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A linear complementarity problem formulation for periodic solutions to

unilateral contact problems

Markus B. Meingast a*, Mathias Legranda, Christophe Pierreb

Abstract

Presented is an approach for finding periodic responses of structural systems subject to unilateral contact conditions. No other non-linear

terms, e.g. large displacements or strains, hyper-elasticity, plasticity, etc. are considered. The excitation period due to various forcing

conditions—from harmonic external or contact forcing due to a moving contact interface—is discretized in time, such that the quantities of

interest—displacement, velocity, acceleration as well as contact force—can be approximated through time-domain schemes such as backward

difference, Galerkin, and Fourier. The solution is assumed to exist and is defined on a circle with circumference T to directly enforce

its periodicity. The strategy for approximating time derivative terms within the discretized period, i.e. velocity and acceleration, is hence

circulant in nature. This results in a global circulant algebraic system of equations with inequalities that can be translated into a unique linear

complementarity problem (LCP). The LCP is then solved by dedicated and established methods such as Lemke’s algorithm. This allows for the

computation of approximate periodic solutions exactly satisfying unilateral contact constraints on a discrete time set. The implementation

efficiency and accuracy are discussed in comparison to classical time marching techniques for initial value problems combined with a Lagrange

multiplier contact treatment. The LCP algorithm is validated using a simple academic problem. The extension to large-scale systems is made

possible through the implementation of a Craig–Bampton type modal component synthesis. The method shows applicability to industrial

rotor/casing contact set-ups as shown by studying a compressor blade. A good agreement to time marching simulations is found, suggesting a

viable alternative to time marching or Fourier-based harmonic balance simulations.
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1. Introduction

The investigation of periodic solutions of harmonically excited

systems subject to unilateral contact constraints is of interest for

many applications, such as predicting brake disk vibrations [1],

stability analysis of delayed systems subject to material re-

moval [2], study of limit cycles in Lur’s feedback control systems

for non-smooth mechanical systems [3, 4] or mesh stiffness varia-

tion in gears-pairs [5, 6, 7]. Popularly, methods such as harmonic

balance based [8] or shooting methods [9] are employed to find

solutions of smooth nonlinear systems in an efficient manner. Yet,

both of these approaches face some inherent downfalls when non-

smooth nonlinearities—systems exhibiting non-differentiability

or discontinuities in the unknowns—are encountered. On the

one hand, the harmonic balance method (HBM) is known to pro-

duce poor approximations of non-smooth functions with a finite

number of harmonics, producing artifacts such as the Gibbs phe-

nomenon [10]. Hence penalty-like approximations of the contact

inequalities are introduced [1] to effectively smoothen the non-

smoothness. On the other hand, shooting methods in a contact

framework can face ill-conditioned gradients, making conver-

gence difficult and increasing computational times. Furthermore,

reaching a purely steady state solution within a heavy-duty time-

marching simulation may be impossible to achieve due to the

high sensitivity of the solution with respect to system parameters,

such as stiffness, frequency, gap.

The so-called linear complementarity problem (LCP) deals

with a linear algebraic system of equations subject to inequality

constraints. Originally presented in [11, 12, 13] as an alternative

formulation for quadratic programming, a few notable solution

methodologies have been introduced: the classical pivoting, also

generally referred to Lemke’s algorithm [11], and iterative meth-

ods such as the Gauss-Seidel method [14, 15] and Newton-like

methods [16] are among the most popular. With applications

in many scientific fields, the LCP has found a strong foothold

especially in economic engineering, mathematical programming,

games theory and recently switched electronic systems [3, 17,

18]. The idea is that LCP solvers can find solutions of underlying

linear algebraic systems subject to nonlinear Kuhn-Tucker-like

conditions. The LCP method has already been applied to piece-

wise linear mass-spring systems in a time-marching framework,

solving an LCP for every time step [19]. In a similar fashion, the

application of LCPs to transient analysis frictional problems is

reported in [20].

This paper presents an approach for finding periodic solu-

tions to systems of ordinary differential equations (ODE) in-

volving inequalitities within a unique LCP. Firstly, the general

LCP formulation is outlined. Next, different time-derivative

approximations are detailed for constructing the LCP system.

An academic application is presented, specifically looking at a

comparison of the LCP results to classic time-marching simula-

tions. Finally, the application of the LCP method to an industrial

compressor-blade geometry is explored with a detailed focus on

frequency domain analysis of the responses.

