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Increasing paths on N-ary trees

Xinxin Chen

LPMA, Université Paris VI

Summary. Consider a rooted N -ary tree. To every vertex of this tree, we
attach an i.i.d. continuous random variable. A vertex is called accessible if
along its ancestral line, the attached random variables are increasing. We keep
accessible vertices and kill all the others. For any positive constant α, we de-
scribe the asymptotic behaviors of the population at the αN -th generation as
N goes to infinity. We also study the criticality of the survival probability at
the (eN − 3

2 logN)-th generation in this paper.

Keywords. Increasing path; House of Cards.

1 Introduction

1.1 The model

We consider an N -ary tree T (N), which is rooted at ∅, so that each vertex in T (N) has exactly N

children. To every vertex σ ∈ T (N), we assign a continuous random variable, denoted by xσ. All

these variables xσ, σ ∈ T (N) are i.i.d. Let |σ| denote the generation of σ, and σi (for 0 ≤ i ≤ |σ|)
denote its ancestor at generation i. The ancestral line of σ is denoted by

[[∅, σ]] := {σ0 := ∅, σ1, · · · , σ|σ| := σ},

which is also the unique shortest path relating σ to the root ∅. A vertex σ is called accessible if

along its ancestral line, the assigned random variables are increasing, i.e.,

(1.1) σ accessible ⇔ x∅ < xσ1 < · · · < xσ.
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This model is called accessibility percolation by Nowak and Krug [6]. We also call [[∅, σ]] an

accessible path if σ is accessible.

The model comes from evolutionary biology, in which both mutation and selection involve. As

the main source of evolutionary novelty, mutations act on the genetic constitution of an organism.

In our setting, each vertex represents one gene type, or genotype. A certain genotype may

reproduce several new genotypes through mutations. The mechanism of successive mutations

hence gives the structure of trees if we also assume that each mutation gives rise to a new

genotype. Selection involves so that organisms better adapted to their respective surroundings

are favored to survive. We suppose that each genotype (vertex) has an associated fitness value,

which is represented by the assigned random variable. In the strong-selection/weak mutation

regime, we assume that only mutations which give rise to a larger fitness value survive. In this

way, the survival mutational pathways are noted by the accessible vertices. In this paper, we use

‘House of Cards’ model (see [5]), in which all fitness values are i.i.d. As is explained in [3], it

serves as a null model.

A variation of our model by replacing N -ary trees with N -dimensional hypercube has been

considered in [2] and [4]. More models are introduced in [1] and [3] to explain evolution via

mutation and selection.

1.2 Main results

For any k ≥ 1, let AN,k := {σ ∈ T (N) : |σ| = k, σ is accessible}. We define

(1.2) ZN,k :=
∑

|σ|=k

1(σ∈AN,k) = #AN,k, ∀k ≥ 1.

Since we are only concerned with the order of the random variables, under the assumption

of continuity of their law, changing the precise distribution will not influence the results. With-

out loss of generality, we assume throughout the paper that the assigned random variables are

distributed uniformly in [0, 1], i.e., ∀σ ∈ T (N), xσ has the uniform distribution in [0, 1], which is

denoted by U [0, 1].

For any x ∈ [0, 1], we introduce the following probability measure:

(1.3) Px(·) := P(·|x∅ = x).

A nature question is about the survival probability Px(ZN,k ≥ 1). Note that for any N, k ≥ 1,

ZN,k =
∑

|σ|=k 1(σ∈AN,k) =
∑

|σ|=k 1(x∅<xσ1<···<xσ). We observe that

(1.4) E
[
ZN,k

]
= NkP(x∅ < xσ1 < · · · < xσ) =

Nk

(k + 1)!
,
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since x∅, xσ1 , xσ2 · · · , xσ are i.i.d. and distributed uniformly in [0, 1]. Immediately,

(1.5) Ex

[
ZN,k

]
= NkPx(x < xσ1 < · · · < xσ ≤ 1) = Nk (1− x)k

k!
, ∀x ∈ [0, 1].

Stirling’s approximation says that

(1.6) 2 <
k!√

k(k/e)k
< 3, ∀k ≥ 1.

It follows that

(1.7)
1

3
√
k

(eN(1− x)

k

)k
≤ Ex

[
ZN,k

]
≤ 1

2
√
k

(eN(1− x)

k

)k
.

It is thus reasonable to take k = ⌊αN⌋ with α > 0.

For convenience, we write αN to represent the integer ⌊αN⌋ throughout this paper. We are

interested in the asymptotic behaviors of ZN,αN as N → ∞.

Nowak and Krug [6] showed that lim infN→∞ P0[ZN,αN ≥ 1] > 0 for 0 < α < 1 and that

limN→∞ P0[ZN,αN ≥ 1] = 0 for α ≥ e. This transition of phases implies the existence of a critical

value of α. Roberts and Zhao [7] proved that the critical value is αc = e, by considering some

typical increasing paths. In fact, we have

(1.8) lim
N→∞

P0

(
ZN,αN ≥ 1

)
=

{
1 if α < e;
0 if α ≥ e.

This result tells us that, for N large, roughly speaking, the population of accessible vertices

survives until the eN -th generation and then dies out. Let us describe the asymptotic behaviors

of the population more precisely by the following theorems.

Theorem 1.1. Let θ(α) := α(1− logα) for α > 0.

(i) When α ∈ (0, e), the following convergence holds P0−almost surely,

(1.9) lim
N→∞

ZN,αN

N
= θ(α) > 0.

(ii) When α = e, we have

(1.10) P0

(
ZN,αN ≥ 1

)
= N−3/2+oN (1) as N → ∞,

where {oN(1)}N≥1 is a sequence of real numbers which goes to zero as N → ∞.
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(iii) When α > e, we have

(1.11) lim
N→∞

logP0

(
ZN,αN ≥ 1

)

N
= θ(α) < 0.

Remark 1.2. For α < e, the accessible population ZN,αN is exponentially large. Its second order

is not given here, but we present some arguments in Appendix B. When α = e, the explicit order

of the survival probability is still unknown.

It is clear that the system becomes extinct before the generation eN . In the next theorem,

we see that the real critical generation is eN − 3
2
logN .

Theorem 1.3. Let k = eN − β logN . Then we have

(1.12) lim
N→∞

P0

(
ZN,k ≥ 1

)
=

{
1 if β > 3/2;
0 if β < 3/2.

At the critical generation k = eN − 3
2
logN , the survival probability is not clear at this

moment. We state the following proposition, which only gives a lower bound.

Proposition 1.4. For any ε > 0 and n sufficiently large, we have

(1.13) P0

(
ZN,eN− 3

2
logN ≥ 1

)
≥ N−ε.

It is possible to replace the N -ary tree by the Galton-Watson tree whose offspring is Poisson

with parameter N , in which case all these results still hold.

The rest of the paper is organized as follows. In Section 2, we state some basic results of the

accessible population and the increasing paths. In Section 3 we prove Theorem 1.1. Finally, in

Section 4, we show the criticality at eN − 3
2
logN , by proving Theorem 1.3 and 1.4.

Throughout the paper, we use the letter c with subscript to denote a finite and positive

constant.

2 Basic ideas of the increasing paths

2.1 The generating function of ZN,k

As ZN,k is an integer-valued r.w., we consider its generation function Ex

(
sZN,k

)
in this subsection.

Generally, for any 0 ≤ a < b ≤ 1, we define ZN,k(a, b) as follows:

(2.1) ZN,k(a, b) :=
∑

|σ|=k

1(a<xσ1<···<xσk
≤b), ∀k ≥ 1.
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For convenience, we write ZN,k(b) for ZN,k(0, b) and set ZN,0(b) ≡ 1. One sees that ZN,k(b − a)

and ZN,k(a, b) have the same law. Let f
(N)
k (s, b) be the generating function of ZN,k(b), i.e.,

(2.2) f
(N)
k (s, b) := E

[
sZN,k(b)

]
, ∀s ∈ [0, 1].

For k = 1, ZN,1(b) is a binomial variable with parameter (N, b). So f
(N)
1 (s, b) = [1− b+ sb]N .

For any k ≥ 1, one observes that

(2.3) ZN,k+1(b) =
∑

|σ|=1

1(xσ<b)

∑

|ω|=k+1

1(ω1=σ)1(xσ<xω2<···<xω≤b).

For all vertices σ of the first generation, the variables 1(xσ<b)

∑
|ω|=k+1 1(ω1=σ)1(xσ<xω2<···<xω≤b) are

i.i.d., and given {xσ = y < b}, ∑|ω|=k+1 1(ω1=σ)1(xσ<xω2<···<xω≤b) is distributed as ZN,k(y, b). It

follows that for any k ≥ 1 and any b ∈ [0, 1],

f
(N)
k+1(s, b) =

[
1− b+

∫ b

0

dyE
(
sZN,k(y,b)

)]N

=
[
1− b+

∫ b

0

f
(N)
k (s, b− y)dy

]N

=
[
1− b+

∫ b

0

f
(N)
k (s, y)dy

]N
.

(2.4)

For brevity, we denote the generating function of ZN,k under P0 by f
(N)
k (s) instead of f

(N)
k (s, 1).

Immediately,

(2.5) f
(N)
k+1(s) =

[ ∫ 1

0

f
(N)
k (s, y)dy

]N
, ∀k ≥ 1.

This gives that

(2.6) P0

(
ZN,k ≥ 1

)
= 1− f

(N)
k (0) = 1−

[ ∫ 1

0

f
(N)
k−1(0, y)dy

]N
, ∀k ≥ 2.

To study the law of ZN,k, it suffices to study (2.4). However, it is quite difficult to investigate

analytically the sequence f
(N)
k , k ≥ 1, from the recursive relation (2.4). We thus turn to study

the accessible vertices via their paths.

2.2 Typical accessible paths

To study an increasing path, we let {Uj; j ≥ 1} be a sequence of i.i.d. U [0, 1] random variables.

