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Equivariant zeta functions for invariant Nash germs

Fabien Priziac

Abstract

To any Nash germ invariant under right composition with a linear action of a finite group,
we associate its equivariant zeta functions, inspired from motivic zeta functions, using the
equivariant virtual Poincaré series as a motivic measure. We show Denef-Loeser formulae for
the equivariant zeta functions and prove that they are invariants for equivariant blow-Nash
equivalence via equivariant blow-Nash isomorphisms. Equivariant blow-Nash equivalence
between invariant Nash germs is defined as a generalization involving equivariant data of
the blow-Nash equivalence.

1 Introduction

A crucial issue in the study of real analytic germs is the choice of a good equivalence relation
by which we can distinguish them. One may think about Cr-equivalence, r = 0, 1, . . . ,∞, ω.
However, the topological equivalence seems, unlike the complex case, not fine enough : for
example, all the germs of the form x2m+y2n are topologically equivalent. On the other hand, the
C1-equivalence has already moduli : consider the Whitney family ft(x, y) = xy(y− x)(y− tx),
t > 1, then ft and ft′ are C1-equivalent if and only if t = t′. In [15], T.-C. Kuo proposed
an equivalence relation for real analytic germs named the blow-analytic equivalence for which,
in particular, analytically parametrized family of isolated singularities have a locally finite
classification. Roughly speaking, two real analytic germs are said blow-analytically equivalent
if they become analytically equivalent after composition with real modifications (e.g., finite
successions of blowings-up along smooth centers). With respect to this equivalence relation,
Whitney family has only one equivalence class. Slightly stronger versions of blow-analytic
equivalence have been proposed so far, by S. Koike and A. Parusiński in [13] and T. Fukui
and L. Paunescu in [8] for example. An important feature of blow-analytic equivalence is also
that we have invariants for this equivalence relation, like the Fukui invariants ([7]) and the zeta
functions ([13]) inspired by the motivic zeta functions of J. Denef and F. Loeser ([5]) using the
Euler characteristic with compact supports as a motivic measure.

The present paper is interested in the study of Nash germs, that is real analytic germs
with semialgebraic graph. In [10], G. Fichou defined an analog adapted to Nash germs of the
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blow-analytic equivalence of T.-C. Kuo in [15] : two Nash germs are said blow-Nash equivalent
if, after composition with Nash modifications, they become analytically equivalent via a Nash
isomorphism (if the Nash isomorphism preserves the critical loci of the Nash modifications, it
is called a blow-Nash isomorphism). He showed in particular that blow-Nash equivalence is
an equivalence relation and that it has no moduli for Nash families with isolated singularities.
Using as a motivic measure the virtual Poincaré polynomial of C. McCrory and A. Parusiński
in [19], extended to the wider category of AS sets ([16] and [17]) by G. Fichou in [9], one
can generalize the zeta functions of S. Koike and A. Parusiński in [13]. In [10], G. Fichou
showed that these latter zeta functions are invariants for blow-Nash equivalence via blow-Nash
isomorphisms.

In this paper, we consider Nash germs invariant under right composition with a linear action
of a finite group. We define for such germs a generalization of the blow-Nash equivalence of [10]
involving equivariant data. If G is a finite group acting linearly on Rd and trivially on R, we say
that two equivariant, or invariant, Nash germs f, h : (Rd, 0) → (R, 0) are G-blow-Nash equiv-
alent if there exist two equivariant Nash modifications σf : (Mf , σ

−1
f (0)) → (Rd, 0) and σh :

(Mh, σ
−1
h (0)) → (Rd, 0) of f and h and an equivariant Nash isomorphism Φ : (Mf , σ

−1
f (0)) →

(Mh, σ
−1
h (0)) which induces an equivariant homeomorphism φ : (Rd, 0) → (Rd, 0) such that

f = h ◦ φ (Definition 2.1). If Φ preserves the critical loci of σf and σh, we say that Φ is an
equivariant blow-Nash isomorphism. We consider the equivalence relation generated by the
equivariant blow-Nash equivalence, which allows refinement of the non-equivariant blow-Nash
classification. For example, consider the germs y4 − x2 and x4 − y2. They are Nash equiva-
lent but we show in Example 4.2 that they are not G-blow-Nash equivalent via an equivariant
blow-Nash isomorphism if G = {1, s} with s the involution given by (x, y) 7→ (−x, y).

Our main interest is the construction of invariants for G-blow-Nash equivalence via equiv-
ariant blow-Nash isomorphism. We associate to any invariant Nash germ its equivariant zeta
functions : they are defined using the equivariant virtual Poincaré series of G. Fichou in [11]
as an equivariant motivic measure on its arc spaces equipped with the induced action of G
(section 3.2). It is a generalization of the zeta functions defined in [9] and [10], and they are
different from the equivariant zeta functions defined in [11]. We then prove the rationality of
the equivariant zeta functions by Denef-Loeser formulae (Propositions 3.12 and 3.17). One has
to keep attention on the behaviour of the induced actions of G on all the spaces involved in the
demonstrations of the formulae. A key point is the proof of the validity of Kontsevich “change
of variables formula” ([14]) in this equivariant setting (Proposition 3.14).

Finally, we compute the equivariant zeta functions of several invariant Nash germs (section
5). We are in particular interested in the invariant Nash germs induced from the normal forms
of the simple boundary singularities of manifolds with boundary (see [1]). In a subsequent
work, we plan to study the simple boundary singularities of Nash manifolds with boundary
and classify them with respect to equivariant blow-Nash equivalence.

We begin this paper by the definition of G-blow-Nash equivalence for G a finite group. We
make also precise what we mean by an equivariant modification of an invariant Nash germ.

In section 3, we define the equivariant zeta functions (naive and with signs) of an invariant
Nash germ. We first recall the definition of the G-equivariant virtual Betti numbers : they are

2



the unique additive invariants on the category of AS sets equipped with an algebraic action of
G which coincide with the dimensions of equivariant Borel-Moore homology with Z2-coefficients
on compact nonsingular sets. In subsection 3.3, we prove an equivariant version of Kontsevich
“change of variables formula” and Denef-Loeser formulae for equivariant zeta functions.

In section 4, we show that the equivariant zeta functions are invariant under equivariant
blow-Nash equivalence via equivariant blow-Nash isomorphisms, illustrating this result with the
example of the Nash germs y4−x2 and x4− y2 invariant under the involution (x, y) 7→ (−x, y).
The computation of the equivariant zeta functions of several other invariant Nash germs con-
cludes the paper.

Acknowledgements. The author wishes to thank G. Fichou and T. Fukui for useful
discussions and comments.

2 Equivariant blow-Nash equivalence

Let G be a finite group.
We are interested in the study of germs of Nash functions invariant under some linear action

of G on the source space. More precisely, we want to make progress towards the classification
of such germs up to equivariant equivalence. We define below in 2.1 some generalization of the
blow-Nash equivalence defined by G. Fichou in [10], taking into account the equivariant data
of this setting.

Let us first make precise definitions in the equivariant setting. Let d ≥ 1 and equip the
affine space Rd with a linear action of G and the real line R with the trivial action of G. In
this setting, a germ of an equivariant Nash function f : (Rd, 0) → (R, 0) will be called an
equivariant or invariant Nash germ.

An equivariant Nash modification of such a germ f will be an equivariant proper surjective
Nash map π : (M,π−1(0)) → (Rd, 0) between G-globally stabilized semialgebraic and analytic
neighbourhoods of π−1(0) in M and 0 in Rd, such that

1. M is a Nash manifold equipped with an algebraic action of G (that is an action induced
from a regular G-action on the Zariski closure of M), given by algebraic isomorphisms
δg, g ∈ G,

2. the equivariant complexification π(C) : M(C) → Cd is an equivariant biholomorphism
outside some subset of M(C) of codimension at least 1, globally stabilized by the com-
plexified action of G on M(C),

3. π is an isomorphism outside the zero locus of f ,

4. the irreducible components of (f ◦ π)−1(0) which are not exceptional divisors of π do not
intersect,

5. the action of G on M preserves globally each exceptional divisor of π,

6. the composition f ◦π and the jacobian determinant jac π of π have only normal crossings
simultaneously, on which the action of G on M can be locally linearized in the following
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meaning :

Let (f ◦ π)−1(0) =
⋃

j∈J Ej be the decomposition of (f ◦ π)−1(0) into irreducible compo-
nents. For I ⊂ J , we denote EI :=

⋂

i∈I Ei. We ask that for any I ⊂ J with |I| ≤ d, for
any element x of EI , there exists an affine open neighborhood Ux of x in M , an affine
open neighborhood Vx of 0 in Rd, with coordinates y1, . . . , yd and a Nash isomorphism
ϕx : Vx → Ux (in the sense of [9]) such that

(a) for all i ∈ I, there exists ji ∈ {1, · · · , d}, such that

• Ei ∩ Ux = ϕx({yji = 0} ∩ Vx),

• f ◦ π(ϕx(y1, . . . , yd)) = unit(y1, . . . , yd)
∏

i∈I y
Nji
ji

,

• jac π(ϕx(y1, . . . , yd)) = unit(y1, . . . , yd)
∏

i∈I y
νji−1

ji
,

(b) for all g ∈ G, δg(Ei) ∩ δg(Ux) = ϕg·x({yji = 0} ∩ Vg·x),

(c) for all g ∈ G, δg(Ux) = Ug·x and there exists a linear isomorphism νx,g : Rd → Rd

such that νx,g(Vx) = Vg·x making the following diagram commute :

Vx
ϕx //

νx,g

��

Ux

δg
��

Vg·x
ϕg·x // Ug·x

(d) if δg(EI) = EI , Ug·x = Ux, Vg·x = Vx and ϕg·x = ϕx,

(e) for all g ∈ G, νx,g preserves the intersection of the hyperplanes {ys = 0}, s /∈ {ji, i ∈
I},

(f) for all g ∈ G, the linear isomorphisms νh·x,g, h ∈ G, are all given by the same matrix
Ax,g in the canonical bases of Rd ⊃ Vh·x and Rd ⊃ Vgh·x,

(g) all these conditions come from the semialgebraic and analytic isomorphisms between
compact semialgebraic and real analytic sets inducing the Nash isomorphisms ϕx.

