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LARGE-TIME ASYMPTOTICS OF SOLUTIONS

TO THE KRAMERS-FOKKER-PLANCK EQUATION

WITH A SHORT-RANGE POTENTIAL

XUE PING WANG

Abstract. In this work, we use scattering method to study the Kramers-Fokker-
Planck equation with a potential whose gradient tends to zero at the infinity. For
short-range potentials in dimension three, we show that complex eigenvalues do not
accumulate at low-energies and establish the low-energy resolvent asymptotics. This
combined with high energy pseudospectral estimates valid in more general situations
gives the large-time asymptotics of the solution in weighted L

2 spaces.

1. Introduction

The Kramers equation ([17]), also called the Fokker-Planck equation ([6, 8, 9]) or the
Kramers-Fokker-Planck equation ([10, 11]), is the evolution equation for the distribution
functions describing the Brownian motion of particles in an external field :

∂W

∂t
=

(

−v · ∇x +∇v · (γv −
F (x)

m
) +

γkT

m
∆v

)

W, (1.1)

where W =W (t; x, v), x, v ∈ Rn, t ≥ 0 and F (x) = −m∇V (x) is the external force. In
this equation, x and v represent the position and velocity of particles, m the mass, k
the Boltzmann constant, γ the friction coefficient and T the temperature of the media.
This equation is a special case of the more general Fokker-Planck equation ([17]). After
a change of unknowns and for appropriate values of physical constants, the Kramers-
Fokker-Planck equation (1.1) can be written into the form ([8, 17])

∂tu(t; x, v) + Pu(t; x, v) = 0, (x, v) ∈ R
n × R

n, n ≥ 1, t > 0, (1.2)

with some initial data

u(0; x, v) = u0(x, v). (1.3)

Here P is the Kramers-Fokker-Planck (KFP, in short) operator:

P = −∆v +
1

4
|v|2 − n

2
+ v · ∇x −∇V (x) · ∇v, (1.4)

where the potential V (x) is supposed to be a real-valued C1 function.
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The large-time asymptotics of the solution is motivated by the trend to equilibrium
in statistical physics and is studied by several authors in the case where |∇V (x)| → +∞
as |x| → +∞. See [1, 6, 7, 8, 9, 10, 18] and references quoted therein. Note that in
the work [10] on low-temperature analysis of the tunnelling effect, only the condition
|∇V (x)| ≥ C > 0 outside some compact set is needed. In these cases, the spectrum of
P is discrete in a neighbourhood of zero and nonzero eigenvalues of P are of strictly
positive real parts. If in addition V (x) > 0 outside some compact set, the square-root,
m, of the Maxwilliam is an eigenfunction of P associated with the eigenvalue zero, where
m is defined by

m(x, v) =
1

(2π)
n
4

e−
1
2
( v

2

2
+V (x)). (1.5)

It is proven in these situations that the solution u(t) to (1.2) with initial data u0 con-
verges exponentially rapidly to m in the sense that there exists some σ > 0 such that
for any nice initial data u0, one has in appropriate spaces

u(t) = 〈m, u0〉m+O(e−σt), t→ +∞, (1.6)

where V (x) is assumed to be normalized by
∫

Rn

e−V (x)dx = 1

and σ can be evaluated in some regimes in terms of the spectral gap between zero and
the real parts of other nonzero eigenvalues. Since the change of the unknown from (1.1)
to (1.2) is essentially given by W (t) = mu(t) with appropriate choice of physical con-
stants, this result shows that the distribution functions governed by (1.1) always tend,
up to some multiplicative constant depending only on the initial data, to the Maxwillian
m