Observe that for any 1 ≤ j ≤ k,

(2.7) E
(
Uj

∣∣∣U1 ≤ U2 ≤ · · · ≤ Uk

)
=

j

k + 1
.
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This leads us to comparing an increasing path {U1 ≤ U2 ≤ · · · ≤ Uk} with the line { j
k+1

; 1 ≤ j ≤
k}. For example, in Lemma 2 of [7], the authors showed that

P
(
U1 ≤ U2 ≤ · · · ≤ Uk;Uj ≥

j

k + 1
, ∀1 ≤ j ≤ k

)
=

1

(k + 1)!
.

In what follows, we generalize their ideas and state the two lemmas, which estimate the

probabilities of some typical accessible paths.

Lemma 2.1. (1) For any 1 ≤ k ≤ J − 1,

(2.8) φ(k, J) := P

(
U1 ≤ · · · ≤ Uk;Uj ≥

j

J
, ∀1 ≤ j ≤ k

)
=
J − k

k!J
.

(2) For any ε ∈ [0, 1) and 1 ≤ k ≤ J ,

ψ(k, J, ε) :=P

(
U1 ≤ · · · ≤ Uk;Uj ≥ ε+ (1− ε)

j − 1

J
, ∀1 ≤ j ≤ k

)

=
(1 + 1/J)k(J + 1− k)

k!(J + 1)
(1− ε)k.

(2.9)

Proof. According to the assumption, we compute φ(k, J) directly.

φ(k, J) =

∫ 1

k/J

∫ uk

(k−1)/J

· · ·
∫ u2

1/J

du1 · · · duk

=

∫ 1

k/J

∫ uk

(k−1)/J

· · ·
∫ uj+1

j/J

( uj−1
j

(j − 1)!
− 1

J

uj−2
j

(j − 2)!

)
duj · · · duk

=
J − k

k!J
,

giving (2.8).

We now compute ψ by using φ. Rewrite ψ(k, J, ε) as follows:

ψ(k, J, ε) =

∫ 1

ε+(1−ε) k−1
J

· · ·
∫ u2

ε

du1 · · · duk.

Take uj = ε+ (1− ε)vj for all 1 ≤ j ≤ k. By a change of variables,

(2.10) ψ(k, J, ε) =

∫ 1

(k−1)/J

· · ·
∫ v2

0

(1− ε)kdv1 · · · dvk = (1− ε)kψ(k, J, 0).

In particular, when ε = 1
J+1

, we have

ψ(k, J,
1

J + 1
) = ψ(k, J, 0)(1− 1

J + 1
)k.
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On the other hand, when ε = 1
J+1

, ε+ (1− ε) j−1
J

= j
J+1

for any 1 ≤ j ≤ k. Hence,

ψ(k, J,
1

J + 1
) = φ(k, J + 1) =

J + 1− k

k!(J + 1)
.

It follows that ψ(k, J, 0) = ψ(k, J, 1
J+1

)(1 − 1
J+1

)−k = (1+1/J)k(J+1−k)
k!(J+1)

. By (2.10), we then obtain

that

(2.11) ψ(k, J, ε) = (1− ε)kψ(k, J, 0) =
(1 + 1/J)k(J + 1− k)

k!(J + 1)
(1− ε)k,

as desired.

Following the assumption of Lemma 2.1, we define for any 0 ≤ L < K,

(2.12) AL(K) :=

{
U1 < · · · < UK ;Uj ≥

(j − L)+
K + 1

; ∀1 ≤ j ≤ K

}
.

Obviously, P[A0(K)] = φ(K,K + 1) = 1
(K+1)!

by (2.8).

Lemma 2.2. There exists a positive constant c0 > 0 such that for any 1 ≤ L < K,

(2.13) P
[
AL(K)

]
≤ ec0

√
L

K3/2

eK

(K + 1)K
.

Proof. Clearly, P[A1(K)] = ψ(K,K, 0) = (1+1/K)K

(K+1)!
by (2.9). By (1.6),

(2.14) P
[
AL(K)

]
≤ e2

√
L

K3/2

eK

(K + 1)K
, for L = 1.

The fact A1(K) ⊂ A2(K) ⊂ · · · ⊂ AL(K) leads to

(2.15) P[AL(K)] =
L−1∑

i=1

P[Ai+1(K) \ Ai(K)] +P[A1(K)], 2 ≤ L < K.

Let us estimate P[Ai+1(K) \ Ai(K)]. Observe that

(2.16) P[Ai+1(K) \ Ai(K)] =
K∑

k=i+1

P[Ci,k(K)],

where

(2.17) Ci,k(K) :=

{
U1 < · · · < UK ;Uj ≥ j−i

K+1
, ∀i+ 1 ≤ j ≤ k − 1;

Uk <
k−i
K+1

;Uj ≥ j−i−1
K+1

, ∀k + 1 ≤ j ≤ K

}
.
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It follows from the independence of Uj’s that P[Ci,k(K)] = pi,kqi,k where

pi,k := P

(
U1 < · · · < Uk <

k − i

K + 1
;Uj ≥

j − i

K + 1
, ∀i+ 1 ≤ j ≤ k − 1

)
;

qi,k := P

(
k − i

K + 1
≤ Uk+1 < · · · < UK ;Uj ≥

j − i− 1

K + 1
, ∀k + 1 ≤ j ≤ K

)
.

Then (2.16) becomes that

(2.18) P[Ai+1(K) \ Ai(K)] =
K∑

k=i+1

pi,kqi,k.

We first compute qi,k:

qi,k = P

(
U1 < · · · < UK−k;Uj ≥

j + k − i− 1

K + 1
, ∀1 ≤ j ≤ K − k

)

= ψ(K − k,K − k + i+ 1,
k − i

K + 1
).

By (2.9), we obtain that

(2.19) qi,k =
(K + 2 + i− k

K + 1

)K−k i+ 2

(K − k)!(K − k + i+ 2)
.

It remains to estimate pi,k. One sees that

pi,k =
( k − i

K + 1

)k
P

(
U1 < · · · < Uk;Uj ≥

j − i

k − i
, ∀i+ 1 ≤ j ≤ k − 1

)

≤
( k − i

K + 1

)k 1

k − i
P(Di,k−1),(2.20)

where

(2.21) Di,k :=
{
U1 < · · · < Uk, Uj ≥

j − i

k − i+ 1
, ∀i+ 1 ≤ j ≤ k

}
, k ≥ i ≥ 1.

Let us admit for the moment the following lemma, whose proof will be given later.

Lemma 2.3. For k ≥ i ≥ 1, there exists a constant c1 > 0 such that

(2.22) ui,k := P
(
Di,k

)
≤ ek−iec1

√
i−1+2

(k + 1− i)kk3/2
.

Lemma 2.3 implies that

pi,k ≤
( k − i

K + 1

)k 1

k − i
ui,k−1

≤
( e

K + 1

)k e−i−1ec1
√
i−1+2

(k − 1)3/2
.(2.23)
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Let us go back to (2.18). In view of (2.19) and (2.23), we see that

(2.24) P[Ai+1(K) \ Ai(K)] =
K∑

k=i+1

pi,kqi,k

≤
K∑

k=i+1

(K + 2 + i− k

K + 1

)K−k i+ 2

(K − k)!(K − k + i+ 2)

( e

K + 1

)k e−i−1ec1
√
i−1+2

(k − 1)3/2
.

Applying Stirling’s formula (1.6) to (K − k)! yields that

P[Ai+1(K) \ Ai(K)] ≤ (i+ 2)ec1
√
i−1+2eK

(K + 1)K

K−1∑

k=i

e

2k3/2(K + i+ 1− k)3/2

≤ c2

√
iec1

√
i−1+2

(K + 1)3/2
eK

(K + 1)K
.

We then deduce from (2.15) that for L ≥ 2,

(2.25) P[AL(K)] =
L−1∑

i=1

P[Ai+1(K) \ Ai(K)] +P[A1(K)] ≤ c3
L3/2ec1

√
L−1+2

K3/2

eK

(K + 1)K
,

which is sufficient to conclude Lemma 2.2.

We now present the proof of Lemma 2.3.

Proof of Lemma 2.3. Recall that Di,k =
{
U1 < · · · < Uk, Uj ≥ j−i

k−i+1
, ∀i + 1 ≤ j ≤ k

}
. Since

Di,k ⊂ {U1 < · · · < Uk}, we have for any k ≥ i,

(2.26) ui,k = P
(
Di,k

)
≤ P

(
U1 < · · · < Uk

)
=

1

k!
.

By Stirling’s formula (1.6), we get that

ui,k ≤
ek

2kk
√
k
=

ek

(k + 1− i)kk3/2

(
1− i− 1

k

)k k
2
≤ ek+1−i

(k + 1− i)kk3/2
k

2
,

as 1 − z ≤ e−z for any z ≥ 0. Take c1 := max{40, supi≥2
1+log i√

i−1
} < ∞. Then when k ≤ 2i, we

deduce that

(2.27) ui,k ≤
ek−i

(k + 1− i)kk3/2
elog i+1 ≤ ek−iec1

√
i−1+2

(k + 1− i)kk3/2
.

It remain to prove the inequality (2.22) when k/2 ≥ i ≥ 1. Let γ(i) := ec1
√
i−1+2. According

to Lemma 2.1, we have

(2.28) u1,k = ψ(k, k, 0) =
(1 + 1

k
)k

(k + 1)!
≤ ek+1

2kk+3/2
≤ ek−1γ(1)

(k + 1− 1)kk3/2
, ∀k ≥ 1,
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giving (2.22) in case i = 1.

We prove (2.22) by induction on i. Assume (2.22) for some i ≥ 1 (and all k ≥ i). We need

to bound P(Di+1,k) for k ≥ 2(i+ 1).