Definition 2.1. Let f, h : (Rd, 0) → (R, 0) be two invariant Nash germs. We say that f and h
are G-blow-Nash equivalent if there exist

• two equivariant Nash modifications σf : (Mf , σ
−1
f (0)) → (Rd, 0) and σh : (Mh, σ

−1
h (0)) →

(Rd, 0) of f and h respectively,

• an equivariant Nash isomorphism Φ between G-globally stabilized semialgebraic and ana-
lytic neighbourhoods (Mf , σ

−1
f (0)) and (Mh, σ

−1
h (0)),

• an equivariant homeomorphism φ : (Rd, 0) → (Rd, 0),
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such that the following diagram commutes :

(Mf , σ
−1
f (0))

Φ //

σf

��

(Mh, σ
−1
h (0))

σh

��

(Rd, 0)
φ

//

f

&&M
MM

MM
MM

MM
MM

(Rd, 0)

h

xxqqq
qq
qq
qq
qq

(R, 0)

In this case, we say that φ is an equivariant blow-Nash homeomorphism, and if Φ preserves
the multiplicities of the jacobian determinant of σf and σg along their exceptional divisors, then
we say that Φ is an equivariant blow-Nash isomorphism.

Remark 2.2. • If G = {e}, the equivariant blow-Nash equivalence is the blow-Nash equiv-
alence defined in [10].

• There exist germs being blow-Nash equivalent via a blow-Nash isomorphism without
being G-blow Nash equivalent via an equivariant blow-Nash isomorphism : see Example
4.2.

In the following, we will also call G-blow-Nash equivalence (resp. G-blow-Nash equivalence
via an equivariant blow-Nash isomorphism) the equivalence relation generated by the G-blow-
Nash equivalence (resp. G-blow-Nash equivalence via an equivariant blow-Nash isomorphism)
defined in Definition 2.1. Notice that the G-blow-Nash equivalence can be defined if G is an
infinite group as well.

3 Equivariant zeta functions

Let G be a finite group.

We are interested in the classification of Nash germs invariant under right composition
with a linear action of G, with respect to the equivariant blow-Nash equivalence. With this
in mind, we generalize the zeta functions defined in [9] to our equivariant setting, using the
equivariant virtual Poincaré series defined in [11]. We show in Proposition 3.12 the rationality
of our equivariant zeta functions by a Denef-Loeser formula, which allows us to prove that they
are invariants for equivariant blow-Nash equivalence via an equivariant blow-Nash isomorphism
(Theorem 4.1).

3.1 Equivariant virtual Poincaré series

In order to define “equivariant” generalizations of the zeta functions for Nash germs, we use an
additive invariant defined on all G-AS sets, that is boolean combinations of arc-symmetric sets
(see [16] and [17]) equipped with an algebraic action of G : the equivariant virtual Poincaré
series. It is defined in [11] using the equivariant virtual Betti numbers, which are the unique
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additive invariant on G-AS sets coinciding with the dimensions of their equivariant homology.
In this subsection, we recall the results of G. Fichou in [11] about equivariant Betti numbers.
We first give the definition of equivariant homology which is a mix of group cohomology and
Borel-Moore homology.

Definition 3.1. Let Z2[G] denote the group ring of G over Z2, that is

Z2[G] =







∑

g∈G

ngg | g ∈ G







equipped with the induced ring structure. Consider a projective resolution (F∗,∆∗) of Z2 by
Z2[G]-modules, that is vector spaces over Z2 equipped with a linear action of G. Then we
define the cohomology H∗(G,M) of the group G with coefficients in a Z2[G]-module M to be
the cohomology of the cochain complex

(

HomZ2[G](F∗,M),∆∗
)

where, if ϕ : Fk → M is an equivariant linear morphism, ∆k(ϕ) := ϕ ◦∆k+1.

Example 3.2. Let G be a finite cyclic group of order d generated by s. We denote by N :=
∑

1≤i≤d s
i. Then a projective resolution of Z2 by Z2[G]-modules is given by

· · · → Z2[G]
1+s
−−→ Z2[G]

N
−→ Z2[G]

1+s
−−→ Z2[G] → Z2 → 0,

where the map Z2[G] → Z2 associates to an element
∑

1≤i≤d nis
i of Z2[G] the element

∑

1≤i≤d ni

of Z2.
The cohomology of the group G with coefficients in a Z2[G]-module M is

Hn(G,M) =











MG

NM if n is an even positive integer,
ker N
(1+s)M if n is an odd positive integer,

MG if n = 0

(where MG denotes the set of elements of M which are fixed by the action of G). In particular,
if G = Z/2Z,

Hn(G,M) =

{

MG

(1+s)M if n > 0,

MG if n = 0.

For more details about group cohomology see for instance [3].

The equivariant homology of G-AS sets we define below is inspired by [21].
Recall that a semialgebraic subset S of Pn(R) is said to be arc-symmetric if every real

analytic arc in Pn(R) either meets S at isolated points or is entirely included in S. An AS set
is a boolean combination of arc-symmetric sets.

Take X an AS set equipped with an algebraic action of G, that is an action induced from
a regular G-action on its Zariski closure : we will call such a set a G-AS set. We can associate
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to X the complex (C∗(X), ∂∗) of its semialgebraic chains with closed supports and Z2 coeffi-
cients, which computes the Borel-Moore homology of X with Z2 coefficients, simply denoted
by H∗(X) : see Appendix of [18]. The action of G on X induces by functoriality a G-action on
the chain complex C∗(X) (linear action on chains in each dimension and commutativity with
the differential). We then consider the double complex

(HomZ2[G](F−p, Cq(X)))p,q∈Z,

where (F∗,∆∗) is a projective resolution of Z2 by Z2[G]-modules, where the differentials are
induced by ∆∗ and ∂∗.

The equivariant Borel-Moore homology H∗(X;G) of X (with Z2 coefficients) is then by
definition the homology of the total complex associated to the above double complex.

Such a double complex induces two spectral sequences that converge to the homology of
the associated total complex. In particular, the spectral sequence given by

E2
p,q = H−p(G,Hq(X)) ⇒ Hp+q(X;G),

is called the Hochschild-Serre spectral sequence of X and G.
It gives the following wiewpoint on the equivariant Borel-Moore homology : it is a mix of

group cohomology and Borel-Moore homology with Z2 coefficients, involving the geometry of
X, the geometry of the action of G and the geometry of the group G itself.

Example 3.3. To illustrate how the equivariant geometry is involved in the equivariant ho-
mology, let us compute the equivariant homology of the two-dimensional sphere, given by the
equation x2 + y2 + z2 = 1 in R3 and denoted by X, equipped with two different kind of
involutions.

Consider first the action given by the central symmetry s : (x, y, z) 7→ (−x,−y,−z). If
G := {1, s}, the E2-term of the Hochschild-Serre spectral sequence of X and G is

· · · Z2[X] Z2[X] Z2[X] Z2[X]

· · · 0 0 0

jjTTTTTTTTTTTTTTTTTTTT
0

jjTTTTTTTTTTTTTTTTTTTT

· · · Z2[p] Z2[p] Z2[p]

iiTTTTTTTTTTTTTTTTTTTTT
Z2[p]

iiTTTTTTTTTTTTTTTTTTTTT

where [p] is the homology class of the chain [p] representing a point p of X : for the sake of
simplicity in the computations, we choose p to be the point of coordinates (1, 0, 0). We see that

7



the differential d2 vanishes everywhere and E3-term is then given by

· · · Z2[X] Z2[X] Z2[X] Z2[X]

· · · 0 0 0 0

· · · Z2[p] Z2[p] Z2[p]

ggPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

Z2[p]

hhPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

The image of [p] by the differential d3 can be obtained by the following procedure. We follow
the following “path” in the double complex (HomZ2[G](F−p, Cq(X)))p,q∈Z :

C2(X) C2(X)
1+s
oo

∂2
��

C2(X) C2(X)

C1(X) C1(X) C1(X)
1+s
oo

∂1
��

C1(X)

C0(X) C0(X) C0(X) C0(X)
1+s
oo

Apply 1 + s to the chain [p]. There exists a semialgebraic chain γ of C1(X) with boundary
[p] + s([p]) = [{p, s(p)}] : we can choose γ to be the chain representing an arc of the equator
{z = 0} of X. The image of γ by 1 + s is the chain representing the whole equator {z = 0},
which is the semialgebraic boundary of the half-sphere {z ≥ 0}. Finally, if we apply 1 + s to
the chain representing the half-sphere, we obtain the chain [X] representing the whole sphere.
Therefore d3([p]) = [X].