2, as t → +∞ and justifies the well-known phenomenon of the return to equilibrium
in statistical physics. Since the KFP operator is neither elliptic nor selfadjoint, the
proof of such result is highly nontrivial and is realized first by the entropy method in
[6] (see also [18]) and later on by microlocal and spectral methods in [8, 9, 10]. If V (x)
is slowly increasing so that |∇V (x)| → 0 as |x| → ∞, (for example, V (x) ∼ c〈x〉µ or
V (x) ∼ a ln |x| as |x| → ∞ for some 0 < µ < 1 and a, c > 0), m is still an eigenfunction
of P associated with the eigenvalue zero (in the second case it may be an eigenfunction
for some values of a and a resonant state for some other values of a), but now the essen-
tial spectrum of P is equal to [0,+∞[ and there is no spectral gap between the eigenvalue
zero and the other part of the spectrum of P . A natural question at this connection
is whether there still exists some phenomenon of the return to equilibrium in such cases.

The goal of this work is to study spectral properties of the KFP operator and large-
time asymptotics of the solutions to the KFP equation with a potential V (x) such
that |∇V (x)| → 0 as |x| → +∞. Although our final result concerns only short-range
potentials in dimension three, some results hold for slowly increasing potentials in any
dimension. Throughout this work, we assume that V is C1 on Rn and

|∇V (x)| ≤ C〈x〉−1−ρ, x ∈ R
n, (1.7)

for some ρ ≥ −1, where 〈x〉 = (1+ |x|2)1/2. The potential is said to be slowly increasing
if −1 < ρ ≤ 0 and if it is positive near outside some compact, and to be of short-range
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if ρ > 1. The KFP operator P with the maximal domain in L2 is a closed, accretive (
ℜP ≥ 0) and hypoelliptic operator. Denote

P = P0 +W, (1.8)

with P0 = v · ∇x −∆v +
1
4
|v|2 − n

2
and W = −∇V (x) · ∇v. If ρ > −1, W is a relatively

compact perturbation of the free KFP operator P0: W (P0+1)−1 is a compact operator
in L2. One can check that the essential spectrum of P is equal to σ(P0) = [0,+∞[
and the non-zero complex eigenvalues of P have strictly positive real parts and may
accumulate towards some points in the essential spectrum.

The main results of this paper can be summarized as follows.

Theorem 1.1. (a). Assume n ≥ 1 and the condition (1.7) with ρ ≥ −1. Then there

exists C > 0 such that σ(P ) ∩ {z; |ℑz| > C,ℜz ≤ 1
C
|ℑz| 13} = ∅ and the resolvent

R(z) = (P − z)−1 satisfies the estimates

‖R(z)‖ ≤ C

|z| 13
, (1.9)

and

‖(1−∆v + v2)
1
2R(z)‖ ≤ C

|z| 16
, (1.10)

for |ℑz| > C and ℜz ≤ 1
C
|ℑz| 13 .

(b). Assume n = 3 and ρ > 1. Then P has no eigenvalues in a neighborhood of 0.
Let S(t) = e−tP be the semigroup of contractions generated by −P . One has

‖S(t)‖L2,s→L2,−s ≤ Ct−
3
2 , t > 0. (1.11)

for any s > 3
2
. Here L2,s = L2(R2n

x,v; 〈x〉2sdxdv).

(c). Assume n = 3 and ρ > 2. Then for any s > 3
2
, there exists ǫ > 0 such that one

has the following asymptotics

S(t) =
1

(4πt)
3
2

〈m, ·〉m+O(t−
3
2
−ǫ), t→ +∞, (1.12)

as operators from L2,s to L2,−s.