Since D1,k ⊂ D2,k ⊂ · · ·Dk−1,k, we have:

(2.29) ui+1,k − ui,k = P
(
Di+1,k \Di,k

)

=
k−i∑

j=1

P

(
U1 < · · · < Uk, Ui+ℓ ≥

1

k − i+ 1
, ∀1 ≤ ℓ < j;

j − 1

k − i
≤ Ui+j <

j

k − i+ 1
;

j

k − i+ 1
<
j + ℓ− 1

k − i
≤ Ui+j+ℓ, ∀1 ≤ ℓ ≤ k − j − i

)
.

By the independence of the Ui’s, we have ui+1,k − ui,k =
∑k−i

j=1 ri,j,ksi,j,k where

ri,j,k : = P

(
U1 < · · · < Ui+j, Ui+ℓ ≥

ℓ

k − i+ 1
, ∀1 ≤ ℓ < j;

j − 1

k − i
≤ Ui+j <

j

k − i+ 1

)

si,j,k : = P

(
Ui+j+1 < · · · < Uk;

j + ℓ− 1

k − i
≤ Ui+j+ℓ, ∀1 ≤ ℓ ≤ k − j − i

)
.

Once again by (2.9),

(2.30) si,j,k = ψ(k − i− j, k − i− j,
j

k − i
) =

(
k − i− j + 1

k − i

)k−i−j
1

(k − i− j + 1)!
.

On the other hand,

ri,j,k ≤ P

(
U1 ≤ · · · ≤ Ui+j−1 ≤

j

k − i+ 1
, Ui+ℓ ≥

ℓ

k − i+ 1
, ∀1 ≤ ℓ < j

)
×
[

j

k − i+ 1
− j − 1

k − i

]

=

(
j

k − i+ 1

)i+j−1

P

(
U1 ≤ · · · ≤ Ui+j−1, Ui+ℓ ≥

ℓ

j
, ∀1 ≤ ℓ ≤ j − 1

)
k − i− j + 1

(k − i)(k − i+ 1)

=

(
j

k − i+ 1

)i+j−1
k − i− j + 1

(k − i)(k − i+ 1)
ui,i+j−1.

This implies that

(2.31) ui+1,k − ui,k =
k−i∑

j=1

ri,j,ksi,j,k

≤
k−i∑

j=1

(
k − i− j + 1

k − i

)k−i−j
1

(k − i− j + 1)!

(
j

k − i+ 1

)i+j−1
k − i− j + 1

(k − i)(k − i+ 1)
ui,i+j−1.
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By induction assumption, for any ℓ ≥ i ≥ 1, ui,ℓ ≤ eℓ−iγ(i)

(ℓ+1−i)ℓℓ3/2
. It follows that

ui+1,k ≤
ek−iγ(i)

(k + 1− i)kk3/2
+

k−i∑

j=1

(
j

k − i+ 1

)i+j−1
k − i− j + 1

(k − i)(k − i+ 1)

× ej−1γ(i)

ji+j−1(i+ j − 1)3/2

(
k − i− j + 1

k − i

)k−i−j
1

(k − i− j + 1)!
.

The first term on the right-hand side of this inequality is bounded by

(2.32)
ek−iγ(i)

(k − i)kk3/2

( k − i

k + 1− i

)k+1−i

≤ ek−i−1γ(i)

(k − i)kk3/2
,

whereas the second term bounded by

k−i∑

j=1

(
1

k − i

)k+1
ej−1γ(i)

(i+ j − 1)3/2

(
k − i− j + 1

)k−i−j+1
1

(k − i− j + 1)!

≤ ek−iγ(i)

(k − i)k+1

k−i∑

j=1

1

2(i+ j − 1)3/2(k − i− j + 1)1/2

≤ 20γ(i)√
i

ek−i−1

(k − i)kk3/2
,

where the last inequality holds as we take k/2 ≥ i+ 1. We obtain that

(2.33) ui+1,k ≤
ek−i−1γ(i)

(k − i)kk3/2

(
1 +

20√
i

)
≤ ek−i−1

(k − i)kk3/2
γ(i)e

20√
i .

Note that γ(i)e
20√
i = exp{c1

√
i− 1 + 2 + 20√

i
} ≤ γ(i+ 1) if we take c1 > 40. Therefore,

(2.34) ui+1,k ≤
ek−i−1γ(i+ 1)

(k − i)kk3/2
, ∀k ≥ i+ 1,

which completes the proof of Lemma 2.3.

3 Asymptotic behaviors of ZN,αN : Proof of Theorem 1.1

In this section, we prove Theorem 1.1, by estimating the first and second moments of the acces-

sible population. However, we do not consider directly ZN,αN even though its second moment

for α < 2 is obtained in Lemma B.1. In fact, we mainly count some typical increasing paths.

For any ε ∈ (0, 1) and any k ≥ 1, let AN,k,ε := {σ ∈ T (N) : |σ| = k, xσ1 < · · · < xσ; xσi
≥

ε+ (1− ε) i−1
k
, ∀1 ≤ i ≤ k}. We define the following quantities:

(3.1) ZN,k,ε :=
∑

|σ|=k

1(σ∈AN,k,ε), ∀k ≥ 1.

Clearly, under P0, ZN,k,ε ≤ ZN,k = #AN,k. Instead of ZN,k, we study ZN,k,ε with suitable ε ≥ 0.
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Proof of (i) of Theorem 1.1. We need to show that for α ∈ (0, e),

P0 − a.s., lim
N→∞

logZN,αN/N = θ(1− α),

with θ(α) = α(1− logα). We first give the upper bound. By (1.7),

(3.2) E0

[
ZN,αN

]
≤ (e/α)αN

2
√
αN

=
eθ(α)N

2
√
αN

.

By Markov’s inequality, for any δ > 0,

(3.3) P0

[
ZN,αN ≥ exp{N(θ(α) + δ)}

]
≤ exp{−N(θ(α) + δ)}E0

[
ZN,αN

]
≤ e−δN

2
√
αN

,

which is summable in N . By the Borel-Cantelli lemma, for any δ > 0, P0-almost surely,

(3.4) lim sup
N→∞

logZN,αN

N
≤ θ(α) + δ.

This establishes the upper bound. To obtain the lower bound, it suffices to show that for any

δ > 0, there exists some ε > 0 such that P0-almost surely,

(3.5) lim inf
N→∞

logZN,αN

N
≥ θ(α)− δ.

By (2.9), we see that for any k ≥ 1 and any ε ∈ (0, 1),

(3.6) E0

[
ZN,k,ε

]
= Nkψ(k, k, ε) = Nk (1 + 1/k)k

(k + 1)!
(1− ε)k.

Here we take k = αN − 1 with α < e. For any α < e fixed, take ε small enough so that

α < e(1− ε), θ(α) > 3αε and log(1− ε) > −2ε. By Stirling’s formula (1.6),

(3.7) E0

[
ZN,αN−1,ε

]
≥ c4

exp
{
θ(α)N + α log(1− ε)N

}

(αN)3/2
.

For all N sufficiently large, we get that

(3.8) E0

[
ZN,αN−1,ε

]
≥ 2 exp{θ(α)N − 3αεN} ≥ 1.

By the Paley-Zygmund inequality,

(3.9) P0

[
ZN,αN−1,ε ≥ exp{θ(α)N − 3αεN}

]
≥

E0

[
ZN,αN,ε

]2

4E0

[
Z2

N,αN,ε

] .

12



Let us bound E0

[
Z2

N,αN,ε

]
, which is equal to:

E0

[ ∑

|σ|=|σ′|=k

1(σ,σ′∈AN,k,ε)

]
= E0

[
ZN,k,ε

]
+ E0

[ k−1∑

q=0

∑

|σ∧σ′|=q

1(σ,σ′∈AN,k,ε)

]

=E0

[
ZN,k,ε

]
+

k−1∑

q=0

N qN(N − 1)N2k−2q−2P0

(
σ, σ′ ∈ AN,k,ε

∣∣∣|σ ∧ σ′| = q
)
,

(3.10)

where σ ∧ σ′ denotes the latest common ancestor of σ and σ′.

Recall that AN,k,ε = {σ ∈ AN,k; xσi
≥ ε+(1−ε) i−1

k
, ∀1 ≤ i ≤ k}. P0

(
σ, σ′ ∈ AN,k,ε

∣∣∣|σ∧σ′| =

q
)
is hence equal to

∫ 1

ε+(1−ε)(q−1)/k

P0

(
σ, σ′ ∈ AN,k,ε

∣∣∣|σ ∧ σ′| = q, xσ∧σ′ = y
)
dy

=

∫ 1

ε+(1−ε)(q−1)/k

P
(
U1 < · · · < Uq−1 < y;Ui ≥ ε+ (1− ε)

i− 1

k
, ∀1 ≤ i < q

)

×
[
P
(
y < Uq+1 < · · · < Uk;Ui ≥ ε+ (1− ε)

i− 1

k
, ∀q < i ≤ k

)]2
dy.

(3.11)

Observe that

P
(
y < Uq+1 < · · · < Uk;Ui ≥ ε+ (1− ε)

i− 1

k
, ∀q < i ≤ k

)

≤P
(
Uq+1 < · · · < Uk;Ui ≥ ε+ (1− ε)

i− 1

k
, ∀q < i ≤ k

)
= ψ

(
k − q, k − q, ε+ (1− ε)

q

k

)
.

Plugging it into (3.11) implies that Pε

(
σ, σ′ ∈ AN,k,ε

∣∣∣|σ ∧ σ′| = q
)
is less than

{∫ 1

ε+(1−ε)(q−1)/k

dyP
(
U1 < · · · < Uq−1 < y;Ui ≥ ε+ (1− ε)

i− 1

k
, ∀1 ≤ i < q

)
×

P
(
y < Uq+1 < · · · < Uk;Ui ≥ ε+ (1− ε)

i− 1

k
, ∀q < i ≤ k

)}
× ψ

(
k − q, k − q, ε+ (1− ε)

q

k

)

= ψ(k, k, ε)× ψ
(
k − q, k − q, ε+ (1− ε)

q

k

)
.

