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Making use of limit analysis theory, we derive a new expression of the macroscopic yield

function for a rigid ideal-plastic von Mises matrix containing spheroidal cavities (oblate or

prolate). Key in the development of the new criterion is the consideration of Eshelby-like

velocity fields which are built by taking advantage of the solution of the equivalent inclu-

sion problem in which the eigenstrains rate are unknown for the plasticity problem. These

heterogeneous trial velocity fields contain non-axisymmetric components which prove to

be original in the context of limit analysis of hollow spheroid. After carefully computing the

macroscopic plastic dissipation and implementing a minimization procedure required by

the use of the Eshelby-like velocity fields, we derive, for the porous medium, a two-field

estimate of the anisotropic yield criterion whose closed-form expression is provided. This

estimate is compared to existing criteria based on limit analysis theory. Interestingly, in

contrast to these criteria, the new results predict a significant effect of shear loadings in

the particular case of ductile materials weakened by penny-shaped cracks.

1. Introduction

Since the pioneering works of McClintock (1968), Rice

and Tracey (1969) and Gurson (1977), several studies have

been performed in order to incorporate void shape in duc-

tile damage analysis. To this end, Lee and Mear (1992) car-

ried out numerical investigations of cavities shape effects

on damage growth. In their analysis, a spheroidal cavity

is embedded in an infinite plastic or viscoplastic material

(obeying to the classical Norton law) subjected to an axi-

symmetric remote stress field. This study, in fact, extends

the works of Rice and Tracey (1969) and Budiansky et al.

(1982) to the case of spheroidal voids for which a class of

axisymmetric trial velocity fields has been considered. This

family of velocity fields contains the exact solution for a

spheroidal void embedded in an infinite linear viscous

material subjected to an axisymmetric remote stress field.

Moreover, it also includes the trial fields already used by

Gurson (1977) in order to obtain coupled model in the case

of spherical or cylindrical cavities. Later, Tvergaard (1981)

observed that Gurson model is too stiff when compared

with finite element unit-cell computations. This observa-

tion motivated the heuristic extension of the Gursonmodel

which has been proposed by Tvergaard and Needleman

(1984) (see also Tvergaard, 1981, 1990). Such extension,

known as the GTN model, introduces three parameters,

q1; q2 and q3, which have to be determined. It is widely

used in structural computations.

Later, Gologanu et al. (1993, 1994, 1997) and Garajeu

et al. (2000) (see also Gãrãjeu, 1995) have extended the

Gurson approach by accounting for the cavities shape

effects. They performed the limit analysis approach on a

spheroidal unit cell containing a confocal spheroidal cavity.
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A two-field trial velocity, derived from Lee andMear (1992)

and complying with homogeneous strain rate boundary

conditions, is used to obtain an anisotropic macroscopic

yield function of the porousmedium. It is worth noting that

these criteria were derived assuming macroscopic axisym-

metric loadings, this hasmotivated an heuristical extension

in Gologanu et al. (1997) to arbitrary loadings.

Also in the framework of limit analysis, the effects of

plastic anisotropy of the matrix have been also addressed

in Benzerga and Besson (2001), Monchiet et al. (2008)

and Keralavarma and Benzerga (2010), etc. In addition to

these works, mention can be made of very recent studies

devoted to porous materials with incompressible matrix

exhibiting asymmetry between tension and compression

(Cazacu and Stewart, 2009), or with matrix displaying

pressure sensitive behavior (see for instance Guo et al.,

2008; Shen et al., 2012, etc.) For a recent review on the to-

pic of ductile fracture, the reader is referred to Benzerga

and Leblond (2010).

Important contributions to the study of porous non-

linear materials were also obtained in the framework of

the non linear homogenization methods introduced by

Ponte-Castañeda (1991) and Ponte-Castañeda and Zaidman

(1994) (see also Ponte-Castañeda and Suquet, 1998). By

assuming that the spatial distribution function of the voids

is identical to that of their shape, these authors derived, in

particular, Hashin–Shtrikman type upper bounds for ductile

media containing ellipsoidal cavities. These approach,

applied to a representative elementary volume for the

porous medium, used the concept of a linear comparison

material and provided a elliptic criterion, the so-called

Hashin–Shtrikman non linear bound, which takes properly

into account the void induced orthotropy.1 Later, Kailasam

et al. (1997) extended the analysis of Ponte-Castañeda and

Zaidman (1994) by considering a spatial distribution function

of cavities which differs from the one characterizing the

cavities shape. For completeness, it is convenient to note

that Danas et al. (2008) recently derived accurate yield

surfaces for the porous materials by using a second order

homogenization method. The reader interested by the basic

aspects of micromechanics of heterogeneous materials may

refer for instance to the textbook of Nemat Nasser and Hori

(1999) (see also Dormieux et al., 2006 for micromechanics

of porous media).

Still in the context of the limit analysis approach, we

propose to investigate the use of more refined velocity

fields in order to improve the predictions of the Gurson-

type models accounting for voids shape effects. Note that

this type of study has been performed in the case of spher-

ical voids by Gãrãjeu (1995) and Garajeu et al. (2000) who

considered the exact solution of the elastic hollow sphere

subjected to an arbitrary loading. More recently, still in

the case of spherical cavities, Monchiet et al. (2011) con-

sidered Eshelby-based trial velocity field and successfully

derived a new macroscopic criterion.

The main objective of the present paper is to present the

limit analysis approach based on the Eshelby-like velocity

to the case of non spherical (oblate or prolate) voids. The pa-

per is organized as follows. In Section 2, we first present the

basic principle of the limit analysis of a spheroidal unit cell

containing a confocal spheroidal void. Section 3.1 is devoted

to a description of the new trial velocity fields inspired of

the ‘‘exterior point’’ solution of the Eshelby equivalent

inclusion problem (Eshelby, 1959) which, in the case of a

spheroidal cavity, contains non-axisymmetric components.

The conditions related to the chosen trial velocity fields are

analyzed in Section 3.2. Section 4 is devoted to the deriva-

tion of an approximate expression of the macroscopic yield

function of the porous medium. To this end, the macro-

scopic plastic dissipation is first computed and then used

with an appropriate minimization procedure to derive the

yield function. In order to assess the accuracy of the estab-

lished results, we compare, in Section 5, the yield surface

corresponding to the closed-form expression of the new

macroscopic criterion with that derived from the ‘‘exact’’

two-field criterion which is obtained numerically without

any approximation. Moreover, the predictions of the new

criterion are compared with existing results. Finally, the

particular case of ductile media containing penny-shaped

cracks is analyzed in order to emphasize some key features

of the new criterion. Note that the very technical details of

the study are reported in appropriate appendices.

2. Basic principles and methodology

2.1. The studied cell

Following (Gologanu et al., 1997), let us first consider an

axisymmetric ellipsoidal cavity of semi-axes a1 and b1

embedded in a confocal ellipsoid of semi-axes a2 and b2.

Fig. 1 depicts the cell relatively to the ðx1; x2; x3Þ cartesian
coordinates system of orthonormal basis ðe1; e2; e3Þ; x3
being aligned with the axis of symmetry of the void. The

shape of the cavity is defined through the aspect ratio

a1=b1, with a1 > b1 corresponding to a prolate cavity while

b1 > a1 is associated to an oblate void. The focal distance is

denoted c; e1 and e2 represent the void eccentricity and

the exterior boundary eccentricity respectively:

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � b

2
1

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 � b

2
2

q
e1 ¼ c

a1
e2 ¼ c

a2
ðprolateÞ

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
2
1 � a21

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
2
2 � a22

q
e1 ¼ c

b1
e2 ¼ c

b2
ðoblateÞ

ð1Þ

Both cylindrical coordinates q; h; z (with ðeq; eh; ezÞ the

associated orthonormal basis) and the spheroidal coordi-

nates k; u; h (with associated orthogonal basis ðek; e/; ehÞ
shown in Fig. 2) are considered:

x1 ¼ b sinðuÞ cosðhÞ
x2 ¼ b sinðuÞ sinðhÞ
x3 ¼ a cosðuÞ

8
><
>:

q ¼ b sinðuÞ
h ¼ h

z ¼ x3 ¼ a cosðuÞ

8
><
>:

ð2Þ

and

ek ¼ 1
Lk

a sinðuÞeq þ b cosðuÞe3
� �

eu ¼ 1
Lk

b cosðuÞeq � a sinðuÞe3
� �

eh ¼ eh

8
><
>:

ð3Þ
1 Note that, Qiu and Weng (1993) derived similar criterion of porous

media in the particular case of spheroidal aligned voids.
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in which Lk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 sin2ðuÞ þ b

2
cos2ðuÞ

q
; u 2 ½0;p� and

eq ¼ cosðhÞe1 þ sinðhÞe2; h 2 ½0;2p�.
In the above equations: a ¼ c coshðkÞ and b ¼ c sinhðkÞ

for a prolate void, while for the case of an oblate void

a ¼ c sinhðkÞ and b ¼ c coshðkÞ with k 2 ½0;þ1½. The iso-k

surfaces define confocal spheroids with foci

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ja2 � b

2j
q

and eccentricity e ¼ c=a, for a prolate void,

e ¼ c=b for an oblate one.