Consequently,

E∞
p,q = E4

p,q =

{

Z2[X] if q = 2 and −2 ≤ p ≤ 0,

0 otherwise,

and Hn(X;G) =

{

Z2 if 0 ≤ n ≤ 2,

0 otherwise.

Now let s denote an involution on X which is not free : this means there exists at least one
point p0 of X that is fixed by s. If we look at the E3-term of the Hochschild-Serre spectral
sequence of X with respect to this action of G = Z/2Z, we see that the differential d3 vanishes
everywhere since H0(X) = Z2[p0] and (1 + s)[p0] = 0. Thus, E∞ = E2 and

Hn(X;G) =











Z2 if 0 ≤ n ≤ 2,

Z2 ⊕ Z2 if n ≤ 0,

0 otherwise.

Remark 3.4. • When G = {e}, the equivariant homology of a G-AS set X is the Borel-
Moore homology of X.
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• As illustrated in Example 3.3, the equivariant homology groups can be non-zero in nega-
tive degree. In the case G = Z/2Z, we actually have Hn(X;G) ∼= ⊕i≥0Hi(X

G) for n < 0
(where XG is the set of the points of X which are fixed by the action of G).

For more details about equivariant Borel-Moore homology, see [21], [6], [11] and [20].

The existence and uniqueness of the equivariant Betti numbers are given by the following
theorem of G. Fichou in [11]. The equivariant virtual Betti numbers and the equivariant virtual
Poincaré series are additive invariants under equivariant Nash isomorphisms of G-AS sets. By
a Nash isomorphism between AS-sets X1 and X2 is meant the restriction of a semialgebraic
and analytic isomorphism between compact real analytic and semialgebraic sets Y1 and Y2

containing X1 and Y2 respectively (see also [9]).
We will use the equivariant virtual Poincaré series as a measure for arc spaces which takes

into account equivariant information. In particular, we will apply it to the spaces of arcs of an
invariant Nash germ and gather these measures in the equivariant zeta functions (subsection
3.2).

Theorem 3.5 (Theorem 3.9 of [11]). Let i ∈ Z. There exists a unique map βG
i (·) defined on

G-AS sets and with values in Z such that

1. βG
i (X1) = βG

i (X2) if X1 and X2 are equivariantly Nash isomorphic,

2. βG
i (X) = dimZ2 Hi(X;G) if X is a compact nonsingular G-AS set,

3. βG
i (X) = βG

i (Y ) + βG
i (X \ Y ) if Y ⊂ X is an equivariant closed inclusion,

4. βG
i (V ) = βG

i (R
n × X) with G acting diagonally on the right-hand product, Rn being

equipped with the trivial action of G, if V → X is a G-equivariant vector bundle with fiber

Rn, i.e. the restriction to X of a vector bundle with fiber Rn on its Zariski closure X
Z
,

with a linear G-action over the action on X
Z

(this means there exists a finite partition

of X
Z

into G-globally invariant Zariski constructible sets on which the vector bundle is
trivial and the action of G sends linearly a fiber on another).

The map βG
i (·) is unique with these properties and is called the i-th equivariant virtual Betti

number.
For X a G-AS set, we then denote

βG(X) :=
∑

i∈Z

βG
i (X)ui ∈ Z[u][[u−1]]

the equivariant virtual Poincaré series of X.

Remark 3.6. • For G = {e}, the equivariant virtual Poincaré series is the virtual Poincaré
polynomial defined in [19].

• The assumption of finiteness of the group G is necessary to show the existence of the
equivariant virtual Betti numbers. In particular, when G is finite, there always exist an
equivariant resolution of singularities ([22], [2]) and an equivariant compactification (see
[4]).
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Example 3.7. 1. If we consider the sphere S2 equipped with the central symmetry, since S2

is compact nonsingular, we have

βG(S2) =
∑

i∈Z

dimZ2 Hi(X;G)ui = u2 + u+ 1

(with G = Z/2Z). If now we consider an action of G on S2 which fixes at least one point,
we have

βG(S2) = u2 + u+
∑

i≤0

2ui = u2 + u+ 2
u

u− 1

(see Example 3.3).

2. The equivariant virtual Poincaré series of a point is u
u−1 and the equivariant virtual

Poincaré series of two points inverted by an action of G = Z/2Z is 1 : in both cases, the
Hochschild-Serre spectral sequence degenerates at E2-term.

3. Let the affine plane R2 be equipped with an involution s. To compute the equivariant
virtual Poincaré series βG(R2) (with G = {1, s}), consider an equivariant one-point com-
pactification of R2. It is equivariantly Nash isomorphic to a sphere S2 equipped with an
involution fixing at least the point S2 \ R2. Therefore

βG(R2) = βG(S2)− βG(S2 \R2) =
∑

i≤2

ui =
u3

u− 1
.

4. Let R2 be equipped with an action of G := Z/2Z given by s : (x, y) 7→ (ǫx, ǫ′y), with
ǫ, ǫ′ ∈ {−1, 1}, and E denote the exceptional divisor of the equivariant blowing-up of
the plane at 0. Then, βG(E) = βG(P1) = βG(S1), where the circle S1 is equipped
with an involution fixing at least one point. Then βG(E) = u + 2 u

u−1 (we compute the

Hochschild-Serre spectral sequence of S1).

Contrary to the virtual Poincaré polynomial, we do not know the behaviour of the equiv-
ariant virtual Poincaré series towards products in general case. Nevertheless, we have the
following result regarding the equivariant virtual Poincaré series of the product of a G-AS set
with an affine space. We will use the following two properties in the proof of Denef-Loeser
formula for the equivariant zeta functions (subsection 3.3).

Proposition 3.8 (Proposition 3.13 of [11]). Let X be any G-AS set and equip the affine variety
Rn with any algebraic action of G. If we equip their product with the diagonal action of G, we
have

βG(Rn ×X) = unβG(X).

In particular, βG(Rn) = un+1

u−1 .

Lemma 3.9. Let X be any G-AS set and equip the real line R with any algebraic variety
action of G stabilizing 0. Now let m ∈ N∗ and equip the product (R∗)m ×X with the induced
diagonal action of G. Then we have

βG ((R∗)m ×X) = (u− 1)mβG(X).

10



Proof. We prove this equality by induction on m : we have

βG (R∗ ×X) = βG (R×X)− βG ({0} ×X) = (u− 1)βG(X)

by Proposition 3.8, and, if we assume the property to be true for a fixed m ∈ N∗,

βG
(

(R∗)m+1 ×X
)

= βG ((R∗)× (R∗)m ×X) = (u− 1)βG ((R∗)m ×X) = (u− 1)m+1βG(X).

3.2 Equivariant zeta functions

Consider a linear action of G on Rd, given by linear isomorphisms αg, g ∈ G, and equip R with
the trivial action of G. The space L = L(Rd, 0) of formal arcs (R, 0) → (Rd, 0) at the origin of
Rd is naturally equipped with the induced action of G given by

g · γ := t 7→ αg(γ(t))

for all g ∈ G and all γ : (R, 0) → (Rd, 0) ∈ L. Notice that, if γ(t) = a1t + a2t
2 + . . .,

g · γ(t) = αg(a1)t+ αg(a2)t
2 + . . . by the linearity of the action.

For all n ≥ 1, thanks to its linearity, the action of G on L induces an action on the space

Ln = Ln(R
d, 0) =

{

γ : (R, 0) → (Rd, 0) | γ(t) = a1t+ a2t
2 + . . .+ ant

n, ai ∈ Rd
}

of arcs truncated at the order n + 1. Furthermore, the truncation morphism πn : L → Ln is
equivariant with respect to these actions of G.

Consider now an equivariant Nash germ f : (Rd, 0) → (R, 0), that is f is invariant under
right composition with the linear action of G. Then, for all n ≥ 1, the set

An(f) := {γ ∈ Ln | f ◦ γ(t) = ctn + · · · , c 6= 0}

of truncated arcs of Ln becoming series of order n after left composition with f is globally
stable under the action of G on Ln.

Consequently, we can apply the equivariant virtual Poincaré series to the sets An(f), which
are Zariski constructible subsets of Rnd equipped with an algebraic action of G, and we define
the naive equivariant zeta function

ZG
f (u, T ) :=

∑

n≥1

βG (An(f))u
−ndT n ∈ Z[u][[u−1]][[T ]]

of f

Similarly, the sets

A+
n (f) := {γ ∈ Ln | f ◦ γ(t) = +tn + · · · } and A−

n (f) := {γ ∈ Ln | f ◦ γ(t) = −tn + · · · }

are also stable under the action of G on Ln and we define the equivariant zeta functions with
signs ZG,+

f and ZG,−
f of the invariant Nash germ f :

ZG,±
f (u, T ) :=

∑

n≥1

βG
(

A±
n (f)

)

u−ndT n ∈ Z[u][[u−1]][[T ]].