(3.12)

Combining (3.10) with (3.12) yields that

E0

[
Z2

N,k,ε

]
≤E0

[
ZN,k,ε

]
+
N − 1

N

k−1∑

q=0

N2k−qψ(k, k, ε)× ψ
(
k − q, k − q, ε+ (1− ε)

q

k

)

=E0

[
ZN,k,ε

](
1 +

N − 1

N
E0

[
ZN,k,ε

] k−1∑

q=0

N−qψ(k − q, k − q, ε+ (1− ε) q
k
)

ψ(k, k, ε)

)
,

(3.13)
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where the last equality follows from (3.6). By (2.9) and (1.6),

(3.14)
k−1∑

q=0

N−qψ(k − q, k − q, ε+ (1− ε) q
k
)

ψ(k, k, ε)
≤

k−1∑

q=0

c5

( k

k − q

)3/2( k

e(1− ε)N

)q
.

For k = αN − 1 and α < e(1− ε), we get that for N large enough,

k−1∑

q=0

c5

( k

k − q

)3/2( k

e(1− ε)N

)q
≤

k/2∑

q=0

c6

( α

e(1− ε)

)q
+
∑

q≥k/2

c6q
3/2
( α

e(1− ε)

)q
≤ c7 <∞.

By (3.8), for N large enough, E0

[
ZN,k,ε

]
≥ 1. Going back to (3.13), we obtain that for all N

sufficiently large,

(3.15) E0

[
Z2

N,αN−1,ε

]
≤ (1 + c7)E0

[
ZN,αN−1,ε

]2
.

It then follows from (3.9) that

(3.16) P0

[
ZN,αN−1,ε ≥ exp{θ(α)N − 3αεN}

]
≥ 1

4(1 + c7)
=: c8 ∈ (0, 1).

For any vertex ω in the first generation, define AN,k+1,ε(ω) as follows:

AN,k+1,ε(ω) := {|σ| = k + 1; σ1 = ω; xσ2 < · · · < xσ; xσi
≥ ε+ (1− ε)

i− 2

k
, 2 ≤ i ≤ k + 1}.

To bound P0{ZN,αN < exp{θ(α)N − 3αεN}}, we observe that

(3.17) ZN,αN ≥
∑

|ω|=1

1(xω<ε)

∑

|σ|=αN

1(σ∈AN,αN,ε(ω)),

where
(
xω,

∑
|σ|=αN 1(σ∈AN,αN,ε(ω))

)
are i.i.d. Thus,

P0

(
ZN,αN < exp{θ(α)N − 3αεN}

)

≤ P0

( ∑

|ω|=1

1(xω<ε)

∑

|σ|=αN

1(σ∈AN,αN,ε(ω)) < exp{θ(α)N − 3αεN}
)

≤ P0

(
1(xω<ε)

∑

|σ|=αN

1(σ∈AN,αN,ε(ω)) < exp{θ(α)N − 3αεN}
)N

.(3.18)

The fact that P0[σ ∈ AN,k+1,ε(ω)|xω < ε] = P0[σ ∈ AN,k,ε] implies that given {xω < ε},
∑

|σ|=αN 1(σ∈AN,αN,ε(ω)) is distributed as ZN,αN−1,ε under P0. Therefore, we have

P0

(
1(xω<ε)

∑

|σ|=αN

1(σ∈AN,αN,ε(ω)) < exp{θ(α)N − 3αεN}
)

≤ 1− ε+ εP0

( ∑

|σ|=αN

1(σ∈AN,αN,ε(ω)) < exp{θ(α)N − 3αεN}
∣∣∣xω < ε

)

= 1− ε+ ε
(
1−P0

[
ZN,αN−1,ε ≥ exp{θ(α)N − 3αεN}

])
,
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which is bounded by 1 − ε + ε(1 − c8) because of (3.16). Plugging this inequality into (3.18)

yields that

P0

[
ZN,αN < exp{θ(α)N − 3αεN}

]
≤

(
1− ε+ ε(1− c8)

)N
≤ e−Nc8ε,

which is summable in N . By the Borel-Cantelli lemma, we conclude that for ε sufficiently small,

P0−almost surely,

(3.19) lim inf
N→∞

logZN,αN

N
≥ θ(α)− 3αε,

completing the proof of (i) of Theorem 1.1.

Before the proof of Part (ii), we turn to estimate P0

[
ZN,αN ≥ 1

]
with α > e.

Proof of (iii) of Theorem 1.1. The upper bound is easy. By Markov’s inequality and (1.7),

P0

[
ZN,αN ≥ 1

]
≤ E0

[
ZN,αN

]
≤ eθ(α)N

2
√
αN

.

It follows that

(3.20) lim sup
N→∞

logP0

[
ZN,αN ≥ 1

]

N
≤ θ(α) < 0.

To get the lower bound, we use the fact that ZN,k ≥ ZN,k,ε and the Paley-Zygmund inequality

to get that for any ε ∈ [0, 1),

(3.21) P0

[
ZN,k ≥ 1

]
≥ P0

[
ZN,k,ε ≥ 1

]
≥

E0

[
ZN,k,ε

]2

E0

[
Z2

N,k,ε

] .

In this part, we always take ε = 0. Applying (3.6) and Stirling’s formula (1.6) gives that for

k = αN ,

(3.22) E0

[
ZN,k,0

]
≥ Nk

(k + 1)!
≥ eθ(α)N

3(αN + 1)3/2
.

On the other hand, in view of (3.13), we obtain that

(3.23) E0

[
Z2

N,k,0

]
≤ E0

[
ZN,k,0

](
1 +

N − 1

N

k−1∑

q=0

Nk−qψ(k − q, k − q,
q

k
)
)
.
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By (2.9) and (1.6), one sees that for k = αN with α > e,

k−1∑

q=0

Nk−qψ(k − q, k − q,
q

k
) =

k−1∑

q=0

Nk−q (1 + 1/(k − q))k−q

(k − q + 1)!
(1− q/k)k−q

≤
k−1∑

q=0

e

2(k − q)3/2

(eN
k

)k−q

≤
k−1∑

q=0

e

2(k − q)3/2
,

Let c9 :=
∑∞

q=1
e

2q3/2
∈ (0,∞). It follows that

(3.24)
k−1∑

q=0

Nk−qψ(k − q, k − q,
q

k
) ≤ c9.

Plugging it into (3.23) shows that

(3.25) E0

[
Z2

N,αN,0

]
≤ E0

[
ZN,αN,0

]
(1 + c9).

According to (3.21) and (3.22), we obtain that

(3.26) P0

[
ZN,αN ≥ 1

]
≥

E0

[
ZN,αN,0

]

1 + c9
≥ c10

eθ(α)N

(αN + 1)3/2
,

where c10 :=
1

3(1+c9)
. Therefore, we conclude that for α > e,

(3.27) lim inf
N→∞

logP0

[
ZN,αN ≥ 1

]

N
≥ θ(α),

which completes the proof of (iii) of Theorem 1.1.

Proof of (ii) of Theorem 1.1. Let us estimate P0[ZN,eN ≥ 1].

For the lower bound, one observes that the inequality (3.26) still holds when α = e. As

θ(e) = 0, we get that

(3.28) P0[ZN,eN ≥ 1] ≥ c11N
−3/2.

To obtain the upper bound, we introduce the following collections of accessible vertices in

T (N):

(3.29) AL(K) := {|σ| = K : xσ1 < · · · < xσ; xσj
≥ (j − L)+

K + 1
; ∀1 ≤ j ≤ K}, 0 ≤ L < K.

Set K = eN and L0 = 2 logK. One observes that

(3.30) AN,K ⊂ AL0(K) ∪
K⋃

k=L0+1

{∃|σ| = k : xσ1 < · · · < xσ, xσ <
k − L0

K + 1
}.
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As a consequence,

P0

[
ZN,eN ≥ 1

]
≤ P0

[
∃σ ∈ AL0(K)

]
+

K∑

k=L0+1

P0

[
∃|σ| = k : xσ1 < · · · < xσ, xσ <

k − L0

K + 1

]

≤ E0

[ ∑

|σ|=K

1(σ∈AL0
(K))

]
+

K∑

k=L0+1

E0

[ ∑

σ∈AN,k

1
(xσ<

k−L0
K+1

)

]
,(3.31)

where the last inequality follows from Markov’s inequality. We first compute the second term on

the right-hand side of (3.31), which is

K∑

k=L0+1

E0

[ ∑

σ∈AN,k

1
(xσ<

k−L0
K+1

)

]
=

K∑

k=L0+1

NkP
[
U1 < · · · < Uk <

k − L0

K + 1

]

=
K∑

k=L0+1

Nk
(k − L0

K + 1

)k 1
k!
.(3.32)

By (1.6),

(3.33)
K∑

k=L0+1

E0

[ ∑

σ∈AN,k

1
(xσ<

k−L0
K+1

)

]
≤

K∑

k=L0+1

( eN

K + 1

)k e−L0

2
√
k
≤ c12N

−3/2.

The inequality (3.31) thus becomes that

P0

[
ZN,eN ≥ 1

]
≤ E0

[ ∑

|σ|=K

1(σ∈AL0
(K))

]
+ c12N

−3/2

= NKP[AL0(K)] + c12N
−3/2,(3.34)

where AL0(K) is defined in (2.12). Applying Lemma 2.2 yields that

P0

[
ZN,eN ≥ 1

]
≤ NK e

c0
√
L0

K3/2

eK

(K + 1)K
+ c12N

−3/2

≤ c13
ec0

√
2 logK

N3/2
= N−3/2+oN (1),(3.35)

which completes the proof of (ii) of Theorem 1.1.