2. Linear complementarity problem

The formulation of an LCP lends itself explicitly to treat linear

mechanical systems subject to Kuhn-Tucker conditions such as

unilateral contact. Forced and possibly large-scale mechanical

systems undergoing unilateral contact conditions that are T -

periodic are targeted, see Figure 1. A periodic displacement

of the model discretized in space x.t/ of period T in time is

assumed to exist. Accordingly, it is a solution to the following

combined equations and inequations:

� equation of motion

MRx.t/ C CPx.t/ C Kx.t/ C B>
�.t/ D f.t/ (1a)
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Nomenclature

Roman symbols

A LCP coefficient matrix

B contact constraint matrix

I identity matrix

L linear operator

M,C,K mass, damping & stiffness matrices

F discret Fourier transform

Rx,a acceleration vectors

�t time step

Px,v velocity vectors

d reference wall position

f external forcing vector

g.x/ gap function

q underlying linear system solution

w,z complementary vectors

x displacement vector

xb,xi,xc boundary, internal & contact DOF

xcb Craig-Bampton DOF

a; b Fourier coefficients

k number of time steps

m number of contact constraints

n number of DOF

p number of Fourier terms

T excitation period

t time

Greek symbols and maths

ƒ eigenvalue matrix

� contact force vector

ˆ,‰ ,‚ weighting functions

ˆcb Craig-Bampton reduction matrix

ˆi,ˆs internal and static eigenvectors

! excitation frequency

!0 first natural frequency

�i shape function

.�/> transpose

Abbreviations

BDS backward difference scheme

CDS central difference scheme

DFT direct Fourier transform

DOF degree of freedom

EO engine order

EOM equation of motion

ETM explicit time-marching

FETD finite element time discretization

HBM harmonic balance method

HDHBM high dimension HBM

IDFT inverse direct Fourier transform

LCP linear complementarity problem

LE leading edge

MC mid-chord

ODE ordinary differential equation

TE trailing edge

�

�

�c

g.x.�c//

(a) Continuous body gap function

g.x/

(b) Discretized body gap function

Figure 1. Contact schematic

� complementarity conditions

�.t/ � 0; g.x.t// � 0 and �.t/>g.x.t// D 0 (1b)

to be satisfied 8t 2 ST where ST is the circle of circumference T

on which the periodic solution is defined. The complementarity

conditions can be read thus: the contact force �.t/ may only take

on values that ensure a compressive force. The gap g.x.t// may

only take on values ensuring impenetrability. The product of both

must be zero ensuring that contact forces may only exist if the

gap is nil and vice versa1. The equation of motion (EOM) (1a) is

derived from a discretized finite-element model with n degrees

of freedom (DOF) and m contact conditions (for which generally

1In the notation used throughout this documentation, an open gap and a

compressive force are assumed to be g.x.t// � 0 and �.t/ � 0 respectively.

Other sign conventions are possible.

m � n), where M, C and K 2 R
n�n are the mass, damping and

stiffness matrices respectively. The harmonic external forcing

f.t/ 2 R
n is of period T and displacements x.t/ 2 R

n are

mapped to the contact force term �.t/ 2 R
m by the contact

constraint matrix B 2 R
m�n through a linear gap function:

g.x.t// D �Bx.t/ � d.t/ (2)

where d.t/ is the reference position of a potentially time-depen-

dent moving rigid wall. The impenetrability condition is ex-

pressed by inequality constraints on the gap function g.x.t//

and contact force �.t/ as well as the complementarity criteria in

Eq. (1b). It should be noted here that the gap function is consid-

ered to be purely linear in x.t/ as expressed by Eq. (2). Systems

for which the constraint matrix varies within the period of inter-

est, e.g. large tangential displacements or strongly deformation

dependent contact interfaces, cannot be accounted for within

this approach. In order to simplify the computation, contact

between a flexible body and a rigid wall is assumed, although

flexible multibody contact problems do not pose a mathematical

limitation and the equations explicitly remain the same

To transform Eq. (1a) and (1b) into an equivalent LCP able to

capture periodic solutions, for a given period T , a few steps are

necessary. Firstly, a time-discretization is needed. Assuming an

excitation period of T and hence a frequency of ! D 2�=T , the

support ST is discretized into k-time steps by a linear spacing

of �t D T=k, such that x.t/ fulfil periodicity 8t 2 ST , see

Figure 2. The displacement along ST is then approximated

x.t/

t

„ ƒ‚ …

�t

ST

Figure 2. Periodic time signal

by xi � x.ti / for ti D i�t and i D 1; : : : ; k. Velocity and

acceleration at each time-step i are then computed as functions

of the displacement:

Pxi D h.: : : ; xi�1; xi ; xiC1; : : : /

Rxi D g.: : : ; xi�1; xi ; xiC1; : : : /
(3)
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The corresponding LCP, detailed in the next sections, is ex-

pressed as follows: find complementary vectors w and z such

that:

w D Az C q; w � 0; z � 0 and z>w D 0 (4)

where the inequalities shall be read coordinate-wise.