The porosity f and the void shape parameter S are given

by:

f ¼ a1b
2
1

a2b
2
2

; S ¼ ln a1
b1

� �
ð4Þ

Due to the confocality of the exterior and interior spher-

oids, the porosity f can be equally expressed in terms of

the eccentricities e1 and e2 as:

f ¼

e3
2

e3
1

1�e2
1

1�e2
2

ðprolate voidÞ
e3
2

e3
1

ffiffiffiffiffiffiffiffi
1�e2

1

p
ffiffiffiffiffiffiffiffi
1�e2

2

p ðoblate voidÞ

8
><
>:

ð5Þ

It must then be noticed that the porosity is fixed when the

two eccentricities e1 and e2 are given. Conversely, when

the porosity f and the void shape S are fixed, the shape

of the unit cell and that of the void are determined and

cannot been chosen arbitrarily.

2.2. Principle of determination of the macroscopic yield

surface

The matrix of the spheroidal unit cell is made up of a

rigid-ideal plastic material obeying to the von Mises yield

criterion with an associated flow rule as required in limit

analysis theory. The local plastic dissipation, denoted

pðdÞ, is defined, for every traceless strain rate field d, as:

pðdÞ ¼ r0deq ðin the matrixÞ
0 ðin the voidÞ

�
ð6Þ

where r0 represents the yield stress in uniaxial tension

and deq the von Mises equivalent local strain rate,

deq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
d : d

q
. The following inequality then holds for all

macroscopic stresses R and macroscopic strain rates D

(see for instance Suquet, 1982):

R : D 6 PðDÞ ¼ inf
vK:A

1

jXj

Z

X�x
r0deqdV

� 	
ð7Þ

In the above expression, PðDÞ represents the macroscopic

dissipation, X denotes the domain of the unit cell,

jXj ¼ 4pa2b
2
2=3, whereas x corresponds to the domain

occupied by the void, jxj ¼ 4pa1b
2
1=3. The infimum is taken

over all kinematically admissible (K.A) velocity fields, v .

The volume integral over the matrix (volume X�x)

can be expressed in the spheroidal coordinates system as:

1

jXj

Z

X�x
r0deqdV ¼ 3r0

4pa2b
2
2

Z k¼k2

k¼k1

Z u¼p

u¼0

Z h¼2p

h¼0

deqbL
2
k

� sinudkdudh ð8Þ

The macroscopic yield locus is classically shown to be

deduced from PðDÞ in the form:

R ¼ @P

@D
ð9Þ

Fig. 1. The considered cell: (left) prolate and (right) oblate spheroidal void embedded in a confocal spheroid relative to a cartesian coordinates system

ðx1; x2; x3Þ.

Fig. 2. Illustration of the spheroidal coordinates in the case of a prolate

void.
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As an example, in the Gurson approach Gurson (1977), in-

stead of seeking the infimum in Eq. (7), PðDÞ, is estimated

by choosing a particular microscopic velocity field v com-

plying with uniform strain rate boundary conditions

v ¼ D:x. In the solid, the latter is defined as the sum of a

linear part, involving a homogeneous traceless second or-

der tensor A, and vE which is the solution to the problem

of a hollow sphere loaded hydrostatically, i.e.:

v ¼ A:xþ v
E ð10Þ

hence the local strain rate d is obtained as:

d ¼ Aþ d
E ð11Þ

d
E
being the strain rate tensor associated to vE.

Extensions of the Gurson limit analysis approach to

materials containing spheroidal cavities have been pro-

posed by several authors (see for instance Gologanu

et al., 1993, 1994, 1997; Gologanu, 1997; Gãrãjeu,

1995).2 These studies consider the same type of decomposi-

tion of the velocity field v still complying with uniform

strain rate boundary conditions. The choice for vE is inspired

from the work of Lee and Mear (1992). These authors pro-

posed a family of axisymmetric velocity fields to investigate

the growth of a spheroidal cavity in an infinite incompress-

ible viscoplastic matrix and subjected to a remote axisym-

metric stress loading. As mentioned before, it is desirable

to generalize the proposed extensions by introducing non-

axisymmetric fields still in the context of limit analysis the-

ory. This is the purpose of the next section.

3. The trial velocity field

Let us first indicate that, as previous authors, the trial

velocity field is taken in the form given by (10). Our main

proposal consists in considering the solution to the Eshelby

equivalent inclusion problem (Eshelby, 1959) (see also

Mura, 1987) for the heterogeneous part vE in (10).

3.1. Expression of the Eshelby-like velocity fields

To this end, consider an infinite, incompressible, linear

viscous medium in which a spheroidal subdomain (defined

by its semi-axes a1 and b1) is subjected to a uniform arbi-

trary eigenstrain rate d
�
. The velocity field vE for an interior

point (within the spheroidal subdomain) and an exterior

point (outside the spheroidal subdomain) reads in the form

given by Mura (1987) and reported in Appendix A (see Eq.

(A.2)). In the case of spheroidal inclusions, vE reduces to:

v
E ¼ TðkÞ : d�½ �:xþ a1b

2
1

a2b3
ða2 � a21ÞLkd

�
kkek for x 2 X�x

Tðk1Þ : d�½ �:x for x 2 x

(

ð12Þ

The corresponding computation is detailed in Appendix A.

In (12), the quantity d
�
kk is defined by d

�
kk ¼ d

�
: ðek � ekÞ.

The fourth order tensor TðkÞ has not the major and first

minor symmetry (T ijkl – Tklij and T ijkl – T jikl but T ijkl ¼ T ijlk).

Its components, which are only functions of the coordinate

k, are given by:

T1111 ¼ T2222 ¼ 3T1122 ¼ 3T2211 ¼ 3a1b
4
1

8ab
4
ð3� 3a� bÞ

T1212 ¼ T2112 ¼ T1122

T1133 ¼ T2233 ¼ a31b
2
1

2a3b
2
b

T3311 ¼ T3322 ¼ a1b
4
1

2a3b
2
b

T3333 ¼ a31b
2
1

a3b
2
ð1� bÞ

T1313 ¼ T2323 ¼ a1b
4
1

2a3b
2
b

T3113 ¼ T3223 ¼ a31b
2
1

2a3b
2
b

ð13Þ

where a and b, function of k, can be also be expressed in

term of eccentricity e:

aðeÞ ¼
1�e2

e3
arctanh feg � 1�e2

e2
ðprolate voidÞ

�
ffiffiffiffiffiffiffiffi
1�e2

p

e3
arctan effiffiffiffiffiffiffiffi

1�e2
p
n o

þ 1
e2

ðoblate voidÞ

8
><
>:

ð14Þ

and

bðeÞ ¼
ð1� 3aðeÞÞ 1

e2
ðprolate voidÞ

�ð1� 3aðeÞÞ 1�e2

e2
ðoblate voidÞ

8
<
: ð15Þ

Introduction of aðeÞ and bðeÞ presents the advantage to

derive various results using unified expressions for both

oblate and prolate cavities. The variation of aðeÞ and bðeÞ
is shown on Figs. 3 and 4, respectively. We also adopt the

following notations: a1 ¼ aðe1Þ and b1 ¼ bðe1Þ and simi-

larly a2 ¼ aðe2Þ and b2 ¼ bðe2Þ. Values of these quantities

in the particular cases of special interest are the following.

For cylindrical voids, one has e1 ! 1; e2 ! 1 and then

a1 ¼ a2 ¼ 0; b1 ¼ b2 ¼ 1. In the case of a spherical cavity,

e1 ! 0; e2 ! 0 we have a1 ¼ a2 ¼ 1=3; b1 ¼ b2 ¼ 2=5.

Finally, for penny shaped cracks e1 ! 0 and e2 arbitrary,

a1 ¼ 1; b1 ¼ 0.

Note that the second term in the expression (12) for

x 2 X�x, is zero at k ¼ k1 which ensures the continuity

of vE through the boundary of the spheroidal subdomain.

We now propose to compare the ‘‘exterior point’’ veloc-

ity field in (12) with the one that has been used by Golo-

ganu et al. (1993, 1994) in the context of ductile porous

media. For convenience, we decompose the eigenstrain

rate d
�
appearing in (12) as follows:

d
� ¼

Xn¼6

n¼1

d
�
nQ n ð16Þ

where the Q n for n ¼ 1; ::;6 are given by:

2 In Gologanu (1997) and Gologanu et al. (1997), supplementary fields

have been introduced in order to take into account the finiteness of the

studied unit cell and to obtain a more refined numerical estimation of the

yield surface.

4



Q 1 ¼ 1; Q 2 ¼ 1� 3e3 � e3;

Q 3 ¼ e2 � e2 � e1 � e1 Q 4 ¼ e1 � e2 þ e2 � e1;

Q5 ¼ e1 � e3 þ e3 � e1 Q 6 ¼ e2 � e3 þ e3 � e2 ð17Þ

where d
�
1 ¼ d

�
m represents the mean part of d

�
.

The components of vE according to the above decompo-

sition are given in Appendix A (see Eqs. (A.10)–(A.12)).