4 The criticality at eN − 3
2 logN

In this section, we prove Theorem 1.3 and Proposition 1.4, which says that

(4.1) lim
N→∞

P0

(
ZN,eN−β logN ≥ 1

)
=

{
1 if β > 3/2;
0 if β < 3/2.

and that when β = 3/2, for any ε > 0 and N sufficiently large,

(4.2) P0

(
ZN,eN−β logN ≥ 1

)
≥ N−ε.
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4.1 Extinction after eN − β logN for any β < 3/2

Let K = eN − β logN with β < 3/2 fixed. Similarly as (3.31), one sees that

P0

[
ZN,K ≥ 1

]
≤P0

[
∃σ ∈ AL0(K)

]
+

K∑

k=L0+1

P0

[
∃|σ| = k : xσ1 < · · · < xσ, xσ <

k − L0

K + 1

]

≤E0

[ ∑

|σ|=K

1(σ∈AL0
(K))

]
+

K∑

k=L0+1

E0

[ ∑

σ∈AN,k

1
(xσ<

k−L0
K+1

)

]

≤NKP[AL0(K)] +
K∑

k=L0+1

( eN

K + 1

)k e−L0

2
√
k
.

(4.3)

We take L0 = 2 logN . Note that for 1 ≤ k ≤ K,

(4.4)
( eN

K + 1

)k e−L0

2
√
k
≤
(
1 +

β logN

K

)KN−2

2
√
k
≤ Nβ−2 1

2
√
k
.

So, the second sum on the right-hand side of (4.3) is less than

(4.5)
K∑

k=L0+1

Nβ−2 1

2
√
k
≤ c14N

β−3/2,

which converges to zero if β < 3/2.

Applying Lemma 2.2 for AL0(K) yields that

(4.6) NKP[AL0(K)] ≤ ec0
√
L0

K3/2

( eN

K + 1

)K
≤ ec0

√
L0

K3/2

(
1 +

β logN

K

)K
≤ c15N

β−3/2ec0
√
L0 ,

which also converges to zero as N → ∞.

Consequently, when β < 3/2,

(4.7) lim
N→∞

P0

(
ZN,eN−β logN ≥ 1

)
= 0.

4.2 Survival until eN − β logN for any β > 3/2

It remains to show that limN→∞ P0

(
ZN,eN−β logN ≥ 1

)
= 1 when β > 3/2.

Let k0 := γ logN , K0 := eN − (β + γ) logN and δN := (γ+3/2) logN
eN

. We define Ã(k0, δN , K0)

to be the collection of accessible individuals satisfying that

0 < xσ1 < · · · < xσk0
≤ δN ;

δN < xσk0+1
< · · · < xσK0+k0

= xσ ≤ 1 and xσk0+j
≥ δN +

(
1− δN

)j − 1

K0

.
(4.8)
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Clearly, P0

(
ZN,eN−β logN ≥ 1

)
≥ P0

(
#Ã(k0, δN , K0) ≥ 1

)
. Recalling the definitions of ZN,K0,δN

and ZN,k0(δN) in (3.1) and (2.1) respectively, one observes that

(4.9) P0

(
ZN,eN−β logN = 0

)
≤ E

({
1−P0

(
ZN,K0,δN ≥ 1

)}ZN,k0
(δN )
)
.

We first give a lower bound for the survival probability P0

(
ZN,K,δ ≥ 1

)
. It follows from the

Paley-Zygmund inequality that

(4.10) P0

(
ZN,K,δ ≥ 1

)
≥

E0

(
ZN,K,δ

)2

E0

(
Z2

N,K,δ

) ,

where the first moment of ZN,K,δ is as follows:

(4.11) E0

(
ZN,K,δ

)
= NKψ(K,K, δ) = NK (1 + 1/K)K

(K + 1)!
(1− δ)K .

By (3.13) again

E0

[
Z2

N,K,δ

]
≤ E0

[
ZN,K,δ

]{
1 + E0

[
ZN,K,δ

]K−1∑

q=0

c5

( K

K − q

)3/2( K

e(1− δ)N

)q}
.(4.12)

Here we take δ = δN and K = K0. On the one hand,

(4.13) c16N
−3/2 ≤ E0

(
ZN,K0,δN

)
≤ c17N

−3/2.

On the other hand, as
∑K0−1

q=0 c5

(
K0

K0−q

)3/2(
K0

e(1−δN )N

)q
≤ c18N

3/2,

(4.14) E0

[
Z2

N,K0,δN

]
≤ c19E0

[
ZN,K0,δN

]
.

As a consequence,

(4.15) P0

(
ZN,K0,δN ≥ 1

)
≥ c20E0

[
ZN,K0,δN

]
≥ c21N

−3/2.

We deduce that

(4.16) P0

(
ZN,eN−β logN = 0

)
≤ E

({
1− c21N

−3/2

}ZN,k0
(δN )
)
.
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We are going to prove that with high probability ZN,k0(δN) ≫ N3/2. Take ε > 0 sufficiently

small so that β−3ε > 3/2. Let β′ = β−ε > 0, εN := ε logN
eN

and δ′N := (β′+γ) logN
eN

. It immediately

follows that

ZN,k0(δN) =
∑

|σ|=k0

1{0<xσ1<···<xσk0
≤δN}

≥#

{
|σ| = k0 : 0 < xσ1 ≤ εN < xσ2 < · · · < xσk0

≤ εN + δ′N ; xσj
≥ εN +

j − 2

k0 − 1
δ′N , ∀j ≥ 2

}

=
∑

|ω|=1

1{xω≤εN}
∑

|σ|=k0,σ>ω

1{εN<xσ2<···<xσk0
≤εN+δ′N ;xσj≥εN+ j−2

k0−1
δ′N ,∀j≥2},

where
∑

|σ|=k0,σ>ω 1{εN<xσ2<···<xσk0
≤εN+δ′N ;xσj≥εN+ j−2

k0−1
δ′N ,∀j≥2} is distributed as ZN,k0−1,1−δ′N

under

P0. This implies that

P0

(
ZN,k0(δN) ≤ N

3+ε
2

)

≤
[
P
(
1{xω≤εN}

∑

|σ|=k0,σ>ω

1{εN<xσ2<···<xσk0
≤εN+δ′N ;xσj≥εN+ j−2

k0−1
δ′N ,∀j≥2} ≤ N

3+ε
2

)]N

=
(
1− εN + εNP0

(
ZN,k0−1,1−δ′N

≤ N
3+ε
2

))N
.

(4.17)

Recall that

(4.18) E0

(
ZN,k−1,1−δ′

)
= Nk−1ψ(k − 1, k − 1, 1− δ′).

Then there exist two constants c±(β, γ) such that

(4.19)
c−(β, γ)N

γ log(1+β−ε
γ

)

(logN)3/2
≤ E0

(
ZN,k0−1,1−δ′N

)
≤ c+(β, γ)N

γ log(1+β−ε
γ

)

(logN)3/2
.

As γ goes to infinity, γ log(1 + β−ε
γ
) → β′ > 3/2 + 2ε. Take γ sufficiently large so that γ log(1 +

β−ε
γ
) > 3/2 + ε. For all N sufficiently large, we have E0

(
ZN,k0−1,1−δ′N

)
≥ 2N

3+ε
2 .

By (3.13), there exists a constant C(β, γ) > 0 such that

E0

(
Z2

N,k0−1,1−δ′N

)
≤ E0

(
ZN,k0−1,1−δ′N

){
1 + E0

(
ZN,k0−1,1−δ′N

) k0−2∑

q=0

c5

( k0 − 1

k0 − 1− q

)3/2(k0 − 1

eNδ′N

)q}

≤ C(β, γ)E0

(
ZN,k−1,1−δ′

)2
.

By the Paley-Zygmund inequality,

P0

(
ZN,k0−1,1−δ′N

≥ 1

2
E0

(
ZN,k0−1,1−δ′N

))
≥ P0

(
ZN,k−1,1−δ′ ≥ N

3+ε
2

)
≥ 1

4C(β, γ)
> 0.
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Plugging it into (4.17) implies that

P0

(
ZN,k0(δN) ≤ N

3+ε
2

)
≤
(
1− εN + εN

[
1−P0

(
ZN,k0−1,1−δ′N

≥ N
3+ε
2

)])N

≤ e
−NεNP0

(
ZN,k0−1,1−δ′

N
≥N

3+ε
2

)

≤ e−εc22 logN → 0.

(4.20)

It follows from (4.16) that

P0

(
ZN,eN−β logN = 0

)

≤E

({
1− c21N

−3/2

}ZN,k0
(δN )

;ZN,k0(δN) ≥ N
3+ε
2

)
+P0

(
ZN,k0(δN) ≤ N

3+ε
2

)

≤(1− c21N
−3/2)N

3+ε
2 + e−εc22 logN → 0.

(4.21)

This tells us that limN→∞ P0

(
ZN,eN−β logN ≥ 0

)
= 1 with β > 3/2.

4.3 Proof of Proposition 1.4: β = 3/2

In this subsection, we consider the probability P0

(
ZN,eN−3/2 logN ≥ 1

)
. Recounting the argu-

ments in the previous subsection with k0 = γ logN , K0 = eN − (3/2 + γ) logN and δN =
(γ+3/2) logN

eN
. Again,

P0

(
ZN,eN−3/2 logN ≥ 1

)
≥ P0

(
#Ã(k0, δN , K0) ≥ 1

)
.

Recall that #Ã(k0, δN , K0) is equal to

(4.22)
∑

|ω|=k0

1{xω1<···<xωk
≤δN}

∑

|σ|=K0+k0;σ>ω

1{δN<xσk0+1
<···<xσK0+k0

=xσ≤1;xσk0+j
≥δN+(1−δN ) j−1

K0
,∀j≥1},

where
∑

|σ|=K0+k0;σ>ω 1{δN<xσk0+1
<···<xσK0+k0

=xσ≤1;xσk0+j
≥δN+(1−δN ) j−1

K0
,∀j≥1} is distributed as ZN,K0,δN .

One hence sees that

P0

(
#Ã(k0, δN , K0) ≥ 1

)

≥P0

( ∑

|ω|=k

1{xω1<···<xωk
≤δN} ≥ N3/2−ε

){
1−

(
1−P0(ZN,K0,δN ≥ 1)

)N3/2−ε}
.