3. Formulations

The following section deals with different approaches on how to

approximate the time derivative terms Px and Rx within EOM (1a).

Firstly the backward difference scheme (BDS) is recalled. Alter-

natively, a more complex approximation is developed, based on

a Galerkin-like approach in time. Finally, the use of a Fourier

basis is discussed, which represents a high dimension HBM

(HDHBM) as proposed in [21] and presented in a contact frame-

work in [22], specifically considering non-regularized contact

conditions.

3.1 Backward difference scheme approximation

The simplest and most straightforward approximation of the

time derivative terms in Eq. (1a) is based on a first order BDS in

velocities and accelerations:

Pxi D
xi � xi�1

�t
; i D 2; : : : ; k

Rxi D
xi � 2xi�1 C xi�2

�t2
; i D 3; : : : ; k

(5)

together with the periodicity conditions in velocity and accelera-

tion, respectively:

Px1 D
x1 � xk

�t
; Rx1 D

x1 � 2xk C xk�1

�t2
; Rx2 D

x2 � 2x1 C xk

�t2

where xi is the time discretized displacement over a time step

�t . This scheme represents the simplest approximation of time

derivative terms, able to capture non-smoothnesses easily. Al-

though, these approximations have a relatively high error of

O.�t/ as compared to e.g. a central difference scheme (CDS),

a more accurate CDS or higher order method would be counter-

productive, as these methods only have a high accuracy for

smooth functions and tend to produce oscillations within solu-

tions of non-smooth systems [23, 24].

For a single DOF, the linear differentiation operator for

the BDS approximation is a circulant matrix that reflects time-

periodicity in the following:

L1;t D
1

�t

2

6
6
6
6
6
4

1 0 : : : 0 �1

�1 1 0 0
:::

: : :
:::

0 0 1 0

0 0 : : : �1 1

3

7
7
7
7
7
5

(6)

The operator L1;t can be applied to the time discretized j -th DOF

in the shape of Oxj D
�

x
j
1 x

j
2 : : : x

j

k

�
> to acquire the velocity term

OPxj D L1;t Oxj . The hat symbol denotes that the variable is the

time-discretized representation of its time-domain counterpart.

It should be noted that the top right matrix entry in L1;t is due to

the imposed periodic boundary condition in time. A second order

operator (7) can be applied to acceleration terms analogously:

L2;t D L1;t L1;t (7)

Expanding (1a) to the time discretized system using Eqs. (6)

and (7), the respective matrices need to be extended with the use

of the Kronecker-product:

OL1 D In ˝ L1;t
OL2 D In ˝ L2;t

OM D M ˝ Ik

OC D C ˝ Ik
OK D K ˝ Ik

OB D B ˝ Ik

(8)

Equation (1a) can then be written in the following form:

OQOx C OB> O� D Of (9)

with:

O� D Œ�1
1; �1

2; : : : ; �1
k ; �2

1; : : : ; �m
k �>

Of D Œf 1
1 ; f 1

2 ; : : : ; f 1
k ; f 2

1 ; : : : ; f n
k �>

where

OQ D OM OL2 C OC OL1 C OK (10)

in which the vectors Ox, O� and Of are not time-dependent anymore.

Solving Eq. (9) for the displacement results in:

Ox D OQ�1.Of � OB> O�/ (11)

Combining (11) and (2) results in an algebraic set of equations

in the form of (4) where:

w D �Og.Ox/

A D OB OQ�1 OB>

z D � O�

q D OB OQ�1Of C Od

(12)

For the mechanical systems considered within this documenta-

tion, w 2 R
mk corresponds to the contact node displacements,

z 2 R
mk to the contact forces. The vector q 2 R

mk repre-

sents the solution of the underlying linear system due to external

forcing without contact constraints. A 2 R
mk�mk corresponds

to the coefficient matrix, mapping the contact forces onto the

constrained response.