It may be interesting to compare (1.12) with (1.6). The space distributions of solu-
tions to (1.1) in both cases are governed by the Maxwillian, but for decreasing poten-

tials, the density of distribution decays in time like t−
3
2 . Recall that it is well-known

for Schrödinger operator H = −∆x + U(x) with a real-valued potential U(x) that the
space-decay rates of solutions to Hu = 0 determine the low-energy asymptotics of the
resolvent (H− z)−1 near the threshold zero, which in turn determine large-time asymp-
totics of solutions to the evolution equation (see, for example, [19]). From this point
of view, the difference between (1.6) and (1.12) may be explained by the lack of de-
cay in x-variables in the Maxwillian m

2 in our case and one may even expect that the
solution to the KFP equation behaves like t−α with α depending on a for critical po-
tentials V (x) ∼ a ln |x|, a ∈]n−2

2
, n
2
[. Notice also that different from (1.6) there is no
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normalization for V (x) in (1.12). Although the KFP operator is a differential operator
of the first order in x-variables, the large-time behavior of solutions looks like those to
the heat equation described by et∆x as t → +∞. This is due to the interplay between
the diffusion part and the transport part of the KFP operator P and will become clear
from spectral decomposition formula of e−tP0 . Under stronger assumption on ρ, one can
calculate the second term in large-time asymptotics of solutions which is of the order
O(t−

5
2 ) in dimension three.

The method used in this work is scattering in nature: we regard the full KFP oper-
ator P as a perturbation of the free KFP operator P0 without potential. A large part
of this work is devoted to a detailed analysis of the free KFP operator. Several basic
questions remain open for P0 such as the high energy estimates for the free resolvent
near the positive real axis. A key step in the proof of the large-time asymptotics of
solutions to the full KFP equation is to show that the complex eigenvalues of P do not
accumulate towards the threshold zero. So far as the author knows, such a statement
is not yet proven for non-selfadjoint Schrödinger operators −∆ + U(x) with a general
complex-valued potential satisfying |U(x)| = O(|x|−ρ), ρ > 2. (See however [14, 20] for
dissipative potentials (ℑU(x) ≤ 0)). Results like (1.11) and (1.12) may fail if there is
a sequence of complex eigenvalues tending to zero tangentially to the imaginary axis.
For the KFP operator P with a short-rang potential in dimension three, we prove that
there are no complex eigenvalues in neighborhood of zero by making use of the method
of threshold spectral analysis and the supersymmetric structure of the operator.

The organisation of this work is as follows. In Section 2, we study in detail the
spectral properties of the model operator P0 and establish some dispersive estimate for
the semigroup generated by −P0. We also prove the limiting absorption principles and
the low-energy asymptotics of the resolvent R0(z) = (P0 − z)−1, as well as some high
energy resolvent estimates. these estimates are pseudo-spectral in nature, because the
numerical range of the free KFP operator is equal to the right half complex plane. The
threshold spectral properties of the full KFP operator P with a short-range potential
is analyzed in Section 3. We prove that there is no eigenvalue of P in a neighborhood
of zero and calculate the lower-energy resolvent asymptotics. For technical reasons, we
only prove these results when the dimension n is equal to three, but we believe that
they remain true when n ≥ 4. Finally, in Section 4, we prove a high energy pseudo-
spectral estimate in general situation and this combined with the low energy resolvent
estimates obtained in dimension three allows to prove the time-decay and the large-time
asymptotics of solutions. In Appendix A, we study a family of nonselfadjoint harmonic
oscillators which may be regarded as complex translation in variables of selfadjoint har-
monic oscillators. We prove some quantitative estimates with respect to the parameters
of translation, establish a spectral decomposition formula and prove some uniform time-
decay estimates of the semigroup. These results are used in Section 2 to analyze the
free KFP operator.
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2. The free Kramers-Fokker-Planck operator

Denote by P0 the free KFP operator (with ∇V = 0):

P0 = v · ∇x −∆v +
1

4
|v|2 − n

2
. (2.1)

P0 is a non-selfadjoint and hypoelliptic operator with loss of 1
3
derivative in x vari-

ables. The following result is known (see [8, 16]). In particular, the essential maximal
accretivity is discussed in Proposition 2.4 of [16].