11



Remark 3.10. • For G = {e}, the equivariant zeta functions are the zeta functions defined
in [9] and [10].

• These equivariant zeta functions are different from the equivariant zeta functions defined
in [11].

Example 3.11 (see also [13] and [9]). Equip the affine line R with the linear involution s : x 7→
−x. Let k ∈ N∗ and consider the invariant Nash germ f : (R, 0) → (R, 0) given by f(x) = x2k.

For all n ≥ 1, if n is not divisible by 2k, An(f) is empty, and if n = 2km,

An(f) = {γ : (R, 0) → (R, 0) | γ(t) = amtm + . . . + ant
n, am 6= 0}

is equivariantly Nash isomorphic to R∗×Rn−m equipped with the diagonal action of G := Z/2Z
on each factor induced from the action of s on R. Therefore the equivariant virtual Poincaré
series of An(f) is (u− 1)u

n−m+1

u−1 = un−m+1 if n = 2km (by Lemma 3.9 and Proposition 3.8), 0
otherwise and we have

ZG
f (u, T ) =

∑

m≥1

u2km−m+1

(

T

u

)2km

=
u T 2k

u− T 2k
.

Now, f is positive so ZG,−
f = 0, and for n = 2km,

A+
n (f) = {γ : (R, 0) → (R, 0) | γ(t) = ±tm + . . .+ ant

n}

is equivariantly Nash isomorphic to {±1} × Rn−m, hence βG(A+
n (f)) = un−m (the points −1

and +1 are exchanged by the involution s). Thus,

ZG
f (u, T ) =

∑

m≥1

u2km−m

(

T

u

)2km

=
T 2k

u− T 2k
.

3.3 Denef-Loeser formulae for equivariant zeta functions

In the following proposition 3.12, we show that, as the non-equivariant one in [9] and [10],
the naive equivariant zeta function is rational. This Denef-Loeser formula for an equivariant
modification will allow us to prove that two invariant Nash germs equivariantly blow-Nash
equivalent through an equivariant blow-Nash isomorphism have the same naive equivariant
zeta function (Theorem 4.1).

We keep the notations from previous subsection 3.2.

Proposition 3.12. Let σ : (M,σ−1(0)) → (Rd, 0) be an equivariant Nash modification of f .
At first, we keep notations from the non-equivariant case ([10]) :

• Let (f ◦ σ)−1(0) =
⋃

j∈J Ej be the decomposition of (f ◦ σ)−1(0) into irreducible compo-

nents. Then there exists K ⊂ J such that σ−1(0) =
⋃

k∈K Ek.

• Put Ni := multEi f ◦ σ and νi := 1 +multEi jac σ, and, for I ⊂ J , E0
I :=

(
⋂

i∈I Ei

)

\
(

⋃

j∈J\I Ej

)

.

12



Now, the action of G on M induces an action of G on the set of irreducible components of
(f ◦ σ)−1(0). For j1, j2 ∈ J and g ∈ G, we write the equality j2 = g · j1 if Ej2 = g · Ej1. This
induces an action of G on the set Λ of non-empty subsets of J and we denote by I the orbit of
a non-empty subset I of J .

For I in Λ/G, we then denote by E0
I the union of the sets E0

g·I = g · E0
I =

(
⋂

i∈I g ·Ei

)

\
(

⋃

j∈J\I g · Ej

)

, g ∈ G (it is the orbit of E0
I in M) and we have the equality

ZG
f (u, T ) =

∑

I∈Λ/G

(u− 1)|I|βG
(

E0
I ∩ σ−1(0)

)

∏

i∈I

u−νiTNi

1− u−νiTNi
.

Remark 3.13. For all i ∈ I and g ∈ G, multg·Eif ◦ σ = multEif ◦ σ and multg·Eijac σ =
multEijac σ, thanks to the equivariance of f and σ (see part (iv) of the proof below).

Proof. The proof is a generalization to the equivariant setting of the proof of Denef-Loeser for-
mula in [9] and [10], which uses the theory of motivic integration on arc spaces for arc-symmetric
sets (see also [5]). The key point is the justification of Kontsevich change of variables formula
([14]) in our setting.

The proof runs as follows. We define the notion of G-stable subsets of the arc space
associated to (Rd, 0) or (M,σ−1(0)). These sets constitute the measurable sets with respect
to a measure defined using the equivariant virtual Poincaré series. Here, we use the good
behaviour of βG with respect to equivariant vector bundles (Proposition 3.8) to justify that
this measure is well-defined.

This allows one to define an integration with respect to this equivariant measure. We show
the validity of the Kontsevich change of variables in the equivariant setting (Proposition 3.14
below) just after the present proof.

This key formula provides us a first intermediate equality for ZG
f (u, T ), bringing out some

AS sets globally invariant under the induced actions of G, which involve the equivariant Nash
modification σ of f .

The final step is the computation of the value of the equivariant virtual Poincaré series of
these G-AS sets in terms of the irreducible components of (f ◦ σ)−1(0).

(i) Equivariant measurability and equivariant integration on arc spaces

We first define a notion of equivariant measurability and equivariant measure in the arc
spaces L(Rd, 0) and L

(

M,σ−1(0)
)

= {γ : (R, 0) → (M,σ−1(0)) formal }. The action of G
on M , given by algebraic isomorphisms δg, g ∈ G, induces an action on L(M,σ−1(0)) by
composition. For all n ≥ 0, the space Ln(M,σ−1(0)) of arcs truncated at order n + 1 is
stable under the action of G on L(M,σ−1(0)) and the n + 1-th order truncating morphisms
πn : L(M,σ−1(0)) → Ln(M,σ−1(0)) is equivariant (see part (iv) of the proof).

For convenience, in the following definitions, L will denote either L(Rd, 0) or L(M,σ−1(0)).
Now we say that a subset A of the arc space L is G-stable if there exists n ≥ 0 and an AS-

subset C of Ln, globally invariant under the algebraic action of G on Ln, such that A = π−1
n (C).

13



Notice that a G-stable set is globally invariant under the action of G on L. Then we define the
measure βG(A) of a G-stable set A by setting

βG(A) := u−(n+1)dβG(πn(A)) ∈ Z[u][[u−1]]

for n big enough.

Let us show that this measure is well-defined. This is actually a consequence of the fact
that the truncation projections qn : Ln+1 → Ln are vector bundles with fiber Rd, the action
of G sending linearly a fiber on another (for L = L(M,σ−1(0)), we can cover the compact set
σ−1(0) by the orbits of a finite number of open affine subsets Ux, x ∈ σ−1(0)).

Now, if A = π−1
n (Cn) = π−1

n+1(Cn+1), since qn : Cn+1 → Cn is a restriction of the G-
equivariant vector bundle qn : Ln+1 → Ln, we have βG(Cn+1) = udβG(Cn) by Theorem 3.5
and Proposition 3.8.

We then define an integral with respect to the measure βG for maps θ with source a G-stable
set A and Z[u, u−1] as target, with finite image and G-stable sets as fibers : the integral of θ
over A is

∫

A
θdβG :=

∑

c∈Z[u,u−1]

cβG
(

θ−1(c)
)

.

(ii) Kontsevich change of variables

Now we state the equivariant version of the change of variables formula in [14] (see also [5]
and [9]) :

Proposition 3.14. Let A be G-stable set of L(Rd, 0) and assume that ordt jac σ is bounded
on σ−1(A). Then

βG(A) =

∫

σ−1(A)
u−ordt jac σdβG.

Here, we denote also by σ the equivariant map L
(

M,σ−1(0)
)

→ L(Rd, 0) ; γ 7→ σ ◦ γ. We
show Proposition 3.14 after the present proof.

(iii) Applying Kontsevich formula

We use the equivariant version of Kontsevich formula and the additivity of the equivariant
virtual Poincaré series to reduce the computation of the naive equivariant zeta function to the
computation of the equivariant virtual Poincaré series of G-AS sets expressed in terms of the
equivariant Nash modification σ of f .

First, we give notations to the sets that will appear as the proof goes along, similarly to
[9]. For any n ≥ 1 and e ≥ 1, we put

• Zn(f) := π−1
n (An(f)),

• Zn(f ◦ σ) := σ−1(Zn(f)),

14



• ∆e := {γ ∈ L
(

M,σ−1(0)
)

| ordt jac σ(γ(t)) = e},

• Zn,e(f ◦ σ) := Zn(f ◦ σ) ∩∆e.

Notice that all the sets Zn(f), Zn(f ◦ σ), ∆e and Zn,e(f ◦ σ) are globally invariant under the
actions of G on arc spaces, notably because σ is an equivariant Nash modification (see also
step (iv) below).

First, since all the sets Zn(f) are by definition G-stable, we can consider their equivariant
measure βG(Zn(f)) = u−(n+1)dβG(An(f)) and write

ZG
f (u, T ) = ud

∑

n≥1

βG(Zn(f))T
n.