3.2 Finite element time discretization

A more flexible approach than the BDS is found by using a

finite element in time discretization (FETD) of the quantities of

interest. In this framework, various approximations for velocity

in terms of displacement and acceleration in terms of velocity

can be derived in an integral sense as follows:

8ˆ.t/;

I

ST

ˆ.�/
�

Px.�/ � v.�/
�

d� D 0 (13)

8‰.t/;

I

ST

‰.�/
�

Pv.�/ � a.�/
�

d� D 0 (14)

such that the equation of motion becomes:

8‚.t/; (15)
I

ST

‚.�/
�

Ma.�/CCv.�/CKx.�/CB>
�.�/�f.�/

�

d� D0

together with Eq. (1b) for all times t 2 ST . Using the time

discretized excitation period, the system variables x.t/, v.t/,

a.t/ and �.t/, and weighting functions ˆ.t/, ‰.t/ and ‚.t/ can

be expressed utilizing different time-dependent shape functions.
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For example, the displacement x.t/ and weighting function ˆ.t/

will be expressed as follows:

x.t/ D
X

i

xi �i .t/ and ˆ.t/ D
X

i

ˆi �i .t/ (16)

where xi are the time-discretized vectors of x.t/. Proper com-

binations of well-chosen shape functions to capture potentially

non-smooth displacement, velocity and acceleration fields yield

accurate solutions. Figure 3 shows the two possible shape func-

tions applied in this investigation. It was found that the as-

�i .t/

t

ti tiC1 ti tiC1

1

Figure 3. FETD shape function �i .t/: linear ( ) and constant ( )

sumptions shown in Table 1 produce a good agreement with

converged time-marching simulations. Further developments

and improvements may yield better agreement. The assumptions

x linear v linear

a linear f linear

� linear ˆ linear

‰ linear ‚ constant

Table 1. FETD shape functions

made for (13) correspond to a higher order averaging on the side

of velocity and a simple central difference representation of the

displacement terms for a single time step:

viC1 C 4vi C vi�1

6
D

xiC1 � xi�1

2�t
(17)

Equation (14) including the above assumptions is analogously

reflected in the following:

aiC1 C 4ai C ai�1

6
D

viC1 � vi�1

2�t
(18)

In a similar fashion, solving the equation of motion (15) using

the assumptions from Table 1 results in:

1

2
M.ai C ai�1/ C

1

2
C.vi C vi�1/ C

1

2
K.xi C xi�1/

C
1

2
B>.�i C �i�1/ D

1

2
.fi C fi�1/ (19)

The linear operators La, Lb and Lc, similar to (6) and (7) in spirit,

can be constructed through Eqs. (17), (18), and (19):

La;t D
1

2

2

6
6
6
4

0 1 0 : : : �1
�1 0 1 0

0 �1 0 0
:::

: : :
:::

1 0 0 : : : 0

3

7
7
7
5

(20)

Lb;t D
1

6

2

6
6
6
4

4 1 0 : : : 1
1 4 1 0
0 1 4 0
:::

: : :
:::

1 0 0 : : : 4

3

7
7
7
5

; Lc;t D
1

2

2

6
6
6
4

1 0 0 : : : 1
1 1 0 0
0 1 1 0
:::

: : :
:::

0 0 0 : : : 1

3

7
7
7
5

La;t represents a simple central difference operator; Lb;t as well

as Lc;t stem from an averaging due to the above assumptions.

Effectively, the averaging terms provide an increased coupling

of the discrete time-responses and hence smoothen out displace-

ment and contact force oscillations which allows for a better

approximation of the contact constrained response. Analogous

to (8) these operators need to be expanded to the full spacial and

temporal system using the Kronecker-product:

OLa D In ˝ La;t I OLb D In ˝ Lb;t I OLc D In ˝ Lc;t (21)

The system of equations is in the form of (9) which can be

translated into (4) analogously, where:

OQ D

2

4

0 � OLb
OLa

� OLb
OLa 0

OM OLc
OC OLc

OK OLc

3

5 ; Ox D

2

4

Oa

Ov

Ox

3

5

OB> D

2

4

0

0

. OB OLc/
>

3

5 ; Of D

2

4

0

0
Of OLc

3

5

(22)

3.3 High dimension harmonic balance method

The applicability of the LCP formulation is also tested by ap-

plying a HDHBM approach on the variables of EOM (1a). The

displacement is assumed to be a function of the form (16) of a

truncated Fourier series with p harmonics:

�0 D 1

�2i�1 D cos.i!t/; �2i D sin.i!t/ for i D 1; : : : ; p
(23)

In a fashion similar to Eq. (6), linear operators can be constructed

in the frequency domain to represent velocity and acceleration

approximations. For a single DOF j in the frequency domain of

the form Qxj D Œa
j
0 ; a

j
1 ; b

j
1 ; : : : a

j
p; b

j
p�> the first order derivative

operator would be the following:

L1;! D

2

6
6
6
6
6
6
6
4

0 0 0 : : : 0 0

0 0 �! 0 0

0 ! 0 0 0
:::

: : :
:::

0 0 0 0 �p!