Note that the fields associated to d
�
1 and d

�
2 are axisymmet-

ric while the ones corresponding to d
�
3; d

�
4; d

�
5 and d

�
6 are

non axisymmetric. Indeed, the axisymmetric velocity field

in (12) can be expressed as a combination of the three

fields corresponding to coefficients B00; B20 and B22 (using

the Lee and Mear, 1992 notations). The expansions fields

considered by Gologanu et al. (1993, 1994) and Gãrãjeu

(1995), for their two-field estimate of the macroscopic

yield function in the case of spheroidal cavities, correspond

to the one proportional to B00 and B22 in Lee and Mear

(1992). It must be emphasized that those fields are also

contained in the exterior point solution in (12) and are

associated to d
� ¼ d

�
m1.

In order to reproduce numerical results in the case of

oblate cavities and more specially for penny-shaped

cracks, Gologanu (1997) and Gologanu et al. (1997) pro-

posed to include two additional fields corresponding to

coefficients B20 and B21. Note that the axisymmetric field

associated to B21 is not contained in (12).

The strain rate tensor associated to vE reads:

d
E ¼D :d

�
with :D¼ T

sðkÞþHðk;u;hÞ for x2X�x

Sðe1Þ for x2x

�

ð18Þ

in which T
sðkÞ is given by:

Ts
ijklðkÞ ¼

1

2
ðT ijklðkÞ þ T jiklðkÞÞ ð19Þ

In Eq. (18), SðeÞ denotes the classical fourth order Eshelby

tensor for a linear viscous incompressible mediumwhich is

a function of the eccentricity e. Its components, in the

cartesian coordinates system, are given by:

S1111 ¼ S2222 ¼ 3S1122 ¼ 3S2211 ¼ 3S1212 ¼ 3

8
ð3� 3a� bÞ

S1133 ¼ S2233 ¼ 1

2
b

S3311 ¼ S3322 ¼ 1

2
ðbþ 3a� 1Þ

S3333 ¼ 1� b

S1313 ¼ S2323 ¼ 1

4
ð2bþ 3a� 1Þ

ð20Þ

In (18), the components of the fourth order tensor H are

function of k; u and h and are given by:

Fig. 3. Representation a as function of e for a prolate and an oblate void.

Fig. 4. Representation b as function of e for a prolate and an oblate void.
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Hkkkk ¼�a1b
2
1

ab
2

2ða2�a2
1Þ

L2k
þa21
a2

" #
; Hkkuu ¼ a1b

2
1

ab
2

1

L2k
a2�a21�L2k

h i

Huukk ¼
a1b

2
1

ab
2

a2�a21
L2k

; Hkkhh ¼�a1b
4
1

ab
4

Hhhkk ¼
a1b

2
1

ab
4
ða2�a21Þ; Hkuku ¼ a1b

2
1

ab
2

1

2L2k
2ða2�a2

1Þ�L2k

h i

Hkhkh ¼
a1b

2
1

2ab
4

b
2�2b

2
1

h i

Hkkku ¼Hkukk ¼
a1b

2
1

a2b
3

sinð2uÞ
2L2k

ða2�a21Þða2�b
2Þ

ð21Þ

Note that the components ofD in the cartesian coordinates

system can be found in Mura (1987). D has minor symme-

try but not the major one; moreover, due to the matrix

incompressibility, one has 1 : D ¼ 0.

3.2. Conditions associated to the Eshelby-like velocity field

Let us come back now to the problem of the ductile por-

ous material, for which the inclusions correspond to sphe-

roidal cavities. Substituting the Eshelby-like velocity field

in (10), it appears that the trial velocity field v depends

on 11 undefined kinematical parameters, the components

of the uniform strain rate A (5 independent kinematical

parameters due to trðAÞ ¼ 0 which corresponds to the ma-

trix incompressibility) and the components of the eigen-

strain rate tensor d
�
(6 independent components). The

verification of uniform strain rate boundary conditions

leads to:

D:x ¼ A:xþ Tðk2Þ : d�½ �:xþ f
a22 � a21
a2b2

Lkd
�
kkek ð22Þ

Important observations are the followings:

� the first two terms on the right hand of the equality (22)

being proportional to x, they are then compatible with

uniform strain rate boundary conditions,

� it can be shown that the last term on the right-hand

side of (22) is proportional to x if and only if d
� ¼ d

�
m1.

Consequently, a necessary condition for the considered

velocity field to comply with uniform strain rate boundary

conditions is �d� ¼ 0, which leads to:

D11 ¼ A11 þ f
3

2
ð1� a2Þd�

m

D22 ¼ A22 þ f
3

2
ð1� a2Þd�

m

D33 ¼ A33 þ 3fa2d
�
m

D12 ¼ A12; D13 ¼ A13; D23 ¼ A23

ð23Þ

Under these conditions, the velocity field (10) reduces to

the axisymmetric one used by Gologanu et al. (1993,

1994).

It follows that in the general case (�d�
– 0) the complete

Eshelby-based velocity field does not comply with uniform

strain rate boundary conditions for the finite hollow

spheroid. However, the use of the complete Eshelby-based

velocity field in the kinematical limit analysis approach is

rigorously justified for uniform stress boundary conditions,

r:n ¼ R:n, (n being the outward normal unit vector taken

on the external spheroid k ¼ k2). It follows from the Hill-

Mandel lemma that the macroscopic strain rate D is de-

fined as the volume average of the local strain rate d:

D ¼ hdi
X
¼ 1

X

Z

X�x
ddV ð24Þ

Note that for uniform stress boundary conditions, the kine-

matical approach, may still provide an upper bound for the

macroscopic yield locus.

Substituting (11) (with the definition (18) for d
E
) in Eq.

(24) leads to:

D ¼ Aþ fSðe2Þ : d� ð25Þ

where Sðe2Þ is the fourth order Eshelby tensor given by

(20) for an incompressible medium with a spheroidal sub-

domain of eccentricity e2. Further, the components od D in

(25) reads:

D11 ¼ A11 þ f
1

8
ð3� 3a2 � b2Þð3d

�
11 þ d

�
22Þ þ

b2

2
d
�
33

� 	

D22 ¼ A22 þ f
1

8
ð3� 3a2 � b2Þðd

�
11 þ 3d

�
22Þ þ

b2

2
d
�
33

� 	

D33 ¼ A33 þ f
1

2
ð3a2 þ b2 � 1Þðd�

11 þ d
�
22Þ þ ð1� b2Þd

�
33

� 	

D12 ¼ A12 þ f
1

4
ð3� 3a2 � b2Þd

�
12

D13 ¼ A13 þ f
1

2
ð3a2 þ 2b2 � 1Þd�

13

D23 ¼ A23 þ f
1

2
ð3a2 þ 2b2 � 1Þd�

23 ð26Þ

Relation (25), or equivalently (26), provides a link between

the macroscopic strain rate tensor D and all the unknown

kinematical parameters (components of A and d
�
) which

enter into the definition of the velocity field defined by

(10) together with (12). The mean part of D computed from

(25) reads:

Dm ¼ d
�
m

f
ð27Þ

It follows that, d
�
m is known and explicitly given in terms of

the macroscopic mean strain rate. Moreover, it is interest-

ing to note that, by considering the particular case of an

isotropic eigenstrain (�d� ¼ 0), (26) reduces to (23), that is

the mapping between the average rule and the uniform

strain boundary conditions.

It is readily seen that the complete velocity field is

defined by 11 parameters. Conditions (25), detailed in

(26) provide six relations between these parameters.

Therefore, there remain five unknown parameters which

have to be determined. These are the components of �d�.3

3 It must be emphasized that the components of A could be also chosen

as unknowns but this does not change the final results.
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4. Determination of a closed-form expression of the

macroscopic yield locus

For the derivation of a closed-form expression of the

macroscopic dissipation, we follow here a methodology al-

ready used in Monchiet et al. (2006, 2007, 2008). The latter

is inspired of the one introduced by Gologanu et al. (1993,

1994), but it differs in several points due to the remaining

unknown �d� which characterize the non axisymmetry of

the considered velocity fields. The macroscopic dissipation

reads then:

PðDÞ ¼ inf
d�

CðD; �d�Þ ð28Þ

where CðD; �d�Þ is defined by:

CðD; �d�Þ ¼ 1

jXj

Z

X�x
r0deqdV

¼ 3r0

4pa2b
2
2

Z k¼k2

k¼k1

Z u¼p

u¼0

Z h¼2p

h¼0

deq bL
2
k

� sinudkdudh ð29Þ

in which deq takes the form:

d
2
eq ¼ A2

eq þ
4

3
A : D : d

� þ 2

3
d
�
: DT : D : d

� ð30Þ

with A2
eq ¼ 2

3
A : A. The fourth order tensorD has been intro-

duced in the previous section (see Eqs. (18), (19) and (21)).

Finally, the macroscopic yield locus is obtained from (9)

with the definition (28).