Proposition 2.1. One has

‖∆vu‖2 + ‖|v|2u‖2 + ‖|Dx|
2
3u‖2 ≤ C(‖P0u‖2 + ‖u‖2), u ∈ S(R2n

x,v) (2.2)

P0 defined on S(R2n
x,v) is essentially maximally accretive, i.e., the closure of P0 in

L2(R2n
x,v) with core S(R2n

x,v) is of maximal domain D(P0) = {u ∈ L2(R2n
x,v);P0u ∈

L2(R2n
x,v)} and ℜ〈P0u, u〉 ≥ 0 for u ∈ D(P0).

Henceforth we still denote by P0 its closed extension in L2 with maximal domain
D(P0) = {u ∈ L2(R2n

x,v);P0u ∈ L2(R2n
x,v)}.

In terms of Fourier transform in x-variables, we have for u ∈ D(P0)

P0u(x, v) = F−1
x→ξP̂0(ξ)û(ξ, v), where (2.3)

P̂0(ξ) = −∆v +
1

4

n
∑

j=1

(vj + 2iξj)
2 − n

2
+ |ξ|2 (2.4)

û(ξ, v) = (Fx→ξu)(ξ, v) ,

∫

Rn

e−ix·ξu(x, v) dx. (2.5)

Denote
D(P̂0) = {f ∈ L2(R2n

ξ,v); P̂0(ξ)f ∈ L2(R2n
ξ,v)}. (2.6)

Then P̂0 , Fx→ξP0F−1
x→ξ is a direct integral of the family of complex harmonic operators

{P̂0(ξ); ξ ∈ Rn} which is studied in Appendix A.

The following abstract result may be useful to determine the spectrum of operators
which are direct integral of a family of nonselfadjoint operators. See also Theorem 8.3
of [4] for families of bounded nonselfadjoint operators.

Theorem 2.2. Let H be a separable Hilbert space, X a non empty open set of Rn

and H = {f : X → H ; ‖f‖ = (
∫

X
‖f(x)‖2Hdx}

1
2 < +∞}. Here dx is the Lebesgue

measure of Rn. Suppose that both {Q(x); x ∈ X} and the adjoints {Q(x)∗; x ∈ X} are
strongly continuous families of closed, densely defined operators with constant domains
D,D∗ ⊂ H, respectively. Suppose in addition that for each z ∈ C \ ∪x∈Xσ(Q(x)), one
has

sup
x∈X

‖(Q(x)− z)−1‖ < +∞. (2.7)

Let Q be the closed, densely defined operator in H such that for any f in the domain of
Q, one has f(x) ∈ D about everywhere and

Qf = Q(x)f(x) in H. (2.8)
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Then one has

σ(Q) = ∪x∈Xσ(Q(x)) (2.9)

Proof. If z 6∈ ∪x∈Xσ(Q(x)), define Rz : H → H by (Rzf)(x) = (Q(x) − z)−1f(x),
f ∈ H. Then (2.7) shows that Rz is bounded on H. One can check that (Q− z)Rz = 1
on H and Rz(Q − z) = 1 on D(Q). Thus z is in resolvent set of Q. This shows that

σ(Q) ⊂ ∪x∈Xσ(Q(x)).

Conversely, if z ∈ σ(Q(x0)) for some x0 ∈ X , then either ‖(Q(x0) − z)un‖ → 0 or
‖(Q(x0) − z)∗vn‖ → 0 for some sequences {un}, {vn} in H with ‖un‖ = ‖vn‖ = 1. In
fact if one had both ‖(Q(x0)− z)u‖ ≥ c‖u‖ and ‖(Q(x0)− z)∗v‖ ≥ c‖v‖ for some c > 0
and for all u ∈ D and v ∈ D∗, z would belong to the resolvent set of Q(x0). Since
x → Q(x) is strongly continuous on D, for any ǫ > 0, we can find f ∈ H in the form
f = χ(x)un0 (or g = χ(x)vn0 ∈ H in the second case ‖(Q(x0) − z)∗vn‖ → 0) for some
n0 and for some numerical function χ supported in a sufficiently small neighborhood of
x0 such that ‖f‖ = 1 and ‖(Q − z)f‖ < ǫ ( or ‖g‖ = 1 and ‖(Q − z)∗g‖ < ǫ ). This

shows that z ∈ σ(Q). Consequently, σ(Q) ⊃ ∪x∈Xσ(Q(x)). �

Remark that if the condition (2.7) is not satisfied, the equality (2.9) may fail. See
Theorem 8.3 of [4].