0 0 0 : : : p! 0

3

7
7
7
7
7
7
7
5

(24)

The second order derivative operator is computed by

L2;! D L1;!L1;! (25)

Following Eqs. (8) and (21), the full expanded system takes the

form of (9) in the frequency domain, where:

QL1 D In ˝ L1;!
QL2 D In ˝ L2;!

QM D M ˝ I2pC1

QC D C ˝ I2pC1
QK D K ˝ I2pC1

QB D B ˝ I2pC1

(26)

and QQ D QM QL2 C QC QL1 C QK. As the inequality constraints

are explicitly dealt with in time rather than in the frequency

domain, a direct Fourier transform (DFT) and inverse direct

Fourier transform (IDFT) need to be applied. By assuming

k D 2pC1 time steps, square DFT (F) and IDFT matrices (F�1)

can be constructed translating the frequency domain coefficients

into the time domain DOFs without loss of information, thus

resulting in (4), where

w D �Og.Ox/

A D F�1 QB QQ�1 QB>F

z D � O�

q D F�1 QB QQ�1FOf C Od

(27)
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3.4 Implementation

Since the computational effort increases exponentially with the

size of the problem, a few numerical reductions are introduced.

The inversion of OQ in (11) is computationally highly inefficient.

To circumvent this operation it is beneficial to numerically solve

for OQ�1 OB> in A as well as OQ�1Of in q. Utilizing the sparsity of
OQ and the fact that generally m � n a sufficiently fast imple-

mentation can be obtained.

3.5 Craig-Bampton reduction

For larger systems, e.g. the compressor blade finite element

model discussed in later sections, the number of DOF can easily

reach the order of 100,000 or more. The computational effort to

reduce this problem to the contact DOF as mentioned before is

prohibitive, as the reduction needs to be performed for every ex-

citation frequency of interest. By incorporating a Craig-Bampton

type modal component synthesis (MCS), the linear model dy-

namics can be reduced to a synthesis of free static modes and a

truncated number of component modes [25]. The following para-

graphs outline the MCS procedure. Damping is not addressed

before the MCS is applied, but rather a modal damping is used

on top of the MCS reduced system.

To efficiently handle boundary xb DOF—DOF that lie on the

contact interface—and internal xi DOF separately, it is beneficial

to rearrange the system matrices into these groups. The boundary

DOF xb will be kept explicitly in the reduced model, while

internal DOF xi are represented implicitly by a set of component

modes:

x D

�

xi

xb

�

(28)

At this point generally the contact constraint matrix B is created.

It selects the DOF on which contact conditions are applied,

depending on the local contact interface definition, i.e. contact

normal, wall function, etc. The rearranged system in terms of

internal and boundary DOF mass and stiffness matrices can be

written as follows:

M D

�

Mii Mib

Mbi Mbb

�

and K D

�

Kii Kib

Kbi Kbb

�

(29)

Next the internal free vibration eigenvalue system is solved,

where ˆi are the internal mode shapes and ƒi contains the

internal eigenvalues on its diagonal:

Miiˆiƒi D Kiiˆi (30)

For the boundary DOF that are to be kept explicitly in the reduced

model, static modes are computed as follows:

ˆs D �K�1
ii Kib (31)

The final MCS reduction matrix ˆcb can then be written as:

ˆcb D

�

ˆi ˆs

0 I

�

(32)

The mass, stiffness and contact constraint matrices are then

reduced as

Mcb D ˆ
>
cbMˆcb; Kcb D ˆ

>
cbKˆcb; and Bcb D ˆ

>
cbB (33)

The DOF vector of the reduced system contains explicitly xb as

well as component mode amplitudes ai: xcb D Œai xb�>. The re-

sulting system can be multiple orders of magnitude smaller than

the original finite element model, by considering a truncated set

of modes from the internal eigenvalue set ƒi < �max. Conver-

gence must generally be tested depending on the model, to see if

the lowest system eigenmodes are represented accurately. The

reduced system can now be translated into the aforementioned

LCP system, while significantly reducing the computational ef-

fort in solving the linear systems. The acquired results can be

translated back into the full finite element space utilizing the

MCS reduction matrix as x D ˆcbxcb.

3.6 Stability and bifurcations

A particularity of non-linear systems is the possibility of bifurca-

tions of solutions. Furthermore, the existence and uniqueness of

periodic solutions is not guaranteed. The found solution hence

depends on the solution methodology used within the LCP algo-

rithm itself. Throughout this documentation the LCP solver is

based on Lemke’s classical pivoting algorithm. The determina-

tion of the solution the algorithm will find is beyond the scope

of the presented study.