We then apply the equivariant Kontsevich change of variables formula to compute βG(Zn(f))
for all n ≥ 1. Indeed, there exists c ∈ N such that for all n ≥ 1, Zn(f ◦ σ) is the finite
disjoint union ∪e≤cnZn,e(f ◦ σ) (see [9]) : in particular, for all n ≥ 1, ordt jac σ is bounded on
Zn(f ◦ σ) = σ−1(Zn(f)) and we can apply Proposition 3.14 to obtain

βG(Zn(f)) =

∫

σ−1(Zn(f))
u−ordt jac σdβG =

∑

e≤cn

u−eβG (Zn,e(f ◦ σ)) .

Moreover, if n ≥ 1 and e ≤ cn, for any arc γ in Zn,e(f ◦σ) (more generally in L(M,σ−1(0))),
there exists I ⊂ J such that π0(γ) ∈ E0

I ∩ σ−1(0), and more particularly, there exists I ∈ Λ/G
such that π0(γ) ∈ E0

I ∩ σ−1(0).
Consequently, we can write the G-stable set Zn,e(f ◦ σ) as the disjoint union of the sets

Z
I
n,e(f ◦ σ) := Zn,e(f ◦ σ) ∩ π−1

0 (E0
I ∩ σ−1(0)), I ∈ Λ/G, and we have

βG(Zn,e(f ◦ σ)) = u−(n+1)dβG
(

πn
(

⊔I∈Λ/GZ
I
n,e(f ◦ σ)

))

= u−(n+1)d
∑

I∈Λ/G

βG
(

πn
(

ZI
n,e(f ◦ σ)

))

(in the last equality, we used the additivity of the equivariant virtual Poincaré series).

Finally, we have

ZG
f (u, T ) =

∑

n≥1

u−ndT n
∑

e≤cn

u−e
∑

I∈Λ/G

βG
(

πn
(

ZI
n,e(f ◦ σ)

))

, (1)

where πn

(

ZI
n,e(f ◦ σ)

)

is the G-AS set

{

γ ∈ Ln(M,σ−1(0)) | γ(0) ∈ E0
I ∩ σ−1(0), ordt f ◦ σ(γ(t)) = n, ordt jac σ(γ(t)) = e

}

.

(iv) Computation of βG
(

πn

(

ZI
n,e(f ◦ σ)

))
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Let n ≥ 1, e ≤ nc and I ∈ Λ/G (such that EI 6= ∅). First, we cover the compact set EI by
a finite union of open affine subsets Uxr , xr ∈ EI , r = 1, . . . ,m. We can then write

E0
I =

m
⋃

r=1





⋃

g∈G

E0
g·I ∩ Ug·xr



 .

We are going to compute the equivariant virtual Poincaré series of

{

γ ∈ Ln(M,σ−1(0)) | γ(0) ∈ E0
I ∩ σ−1(0), ordt f ◦ σ(γ(t)) = n , ordt jac σ(γ(t)) = e

}

.

Consider an arc γ in this last set and assume, without any loss of generality, that γ(0) ∈
E0

I ∩ σ−1(0) ∩ Ux with x ∈ {x1, . . . , xm}. For all i ∈ I, we have

• Ei ∩ Ux = ϕx({yji = 0} ∩ Vx),

• f ◦ σ(ϕx(y1, . . . , yd)) = unit(y1, . . . , yd)
∏

i∈I y
Ni
ji
,

• jac σ(ϕx(y1, . . . , yd)) = unit(y1, . . . , yd)
∏

i∈I y
νi−1
ji

.

We can assume Ux and Vx are Nash isomorphic AS-sets such that the above unit Nash functions
are nowhere zero on Vx (by intersecting Vx with the orbit under G of the respective complements
of their zero sets which are AS-sets).

Let g ∈ G. For i ∈ I, the action of g on M sends an irreducible component Ei locally
described in Vx by the equation yji = 0 on the irreducible component Eg·i locally described in
Vg·x by the same equation yji = 0. Therefore, after same relevant permutations of coordinates
in the source and target spaces, the matrix of νx,g : R

d ⊃ Vx → Rd ⊃ Vg·x becomes of the form























































λ1

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

0 0 0 0

0

0

0 0 λ|I| 0 0

0 0

0 0























































where all the λj ’s are non-zero (recall the definition of an equivariant Nash modification of f
in section 2).

In particular, for all i ∈ I,
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• Ng·i = Ni,

• νg·i = νi,

• if γ(t) = ϕx((γ1(t), · · · , γd(t))) and if we denote ki(γ) := ordt γji(t) for all i ∈ I, ki(g ·
γ(t)) = ki(γ),

so that there is an equivariant Nash isomorphism between

{

γ ∈ Ln(M,σ−1(0)) | γ(0) ∈ E0
I ∩ σ−1(0), ordt f ◦ σ(γ(t)) = n, ordt jac σ(γ(t)) = e

}

and
⊔

k∈A(n,e)

{

γ ∈ Ln(M,σ−1(0)) | γ(0) ∈ E0
I ∩ σ−1(0), ordt γji(t) = ki, i ∈ I

}

,

with A(n, e) := {k ∈ Nd |
∑

i∈I kiNi = n,
∑

i∈I ki(νi − 1) = e}. Consequently, the equivariant
virtual Poincaré series of these sets are equal.

Let k ∈ A(n, e). We compute now the equivariant virtual Poincaré series of the set

Wk :=
{

γ ∈ Ln(M,σ−1(0)) | γ(0) ∈ E0
I ∩ σ−1(0), ordt γji(t) = ki, i ∈ I

}

.

We write it as the difference of
{

γ ∈ Ln(M,σ−1(0)) | γ(0) ∈ E0
I ∩ σ−1(0), γji(t) = cit

ki + · · · , ci ∈ R, i ∈ I
}

and the union over l ∈ I of the sets
{

γ ∈ Ln(M,σ−1(0)) | γ(0) ∈ E0
I ∩ σ−1(0), γjl(t) = 0× tkl + · · ·

}

.

Thanks to the additivity of the equivariant virtual Poincaré series, we are then reduced to
compute the equivariant virtual Poincaré series of

{

γ ∈ Ln(M,σ−1(0)) | γ(0) ∈ E0
I ∩ σ−1(0), γjl(t) = 0× tkl + · · · , l ∈ {l1, . . . , ls}

}

for any {l1, . . . , ls} ⊂ I. Considering the restriction to such a set of the projection π0 onto
E0

I ∩ σ−1(0), we see that this is a G-equivariant vector bundle over E0
I ∩ σ−1(0) with fibers

isomorphic to R|I|−s
(
∏

i∈I R
n−ki

)

(Rn)d−|I|.
Therefore,

βG(Wk) = βG(E0
I ∩ σ−1(0))u|I|+nd−

∑
i∈I ki −

∑

s∈{1,...,|I|}

(−1)s+1

(

|I|

s

)

βG
(

E0
I ∩ σ−1(0)

)

u|I|−s+nd−
∑

i∈I ki

= (u− 1)|I|βG(E0
I ∩ σ−1(0))und−

∑
i∈I ki
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As a consequence,

βG(πn
(

ZI
n,e(f ◦ σ)

)

) =
∑

k∈A(n,e)

(u− 1)|I|βG
(

E0
I ∩ σ−1(0)

)

und−
∑

i∈I ki . (2)

(v) Conclusion of the proof

Substituting (2) in the equality (1) of step (iii), we get

ZG
f (u, T ) =

∑

I∈Λ/G

(u− 1)|I|βG
(

E0
I ∩ σ−1(0)

)

∑

n≥1

∑

e≤cn

∑

k∈A(n,e)

u−e−
∑

i∈I kiT n.

As in [9], we write the sum
∑

n≥1

∑

e≤cn

∑

k∈A(n,e) u
−e−

∑
i∈I kiT n as the product

∏

i∈I
u−νiTNi

1−u−νiTNi

and we obtain the Denef-Loeser formula

ZG
f (u, T ) =

∑

I∈Λ/G

(u− 1)|I|βG
(

E0
I ∩ σ−1(0)

)

∏

i∈I

u−νiTNi

1− u−νiTNi
.

We next prove the equivariant version of Kontsevich change of variables (Proposition 3.14),
which is a key tool in the demonstration of the above Denef-Loeser formula. In order to achieve
this goal, we need the following lemma which is an equivariant Nash analog to Lemma 3.4 of
[5] (see also Lemma 2.11 of [10]) :

Lemma 3.15. Let h : (M,h−1(0)) → (Rd, 0) be an equivariant proper surjective Nash map
such that the action of G on M is locally linear around h−1(0), i.e corresponds locally to a
linear G-action, in G-globally invariant affine open charts of M .

For all e ≥ 1, set

∆e :=
{

γ ∈ L(M,h−1(0)) | ordt jac h(γ(t)) = e
}

and for all n ≥ 1,
∆e,n := πn(∆e),

and denote by hn the equivariant map πn ◦ h : Ln(M,h−1(0)) → Ln(R
d, 0).