By (4.15), P0(ZN,K0,δN ≥ 1) ≥ c21N
−3/2. We get that

P0

(
#Ã(k, δN , K) ≥ 1

)
≥P
(
ZN,k0(δN) ≥ N3/2−ε

){
1−

(
1− c21N

−3/2
)N3/2−ε}

≥P0

(
ZN,k0,1−δN ≥ N3/2−ε

){
1−

(
1− c21N

−3/2
)N3/2−ε}

.

21



Similarly as above, there exist two constants c±(γ) such that

(4.23)
c−(γ)N

γ log(1+
3/2
γ

)

(logN)3/2
≤ E0

(
ZN,k0,1−δN

)
≤ c+(γ)N

γ log(1+
3/2
γ

)

(logN)3/2
.

There exists a constant C(γ) > 0 such that

(4.24) E0

(
Z2

N,k0,1−δN

)
≤ C(γ)E0

(
ZN,k0,1−δN

)2
.

As γ ↑ ∞, γ log(1 + 3/2
γ
) ↑ 3/2. Take γ > 0 large enough such that γ log(1 + 3/2

γ
) > 3/2− ε. By

the Paley-Zygmund inequality, we obtain that

(4.25) P0

(
ZN,k0,1−δN ≥ N3/2−ε

)
≥ 1

4C(γ)
.

We deduce that for all N sufficiently large,

(4.26) P0

(
#Ã(k0, δN , K0) ≥ 1

)
≥ 1

4C(γ)

{
1−

(
1− c21N

−3/2
)N3/2−ε}

≥ c23N
−ε.

We thus conclude that for any ε > 0 and all N large enough,

(4.27) P0

(
ZN,eN−3/2 logN ≥ 1

)
≥ N−ε.

A Coupling with a branching process

By considering the typical increasing paths, it has been proven that the critical value for α is

αc = e. In what follows, by coupling with a branching process, we give an auxiliary idea to show

the following result.

(A.1) lim
N→∞

P0

(
ZN,αN ≥ 1

)
= 1, ∀α ∈ (0, e).

In the same probability space, we introduce accessibility percolation on a Galton-Watson

tree as follows. For Λ > 0, let T Λ be a Galton-Watson tree rooted also at ∅, whose offspring

distribution is Poisson with parameter Λ. To each vertex ξ ∈ T Λ \ {∅}, we attach an random

variable xξ, which is independent of x∅. Assume that all these variables xξ, ξ ∈ T Λ are i.i.d.,

following the law U [0, 1]. Similarly, let [[∅, ξ]] denote the ancestral line of ξ in T Λ. We keep ξ

if the attached random variables along its ancestral line [[∅, ξ]] is decreasing and delete all other

vertices. Let D
(Λ)
k be the number of individuals alive at k-th generation. Let d

(Λ)
k (s, x) denote the
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generating function of D
(Λ)
k under Px. Similarly to (2.4), we get the following recursive equation.

(A.2) d
(Λ)
k+1(s, x) = Ex

[
sD

(Λ)
k+1

]
= exp

{
− Λx+ Λ

∫ x

0

d
(Λ)
k (s, y)dy

}
, ∀k ≥ 1.

In particular, d
(Λ)
1 (s, x) = exp{Λx(s− 1)}. We also note that d

(Λ)
k (s, x) ≤ d

(Λ)
k (s, y) if x ≥ y.

We compare the generating functions f
(N)
k and d

(Λ)
k via the following lemma.

Lemma A.1. For any 0 < Λ ≤ N and u ∈ [0, 1], we have

(A.3) f
(N)
k (s,

Λ

N
u) ≤ d

(Λ)
k (s, u), ∀k ≥ 1.

Proof. For N ≥ Λ > 0 and u ∈ [0, 1],

(A.4) f
(N)
1 (s,

Λ

N
u) =

(
1− Λ

N
u+

Λ

N
us
)N

≤ exp{Λu(s− 1)} = d
(Λ)
1 (s, u).

Assume that f
(N)
k (s, Λ

N
u) ≤ d

(Λ)
k (s, u) holds for k ≥ 1. Then,

f
(N)
k+1(s,

Λ

N
u) =

[
1− Λ

N
u+

∫ Λu/N

0

f
(N)
k (s, y)dy

]N

=
[
1− Λ

N
u+

Λ

N

∫ u

0

f
(N)
k (s,

Λ

N
v)dv

]N

≤ exp
{
− Λu+ Λ

∫ u

0

f
(N)
k (s,

Λ

N
v)dv

}
,

which is bounded by exp
{
− Λu+ Λ

∫ u

0
d
(Λ)
k (s, v)dv

}
. It follows from (A.2) that

(A.5) f
(N)
k+1(s,

Λ

N
u) ≤ d

(Λ)
k+1(s, u).

Therefore, by induction on k, we have f
(N)
k (s, Λ

N
u) ≤ d

(Λ)
k (s, u) for any k ≥ 1.

With the help of this lemma, we show that with positive probability, there exists at least one

accessible vertex at the αN -th generation for α < e.

Lemma A.2. Let α ∈ (0, e). For any δ ∈ (α
e
, 1 ∧ α), there exists some positive constant

c(δ, α) > 0 such that

(A.6) inf
N≥1

P
[
ZN,αN(δ) ≥ 1

]
> c(δ, α).
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Proof. Set K = αN . It follows from (A.3) that for a ∈ N+ and a ≤ N ,

(A.7) f (N)
a (s,

aδ

K
) ≤ d(a)a (s,

δN

K
) ≤ d(a)a (s,

δ

α
).

For convenience, we write h(s) = ha,N,K,δ(s) := f
(N)
a (s, aδ

K
) and d̂(s) = d̂a,δ,α(s) := d

(a)
a (s, δ

α
), both

of which are generating functions, satisfying h(s) ≤ d̂(s) for N ≥ a.

Let J ≥ 0 and κ ∈ {0, 1, · · · , a− 1} be such that K = aJ + κ. Let B(N)
K (δ) be the collection

of vertices σ in T (N) such that

(A.8)
κ+ aj

K
δ < xσκ+aj+1

< · · · < xσκ+aj+j
≤ κ+ aj + a

K
δ, ∀j ∈ {0, · · · , J − 1},

and that

(A.9) 0 < xσ1 < · · · < xσκ ≤ κ

K
δ.

where K := |σ|. According to the definition of B(N)
K (δ), one sees that

(A.10) ZN,K(δ) ≥ #B(N)
K (δ) =

∑

|ω|=κ

1(0<xω1<···<xω≤ κ
K
δ)

∑

|σ|=K

1(σκ=ω)1(σ∈B(N)
K )

,

where given {0 < xω1 < · · · < xω ≤ κ
K
δ}, the generating function of

∑
|σ|=K 1(σκ=ω)1(σ∈B(N)

K )
is

h ◦ · · · ◦ h︸ ︷︷ ︸
J

=: h◦J . As a consequence,

P0

[
ZN,K(δ) ≥ 1

]
≥ P0

[
#B(N)

K (δ) ≥ 1
]

≥ P0

[ ∑

|ω|=κ

1(0<xω1<···<xω≤ κ
K
δ) ≥ 1

]
P0

[ ∑

|σ|=K

1(σκ=ω)1(σ∈B(N)
K )

≥ 1
∣∣∣0 < xω1 < · · · < xω ≤ κ

K
δ
]

=
(
1− f (N)

κ (0,
κ

K
δ)
)(

1− h◦J(0)
)
,

since the generating function of ZN,κ(
κ
K
δ) =

∑
|ω|=κ 1(0<xω1<···<xω≤ κ

K
δ) is f

(N)
κ (s, κ

K
δ). Applying

the inequality (A.7) to f
(N)
κ (0, κ

K
δ) and h, respectively, shows that

P0

[
ZN,K(δ) ≥ 1

]
≥ (1− d(κ)κ (0, δ/α))

(
1−

(
d̂
)◦J

(0)
)
,(A.11)

where (d̂ )◦J := d̂ ◦ · · · ◦ d̂︸ ︷︷ ︸
J

. Going back to the generating function d̂(s) = d
(a)
a (s, δ

α
) = Eδ/α[s

D
(a)
a ],

we see that

(A.12) Eδ/α[D
(a)
a ] =

(aδ/α)a

a!
= (eaδ/α)

a,
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where ea := (a
a

a!
)1/a. By (1.6), ea ↑ e as a ↑ ∞. For δ > α/e, there exists an integer a(δ, α) such

that eaδ/α > 1 for all a ≥ a(δ, α). This implies that

(A.13) d̂ ′(1) = Eδ/α[D
(a)
a ] > 1, ∀a ≥ a(δ, α).

Thus, for the Galton-Watson tree whose offspring has generating function d̂(s), its extinction

probability, denoted by q̂(a, δ/α), satisfies that

(A.14) q̂(a, δ/α) = lim
J→∞

(
d̂
)◦J

(0) < 1.

This tells us that

(A.15)
(
1−

(
d̂
)◦J

(0)
)
≥ 1− q̂(a, δ/α) =: p̂(a, δ/α) > 0, ∀J ≥ 0.

Moreover, for any a > 0 fixed, we have

(A.16) β(a, δ/α) := inf
0≤κ<a

(
1− d(κ)κ (0, δ/α)

)
> 0,

as d
(κ)
κ are non-trivial generating functions.

Therefore, we end up with

(A.17) inf
N≥a(δ,α)

P
[
ZN,αN(δ) ≥ 1

]
≥ c0(δ, α) > 0,

where c0(δ, α) := β(a(δ, α), δ/α)p̂(a(δ, α), δ/α) > 0.

Notice that P[ZN,αN(δ) > 0] > 0 for any 1 ≤ N ≤ a(δ, α). We conclude the proof of this

lemma by taking c(δ, α) := min1≤N≤a(δ,α){c0(δ, α),P[ZN,αN(δ) > 0]} > 0.

Now we are ready to prove the convergence (A.1).