4. Comparison

The aforementioned formulations for approximating the time

derivatives within the LCP framework are compared to clas-

sic time-marching results. An explicit time-marching scheme

(ETM) is utilized, where contact forces are computed using

a one-step Lagrange multiplier methodology [26]. Three dis-

tinct excitation frequencies have been chosen and applied to all

methodologies, in order to compare resonant and non-resonant

conditions.

4.1 Rod model

To efficiently compare accuracy and performance of the differ-

ent methodologies, a small scale academic non-dimensionalized

problem is considered. A 10-DOF mass-spring system (simpli-

fied rod model) is used considering axial deformation only, see

Figure 4.

g.x/

d.t/x.t/

Figure 4. Simplified rod model: contact ( ) and internal nodes ( )

The tip of the rod is subject to contact constraints and is

excited due to a harmonically moving wall d.t/. External forcing

is neglected, but rather the system responds solely due to contact

interactions. The elementary matrices are as follows:

Me D

�

0:5 0

0 0:5

�

; Ke D

�

1 �1

�1 1

�

; Ce D1:5 � 10�3Ke (34)

4.2 Simulation cases

The first case considers the excitation frequency of the moving

wall to be 40% of the first natural frequency of the rod model.

At this frequency participation of multiple modes is expected.

To study the response just below linear resonance, the second

case studies the system response at a frequency of 90% of the

first rod eigenfrequency. The final case explores the responses at

an excitation that is above the first eigenfrequency at 130%.
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4.2.1 Computation

The equation of motion is normalized with respect to the first

eigenvalue !2
0 . The time-marching computations are executed

using 40,000 time steps per period, over 100 periods. For the

three chosen excitation frequencies, all solutions reach steady

state within 100 cycles. A time-step convergence study has been

performed prior, but is left out for the sake of brevity. The time-

marching solutions are assumed to be converged and shall be

used as reference solutions. The LCP computations, for both

the BDS and FETD schemes are computed over 500 time steps

per period. Close to resonant conditions, e.g. the ! D 1:3!0

case, the LCP solution for both FETD and BDS using Lemke’s

algorithm takes notably longer (up to two order of magnitude).

For these conditions, the LCP implementation used is on par with

the time-marching computations to reach steady state in terms

of computational time. Otherwise LCP computations run one to

two order of magnitude faster than the classical time-marching

strategy.

4.2.2 Solutions and error analysis

The contact node displacement xc over one period is plotted in

Figs. 5(a), 6(a) and 7(a) for the three speeds respectively. The

corresponding contact forces � for the same speeds are plotted

in Figs. 5(c), 6(b) and 7(b) respectively, focusing more detailed

on the time interval where contact occurs, marked in gray.

For the sub-resonant case, a good agreement between the

ETM and FETD solutions can be seen in the displacements in

Figure 5(a), the velocities in Figure 5(b) and contact forces in

Figure 5(c). The BDS solution, displays a strongly damped solu-
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Figure 6. ! D 0:9!0: ETM ( ), BDS ( ), FETD ( )

tion, especially in high frequency content. The HBM performs

well in the free vibration interval, but has strong problems captur-

ing the switching conditions on contact forces accurately. Rather

than a smooth attachment of the contact node to the moving wall,

the HBM predicts two impacts without attachment. Refining the

resolution in time steps and plotting the contact forces 5(d) shows

that even though the LCP satisfies the inequality constraints at

the user-defined k control-points, the Gibbs phenomenon ap-

pears around the contact interactions. Hence Fourier-functions

provide an ill-chosen basis within this framework.
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Figure 7. ! D 1:3!0: ETM ( ), BDS ( ), FETD ( )

Figure 8 shows the convergence behaviour in terms of the

time step size, where the error e is computed using Eq. (35);

xc represents the approximate solution of the contact node dis-

placement obtained through the LCP and xc;ref is the converged

reference ETM solution:

e D

I

ST

jxc.�/ � xc;ref.�/j d� (35)

where the integral can be exactly calculated through the time-

dependent shape functions. As expected the Fourier basis ap-

proach does not show a converging behaviour with more har-

monics. The BDS and FETD approaches both show a similar

convergence rate for small time steps. The convergence rate sug-

gests that refining the time-step even further, would yield more

computationally accurate results for both BDS and FETD ap-

proximations, yet these are subject to computational restrictions

as discussed before.
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Figure 8. Convergence: BDS ( ), FETD ( ), HBM ( )
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Figure 5. ! D 0:4!0: ETM ( ), BDS ( ), FETD ( ), HBM ( ) and HBM with Gibbs phenomenon ( )

For the other excitation frequencies (! D 0:9!0 and ! D

1:3!0), the LCP solutions differ increasingly from the ETM

result. Although the BDS approach is generally outperformed by

its FETD counterpart, its efficiency and simple implementation

are beneficial. Both the BDS and FETD implementations are able

to capture dominant interaction dynamics, which is essential in

determining critical excitation frequencies. As the applicability

of the LCP approaches has been shown for a simple academic

model, it is of interest to see how efficient the aforementioned

methodologies are when applied to an industrial problem.