If n ≥ 2e, then hn(∆e,n) is an AS set, globally invariant under the action of G on Ln(R
d, 0),

and hn is an equivariantly piecewise trivial fibration over hn(∆e,n), with G-globally invariant
AS sets as pieces, with fiber Re (more precisely h−1

n (hn(∆e,n)) → hn(∆e,n) is a G-equivariant
vector bundle with fiber Re).

Remark 3.16. The details of this fibration are given at the end of the proof below.

Proof of Lemma 3.15. Fix e ≥ 1 and n ≥ 2e.
The fact that hn(∆e,n) is an AS set is given by the non-equivariant result of G. Fichou in

[10], Lemma 2.11. Since ∆e,n is globally invariant under the action of G on Ln(M,h−1(0)), so
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is the set hn(∆e,n) under the action of G on Ln(R
d, 0) because hn is equivariant.

In the proof of the second assertion of the lemma, we refer to the proof of Lemma 3.4 in
[5], replacing the terms “regular maps” by “Nash maps” and “constructible sets” by “AS sets”
(see also [10]).

Consider an equivariant section s : Ln(R
d, 0) → L(Rd, 0) of πn. We have s(hn(∆e,n)) ⊂

h(∆e) and h−1 is well-defined on h(∆e) (because h(γ1) 6= h(γ2) if γ1 6= γ2 with γ1 ∈ ∆e), Nash
and equivariant, so one can construct the equivariant mapping

θ : hn(∆e,n) → ∆e ; γ 7→ h−1(s(γ)).

It is an equivariantly piecewise morphism : this means there exists a finite partition of the
domain of θ into AS sets globally invariant under the action of G on Ln(R

d, 0), such that the
restriction of θ to each piece is an equivariant Nash map, that is induced by an equivariant
semialgebraic and analytic map.

One can then use the map θ to express the fiber of an arc γ of hn(∆e,n) under hn :

h−1
n (γ) = {θ(γ) + tn+1−eγ′ mod tn+1 | γ′ formal and (Jac h(θ(γ)))γ′ ≡ 0 mod te},

which can be identified to a linear subspace of Rde of dimension e. Furthermore, the action
of g ∈ G sending the fiber h−1

n (γ) on the fiber h−1
n (g · γ) is given by the matrix Ax,g for some

x ∈ h−1(0).
Therefore, there exists a finite partition of hn(∆e,n) into globally G-invariant AS sub-

sets (Si)i=1,...,m of Ln(R
d, 0), such that for any i ∈ {1, . . . ,m}, h−1

n (Si) is a G-AS subset of
Ln(M,h−1(0)), Nash isomorphic to Si×Re, the action of G sending linearly a fiber on another.

Proof of Proposition 3.14. We are now ready to prove the equivariant Kontsevich change of
variables formula. We are going to compute the integral against the measure βG of the map

ζ : σ−1(A) → Z[u, u−1] ; γ 7→ u−ordt jac σ(γ)

over σ−1(A), and show that it equals βG(A).

We have
∫

σ−1(A)
ζdβG =

∑

c∈Z[u,u−1]

cβG(ζ−1(c)) (by definition of the integral)

=
∑

1≤e≤ρ

u−eβG(σ−1(A) ∩∆e) (ordt jac σ(γ) is bounded on σ−1(A))

=
∑

1≤e≤ρ

u−eu−(n+1)dβG(πn(σ
−1(A) ∩∆e)) (for n big enough and bigger than 2ρ)

=
∑

1≤e≤ρ

u−eu−(n+1)dβG(πn(σ
−1(A)) ∩∆e,n) (σ−1(A) is stable)
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Now fix 1 ≤ e ≤ ρ. We have the equality of sets

πn(σ
−1(A)) ∩∆e,n = σ−1

n (πn(A)) ∩ σ−1
n (σn(∆e,n)) = σ−1 (πn(A) ∩ σn(∆e,n)) ,

where σn = πn ◦ σ. The equality πn(σ
−1(A)) = σ−1

n (πn(A)) comes from the stability of A and
the fact that πn ◦σ ◦πn = πn ◦σ on L(M,h−1(0)), and we use Lemma 2.12 of [10] to show that
∆e,n = σ−1

n (σn(∆e,n)) (recall that n ≥ 2e).
We then compute βG

(

σ−1
n (πn(A) ∩ σn (∆e,n))

)

using the fact that, by previous Lemma
3.15, σn is an equivariantly piecewise trivial fibration over σn(∆e,n) and more precisely that
σ−1
n (πn(A) ∩ σn (∆e,n)) → πn(A)∩σn (∆e,n) is a restriction of the G-equivariant vector bundle

σ−1
n (σn (∆e,n)) → σn (∆e,n) with fiber Re, so that

βG
(

σ−1
n (πn(A) ∩ σn (∆e,n))

)

= ueβG (πn(A) ∩ σn(∆e,n)) .

Consequently,

∫

σ−1(A)
ζdβG =

∑

1≤e≤ρ

u−eu−(n+1)dβG
(

σ−1
n (πn(A) ∩ σn(∆e,n))

)

=
∑

1≤e≤ρ

u−(n+1)dβG (πn(A) ∩ σn(∆e,n))

= u−(n+1)dβG (πn(A) ∩ (⊔1≤e≤ρσn(∆e,n))) (the sets πn(σ(∆e)) are disjoint since n > e)

= u−(n+1)dβG (πn(A)) = βG(A)

Notice that we used the surjectivity of the map σn : Ln(M,σ−1(0)) → Ln(R
d, 0), which comes

from the arc lifting property of a real modification : see for instance [8].

Next, we state the Denef-Loeser formula for the equivariant zeta functions with signs. As
in the non-equivariant case (see [9] and [10]), we have to consider coverings of the spaces E0

I .
However, in our equivariant setting, it is necessary to consider coverings of the orbits of these
spaces under the induced action of G.

Proposition 3.17. Keep the notations and assumptions of Proposition 3.12. We can write
the equivariant zeta functions with signs of f as a rational fraction in terms of its equivariant
Nash modification σ. Precisely, we have the formula

ZG,±
f (u, T ) =

∑

I∈Λ/G

(u− 1)|I|−1βG

(

˜E0,±
I ∩ σ−1(0)

)

∏

i∈I

u−νiTNi

1− u−νiTNi
,

where, for I ∈ Λ/G, ˜E0,+
I and ˜E0,−

I are G-coverings of E0
I .

Remark 3.18. We define the spaces ˜E0,±
I in the proof below, making precise how the action of

G on M induces an action on them.
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Proof. To prove the Denef-Loeser formula for equivariant zeta functions with signs, we follow
the same first steps as in the proof of Proposition 3.12, and we are led to write

ZG,±
f (u, T ) =

∑

n≥1

u−ndT n
∑

e≤cn

u−e
∑

I∈Λ/G

βG
(

πn
(

Z±,I
n,e (f ◦ σ)

))

,

where each πn

(

Z±,I
n,e (f ◦ σ)

)

is the globally invariant set

{

γ ∈ Ln(M,σ−1(0)) | γ(0) ∈ E0
I ∩ σ−1(0), f ◦ σ(γ(t)) = ±tn + · · · , ordt jac σ(γ(t)) = e

}

.

With the same notations as in the proof of Proposition 3.12, let k ∈ A(n, e) and let γ ∈

πn

(

Z
±,I
n,e (f ◦ σ)

)

such that γ(0) ∈ EI ∩ Ux and for i ∈ I, ordt γji(t) = ki. The condition

f ◦ σ(γ(t)) = ±tn + · · · can be expressed as

ux
(

ϕ−1
x (γ(0))

)

∏

i∈I

ρNi
ji

= ±1,

where ρji is the term of order ki in γji(t). Denote

W±
I,Ux,ϕx

=

{

(z, ρ) ∈ (E0
I ∩ Ux)× (R∗)|I| | ux

(

ϕ−1
x (z)

)

∏

i∈I

ρNi
ji

= ±1

}

and notice that, since for g ∈ G, f ◦ σ ◦ δg = f ◦ σ, we have

ux(y1, . . . , yd)
∏

i∈I

yNi
ji

= f ◦ σ(ϕg·x(νx,g(y1, . . . , yd)))

= ug·x(νx,g(y1, . . . , yd))
∏

i∈I

(λiyji)
Ni

where the constants λi, i ∈ I, are given by the matrix Ax,g. Therefore,

ug·x(νx,g(y1, . . . , yd)) =
1

(

∏

i∈I λ
Ni
i

)ux(y1, . . . , yd)

and in particular, the action of g ∈ G on M sends W±
I,Ux,ϕx

on W±
g·I,Ug·x,ϕg·x

.

As a consequence, there is an equivariant Nash isomorphism between πn

(

Z±,I
n,e (f ◦ σ)

)

and

the gluing of the sets

⊔

k∈A(n,e)

W±
g·I,Ug·xr ,ϕg·x

×

(

∏

i∈I

Rn−ki

)

(Rn)d−|I| ,

along the spaces E0
g·I ∩ Ug·xr , g ∈ G, r = 1, . . . ,m.
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Thanks to the additivity of the equivariant virtual Poincaré series and Lemma 3.9, we are
then reduced to compute the equivariant virtual Poincaré series of the orbit of the set W±

I,Ux,ϕx

(notice that, for g1, g2 ∈ G, the sets
(

E0
g1·I

∩ Ug1·x

)

and
(

E0
g2·I

∩ Ug2·x

)

are equal or do not

intersect).