The approximate expression of CðD; �d�Þ is established in

Appendix B, while the determination of the macroscopic

yield function, after a minimization procedure, is pre-

sented in Section 4.1. One has (see Appendix B):

CðD; �d�Þ ¼ �r0f

Z u2

u1

Y2 þ X2u2
n o1=2 du

u2

¼ r0f X arcsinh
uX

Y

� 

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2 þ u2X2

p

u

" #u2

u1

ð31Þ

with

X2 ¼ 2

3
d
� þ A : Q : P�1

� �
: P : d

� þ A : Q : P�1
� �

Y2 ¼ A2
eq �

2f 2

3ð1þ gÞðg þ f ÞA : Q : P�1 : Q
T
: A

ð32Þ

Note that the derivation of CðD; �d�Þ has required three

approximations among which A2 and A3 that do not pre-

serve the upper bound character of the approach. This will

be assessed by means of numerical solutions.

4.1. The minimization procedure and derivation of the

macroscopic yield function

We now derive a closed-form expression of the macro-

scopic criterion. To this aim, one has to compute the dissi-

pation (see Eq. (7)) for which the minimum of CðD; �d�Þwith

respect to �d� is taken. Once this minimization is performed,

the macroscopic criterion can be obtained from (9). These

two steps are performed simultaneously as:

R ¼ @CðD; �d�Þ
@D

with :
@CðD; �d�Þ

@�d�
¼ 0 ð33Þ

where the approximate expression of CðD; �d�Þ, given by

(31), is used. To solve (33), it is convenient to introduce

the following change of variable: CðD; �d�Þ � CðX;YÞ. Conse-
quently, the macroscopic stress tensor, R, reads:

R ¼ f
@X

@D
RX þ @Y

@D
RY ð34Þ

with

RX ¼ 1

f

@C

@X
; RY ¼ @C

@Y
ð35Þ

On the other hand, the minimum of CðD; �d�Þ with respect

to �d� is given by:

f
@X

@�d�
RX þ @Y

@�d�
RY ¼ 0 ð36Þ

By using now the approximate expression of CðD; �d�Þ, given
by (31), in relations (35), one gets the following expres-

sions for RX and RY :

RX ¼ r0 arcsinhðu2nÞ � arcsinhðu1nÞ½ �

RY ¼ �r0f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

2n
2

q

u2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

1n
2

q

u1

2
4

3
5 ð37Þ

with n ¼ X=Y . By eliminating n between the last two rela-

tions, one obtains:

UðRÞ ¼ R
2
Y

r2
0

þ 2ð1þ gÞðf þ gÞ cosh RX

r0

 �
� ð1þ gÞ2

� ðf þ gÞ2 ¼ 0 ð38Þ

In the expression (38), expressions of RX and RY as function

of R are still unknown. Their expressions are determined

from (34) together with (36), following a procedure which

is detailed in Appendix D. This leads to:

R
2
X ¼ 3

2
R : Sðe2Þ : P�1

: S
Tðe2Þ : R

R
2
Y ¼ ~R2

eq � ð1þ gÞðf þ gÞR2
X

ð39Þ

with:

~R2
eq ¼R

2
eqþ

3f

2
R : Sðe1Þ� fSðe2Þ½ � : Lðe1Þ� fLðe2Þ½ ��1

:R ð40Þ

Eq. (38), together with (39) constitute the most important

results of the present paper. Tensors S which appears in

(39) and (40) is given by (20), while P and L are provided

in (C.5) and (C.6) depicted in Appendix C. Let us recall that

the parameter g has been taken as zero in the case of a pro-

late void and given by Eq. (B.10) for an oblate void. The

coefficient v which enters in the definition of ðB:10Þ is cho-
sen in order to obtain a better agreement with ‘‘exact’’

numerical solutions of the two-field criteria that are pre-

sented in Section 5. The expression v ¼ ð3a1 � 1Þ=4 will

be used.

Let us introduce the following macroscopic stress com-

ponents related to the transverse isotropy induced by the

geometry of the spheroidal cavity:
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Rm ¼ 1

3
ðR11 þ R22 þ R33Þ; Rq ¼

1

2
ðR11 þ R22Þ � R33

Rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
ðR22 � R11Þ2 þ R

2
12

r
; Rt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

2
13 þ R

2
23

q

ð41Þ

With these notations, ~Req can be expressed as follows:

~R2
eq ¼ ð1þ g1ÞR

2
q þ g2R

2
m þ g3RmRq þ 3ð1þ g4ÞR

2
s

þ 3ð1þ g5ÞR2
t ð42Þ

where coefficients gi, are given by:

g1 ¼ 4

3!
� 1; g2 ¼ 3

2!
ð3ea þ 3eb � 1Þ; g3 ¼ 2

!
ð1� 3eaÞ

g4 ¼ 3� 3ea � eb
1þ 3ea þ eb

; g5 ¼ 3ea þ 2eb � 1

3� 3ea � 2eb
ð43Þ

while ! is defined by ! ¼ 2eb þ 4ea � 3ea2 � 1. ea and eb are:

ea ¼ a1 � fa2

1� f
; eb ¼ b1 � fb2

1� f
ð44Þ

The decomposition of RX leads to:

R
2
X ¼ j1R

2
p þ j2R

2
q þ j3RpRq þ j4R

2
s þ j5R

2
t ð45Þ

with:

Rp ¼ Rm þ 1

3
ð1� 3a2ÞRq ð46Þ

and:

j1 ¼ 9p22

p11p22 � p2
12

; j2 ¼ 9p11ð1� a2 � b2Þ2

p11p22 � p2
12

j3 ¼ 18p12ð1� a2 � b2Þ
p11p22 � p2

12

j4 ¼ ð3� 3a2 � b2Þ2
4p33

; j5 ¼ ð2b2 þ 3a2 � 1Þ2
p55

ð47Þ

where the quantities prs are given by (C.4), in which the

last terms proportional to ð1� a2
1=a

2
2Þð1� b

2
1=b

2
2Þ are

neglected.

Remark. Due to the presence of non axisymmetric veloc-

ity field considered in the present study, the macroscopic

criterion shows, through (42) and (45), some new cou-

plings between pure shear components (Rs;Rt) and the

porosity. This point will be particularly emphasized and

discussed later in the case of penny-shaped cracks.

5. Validation and comparisons with existing criteria

First, it is convenient to notice that the results described

in the above section extend to spheroidal voids the one

established and illustrated in Monchiet et al. (2011) for

spherical voids. The later can be obtained here as a partic-

ular case.

5.1. The case of a cylindrical cavity

The case of a hollow cylinder corresponds to the limits

e1 ! 1 and e2 ! 1, from which one obtains for (43), (44)

and (47):

R
2
eq

r2
0

þ 2f cosh
1

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
R

2
11 þ R

2
22

� �
þ 3R2

12 þ 3R2
13 þ 3R2

23

r( )

� 1� f 2 6 0 ð48Þ

For comparison purpose, let us recall the expression of the

macroscopic yield function obtained by Gurson (1977) in

the case of a cylindrical cavity:

R
2
eq

r2
0

þ 2f cosh

ffiffiffi
3

p

2r0

R11 þ R22ð Þ
( )

� 1� f 2 6 0 ð49Þ

Note that (48) coincides with (49) for macroscopic axisym-

metric loading (R11 ¼ R22 and R12 ¼ R13 ¼ R23 ¼ 0) for

which the results are exact. The reason is that the ‘‘axisym-

metric’’ part of the trial velocity field used in the present

study coincides with the one considered by Gurson and

correspond to parameters d
�
1 and d

�
2 in (12) (see Eq. (16)

for the definition of the d
�
n). Moreover, note that the

approximation A1 is also used by Gurson who replaced

the equivalent strain rate, deq, by the square root of the

mean value of d
2
eq over the unit circle. Approximations

A2 and A3 are exact when the hollow cylinder is subjected

to an axisymmetric loading. Nevertheless, for general load-

ings, comparison between Gurson (49) and the criterion

(48) shows that the latter contains additional terms which

appear in the hyperbolic cosine. Those terms introduce

couplings between the porosity and the macroscopic trans-

verse and longitudinal shear stresses that does not exist in

(49). It is worth noticing that the presence of those compo-

nents of the macroscopic stress within the hyperbolic

cosine in (48) are related to the consideration of the

non-axisymmetric components of the trial velocity fields

associated to d
�
3; d

�
4; d

�
5; d

�
6 in (12).

5.2. Prolate cavities

Let us first recall that the determination of a closed-

form expression of the macroscopic criterion for spheroidal

cavities has required a number of ‘‘uncontrolled’’ approxi-

mations. In order to check the validity of those approxima-

tions, we shall first evaluate the accuracy of (38) by

comparing with numerical exact two-field solution. Figs. 5

and 6 show various yield loci for prolate cavities, for two

aspect ratios, a1=b1 ¼ 2 and a1=b1 ¼ 5 respectively. An axi-

symmetric macroscopic loading is considered,

R11 ¼ R22 – 0; R33 – 0 and all other components of R are

taken as zero. The criterion is then plotted in the plane

Req ¼ R33 � R11 versus Rm ¼ ð2R11 þ R22Þ=3. On each figure

three values of the porosity are considered, namely

f ¼ 0:01; f ¼ 0:05 and f ¼ 0:2. The full line corresponds

to the approximate criterion (38) whereas the discrete

points (the circles) refer to the exact two-field numerical

solution. It is observed that, irrespective of the value of

the aspect ratio and the porosity, there is a good agreement

between the ‘‘closed form’’ and ‘‘exact’’ solutions; this
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validates for the prolate case all the approximations used

in Section 4.