5. Industrial application

This section discusses the application of the LCP formulations to

a modern compressor blade. The goal is to simulate a single com-

pressor blade rotating over a given speed range, while subject

to contact interactions with a rigid casing [27]. Any interaction

phenomena with neighbouring blades as well as centrifugal ef-

fects are neglected. This does not explicitly present a limitation

of the LCP methodology. Similar to the previous case presented

in section 4, the equation of motion is normalized with respect to

the first eigenfrequency !2
0 . The studied blade geometry repre-

sents the size and shape of a modern compressor blade geometry.

The mesh consists of 11,000 quadratic tetrahedral elements, re-

sulting in 69,000 DOF. The typical mesh associated with the

blade geometry is shown in Figure 9. In the MCS the first 24

modes are preserved, and in addition to the 3 DOF per contact

node, resulting in 33 DOF for the reduced model. The contact

of the blade with its surrounding casing is modeled by a radially

moving wall—similar the the rod model set up—periodically

contacting three chosen interface contact nodes at the blade tip:

at the leading edge (LE), mid-chord (MC) and trailing edge

(TE), see Figure 9. The speed-range, and hence excitation fre-

quency, is chosen to be ! 2 Œ0:1; 0:8�, since rotational speeds

in high-pressure compressors generally do not exceed the first

blade eigenfrequency. Analogous to the rod model, the system

responds purely due to contact interactions, rather than linear

external forcing. Post-processing is performed on the frequency

domain signal of each simulation, obtained through the FFT of

the contact node displacement.

The excitation frequency range is discretized into 70 equally

spaced frequencies �i 2 Œ0:1; 0:8�. After simulating each dis-

crete excitation frequency in ETM and both BDS and FETD

LCP approaches, and performing an FFT of the time signals

considering ten periods, Figs. 10(a), 10(b) and 10(c) are plotted.

Displayed are the harmonic response coefficient amplitudes of

the LE contact node displacement xc in color corresponding to

their response frequency versus the excitation frequency. The

inclined dashed lines represent integer multiple harmonics with

respect to the excitation frequency. In turbo-machinery appli-

cations these are generally referred to as Engine Orders (EO).

EO D 1 corresponds to a response occurring at the excitation fre-

quency, i.e. the engine speed. Higher EO, eg. EO D 2; 3; 4; : : :

correspond to responses occurring at integer multiples of the

excitation. The horizontal solid line across all excitation frequen-

cies at f =!0 D 1 corresponds to the first natural frequency of

the underlying linear structure.

Figure 10(a) shows the response of the time-marching method-

ology. Initially, a response along the EO-lines is dominant, sug-

gesting a dominantly periodic response for almost all excitation

frequencies. A few peak responses are visible for EO and mode

line crossings, detailed by b , c and d . These responses oc-

curing at !b D 0:26, !c D 0:35 and !d D 0:52 are due to

the mode-line crossing the EO D 4, EO D 3 and EO D 2

lines, respectively. Notably, the response peaks occur at a higher

excitation and response frequency than the crossings indicate.

This is due to contact stiffening, an increase of stiffness of the

nonlinear system due to contact. Two more response peaks are

visible within the excitation frequency interval at !a D 0:21
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LE MC

TE

BC

Figure 9. Generic compressor blade mesh: contact nodes ( ) at LE,

MC and TE. Fixed boundary BC ( ) at base of blade

and !e D 0:7. The response at !a, even though it occurs at a

EO crossing, shows high amplitudes for all response frequen-

cies. This is due to the fact that the time marching algorithm

does not reach a periodic steady state. At !e a peak response is

visible on EO-lines as well as half EO-lines, see e , suggesting

a subharmonic response, e.g. requiring two excitation periods

to complete one response cycle. Both of these phenomena are

exclusive to the time marching computations, where no explicit

enforcing or periodicity is given.

Due to the single-period periodic nature of the results stem-

ming from the LCP implementations, sub-harmonic or non-

steady state solutions are not reflected in both BDS and FETD

results. This is indicated by the zero magnitude response, in

between EO-lines. Hence the response peaks lie purely on EO-

lines. Figure 10(b) shows two distinct peaks that are also visible

in the ETM frequency map, i.e. !c D 0:35 and !d D 0:53, see

c and d . The peak at !b that is visible for time-marching is

about two orders of magnitude smaller in the BDS computations.