Proof of (A.1). For 0 < α < e, let δ ∈ (α
e
, 1 ∧ α). Observe that under P0,

(A.18) ZN,αN ≥
∑

|ω|=1

1(0<xω<1−δ)

∑

|σ|=αN

1(σ1=ω)1(1−δ<xσ2<···<xσ≤1).

For all vertex ω in the first generation, the variables
∑

|σ|=αN 1(σ1=ω)1(1−δ<xσ2<···<xσ≤1) are inde-

pendent and distributed as ZN,αN−1(δ). Consequently,

P0

[
ZN,αN = 0

]
≤ P0

[ ∑

|ω|=1

1(0<xω<1−δ)

∑

|σ|=αN

1(σ1=ω)1(1−δ<xσ2<···<xσ≤1) = 0
]

=

(
P0

[
1(0<xω<1−δ)

∑

|σ|=αN

1(σ1=ω)1(1−δ<xσ2<···<xσ≤1) = 0
])N

=

(
δ + (1− δ)P0

[
ZN,αN−1(δ) = 0

])N

.
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By Lemma A.2, P0

[
ZN,αN−1(δ) = 0

]
≤ P0

[
ZN,αN(δ) = 0

]
≤ 1− c(δ, α). Thus,

(A.19) P0

[
ZN,αN = 0

]
≤
(
δ + (1− δ)

(
1− c(δ, α)

))N

≤ e−c(δ,α)(1−δ)N ,

which converges to zero as N goes to infinity. This tells us that

(A.20) lim
N→∞

P0

[
ZN,αN ≥ 1

]
= 1,

which is what we need.

B The second order of ZN,αN for α ∈ (0, e)

Note that for α ∈ (0, e), the population size ZN,αN is asymptotically of order eθ(α)N . The figure

of the limit function θ(α) is shown in Figure 1 at the end of this paper.

We have the following lemma, concerning the second moment of ZN,αN .

Lemma B.1. For x ∈ [0, 1) fixed and 0 < α < 2(1− x), we have

(B.1) lim
N→∞

Ex

[(
ZN,αN

)2]

mαN(x)2
=

2(1− x)

2(1− x)− α
,

where for any k ≥ 1 and x ∈ [0, 1],

(B.2) mk(x) :=
(1− x)kNk

k!
= Ex

[
ZN,k

]
.

This lemma shows that under P0, for α ∈ (0, 2), with positive probability, ZN,αN is of the

same order as its expectation E0

(
ZN,αN

)
, that is N−1/2eθ(α)N . But we do not get the second

order of ZN,αN for α ∈ [2, e). From the arguments as above, one can say that for α ∈ [2, e), with

positive probability under P0,

(B.3) c24N
−3/2eθ(α)N ≤ ZN,αN ≤ c25N

−1/2eθ(α)N .

In particular, one sees that the maximum of α 7→ θ(α) is reached at α = 1. We turn to

consider ZN,αN when α = 1. Let L(X,Px) denote the law of random variable X under Px. The

theorem is given as follows.

Proposition B.2. Let λ > 0 fixed. Then the following convergence in law holds as N → ∞:

(B.4) L
(
ZN,N

mN

;P λ
N

)
→ e−λ ×W,

where W is an exponential variable with mean 1 and mN := NN

N !
.

Remark B.3. A similar result to Proposition B.2 has been given in [2] by considering the

accessible paths in the N-dimensional hypercubes. Our proof is mainly inspired by it.
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B.1 The second moment of ZN,αN

Proof of Lemma B.1. By (3.10),

Ex

[(
ZN,k

)2]
= mk(x) +

N − 1

N

k−1∑

q=0

N2k−qPx(σ, σ
′ ∈ AN,k

∣∣∣|σ ∧ σ′| = q)

= mk(x) +
N − 1

N

k−1∑

q=0

((1− x)N)2k−q

(2k − q)!

(
2(k − q)

(k − q)

)

= mK(x) +mK(x)
2N − 1

N

k−1∑

q=0

ak(q, x),(B.5)

where ak(q, x) :=
(2k−2q)!k!k!

[(1−x)N ]q(2k−q)!(k−q)!(k−q)!
. Note that if k + 1 ≤ 2(1− x)N ,

(B.6) ak(q + 1, x) = ak(q, x)
(k − q)(2k − q)

2(1− x)N(2k − 2q − 1)
≤ ak(q, x), ∀0 ≤ q < k.

Moreover, for q ≪
√
k and k = αN ,

(B.7) ak(q, x) =
( k

2(1− x)N

)q [(1− 1
k
) · · · (1− q−1

k
)]2

(1− q
2k
) · · · (1− 2q−1

2k
)
=
( α

2(1− x)

)q
[1 +O(

q2

k
)].

Take q0 = ⌈ 2 logN
log(2(1−x))−logα

⌉ so that
(

α
2(1−x)

)q0
≤ N−2. It follows from (B.6) that

(B.8)
k−1∑

q=q0

ak(q, x) ≤ kak(q0, x) ≤ c13αN
−1,

which vanished as N goes to infinity. The dominated convergence theorem implies that for

0 < α < 2(1− x) and k = αN ,

(B.9) lim
N→∞

q0∑

q=0

ak(q, x) =
∞∑

q=0

( α

2(1− x)

)q
=

2(1− x)

2(1− x)− α
.

Moreover, 1/mαN(x) → 0 as N goes to infinity. We thus conclude that for 0 < α < 2(1− x),

lim
N→∞

Ex

[(
ZN,αN

)2]

mαN(x)2
=

2(1− x)

2(1− x)− α
.

As a consequence of Lemma B.1, one sees that Eλ/N

[(
ZN,N

mN

)2]
→ e−2λ as N → ∞.
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B.2 Proof of Proposition B.2

In this subsection, we investigate ZN,N . Let {Fk; k ≥ 1} denote the natural filtration of the

accessibility percolation on N -ary tree, i.e., Fk := σ{(ω, xω);ω ∈ T (N), |ω| ≤ k}.
We introduce the following variables:

θN,k(x) := Ex

[
ZN,N |Fk

]
, and θ̃N,k(x) := Ex

[
ZN,N+k|Fk

]
.

Let θ := ZN,N for simplicity.

Recall that mN = E0[θ] =
NN

N !
. We begin with the following lemma.

Lemma B.4. As N goes to infinity then k goes to infinity,

(B.10) L
(θN,k(λ/N)− θ

mN

,Pλ/N

)
→ 0.

Proof. We observe that for any z ∈ R and δ > 0,

Px[θN,k(x) ≤ (z − δ)mN |Fk]−Px[|θ − θN,k(x)| ≥ mNδ|Fk] ≤ Px[θ ≤ mNz|Fk];

Px[θN,k(x) ≤ (z + δ)mN |Fk] +Px[|θ − θN,k(x)| ≥ mNδ|Fk] ≥ Px[θ ≤ mNz|Fk].

Note also that

(B.11) Px[|θ − θN,k(x)| ≥ mNδ|Fk] ≤
Varx(θ|Fk)

m2
Nδ

2
.

Consequently,

Px[θN,k(x) ≤ (z − δ)mN ]−Px[θ ≤ mNz] ≤ Ex

[Varx(θ|Fk)

m2
Nδ

2

]
;

Px[θ ≤ mNz]−Px[θN,k(x) ≤ (z + δ)mN ] ≤ Ex

[Varx(θ|Fk)

m2
Nδ

2

]
.

Thus, it suffices to prove the following convergence.

(B.12) lim
k→∞

lim
N→∞

Eλ/N [Var(θ|Fk)]

m2
N

= 0.

The branching property yields that

(B.13) Varx(θ|Fk) =
∑

σ∈AN,k

v(xσ, N − k),

where v(y, L) := Ey[(ZN,L)
2]− Ey[ZN,L]

2 for any L ≥ 1. Taking the expectation implies that

Ex[Varx(θ|Fk)] = Nk

∫ 1

x

dy
yk−1

(k − 1)!
v(y,N − k).(B.14)
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By (B.5), we have

v(y, L) = mL(y) +mL(y)
2N − 1

N

L−1∑

q=0

aL(q, y)−mL(y)
2

= mL(y) +mL(y)
2N − 1

N

L−1∑

q=1

aL(q, y)−
mL(y)

2

N
.

Plugging it into (B.14) yields that

Ex[Varx(θ|Fk)] = mN(x) +mN(x)
2N − 1

N

N−1∑

q=k+1

aN(q, x)−
1

N
mN(x)

2aN(k, x).

It follows from (B.7) and (B.1) that
∑N−1

q=k+1 aN(q, λ/N) → 1
2k
. Clearly, mN(λ/N)/mN = (1 −

λ/N)N → e−λ. Therefore,

(B.15) lim
N→∞

Eλ/N [Varλ/N(θ|Fk)]

m2
N

=
e−2λ

2k
,

which vanishes as k goes to infinity. This yields (B.12) and completes the proof of Lemma

B.4.

Lemma B.5. For any k ≥ 0 fixed, we have

(B.16) lim
N→∞

Eλ/N [(θN,k(λ/N)− θ̃N,k(λ/N))2]

m2
N

= 0.

Proof. By Jensen’s inequality,

(B.17)
(
θN,k(x)− θ̃N,k(x)

)2
=
(
Ex[ZN,N+k − ZN,N |Fk]

)2
≤ Ex

[(
ZN,N+k − ZN,N

)2∣∣Fk

]
.

Taking the expectation yields that

(B.18) Ex

[(
θN,k(x)− θ̃N,k(x)

)2]
≤ Ex

[(
ZN,N+k − ZN,N

)2]
,

which, by the Cauchy-Schwarz inequality, is bounded by

(B.19) k
k∑

i=1

Ex

[(
ZN,N+i − ZN,N+i−1

)2]
.