We now present comparisons of the new criterion (38)

with existing criteria. As already mentioned, extensions of

the Gurson model to the case of spheroidal cavities have

been proposed by Gologanu et al. (1993, 1994) (GLD mod-

el), Gologanu et al. (1997) (GLPD model) and Gãrãjeu

(1995) and Garajeu et al. (2000).4 Those models were also

obtained in the context of Limit Analysis of a hollow confo-

cal spheroidal unit cell subjected to an axisymmetric load-

ing.5 The GLPD model is expressed as:

C

r2
0

ðR33 � R11 þ gRhÞ2 þ 2ð1þ gÞðf þ gÞ cosh jRh

r0

 �

� ð1þ gÞ2 � ðf þ gÞ2 ¼ 0 ð50Þ

In this criterion, the definition of the parameter g differs

from our definition (B.10) which has a multiplicative factor

v. The coefficients, C; g and j are function of the two

eccentricities e1; e2, the parameter g and of the porosity f

(see Gologanu, 1997 for the corresponding expressions).

Note that the term Rh linearly depends of the macroscopic

stress components R11 and R33; this constitutes a differ-

ence with (38) together with (39) and (40).

In order to highlight the improvement obtained with

the consideration of the Eshelby-like velocity fields, we

now provide results for non axisymmetric loadings. In

Fig. 7 we represent the yield stress for the component Rs,

defined in Eq. (41), as function of the porosity for an aspect

ratio a1=b1 ¼ 5. The predictions of the new criterion (38)

are compared to the exact two-field criterion (obtained

numerically) and the prediction of the GLPD model. Note

that the later coincides with their earlier criterion

Fig. 5. Yield loci for a prolate cavity having an aspect ratio a1=b1 ¼ 2.

Comparison between the approximate two-field criterion (38) and the

numerical two-field criterion.

Fig. 6. Yield loci for a prolate cavity having an aspect ratio a1=b1 ¼ 5.

Comparison between the approximate two-field criterion (38) and the

numerical two-field criterion.

Fig. 7. Yield stress for Rs as function of the porosity f for a prolate cavity

having an aspect ratio a1=b1 ¼ 5. Comparison between the approximate

two-field criterion (38) and the exact (numerical) two-field criterion and

the GLPD model.

4 In Gãrãjeu (1995) and Garajeu et al. (2000) only the case of a prolate

cavity has been studied.
5 Note also that in Gologanu (1997) an heuristical extension has been

proposed for arbitrary loading.
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(Gologanu et al., 1993) for non axisymmetric loadings and

reduce to Rs ¼ ð1� f Þr0. Fig. 8 provide similar results for

the yield stress Rt . It can be observed that the new criterion

improves the prediction of the GLPD model for non axi-

symmetric loading case. Again these improvements come

from the consideration of the non-axisymmetric velocity

fields which are contained in the Eshelby-like trial velocity

fields.

5.3. The case of oblate cavities

We now consider the case of an oblate spheroidal cavity

and represent the new yield criterion for axisymmetric

loading. Fig. 9 shows the macroscopic yield locus for an as-

pect ratio b1=a1 ¼ 2 whereas in Fig. 10, the aspect ratio is

b1=a1 ¼ 5. For low values of the porosity (f ¼ 0:01 and

f ¼ 0:05), a good agreement of the new criterion with the

two-field numerical data is observed. However for larger

values of the porosity f, it can be observed that the exact

two-field solution gives an estimate of the macroscopic

yield locus which is more interior than the one given by

the approximate criterion. These differences result, obvi-

ously, from the approximations used in Section 4.

We now provide comparisons of the new criterion with

numerical upper and lower bounds of the macroscopic

criterion, recently obtained by Pastor et al. (2011) bymeans

of finite element-based limit analysis combined with

convex optimization. In this numerical limit analysis, the

macroscopic criterion has been determined by using a kine-

matical and a static approach to the problem of a confocal

spheroidal cell subjected to an axisymmetric loading. This

approach leads then to an upper bound and a lower bound

of the macroscopic yield surface. On Figs. 11 and 12, we

represent the yield locus for an aspect ratio a1=b1 ¼ 1=2

and for the porosities f ¼ 0:01 and f ¼ 0:1 respectively.

On these figures, we compare the numerical lower bound

(static) and upper bound (kinematic) of Pastor et al.

(2011) with the new criterion (38). For completeness, we

Fig. 8. Yield stress for Rt as function of the porosity f for a prolate cavity

having an aspect ratio a1=b1 ¼ 5. Comparison between the approximate

two-field criterion (38) and the exact (numerical) two-field criterion and

the GLPD model.

Fig. 9. Yield loci for an oblate cavity having an aspect ratio b1=a1 ¼ 2.

Comparison between the approximate two-field criterion (38) and the

numerical two-field criterion.

Fig. 10. Yield loci for an oblate cavity having an aspect ratio b1=a1 ¼ 5.

Comparison between the approximate two-field criterion (38) and the

numerical two-field criterion.
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still report on these figures the prediction of Gologanu et al.

(1997). It can be noted that the numerical bounds are very

closed to each other and thus gives an accurate estimate of

the macroscopic yield surface. Figs. 13 and 14 display

similar results for the spheroidal cavity with an aspect ra-

tion a1=b1 ¼ 1=5. On these figures, the numerical bounds

are less accurate for high values of the stress triaxiality. It

is generally observed that our results as well as that of

Fig. 11. Yield loci for oblate cavities with an aspect ratio a1=b1 ¼ 1=2, for

a porosity f ¼ 0:01. Comparison of the new criterion (38), the GLPD model

(Gologanu et al., 1997) and the numerical bounds of Pastor et al. (2011).

Fig. 13. Yield loci for oblate cavities with an aspect ratio a1=b1 ¼ 1=5 and

for the porosity f ¼ 0:01. Comparison of the new criterion (38), the GLPD

model (Gologanu et al., 1997) and the numerical bounds of Pastor et al.

(2011).

Fig. 14. Yield loci for oblate cavities with an aspect ratio a1=b1 ¼ 1=5 and

for the porosity f ¼ 0:1. Comparison of the approximate criterion (38), the

GLPD model (Gologanu et al., 1997) and the numerical bounds of Pastor

et al. (2011).

Fig. 12. Yield loci for oblate cavities with an aspect ratio a1=b1 ¼ 1=2, for

a porosity f ¼ 0:1. Comparison of the new criterion (38), the GLPD model

(Gologanu et al., 1997) and the numerical bounds of Pastor et al. (2011).
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the GLPD model are in a good agreement with the numeri-

cal solutions. Note however that the results provided on

Figs. 12 and 14, show that the GLPD model slightly overes-

timate the yield stress for low stress triaxialities.

Consider now the case of non axisymmetric loadings. In

Fig. 15, we represent the yield stress for Rs as function of

the porosity while, in Fig. 16, similar results are shown for

the yield stress Rt . The aspect ratio of the oblate cavity is

a1=b1 ¼ 1=5. Again, the predictions of the GLPD model

coincide with the criterion of Gologanu et al. (1994) for non

axisymmetric loadings, which reduce to Rs ¼ ð1� f Þr0

and Rt ¼ ð1� f Þr0. Our results clearly show the modifica-

tions obtained for Rt . It is observed that, for the component

Rs, the prediction are very closed to the ones obtained with

the GLPD model.

5.4. Penny-shaped cracks

This subsection is devoted to the important case of a

circular crack, which is obtained by considering an oblate

spheroidal cavity with an aspect ratio a1
b1
! 0 or equiva-

lently with an eccentricity e1 ! 1. The porosity f ! 0 and

g ! d=2 where d is the crack density parameter given by

d ¼ b
3
1=ða2b

2
2Þ. This latter parameter was introduced first

by Bristow (1960) and later considered by Budiansky and

O’connell (1976). The new macroscopic criterion (38) re-

duces then to:

R
2
Y

r2
0

þ d 1þ d

2

 �
cosh

RX

r0

� 

� 1þ d

2

 �2

� d
2

4
¼ 0 ð51Þ

where RY , defined by (39), reads for the case of the penny-

shaped cracks:

R
2
Y ¼ ~R2

eq �
1

4
ð2þ dÞdR2

X ð52Þ

For the definition of the quantity ~Req we refer to (40) to-

getherwith (43).When the limit e1 ! 1 is taken, ~Req reduces

to:

~R2
eq ¼ R

2
eq þ

3dR2
33

pþ 2ða2 � b2 � 1Þd

þ 12dðR2
13 þ R

2
23Þ

3pþ 2ð3a2 þ 2b2 � 3Þd ð53Þ

For the computation of the limit e1 ! 1 of the coefficients gi

defined in (43), it is useful to put the porosity in the form

f ¼ dz1 with z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e21

q
(in the case of a penny-shaped

cracks, z1 ! 0) and to take into account the following

series:

a1 ¼ 1� p
2
z1 þ oðz21Þ b1 ¼ oðz21Þ ð54Þ

Quantity RX is given by (45) together with (47) and (C.4).