Now, consider the isomorphism from W±
I,Ux,ϕx

to R±
I,Ux,ϕx

× (R∗)|I|−1 given in the proof of
Proposition 3.5 of [9], with

R±
I,Ux,ϕx

:=

{

(z, t) ∈ E0
I ∩ Ux × R | tm = ±

1

ux
(

ϕ−1
x (z)

)

}

,

where m is the greatest common divisor of the Ni’s, i ∈ I. It is defined using integers ni, i ∈ I
such that

∑

i∈I niNi = m.
These isomorphisms are compatible with the action of g ∈ G sending the element (z, t, κ)

of R±
I,Ux,ϕx

× (R∗)|I|−1 to (δg(z),
t

∏
i∈I λ

Ni/m
i

, g ·κ) ∈ R±
g·I,Ug·x,ϕg·x

× (R∗)|I|−1, the j-th coordinate

of κ being sent to itself times
(

∏

i∈I λ
Ni/m
i

)−nj

λj.

Consequently, the equivariant virtual Poincaré series of the orbit of the set W±
I,Ux,ϕx

is,

using Lemma 3.9, (u− 1)|I|−1 times the equivariant virtual Poincaré series of the orbit of the
set R±

I,Ux,ϕx
.

Thus,

βG
(

πn
(

Z±,I
n,e (f ◦ σ)

))

=
∑

k∈A(n,e)

(u− 1)|I|−1βG

(

˜E0,±
I

)

und−
∑

i∈I ki

where ˜E0,±
I is the gluing of the sets R±

g·I,Ug·xr ,ϕg·xr
along the spaces E0

g·I ∩ Ug·xr , g ∈ G,
r = 1, . . . ,m.

Now, the end of the computation is the same as in step (v) of the proof of Proposition 3.12
(notice that in the above arguments, we dropped the intersection with σ−1(0) for the sake of
readability).

Remark 3.19. We can also define the naive equivariant zeta function of the germ of an equiv-
ariant Nash function f : (Rd, 0) → (R, 0) where the affine spaces Rd and R are both equipped
with a linear action of G. Indeed, if g 7→ κg denotes the linear action of G on R, then, since G
is finite, for all g ∈ G, κg = ±IdR. Therefore, the spaces of arcs An(f) of f are globally stable
under the action of G on L. Furthermore, Denef-Loeser formula of Proposition 3.12 is also
valid for the naive equivariant zeta function of f .

In order to define equivariant zeta functions with signs for f , we have to consider the
kernel H of the group morphism g 7→ κg. Then the arc spaces A+

n (f) and A−
n (f) are globally

stable under the restricted action of H on L and we can define the equivariant zeta functions
with signs of f with respect to H, for which we have Denef-Loeser formula (Proposition 3.17).
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We can also consider, for all n ≥ 1, the equivariant virtual Poincaré series of the reunion
of A+

n (f) and A−
n (f), which is a G-AS-set, and gather this data into a new zeta function. In a

subsequent work, we will study this zeta function, as well as its relation to the other equivariant
zeta functions of such an equivariant Nash germ f .

4 Equivariant zeta functions and equivariant blow-Nash equiv-

alence

Denef-Loeser formulae for the equivariant zeta functions allow us to show that these latter are
invariants for equivariant blow-Nash equivalence via equivariant blow-Nash isomorphisms :

Theorem 4.1. Let Rd be equipped with a linear action of G and let f , h : (Rd, 0) → (R, 0) be
two invariant Nash germs. If f and h are G-blow-Nash equivalent via an equivariant blow-Nash
isomorphism, then

ZG
f (u, T ) = ZG

h (u, T ) and ZG,±
f (u, T ) = ZG,±

h (u, T )

Proof. Let us keep the notations of the definition 2.1 of G-blow-Nash equivalence.
We then apply Proposition 3.12, respectively Proposition 3.17, to both f and h and the

expressions of the naive equivariant zeta functions, resp. equivariant zeta functions with signs,
of f and h given by the Denef-Loeser formula are equal because

• Φ sends the irreducible components of (f ◦ σf )
−1(0) onto the irreducible components of

(h ◦ σh)
−1(0),

• the equivariant virtual Poincaré series is invariant under equivariant Nash isomorphisms,

• the multiplicities N are preserved by Φ thanks to the commutativity of the diagram defin-
ing G-blow-Nash equivalence (see Definition 2.1), and the multiplicities ν are preserved
by Φ because it is an equivariant blow-Nash isomorphism.

Example 4.2. Consider the affine plane R2 with coordinates (x, y), equipped with the Z/2Z-
action (x, y) 7→ (−x, y). Let f and h be the Nash germs at (0, 0) defined by

f(x, y) = y4 − x2 ; h(x, y) = x4 − y2.

They are Nash equivalent via the Nash isomorphism Φ : R2 → R2 ; (x, y) 7→ (y, x). In
particular, they are blow-Nash equivalent via a blow-Nash isomorphism and consequently

Zf (u, T ) = Zh(u, T )

(the zeta functions are invariants for blow-Nash equivalence via blow-Nash isomorphisms : see
[10]).

However, notice that Φ is not equivariant with respect to the considered action of G := Z/2Z
on R2. We compute the naive equivariant zeta functions of the invariant Nash germs f and h
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and show that they are not G-blow-Nash equivalent via an equivariant blow-Nash isomorphism,
using Theorem 4.1.

Let σ1 be the equivariant blowing-up of R2 at the origin and let (R2, (X,Y )) be the chart
of the blowing-up in which σ1 is given by σ1(X,Y ) = (XY, Y ), the action of G on this chart
being given by (X,Y ) 7→ (−X,Y ). In this chart, we have f ◦ σ1(X,Y ) = Y 2(Y 2 −X2).

By a second equivariant blowing-up σ2 given by σ2(W,Z) = (W,WZ) in the chart (R2, (W,Z)),
we obtain a function with only normal crossings

f ◦ σ(W,Z) = W 4Z2(Z − 1)(Z + 1),

with σ := σ1 ◦ σ2. It is in particular invariant under the action of G on the chart, given by
(W,Z) 7→ (−W,−Z).

The fiber f ◦ σ−1(0) have four irreducible components, given in the chart (R2, (W,Z)) by

E1 = {Z = 0}, E2 = {W = 0}, E3 = {Z = 1}, E4 = {Z = −1}.

The exceptional divisors E1 and E2, both isomorphic to a circle, intersect at a G-fixed point
and E2 intersects the irreducible components E3 and E4 of the strict transform of f at two
points exchanged by the action.

Therefore, using the equivariant Denef-Loeser formula, since N1 = 2, ν1 = 1, N2 = 4, ν2 = 2
and N3 = N4 = 1, ν3 = ν4 = 0, we have after computation (use Example 3.7)

ZG
f (u, T ) =

T 2

1− u−2T 2
+ (u2 − u+ 1)

u−3T 4

1 − u−3T 4
+ (u− 1)

u−1T 2

1 − u−2T 2

u−3T 4

1− u−3T 4

+ (u− 1)2
u−3T 4

1− u−3T 4

u−1T 1

1− u−1T 1
.

In order to compute the naive equivariant zeta function of h, we consider the equivariant
blowings-up σ1 and σ2 in the respective charts (R2, (U, T )) and (R2, (R,S)), where they are
given by σ1(U, T ) = (U,UT ) and σ2(R,S) = (RS,S). The actions of G on these charts are
given by (U, T ) 7→ (−U,−T ) and (R,S) 7→ (R,−S), and we have

h ◦ σ(R,S) = S4R2(R− 1)(R + 1)

in the chart (R2, (R,S)).
The four irreducible components of (h ◦ σ)−1(0) are given by

E′
1 = {R = 0}, E′

2 = {S = 0}, E′
3 = {R = 1}, E′

4 = {R = −1}

and the exceptional divisor E′
2 intersects the strict transform of h at two points that are both

fixed by the action of G. Thus,

ZG
h (u, T ) =

T 2

1− u−2T 2
+ (u2 − 2u)

u−3T 4

1 − u−3T 4
+ (u− 1)

u−1T 2

1 − u−2T 2

u−3T 4

1− u−3T 4

+ (2u(u− 1))
u−3T 4

1 − u−3T 4

u−1T 1

1− u−1T 1
.
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In particular,
ZG
f (u, T ) 6= ZG

h (u, T )

and therefore, with respect to the considered Z/2Z-action on R2, f and h are not G-blow-Nash
equivalent via an equivariant blow-Nash isomorphism, by Theorem 4.1.

5 Examples

In this section, we compute the equivariant zeta functions of several invariant Nash germs under
linear actions of G := Z/2Z, using Denef-Loeser formula (Propositions 3.12 and 3.17).