Proposition 2.3. Let P0 denote the free KFP operator with the maximal domain. Then
one has: σ(P0) = [0,+∞[.

Proof. We want to apply Theorem 2.2. One sees that P0 is unitarily equivalent with
P̂0 which is a direct integral of a family of operators {P̂0(ξ); ξ ∈ Rn} with constant
domain D. Lemma A.1 shows that

∪ξ∈Rnσ(P̂0(ξ)) = [0,+∞[.

It is clear that D(P̂0(ξ)
∗) = D and x → P̂0(ξ) and x → P̂0(ξ)

∗ are strongly continuous
on D. To apply Theorem 2.2 to show that σ(P0) = [0,+∞[, it remains to check the
condition (2.7): for each z 6∈ [0,+∞[, there exists some constant Cz such that

‖(P̂0(ξ)− z)−1‖ ≤ Cz (2.10)

uniformly in ξ ∈ Rn. For ξ in a compact, this follows from the fact that since P̂0(ξ)

forms a holomorphic family of type (A) in sense of Kato, the resolvent (P̂0(ξ)− z)−1 is
locally bounded in ξ ∈ R

n for each z 6∈ [0,+∞[ ([13]). For |ξ| large (|ξ|2 > |ℜz| + 1),
using the representation

(P̂0(ξ)− z)−1 = −
∫ T

0

e−t(P̂0(ξ)−z) dt−
∫ ∞

T

e−t(P̂0(ξ)−z) dt

with T ≥ 3 fixed, one deduces from Corollary A.4 that there exists C = C(ℜz) inde-
pendent of ξ such that

‖(P̂0(ξ)− z)−1‖ ≤ C +
C

ξ2 − ℜz (2.11)

for ξ2 > |ℜz| + 1. This proves (2.10) which finishes the proof of Proposition 2.3. �
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From Proposition A.3 in Appendix A on a family of non-selfadjoint harmonic os-
cillators, one can deduce some time-decay estimates for e−tP0 in appropriate spaces.
Denote

L2,s(R2n) = L2(R2n; 〈x〉2sdxdv).
and

Lp = Lp(Rn
x;L

2(Rn
v )), p ≥ 1,

equipped with their natural norms.

Theorem 2.4. (a). One has the following dispersive type estimate: ∃C > 0 such that

‖e−tP0u‖L∞ ≤ C

t
n
2

‖u‖L1, t ≥ 3, (2.12)

for u ∈ L1.
(b). For s > n

2
, one has for some Cs > 0

‖e−tP0u‖L2,−s ≤ Cs

t
n
2

‖u‖L2,s, (2.13)

for t ≥ 3 and u ∈ L2,s.

Proof. For u ∈ S(R2n
x,v), we denote by û the Fourier transform of u in x-variables.

Then one has

‖e−tP0u‖L∞ ≤ 1

(2π)n
‖e−tP̂0(ξ)û‖L1

ξ
(2.14)

Here L1
ξ denotes the space L1(Rn

ξ ;L
2(Rn

v )). Corollary A.4 gives for any ξ ∈ Rn

‖e−tP̂0(ξ)û‖L2
v
≤ e

−ξ2(t−2− 4
et−1

)

(1− e−t)n
‖û(ξ, ·)‖L2

v
. (2.15)

Since t− 2− 4
et−1

≥ c0t > 0 for some c0 > 0 when t ≥ 3, one obtains that

‖e−tP̂0(ξ)û‖L1
ξ

≤
∫

Rn
ξ

e
−ξ2(t−2− 4

et−1
)

(1− e−t)n
dξ‖u‖L1

≤ Ct−
n
2 ‖u‖L1 (2.16)

for t ≥ 3 and for any u ∈ S. An argument of density proves (a) for any u ∈ L1.