When the limit e1 ! 1, coefficients prs which appear in

the definition of ji reads:

p11 ¼ 3ð2þ dÞ
4

2pþ dð1þ 3a2Þð1� a2Þ½ �

p22 ¼ 3ð2þ dÞ
4

p� dð3a2 þ 3b2 � 1Þð1� a2 � b2Þ½ �

p12 ¼ �3ð2þ dÞ
4

pþ dð1� 3a2Þð1� a2 � b2Þ½ �

p33 ¼ p44 ¼ 2þ d

48
6p� dð1þ 3a2 þ b2Þð3� 3a2 � b2Þ½ �

p55 ¼ p66 ¼ 2þ d

12
3p� dð1� 3a2 � 2b2Þð3a2 þ 2b2 � 3Þ½ �

ð55Þ

Fig. 15. Yield stress for Rs as function of the porosity f for a oblate cavity

having an aspect ratio a1=b1 ¼ 1=5. Comparison between the approximate

two-field criterion (38) and the exact (numerical) two-field criterion and

the GLPD model.

Fig. 16. Yield stress for Rt as function of the porosity f for a oblate cavity

having an aspect ratio a1=b1 ¼ 1=5. Comparison between the approximate

two-field criterion (38) and the exact (numerical) two-field criterion and

the GLPD model.
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As an illustration, on Fig. 17 is plotted the macroscopic cri-

terion for the following values of the crack density param-

eter: d ¼ 0:05; d ¼ 0:5 and d ¼ 0:5. Again, a good

agreement between the exact two-field criterion (circles)

and the approximate one (full line) is observed. On Figs. 18

and 19, we represent the variations of the yield stress for

Rs and Rt as function of the crack density parameter, d.

On these figures, we compare the predictions of the

approximate criterion (51) with the exact two-field

criterion and the GLPD model. For the latter, the damage

parameter d does not affect the yield stress while the

new criterion shows an important effect.

6. Conclusion

A new analytic yield criterion for a rigid perfectly plastic

porous medium containing spheroidal cavities has been

derived using a limit analysis based micro–macro ap-

proach. In the analysis, trial velocity fields inspired from

the exterior point solution to the Eshelby inclusion prob-

lem were considered. An important feature of these trial

velocity fields is that they contain non-axisymmetric com-

ponents. The methodology followed in the study has re-

quired a rigorous computation of the macroscopic

dissipation combined with an appropriate minimization

procedure from which we derived a closed-form expres-

sion of the yield function at macroscale. Although the cri-

terion has a form similar to the one established by

Gologanu et al. (1993, 1994) (see also Gologanu et al.,

1997, GLPD model) or by Garajeu et al. (2000) (or Gãrãjeu,

1995), it differs significantly. In particular, owing to the

presence of shear stress components in the argument of

the hyperbolic cosine, the new criterion captures the yield-

ing response for purely deviatoric loadings. Indeed, in the

case of a cylindrical cavity and in the more general case

of spheroidal voids, the new criterion exhibits couplings

between the transverse and longitudinal shear stresses

which were not properly accounted in previous limit anal-

ysis based models. The effect of these couplings on the

yield surface has been clearly shown in the present study.

Note also that in the particular case of a penny-shaped

crack and purely shear loadings, the predictions of the

GLPD model reduce to the von Mises criterion while the

established criterion shows an influence of the shear stress
Fig. 18. Variations of the yield stress Rs as function of the crack density

parameter for the penny-shaped crack.

Fig. 19. Variations of the yield stress Rt as function of the crack density

parameter for the penny-shaped crack.

Fig. 17. Yield loci for a penny-shaped crack. Comparison between the

approximate two-field criterion (51) and the numerical two-field

criterion.
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components. Assessment of the accuracy of the new crite-

rion has been carefully done by comparing its predictions

with the ‘‘exact’’ two-field numerical solutions and the

numerical lower and upper bounds of Pastor et al.

(2011). An overall good agreement has been observed.

The new criterion being analytical, it can be easily

implemented in FE codes and can be readily used for effi-

cient and fast computation of damage in a variety of engi-

neering structural applications.

Finally, it is interesting to note that, based on Monchiet

(2006) and Monchiet et al. (2007), Pastor and Kondo (2013)

recently provided numerical results for the limit analysis

problem of the voided spheroidal cell; this brings comple-

mentary validation of our theoretical results. The ultimate

goal is to formulate, implement and validate the constitu-

tive law resulting from the present study. Such validation

will be carried out by means of comparisons to experimen-

tal data concerning the response of mechanical structures.

A first step in this direction has been already provided in

Lin et al. (2010) on the isotropic version of the model (case

of spherical voids).

Appendix A. Detailed expression of the Eshelby-based

components of the velocity field

An ellipsoidal inclusion, of an infinite viscous elastic

matrix of rigidity C
0 is submitted to the constant eigen-

strain rate d
�
. We introduce by ðx1; x2; x3Þ the cartesian

coordinates and by c1; c2; c3 the radii of the ellipsoid along

the three axis of cartesian frame. The inclusion is located at

the origin and its volume is defined by:

x21
c21

þ x22
c22

þ x23
c23

� 1 6 0 ðA:1Þ

The velocity has the form (see Kachanov et al., 2003, p. 234,

and Mura, 1987 chapter 2):

8x 2 x : 8pð1� m0ÞvE
i ðxÞ ¼ 3d

�
kkxi c

2
K IKIð0Þ � ð1� 2m0ÞIIð0Þ

� �

þ d
�
ij ðc2I þ c2J ÞIIJð0Þ þ ð1� 2m0ÞðIIð0Þ
h

þ IJð0ÞÞ þ
1

2
ðIJð0Þ � IIð0ÞÞ

	
xj

8x 2 X�x : 8pð1� m0ÞvE
i ðxÞ ¼ 3d

�
kkxi c

2
K IKIðnÞ � ð1� 2m0ÞIIðnÞ

� �

þ d
�
ij ðc2I þ c2J ÞIIJðnÞ þ ð1� 2m0ÞðIIðnÞ
h

þ IJðnÞÞ þ
1

2
ðIJðnÞ � IIðnÞÞ

	
xj

þ ðc2K IKLðnÞ � ILðnÞÞ;id
�
klxkxl

ðA:2Þ

The following summation convention has been used: re-

peated lower case indices are summed from 1 to 3; upper

case indices take on the same values as the corresponding

lower case ones but are not summed. This summation con-

vention has been used in Mura (1987). For example, in the

monomial aiaibI , the repeated indice is i and the upper case

indice, I, takes the same value as i; it gives:

aiaibI ¼ a2
1b1 þ a2

2b2 þ a23b3. In (A.2), variable n is the high-

er-valued solution of the equation:

x21
c21 þ n

þ x22
c22 þ n

þ x23
c23 þ n

¼ 1 ðA:3Þ

Functions IiðnÞ and IijðnÞ are defined by the following ellip-

tic integrals:

IiðnÞ ¼ 2pc1c2c3

Z þ1

n

ds

ðc2i þ sÞDðsÞ

IijðnÞ ¼ 2pc1c2c3

Z þ1

n

ds

ðc2i þ sÞðc2j þ sÞDðsÞ

DðsÞ ¼ ðc21 þ sÞðc22 þ sÞðc23 þ sÞ
� �1=2

ðA:4Þ

The derivative of c2K IKLðnÞ � ILðnÞ with respect to xi and

which appears in (A.2), reads:

ðc2K IKLðnÞ � ILðnÞÞ;i ¼ 4pc1c2c3
n

DðnÞ
/K/L/Ixi

xpxp/
2
P

ðA:5Þ

where /K is given by:

/K ¼ 1

c2K þ n
ðA:6Þ

Consider now the case of a spheroidal inclusion, for which

c1 ¼ c2 ¼ b1; c3 ¼ a1 embedded in an incompressible infi-

nite medium (m0 ¼ 1=2). The higher-valued solution of

(A.3) is n ¼ a2 � a21 ¼ b
2 � b

2
1. Then DðnÞ ¼ ab

2
and func-

tions IiðnÞ and IijðnÞ read:

