function Fy_; of Lemma [B] which vanishes, and observing that

L(th : "thvl) ti=0 — stl(tla' - atiflvtl?‘rla' e ;ts)-

1 in the expansion (I7)). We then have

.....

d d
cl,..1= (d_t1 e d—tSL(th Xt 1))

ty=--=t;=0
so that

/s
Vi s 0,...,0) = (-1 sgs—1 a_ = (=1 s~=s—1 F. o
1, ( ) ’ ) ( ) ™ dz>0 EAZJr(d) P ( ) ™ C1,...,1 (S q[ ]

(by Corollary B the series on the right-hand side is convergent). Now, by Proposition 24 TI(s)
divides the polynomial Vi 4(0,...,6) in A. We then set, as in the introduction:

~ V1.(0,...,0)

B. I1(s)
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3.2 Proof of Theorem

Let 7 be the unique F[t]-linear automorphism of T; which extends the automorphism of C, defined,

for ¢ € Co, by ¢ — 4. If B is a polynomial of A[t] and if p is a prime of degree d > 0, then
7B =B (mod p).
The reason for this is that p divides the polynomial 97" — 9. In particular,
(r'B)(6) = B(0) (mod p).
Recalling the C,.-linear operator ¢ of subsection B.I.T we have

TP =T = p,

where p is the operator defined by p(z(t)) = z(¢)? for all z € Coo((¢)). In particular,if s = Y.

is expanded in base ¢ and if d > r > 7, from
we deduce

so that
(rw)(t) = w(t)® [] Gai(t,0)>7".
i=0
We can finish the proof of Theorem 2 By (Ig]),
B, = (7¢W,)(#) (mod p).

We shall now compute (7¢W)(6). If d > r, then for i = 0,...,r we can write

d—i—1
Gd—i(t7 H)Siql = (t - H)Siql (t - 9q7)51q17
1

j =
and

[1Ga-i(t,0)7" = (t — 0)° F(),
=0

where F'(t) is a polynomial such that

Fo) =[]
i=0
Since

(TIW)(8) = 7T L(x;, ¢ (t — 0)°w(t)* F(t)

22
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and lim;_,¢(t — O)w(t) = —7, we get

lim(r W) () = (—1)%F9"¢(g% - 159
(W) = (1)F ! - ) Hdz_l
BC .
1) q—s siq
( ) H(qd _ S)i 0 d—i—1
Our Theorem [ follows at once. O
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