The FETD computations is able to capture the interaction at !b

more accurately.

Plotting the Fourier coefficient amplitudes for the range of

discret rotational speeds/excitation frequencies !, considering

a single period for the first 10 harmonics, results in Figure 11.

Figure 11(a) shows the harmonic content of the time-marching

solutions. Figures 11(b) and (c) show the harmonic content

of the LCP solutions for BDS and FETD discretizations. The

non-steady state reaching time-marching solution at !a D 0:21

( a ) is clearly visible in 11(a), yet it has only little qualitative

information as it is not periodic. The same is true for the sub-

harmonic response e at !e D 0:7. Appart from these, the

peaks b , c and d show distinct responses on the 4th, 3rd and

2nd harmonics respectively, corresponding to their respective

EO crossings.

The overly damped nature of the BDS implementation comes

to light in Figure 11(b). While showing minimal response am-

plitudes for most excitation frequencies, only the periodic re-
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Figure 10. Frequency maps of contact displacement xc: inclined dashed

lines ( ) indicate Engine Orders and horizontal solid line ( )

stands for the first natural frequency of the structure. Horizontal axes

are identical. Colormap goes from min (blue) to max (red) displacement

amplitude
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sponses b , c and d are visible. There are no notable contribu-

tions above the 4th harmonic, as it seems that higher harmonic

content is damped out. The FETD implementation of the LCP

on the other hand is able to capture the three periodic responses

clearly. Not only do higher harmonics still contribute to the

response, but also the main response harmonics respond on a far

higher amplitude.

Figure 10(d) shows the frequency domain results consid-

ering two full excitation periods within the LCP formulation.

This consideration is able to capture sub-harmonic results of

order EO D 1=2. The crossing e appears within Figure 10(d)

in a similar fashion to Figure 10(a) at !e D 0:7. As two pe-

riods are considered, even though the time-step size is to be

maintained, the computational effort is significantly larger when

trying to find sub-harmonic responses, especially for high order

sub-harmonics.

6. Conclusion

A methodology is presented for finding periodic solutions of ex-

ternally forced mechanical systems subject to unilateral contact

constraints. By formulating the contact constrained equation of

motion in a linear complementarity problem form and solving

the system for an entire time-discretized period in a unique set

of algebraic equations, an efficient strategy is developed. Three

approaches of dealing with time derivative discretization are

presented: a backward difference, a finite element in time and

a Fourier based approach. The backward difference approxima-

tion shows strong artificial damping for a small number of time

steps per period, unable to capture but the most dominant contact

interactions. Using the finite element approach with the same

number of time steps, these interactions are captured more accu-

rately. Both the backward difference and finite element in time

approaches show an asymptotic convergence with decreasing

time step size, that perform similar for both but are subject to

computational constraints. The Fourier based approach produces

undesirable oscillations around switching conditions, generally

known as the Gibbs phenomenon, thereby rendering the har-

monic basis ill-chosen. A strong limitation exists on the size of

the problem, and the number of time steps used per period. For

small problems with DOF of order 10, computational limitations

of about 1,000 time steps per period are experienced, making

time step convergence difficult. . The performance and numer-

ical limitations of the proposed method are highly dependent

on the solver, as well as hardware and software used to perform

the simulations. Great improvements on the problem size and

time-step resolution are expected to be possible by optimizing

the solver as well as the set-up of the LCP system.

An application of this methodology to an industrial case is

documented. The contact interactions of a modern compressor

blade-like geometry with its surrounding casing are considered.

Over the predetermined speed range, multiple interactions are

encountered using all three methodologies. Within the time-

marching framework, solutions that do not reach a periodic

steady-state as well as sub-harmonic solutions are found, that

do not appear in the linear complementarity problem solutions,

due to the single-period periodic assumptions. Solving a linear

complementarity problem that imposes periodicity over multiple

periods is able to capture sub-harmonic solutions, yet is even

further constrained in the number of time-steps required.

Due to the strict conditions on periodicity within the LCP

strategy, not all phenomenon during contact interactions can

be accounted for. At this point time-marching algorithms may

be more physically accurate. Yet, the LCP is able to capture

the dominant dynamics at critical excitation frequencies. More

sophisticated approaches in the description of time derivative

terms may increase performance of the algorithm, allowing for

a fine time-step size and hence more accurate solutions. Over-

all, the presented work shows the potential for efficient and fast

computations of non-smooth periodic contact-constrained solu-

tions with no artificial implementation of common penalty-based

strategies.
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