I1ðnÞ ¼ I2ðnÞ ¼ 4p
a1b

2
1

ab
2

1� a
2

; I3ðnÞ ¼ 4p
a1b

2
1

ab
2
a

I11ðnÞ ¼ I12ðnÞ ¼ I22ðnÞ ¼ 4p
a1b

2
1

8ab
4
ð3� 3a� bÞ

I13ðnÞ ¼ I23ðnÞ ¼ 4p
a1b

2
1

2a3b
2
b; I33ðnÞ ¼ 4p

a1b
2
1

3a3b
2
ð1� bÞ

ðA:7Þ

Taking into account that /1 ¼ /2 ¼ 1=b
2
and /3 ¼ 1=a2, one

has:

xi/I ¼
Lk
ab

ek

� 	

i

ðA:8Þ

Using relations (A.5)–(A.8), and after some algebraic

manipulations, expression (A.2) can be put into the form

(12). The following decomposition of the Eshelby velocity

field is now used:

v
E ¼

Xr¼6

r¼1

d
�
rv

E
r ðA:9Þ

where the d
�
r for r ¼ 1; . . . ;6 has been introduce in (16) and

the vE
r are defined by:

v
E
1k ¼

a1b
2
1

bLk
1þ 1

2
ð1� 3aÞð1� 3 cos2ðuÞÞ

� �

v
E
1u ¼ � 3a1b

2
1ða21�b21Þ

4ab2Lk
ð1� a� bÞ sinð2uÞ

v
E
1h ¼ 0

8
>>>>><
>>>>>:

v
E
2k ¼

a1b
2
1

bLk
1� 2a2

1
þb21

2a2
b

� 	
ð1� 3 cos2ðuÞÞ

v
E
2u ¼ 3a1b

2
1ð2a21þb21Þ
4ab2Lk

ð1� a� bÞ sinð2uÞ

v
E
2h ¼ 0

8
>>>>>><
>>>>>>:

ðA:10Þ
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v
E
3k ¼ � a1b

2
1

bLk
1� b21

4b2
ð1þ 3aþ bÞ

h i
sin

2ðuÞ cosð2hÞ

v
E
3u ¼ � a1b

4
1

8ab2Lk
ð3� 3a� bÞ sinð2uÞ cosð2hÞ

v
E
3h ¼

a1b
4
1

4ab3
ð3� 3a� bÞ sinðuÞ sinð2hÞ

8
>>>>><
>>>>>:

v
E
4k ¼

a1b
2
1

bLk
1� b21

4b2
ð1þ 3aþ bÞ

h i
sin

2ðuÞ sinð2hÞ

v
E
4u ¼ a1b

4
1

8ab2Lk
ð3� 3a� bÞ sinð2uÞ sinð2hÞ

v
E
4h ¼

a1b
4
1

4ab3
ð3� 3a� bÞ sinðuÞ cosð2hÞ

8
>>>>><
>>>>>:

ðA:11Þ

v
E
5k ¼

a1b
2
1

4ab2Lk
ð3aþ1Þð1�kÞa2þ3ð1�aÞð1þkÞb2
h i

sinð2uÞcosðhÞ

v
E
5u ¼�a1b

2
1

bLk
1
2
ð1�3aÞ 1�kcosð2uÞ½ �cosðhÞ

v
E
5h ¼

a1b
2
1

2b2
ð1�3aÞð1�kÞcosðuÞsinðhÞ

8
>>>>>><
>>>>>>:

v
E
6k ¼

a1b
2
1

4ab2Lk
ð3aþ1Þð1�kÞa2þ3ð1�aÞð1þkÞb2
h i

sinð2uÞsinðhÞ

v
E
6u ¼�a1b

2
1

bLk
V5ðkÞ 1�kcosð2uÞ½ �sinðhÞ

v
E
6h ¼�a1b

2
1

2b2
ð1�3aÞð1�kÞcosðuÞcosðhÞ

8
>>>>>><
>>>>>>:

ðA:12Þ

with

k ¼ a21 þ b
2
1

a21 � b
2
1

ðA:13Þ

Appendix B. An approximate expression of ðD; �d�Þ

For any function Fðu; hÞ, its mean value over an iso� k

spheroid is defined by:

hFðu; hÞiEðkÞ ¼
3

4pð2a2 þ b
2Þ

Z u¼p

u¼0

Z h¼2p

h¼0

Fðu; hÞL2k

� sinðuÞdudh ðB:1Þ

Fðu; hÞ being assumed positive, the following inequality

holds:

hFðu; hÞiEðkÞ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hF2ðu; hÞiEðkÞ

q
ðB:2Þ

To begin with, the following first approximation is then

considered:

A1: deq is replaced by its mean value along each spheroid

confocal to the cavity, hd2
eqiEðkÞ

h i1=2
.

This approximation has the advantage to preserve the

upper bound character of the approach. It follows that

the expression (29) of CðD; �d�Þ reads:

CðD; �d�Þ ¼ r0

a2b
2
2

Z k2

k1

hd2
eqiEðkÞ

h i1=2
bð2a2 þ b

2Þdk ðB:3Þ

A being uniform on X�x, one has:

hd2
eqiEðkÞ ¼ A2

eq þ
4

3
A : hDiEðkÞ : d

� þ 2

3
d
�
: hDT : DiEðkÞ : d

�

ðB:4Þ

The next step of the calculation of CðD; �d�Þ, is to perform

the integral with respect to k. In order to express the

new criterion in a Gurson-like form, we aim to replace

(B.3) by an integral of the form:

CðD; �d�Þ ¼ C

Z u2

u1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2 þ X2u2

q
du

u2
ðB:5Þ

in which C; X and Y are three constants (independent of u)

which will be determined later.

Due to the complex dependence of hDiEðkÞ and

hDT : DiEðkÞ on the coordinate k, a second approximation is

needed. To this end, let us consider the term hDT : DiEðkÞ
which appears in (B.4) in the case of a prolate void. In the

limiting case of a hollow sphere (b ¼ a), hDT : DiEðkÞ is

slightly proportional to ða1=aÞ6, whereas for a hollow cylin-

der (a ¼ a1 ! þ1), it is approximatively ‘‘proportional’’ to

ðb1=bÞ4. Let us introduce a variable x defined by:

x ¼ a1b
2
1

ab
2

ðB:6Þ

The study of the two limiting cases of a prolate cavity

shows that D is slightly proportional to x2. Consider now

the crossed term hDiEðkÞ in expression (B.4), still in the case

of a prolate cavity. Tensor hDiEðkÞ is null for both the case of

spherical and cylindrical cavities and, as in Gologanu et al.

(1993), it can be neglected for simplicity. However, we pro-

pose here a better approximation by replacing hDiEðkÞ by a

term proportional to x2.

The case of oblate cavities is somewhat different.

Although for low values of the eccentricity, the fourth or-

der tensor hDT : DiEðkÞ is still proportional to x2. When

e ! 1 (namely in the ‘‘sandwich’’ case, consisting of two

plane and parallel layers separated by an empty space),

the components of tensor hDT : DiEðkÞ tend to a finite limit.

The approximation considered in the case of a prolate cav-

ity appears then inappropriate for oblate cavity since

x ! 1 when e ! 1. The idea proposed by Gologanu et al.

(1994) and also used in Monchiet et al. (2006, 2007,

2008) is to introduce a new variable y defined as:

y ¼ a1b
2
1

vc3 þ ab
2

ðB:7Þ

where v is a constant whose value will be specified later.

Note that y is proportional to x for low values of e, but

has a finite value when e ! 1. When x ! þ1 one has

y ! 1=v. The second advantage is that the change of vari-

able k ! y preserves the form of the element of integra-

tion, that is dx=x2 ¼ dy=y2.

Let us now introduce the variable u defined by u ¼ x for

prolate cavities and by u ¼ y for oblate cavities. We con-

sider the following approximation:

A2 Terms hDiEðkÞ and hDT : DiEðkÞ which appear in the

expression of deq (see Eq. (B.4)) are replaced by terms propor-

tional to u2 : hDiEðkÞ ¼ Qu2 and hDT : DiEðkÞ ¼ Pu2

(B.4) reads then:

d
2
eq ¼ A2

eq þ
2

3
2A : Q : d

� þ d
�
: P : d

�½ �u2 ðB:8Þ

It remains now to establish the required formula for Q and

P. Since the variations of the components of tensors
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hDiEðkÞ=u2 and hDT : DiEðkÞ=u2 with u are low, they are re-

placed by their means values over ½u1;u2�:

Q¼ 1

u2�u1

Z u2

u1

hDiEðkÞ
du

u2
¼ð1þgÞðf þgÞ

f 2ð1� f Þ hDi
X�x

P¼ 1

u2�u1

Z u2

u1

hDT :DiEðkÞ
du

u2
¼ð1þgÞðf þgÞ

f 2ð1� f Þ hDT :Di
X�x

ðB:9Þ

where g ¼ 0 for a prolate cavity and is given by:

g ¼ v
c3

a2b
2
2

ðB:10Þ

for an oblate one. The expressions of P and Q are given in

appendix C.

While the integration CðD; �d�Þ with (B.8) can a priori be

done, expression (B.8) is not in a symmetric form according

to A and d
�
, due to the presence of the crossed term. A

rewriting of (B.8) as a ‘‘symmetric’’ expression is needed

not only for the estimate of the macroscopic plastic dissi-

pation but also for calculation of the stresses at yielding

(see subsection (4.1)). To this end, we express (B.8) into

the following equivalent form:

d
2
eq ¼

2

3
A : I� u2

Q : P�1 : Q
T

h i

: Aþ 2

3
d
� þ A : Q : P�1

� �
: P

: d
� þ P

�1 : Q
T
: A

h i
u2 ðB:11Þ

Finally, in order to get the form (B.5) for CðD; �d�Þ, the fol-

lowing last approximation is used:

A3 The term u2 which multiplies Q : P�1 : Q
T in (B.11) is

replaced by the constant determined as the mean value of

u2 over u 2 ½u1;u2�, i.e. u2u1.