Example 5.1 (see also Example 3.6 of [9]). Equip the affine plane R2 with any involution of the
type s : (x, y) 7→ (ǫx, ǫ′y) with ǫ, ǫ′ ∈ {−1, 1}

• Consider the invariant Nash germ f : (x, y) 7→ x2+ y2 at (0, 0). The equivariant blowing-
up of the plane at the origin gives an equivariant resolution σ of the singularities of f
and the fiber (f ◦ σ)−1(0) consists just in the exceptional divisor E1 of the blowing-up
equipped with the induced non-free action of G, and we obtain (see Example 3.7)

ZG
f (u, T ) = (u− 1)

(

u+ 2
u

u− 1

)

u−2T 2

1− u−2T 2
= (u2 + u)

u−2T 2

1− u−2T 2
.

Now, since f is a positive function, we know that ZG,−
f (u, T ) = 0, and, since ˜E0,+

{1} is the
boundary of a Möbius band equipped with a non-free action of G,

ZG,+
f (u, T ) =

(

u+ 2
u

u− 1

)

u−2T 2

1− u−2T 2
.

• Consider the invariant Nash germ h : (x, y) 7→ −x2 − y4. Two successive equivariant
blowings-up provide an equivariant resolution of singularities τ of h. The two exceptional
divisors E′

1 and E′
2, intersecting at one G-fixed point, constitute the fiber (f ◦ τ)−1(0)

and we have

ZG
f (u, T ) = u2

u−2T 2

1− u−2T 2
+ u2

u−3T 4

1− u−3T 4
+ (u− 1)u

u−2T 2

1 − u−2T 2

u−3T 4

1− u−3T 4
.

The sets ˜E0,+
{1}

and ˜E0,+
{2}

are both the boundary of a Möbius band minus two points fixed
under the induced action of G. Consequently,

ZG,−
f (u, T ) = u

u−2T 2

1− u−2T 2
+ u

u−3T 4

1− u−3T 4
+ 2u

u−2T 2

1− u−2T 2

u−3T 4

1− u−3T 4

(ZG,+
h (u, T ) = 0 since h is negative).
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In Example 5.2 below, the affine plane R2 is equipped with the action of G given by the
involution s : (x, y) 7→ (−x, y). We compute the naive equivariant zeta functions of the invariant
Nash germs f , gk, k ≥ 2, and hk, k ≥ 2, at the origin of R2 given by

f(x, y) = ±x4 + y3 ; gk(x, y) = ±x2k ± y2 ; hk(x, y) = x2y ± yk.

These germs are induced from the normal forms of the simple boundary singularities of man-
ifolds with boundary, by unfolding the positive abscissa half-plane along the ordinate axis :
see [1]. We will study the classification of the simple boundary singularities of Nash manifolds
with boundary up to (equivariant) blow-Nash equivalence in a subsequent work.

Example 5.2. 1. We begin with f . Consider the equivariant blowing-up σ1 at the origin
given in the chart (R2, (X1, Y1)) by σ1(X1, Y1) = (X1,X1Y1). The action of G on the
blowing-up is given in this chart by s1 : (X1, Y1) 7→ (−X1,−Y1) and we have

f ◦ σ1(X1, Y1) = X3
1 (Y

3
1 ±X1).

We do three more successive blowings-up σ2, σ3 and σ4 each given in the chart (R2, (Xi, Yi))
by σi(Xi, Yi) = (XiYi,Xi). The action of G on the last blowing-up is given in the chart
(R2, (X4, Y4)) by s4 : (X4, Y4) 7→ (X4,−Y4) and we have

f ◦ σ(X4, Y4) = X3
4Y

12
4 (1±X4)

where σ := σ1 ◦ · · · ◦ σ4.

The (equivariant) resolution tree of f is the following, where Ei(Ni, νi) denotes the ex-
ceptional divisor of the blowing-up σi with Ni = multEi f ◦ σi = multEi f ◦ σ and
νi = 1 +multEi jac σi = 1 +multEi jac σ :

E2(4, 3) E4(12, 7)

E3(8, 5)

E1(3, 2)

E−

E+

The sets E− and E+ are the respective strict transforms of f−(x, y) = −x3 + y4 and
f+(x, y) = x3 + y4. In both cases, the action of G globally stabilizes the strict transform,
the exceptional divisors and the intersections. Then Denef-Loeser formula provides the
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naive equivariant zeta function of f (using also Example 3.7) :

ZG
f (u, T ) =

3
∑

i=1

u−νi+2TNi

1− u−νiTNi
+ (u− 1)

u−6T 12

1 − u−7T 12
+ (u− 1)

u−2T 4

1 − u−3T 4

u−5T 8

1− u−5T 8

+ (u− 1)
u−6T 12

1− u−7T 12

[

u−5T 8

1− u−5T 8
+

u−2T 3

1− u−2T 3
+

u−1T 1

1− u−1T 1

]

2. We now compute the naive equivariant zeta function of gk for k ≥ 3. By k successive
equivariant blowings-up σi, i = 1, . . . , k, given in charts (R2, (Xi, Yi)) by σi : (Xi, Yi) 7→
(Xi,XiYi), we resolve the singularities of gk :

gk ◦ σ(Xk, Yk) = X2k
k (±1± Y 2

k )

with σ := σ1 ◦ · · · ◦ σk.

First, we deal with the case gk(x, y) = ±(x2k − y2). In this case, we have the following
resolution tree for gk :

E2(4, 3)

E1(2, 2)
E3(6, 4)

E4(8, 5)

E5(10, 6)

Ek−2(2k − 4, k − 1)

Ek−1(2k − 2, k)

Ek(2k, k + 1)

E

In the chart (R2, (Xk, Yk)), the action of G is given by

sk : (Xk, Yk) 7→

{

(−Xk,−Yk) if k is odd,

(−Xk, Yk) if k is even.

Thus, the intersection points of the strict transform E of gk with the exceptional divisor
Ek are exchanged under the involution if k is odd and fixed if k is even.

Consequently, after computation we obtain

ZG
gk
(u, T ) =

T 2

1− u−2T 2
+ (u− 1)





k−1
∑

j=2

u−jT 2j

1− u−(j+1)T 2j
+

k−1
∑

j=1

u−jT 2j

1− u−(j+1)T 2j

u−(j+2)T 2j+2

1− u−(j+2)T 2j+2





+ Λk(u, T )

27



with

Λk(u, T ) =

{

(u2 − u+ 1) u−(k+1)T 2k

1−u−(k+1)T 2k + (u− 1)2 u−(k+1)T 2k

1−u−(k+1)T 2k
u−1T 1

1−u−1T 1 if k is odd,

(u− 2) u−kT 2k

1−u−(k+1)T 2k + 2u(u− 1) u−(k+1)T 2k

1−u−(k+1)T 2k
u−1T 1

1−u−1T 1 if k is even.

In the case gk(x, y) = ±(x2k + y2), there is no strict transform and the naive equivariant
zeta function of gk is given by the same formula as above with

Λk(u, T ) =
u−k+1T 2k

1− u−(k+1)T 2k
.

3. Let us next consider the invariant Nash germ hk, k ≥ 3. We first look at the case k odd. If
k = 2p+1 with p ∈ N, then p successive equivariant blowings-up σi : (Xi, Yi) → (XiYi, Yi)
provide the function with only normal crossings

hk ◦ σ1 ◦ · · · ◦ σp(Xp, Yp) = Y k
p (X

2
p ± 1),

together with the following resolution tree

E1(3, 2)

E2(5, 3)

E3(7, 4)

E4(9, 5)

Ep−2(2p− 3, p − 1)

Ep−1(2p− 1, p)

Ep(k, p + 1)

E

(the above resolution tree corresponds to the case hk(x, y) = x2y − yk ; in the case
hk(x, y) = x2y+ yk, there is no strict stransform). In the chart (R2, (Xp, Yp)), the action
of G is given by sp : (Xp, Yp) 7→ (−Xp, Yp), hence exchanges the intersection points of the
strict transform E of hk with the exceptional divisor Ep.

If now we suppose k = 2p with p ∈ N \ {0, 1}, by doing the same first p − 1 successive
equivariant blowings-up σ1, . . . , σp−1 as above, regarded in the same charts, we obtain

hk ◦ σ1 ◦ · · · ◦ σp−1(Xp−1, Yp−1) = Y 2p−1
p−1 (X2

p−1 ± Yp−1),
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We obtain the equivariant resolution of singularities of hk by two more equivariant
blowings-up, getting the following tree :

E1(3, 2)

E2(5, 3)

E3(7, 4)

E4(9, 5)

Ep−2(2p− 3, p − 1)

Ep−1(2p− 1, p)

Ep+1(2k, k + 1)

E+

Ep(k, p + 1)

E−

(where E− and E+ are the respective strict transforms of x2y− yk and x2y+ yk), all the
intersection points being fixed by the action of G.

4. Finally, we take a look at the germs g2 and h2. By applying the same two equivariant
blowings-up regarded in the same charts, we obtain isomorphic resolution trees for h2 and
g2 : (x, y) 7→ ±(x4 − y2) with same multiplicities, the action of G fixing all intersection
points. Notice that the case g2(x, y) = ±(x4 + y2) is treated in Example 5.1 up to
equivariant Nash equivalence.
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