Theorem 2.4 (b) is a consequence of Theorem 2.4 (a). �

For a symbol a(x, v; ξ, η), denote by aw(x, v,Dx, Dv) the associated Weyl pseudo-
differential operator defined by

aw(x, v,Dx, Dv)u(x, v) (2.17)

=
1

(2π)2n

∫ ∫

ei(x−x′)·ξ+i(v−v′)·ηa(
x+ x′

2
,
v + v′

2
, ξ, η)u(x′v′)dx′dv′dξdη

for u ∈ S(R2n
x,v).
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The following Proposition is a spectral decomposition for the semigroup e−tP0 which
follows from Proposition A.3 given in Appendix A and some elementary symbolic cal-
culus for Weyl pseudo-differential operators (see [12]).

Proposition 2.5. For any t > 3, one has

e−tP0 =

∞
∑

l=0

e−lt+(t−2)∆xpwl (v,Dx, Dv), (2.18)

where the series is norm-convergent as operators in L2(R2n
x,v) and pl(v, ξ, η) is given by

pl(v, ξ, η) =

∫

Rn

e−iv′·η/2





∑

|α|=l

e−2|ξ|2ψα(v + v′ + 2iξ)ψα(v − v′ + 2iξ)



 dv′, l ∈ N.

(2.19)
In particular,

p0(v, ξ, η) = 2
n
2 e−v2−η2+2iv·ξ. (2.20)

We just indicate that for t > 3, one has t− 2− 4
et−1

> 0 and

e(t−2)∆xpwl (v,Dx, Dv) = et∆xΠDx

l (2.21)

is a bounded operator, where Πξ
l is the Riesz projection of P̂0(ξ) associated with the

eigenvalue El = l + |ξ|2. See Lemma A.1 in Appendix A. The norm-convergence as
operators in L2(R2n

x,v) of the right-hand side of (2.18) follows from (A.10) which gives:

∞
∑

l=0

‖e−lt+(t−2)∆xpwl (v,Dx, Dv)‖ ≤ 1

(1− e−t)n
, t > 3.

The detail of the proof is omitted. As an application of this spectral decomposition
(2.18), we can establish the following result on large-time approximation of solutions to
the free KFP equation.

Proposition 2.6. There exists C > 0 such that

‖e−tP0u− e(t−2)∆xpw0 u‖L∞ ≤ C
e−t

t
n
2

‖u− e−2∆xpw0 u‖L1, (2.22)

for t ≥ 3 and for any u ∈ L1 with e−2∆xu ∈ L1.

Proof. By a direction calculation, one can check that

F−1
x→ξΠ

ξ
0Fx→ξ = e−2∆xpw0 , (2.23)

F−1
x→ξe

−tP̂0(ξ)Πξ
0Fx→ξ = e(t−2)∆xpw0 . (2.24)

pw0 is continuous on L1. In fact, let τ : u(x, v) → u(x+ 2v, v). Then one has

pw0 u(x, v) = 〈ψ0, τu〉L2(Rn
v )(x)ψ0(v),

where ψ0 =
1

(2π)
n
4
e−

v2

4 is the first eigenfunction of −∆v +
v2

4
. It follows that

‖pw0 u‖L1 ≤
∫

R2n

ψ0(v)|u(x+ 2v, v)|dxdv =
∫

R2n

ψ0(v)|u(y, v)|dydv ≤ ‖u‖L1.
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Denote u0 = e−2∆xpw0 u for u ∈ L1 with suppξû compact. The proof of Lemma A.2
shows that if n = 1, one has