It is convenient to introduce the following definitions

(using also the fact that ð1þ f Þðf þ gÞu1u2 ¼ f 2):

X2 ¼ 2

3
d
� þ A : Q : P

�1
� �

: P : d
� þ A : Q : P

�1
� �

Y2 ¼ A2
eq �

2f 2

3ð1þ gÞðg þ f ÞA : Q : P�1 : Q
T
: A

ðB:12Þ

CðD; �d�Þ is then given by:

CðD; �d�Þ ¼ �r0f

Z u2

u1

Y2 þ X2u2
n o1=2 du

u2

¼ r0f X arcsinh
uX

Y

� 

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2 þ u2X2

p

u

" #u2

u1

ðB:13Þ

Appendix C. Expressions of Q ; P and L

We now provide the expressions of tensors Q and P

introduced in relations (B.9). We first note that:

hdEi
X�x ¼ 1

jX�xj

Z

@X

v
E�

s
ekdS�

1

jX�xj

Z

@x
v

E�
s
ek dS

¼ f ðSðe2Þ � Sðe1ÞÞ : d� ðC:1Þ

Consequently, tensor Q, defined in (B.9), takes the form:

Q ¼ ð1þ gÞðf þ gÞ
ð1� f Þf ðSðe2Þ � Sðe1ÞÞ ðC:2Þ

We now come to the determination of P. We propose to

compute the quantity hdE
: d

Ei
X�x for which it is recalled

that d
E ¼ D : d

�
. The decomposition (16) is used for the

eigenstrain rate tensor and leads to:

hdE
: d

Ei
X�x ¼

X

rs

prsd
�
rd

�
s ðC:3Þ

Coefficients prs for r; s ¼ 1; . . . ;6 has been computed with

MAPLE software; their exact expressions obtained from

the above relation read:

p11 ¼3
ð1þgÞðf þgÞ

f ð1� f Þ ð1þ3a1Þð1�a1Þ� f ð1þ3a2Þð1�a2Þf g

p12 ¼3
ð1þgÞðf þgÞ

f ð1� f Þ ð1�3a1Þð1�a1�b1Þf

� f ð1�3a2Þð1�a2�b2Þg

p22 ¼3
ð1þgÞðf þgÞ

f ð1� f Þ

(
ð3a1þ3b1�1Þð1�a1�b1Þ

� f ð3a2þ3b2�1Þð1�a2�b2Þ�

þ3f 1�a2
1

a2
2

 �
1�b

2
1

b
2
2

 !
a2ð1�3b2Þ�ð1�b2Þ2
h i)

p33 ¼p44 ¼
1

12

ð1þgÞðf þgÞ
f ð1� f Þ

(
ð1þ3a1þb1Þð3�3a1�b1Þ

� f ð1þ3a2þb2Þð3�3a2�b2Þ

þ f 1�a21
a22

 �
1�b

2
1

b
2
2

 !
3ða2�1Þð2�b2Þ�b2

2�12
h i)

p55 ¼p66 ¼
1

3

ð1þgÞðf þgÞ
f ð1� f Þ ð1�3a1�2b1Þð3a1þ2b1�3Þf

� f ð1�3a2�2b2Þð3a2þ2b2�3Þ

þ2f 1�a2
1

a2
2

 �
1�b

2
1

b
2
2

 !
�6a2b2þ3b2�2b2

2þ3a2�3
h i

ðC:4Þ

In the expressions of coefficients p22; p33; p44; p55 and p66

the last terms proportional to ð1� a2
1=a

2
2Þð1� b

2
1=b

2
2Þ

vanishes in the case of a hollow cylinder (a1 ¼ a2) and in

the ‘‘sandwich’’ case (b1 ¼ b2) and are neglected in all cases.

With this last approximation, P can be put in the

tensorial form:

P ’ ð1þ gÞðf þ gÞ
f ð1� f Þ S

Tðe1Þ : Lðe1Þ � fSTðe2Þ : Lðe2Þ
h i

ðC:5Þ

in which the components of tensor LðeÞ are given by:

L1111 ¼ L2222 ¼
1

8
ð3bþ13aþ3Þ; L1122 ¼ L2211 ¼

1

8
ðbþ7aþ1Þ

L1133 ¼ L3311 ¼
1

2
ð2�b�2aÞ; L3333 ¼1þb�a

L1313 ¼ L2323 ¼
1

4
ð3�3a�2bÞ; L1212 ¼

1

8
ð1þbþ3aÞ

ðC:6Þ

Appendix D. The minimization procedure

The macroscopic criterion is defined by Eqs. (34) with

(36):
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R ¼ f @X
@D
RX þ @Y

@D
RY

f @X

@d�
RX þ @Y

@d�
RY ¼ 0

8
<
: ðD:1Þ

The first step of the demonstration consist to apply, in the

above relations, the following change of variable:

ðD;d�Þ � ðA;d�Þ. Using the following identities:

@A

@D
¼ I� Sðe2Þ : J;

@A

@d�
¼ �fSðe2Þ : K

@d
�

@D
¼ 1

f
J;

@d
�

@d�
¼ K

ðD:2Þ

It follows that the two relations (D.1) reads:

R ¼ f @X
@A
RX þ @Y

@A
RY

� �
: I� Sðe2Þ : J½ � þ RX

@X
@d� : J

� f @X
@A
RX þ @Y

@A
RY

� �
: Sðe2Þ : Kþ RX

@X
@d� : K ¼ 0

(
ðD:3Þ

The second step of the demonstration consist to compute

R : Sðe2Þ with the first relation in (D.3), it leads to (using

the fact that J : Sðe2Þ ¼ J):

R : Sðe2Þ ¼ f
@X

@A
RX þ @Y

@A
RY

� 	
: Sðe2Þ : Kþ RX

@X

@d
� : J

ðD:4Þ

Combining this last relation with the second in (D.3), gives:

R : Sðe2Þ ¼ RX
@X

@d
� ðD:5Þ

Using the definition of X, see (B.12), it appears that:

R
2
X ¼ 3

2
R : Sðe2Þ : P�1 : S

Tðe2Þ : R ðD:6Þ

We now look for the expression of RY . The sum of the two

equations in (D.3) gives:

R ¼ f
@X

@A
RX þ @Y

@A
RY

� 	
: I� Sðe2Þ½ � þ RX

@X

@d
� ðD:7Þ

In the above expression, the last term is given by (D.5). It

follows that:

R : I� Sðe2Þ½ � ¼ f
@X

@A
RX þ @Y

@A
RY

� 	
: I� Sðe2Þ½ � ðD:8Þ

Which imply that:

R ¼ f
@X

@A
RX þ @Y

@A
RY ðD:9Þ

Using now the property:

@X

@A
¼ @X

@d
� : P

�1 : Q
T ðD:10Þ

It follows, from (D.5), that:

RX
@X

@A
¼ R : Sðe2Þ : P�1 : Q

T ðD:11Þ

A combination of Eqs. (D.9) and (D.11) gives:

R : K� fSðe2Þ : P�1
: Q

T
h i

¼ @Y

@A
RY ðD:12Þ

Using the definition of Y, given by (B.12)), one finally

obtains:

R
2
Y ¼ 3

2
R : K� fSðe2Þ : P�1 : Q

T
h i

: I� f

l
Q : P

�1
: Q

T

� 	�1

: K� fQ : P�1 : S
Tðe2Þ

h i
: R ðD:13Þ

where l ¼ ð1þ gÞðf þ gÞ=f . A simplification of the above

expression is possible. To do that, let us first introduce

the fourth order tensor eS defined by:

eS ¼ Sðe1Þ � fSðe2Þ
1� f

ðD:14Þ

It can been shown that lSðe2Þ ¼ Qþ leS where it is re-

called that: l ¼ ð1þ gÞðf þ gÞ=f . Consequently, one has:

K� fQ : P�1 : S
Tðe2Þ

h i
: R ¼ I� f

l
Q : P�1 : Q

T

� 	

: R� fQ : P�1 : eST : R ðD:15Þ

where the equality Q
T
: R ¼ Q

T
: R has been used (since

Q
T
: J ¼ 0). Using relation (D.15) in (D.13), one obtains

for RY :

R
2
Y ¼ 3

2
R : K� fSðe2Þ : P�1 : Q

T
h i

: R� 3f

2
R

: Q� fSðe2Þ : P�1 : Q
T
: Q

h i
: P� f

l
Q

T
: Q

� 	�1

: eST : R ðD:16Þ

Because Q can be decomposed into Q ¼ lSðe2Þ � leS we

have:

Q� fSðe2Þ : P�1 : Q
T
: Q ¼ lSðe2Þ : P�1

: P� f

l
Q

T
: Q

� 	
� leS ðD:17Þ

Using the above relation in expression (D.16), we find:

R
2
Y ¼ Req �

3lf
2
R : Sðe2Þ : P�1 : S

Tðe2Þ : Rþ 3lf
2
R

: eS : P� f

l
Q

T
: Q

� 	�1

: eST : R ðD:18Þ

Finally, we use the property P� f
lQ

T
: Q ¼ leST : eL to

obtain expression (39).
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