Let L = K + i− 1 ≥ K. Then,

(B.20) ZN,L+1 − ZN,L =
∑

σ∈AN,L

(yσ − 1),
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where yσ :=
∑

|ω|=L+1 1(ωL=σ)1(xω>xσ). It immediately follows that

(
ZN,L+1 − ZN,L

)2
=

∑

σ∈AN,L

(yσ − 1)2 +
∑

σ 6=σ′;σ,σ′∈AN,L

(yσ − 1)(yσ′ − 1)

=
∑

σ∈AN,L

(yσ − 1)2 +
L−1∑

q=0

∑

|σ∧σ′|=q

1(σ,σ′∈AN,L)(yσ − 1)(yσ′ − 1),(B.21)

where σ ∧ σ′ is, as before, the latest common ancestor of σ and σ′. Note that under Px[·|FL],

yσ’s are independent binomial variables with parameters N and 1 − xσ. Thus, taking Ex[·|FL]

on both sides of (B.21) yields that

(B.22) Ex

[(
ZN,L+1 − ZN,L

)2∣∣∣FL

]
= Σ1 + Σ2,

where

Σ1 :=
∑

σ∈AN,L

Ex

[
(yσ − 1)2

∣∣∣FL

]
;(B.23)

Σ2 :=
L−1∑

q=0

∑

|σ∧σ′|=q

1(σ,σ′∈AN,L)(N(1− xσ)− 1)(N(1− xσ′)− 1).(B.24)

Obviously, (yσ − 1)2 ≤ N2. Hence,

(B.25) Ex[Σ1] ≤ N2Ex[ZN,L] = N2mL(x) = o(m2
N).

Conditioning on the value of xσ∧σ′ yields that

Ex[Σ2] = Ex

[ L−1∑

q=0

∑

|σ∧σ′|=q

1(σ,σ′∈AN,L)(N(1− xσ)− 1)(N(1− xσ′)− 1)
]

=
N − 1

N

L−1∑

q=0

N2L−q

∫ 1

x

dy
(y − x)q−1

(q − 1)!

[ ∫ 1

y

dxσ
(xσ − y)L−q−1(N(1− xσ)− 1)

(L− q − 1)!

]2

=
N − 1

N

L−1∑

q=0

(δ1(q)− 2δ2(q) + δ3(q)),(B.26)

where

δ1(q) : = N2L−q

∫ 1

x

dy
(y − x)q−1

(q − 1)!

(
N(1− y)L−q+1

(L− q + 1)!

)2

;

δ2(q) : = N2L−q

∫ 1

x

dy
(y − x)q−1

(q − 1)!

(
N(1− y)L−q+1

(L− q + 1)!
× (1− y)L−q

(L− q)!

)
;

δ3(q) : = N2L−q

∫ 1

x

dy
(y − x)q−1

(q − 1)!

(
(1− y)L−q

(L− q)!

)2

.
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On the one hand,

(B.27) 0 ≤ δ1(q)− 2δ2(q) + δ3(q) ≤ 5δ3(q), ∀q ≥ 0.

On the other hand,

(B.28) δ1(q)− 2δ2(q) + δ3(q) ≤ δ3(q)O(
q2

L2
), ∀q ≤ O(logL).

Thus, (B.26) becomes

(B.29) Ex[Σ2] ≤
L−1∑

q=c14 logL

5δ3(q) +

c14 logL∑

q=0

δ3(q)c15(
q2

L2
).

Notice that δ3(q) = m2
L(x)aL(q, x). Take x = λ/N and recall that L = N + i − 1. By (B.6),

for N large enough so that N + i ≤ 2(1 − λ/N)N , aL(q, x) is non-increasing as q increases. It

follows that

Ex[Σ2] ≤ m2
L(x)

( L−1∑

q=c14 logL

5aL(q, x) +

c14 logL∑

q=0

aL(q, x)c15(
q2

L2
)
)

≤ m2
L(x)

(
5LaL(c14 logL, x) + c15

(c14 logL)
3

L2
aL(0, x)

)
.

Note that aL(0, x) = 1. By (B.7), aL(c14 logL, x) =
(

L
2(1−x)N

)c14 logL
[1 + O( (logL)

2

L
)]. We can

choose a suitable c14 so that aL(c14 logL, x) = o(N−1). As a result,

(B.30) Ex[Σ2] = m2
L(x)oN(1) = m2

NoN(1).

We return to (B.22). Combining (B.25) with (B.30) implies that

(B.31) Eλ/N

[
(
Z

(N)
L+1 − Z

(N)
L

)2

m2
N

]
= oN(1).

Therefore, for any k ≥ 1 fixed, we have

lim
N→∞

Eλ/N [
(θN,k(λ/N)− θ̃N,k(λ/N))2

m2
N

] = 0.

By considering the variables θ̃N,k(x), we will prove the convergence in law in Proposition B.2

as follows.
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Proof of Proposition B.2. In view of Lemmas B.4 and B.5, we only need to prove that the distri-

bution L
(

θ̃N,k(λ/N)

mN
, Pλ/N

)
converges weakly to an exponential variable of mean e−λ, as N goes

to infinity then k goes to infinity.

Clearly, θ̃N,0(x) = mN(1− x)N with mN = NN

N !
. Define for any k ≥ 0 and µ ≥ 0,

(B.32) Gk(µ, x,N) := Ex

[
exp{−µθ̃N,k(x)/mN}

]
,

which is the Laplace transform of
θ̃N,k(x)

mN
.

It is immediate that G0(µ, x,N) = exp{−µ(1− x)N}. Recursively,

(B.33) θ̃N,k+1(x) = Ex

[
ZN,N+k+1

∣∣Fk+1

]
=
∑

σ∈AN,1

Exσ

[
ZN,N+k

∣∣∣Fk

]
=
∑

|σ|=1

1(xσ>x)θ̃N,k(xσ),

where for |σ| = 1, 1(xσ>x)θ̃N,k(xσ) are i.i.d. It follows that

(B.34) Gk+1(µ, x,N) =
[
x+

∫ 1

x

dyGk(µ, y,N)
]N
.

We define for λ, µ > 0,

Q0(µ, λ) : = exp{−µe−λ};(B.35)

Qk+1(µ, λ) : = exp
{
−
∫ ∞

λ

(
1−Qk(µ, y)

)
dy
}
, ∀k ≥ 0.(B.36)

Clearly, limN→∞G0(µ,
λ
N
, N) = Q0(µ, λ). We are going to prove that for any k ≥ 0,

(B.37) lim
N→∞

Gk(µ,
λ

N
,N) = Qk(µ, λ).

Suppose that (B.37) holds for k ≥ 0. By a change of variables, (B.34) becomes that

(B.38) Gk+1(µ,
λ

N
,N) =

[
1−

∫ N

λ

dy
(
1−Gk(µ,

y

N
,N)

)]N
.

Because 1− e−z ≤ z for all z ∈ R, (B.32) gives that

(B.39) 0 ≤ 1−Gk(µ,
y

N
,N) ≤ µE y

N
[ZN,N+k]/mN =

µ

mN

[N(1− y/N)]N+k

(N + k)!
≤ µe−y.

The dominated convergence theorem implies that

(B.40)

∫ N

λ

dy
(
1−Gk(µ,

y

N
,N)

)
N→∞−−−→

∫ ∞

λ

dy
(
1−Qk(µ, y)

)
.
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It follows that limN→∞Gk+1(µ,
λ
N
, N) = Qk+1(µ,X). By induction, we conclude (B.37) for any

k ≥ 0.

We write Qk(µ, λ) = Fk(µe
−λ) for all k ≥ 0. We check that

(B.41) Fk+1(z) = exp
{
−
∫ z

0

1− Fk(u)

u
du
}
, F0(z) = e−z.

Define ∆k(z) for z > −1 and z 6= 0 by

(B.42) ∆k(z) := 2k
(1 + z)3

z2

[ 1

1 + z
− Fk(z)

]
.

Then we claim that there exists a constant M such that for all k ≥ 0,

(B.43) 0 ≤ ∆k(z) ≤M, ∀z > −1.

Indeed, for k = 0,

(B.44) ∆0(z) =
(1 + z)3

z2

[ 1

1 + z
− e−z

]
,

which is nonnegative for z > −1, because ez ≥ 1 + z. Moreover, since limz→0 ∆0(z) = 1/(2e),

define ∆0(0) := 1
2e

so that ∆0(z) is continuous in (−1,∞), and that both limz↓−1 ∆0(z) and

limz↑∞ ∆0(z) exist and are bounded. Hence, there exists M ∈ (0,∞) such that

(B.45) 0 ≤ ∆0(z) ≤M, ∀z > −1.

Assume now that (B.43) holds at order k. In view of (B.41) and (B.42),

(B.46) Fk+1(z) =
1

1 + z
exp

{
−
∫ z

0

u

(1 + u)3
∆k(u)

2k
du
}
.

This leads to

1

1 + z
≥ Fk+1(z) ≥

1

1 + z

[
1−

∫ z

0

u

(1 + u)3
M

2k
du
]
=

1

1 + z

[
1− M

2k
z2

2(1 + z)2

]
.

This implies that (B.43) holds for k + 1. In view of (B.42) and (B.43), we check that

(B.47) lim
k→∞

Fk(z) =
1

1 + z
, for z > −1.

Recall that Qk(µ, λ) = Fk(µe
−λ). Going back to (B.37), we let k go to infinity for both sides and

obtain that for any λ > 0 fixed,

(B.48) lim
k→∞

lim
N→∞

Eλ/N

[
e
−µ

θ̃N,k(λ/N)

mN

]
= lim

k→∞
lim

N→∞
Gk(µ,

λ

N
,N) =

1

1 + µe−λ
,
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which is the Laplace transform of an exponential variable of mean e−λ. Therefore, we deduce

that as N → ∞,

(B.49) L
(ZN,N

mN

,Pλ/N

)
→ e−λ ×W,

where W is an exponential variable with mean 1.

An analogous argument implies that for 0 < α < 1, started from x = 1−α+ λ
N
, L
(

ZN,αN

mαN (1−α)
,Px

)

converges to an exponential distribution of mean e−λ.

e1

θ(α) ≈
log(ZN, αN)

N

α

1

0

Figure 1: The curve of α 7→ θ(α) = α(1− logα).
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