∞
∑

k=1

e−t(k+ξ2)‖Πξ
k‖

=
∞
∑

k=1

e−t(k+ξ2)+2ξ2
k
∑

j=0

Cj
k

j!
(4ξ2)j (2.25)

=
e−ξ2(t−2)−t

1− e−t
+
e−ξ2(t−2)

1− e−t

∞
∑

j=1

1

j!
(

4ξ2

et − 1
)j

≤ e−ξ2(t−2)−t

1− e−t



1 +
4ξ2e

4ξ2

et−1

1− e−t



 , t > 0.

When n ≥ 1, we deduce from the explicit formula for the Riesz projections Πξ
k and the

above one-dimensional bound that there exist some constants C, a > 0 such that

∞
∑

k=1

e−t(k+ξ2)‖Πξ
k‖ ≤ C(1 + ξ2)e−atξ2−t, t > 3. (2.26)

Making use of the above estimate and following the proof of Theorem 2.4 with u replaced
by u− u0, one obtains

‖e−tP0(u− u0)‖L∞ ≤ C

∞
∑

k=1

‖e−t(k+ξ2)Πξ
k(û− û0)‖L1

ξ

≤ C ′ e
−t

t
n
2

‖u− u0‖L1 , t > 3. (2.27)

Since e−tP0u0 = e(t−2)∆xpw0 u, an argument of density proves the desired result. �

The time-decay of e−tP0 is governed by the first eigenvalue of the harmonic oscillator
in v-variables and propagation of energy due to the transport term v ·∇x. Although this
term is of the first order in ξ, Theorem 2.4 shows that solutions to the free KFP equa-
tion decay like those to the heat equation in space variables. A natural question is to
see if the results of Theorem 2.4 are still true for the full KFP operator with a potential
V (x) such that |∇V (x)| tends to zero sufficiently rapidly. In this work, we prove a re-
sult similar to Theorem 2.4 (b) through resolvent estimates for the full KFP operator P .

In order to study the resolvent of P , we establish here some limiting absorption
principles for the resolvent of P0 and its low-energy asymptotics. Different from the
limiting absorption principle for selfadjopint operators, the problem we want to study
here is pseudospectral in nature, because R+ is located in the interior of the numerical

range of P0. Set R0(z) = (P0−z)−1, R̂0(z) = (P̂0−z)−1 and R̂0(z, ξ) = (P̂0(ξ)−z)−1 for

z 6∈ R+. Then R0(z) = F−1
x→ξR̂0(z)Fx→ξ. Note that R̂0(z) is multiplication in ξ-variables

by R̂0(z, ξ).
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Proposition 2.7. Let l ∈ N and l < a < l + 1 be fixed. Take χ ≥ 0 and χ ∈ C∞
0 (Rn

ξ )
with supp χ ⊂ {ξ, |ξ| ≤ a+ 4}, χ(ξ) = 1 when |ξ| ≤ a+ 3 and 0 ≤ χ(ξ) ≤ 1. Then one
has

R̂0(z, ξ) =
l
∑

k=0

χ(ξ)
Πξ

k

ξ2 + k − z
+ rl(z, ξ), (2.28)

for any ξ ∈ Rn and z ∈ C with ℜz < a and ℑz 6= 0. Here rl(z, ξ) is holomorphic in z
with ℜz < a verifying the estimate

sup
ℜz<a,ξ∈Rn

‖rl(z, ξ)‖L(L2(Rn
v )) <∞. (2.29)

Proof. Let χ1 = 1− χ. For ℜz < 0, one has

R̂0(z, ξ) =

∫ ∞

0

e−t(P̂0(ξ)−z) dt

=

∫ ∞

0

χ1(ξ)e
−t(P̂0(ξ)−z) dt+

∫ ∞

0

χ(ξ)e−t(P̂0(ξ)−z) dt

, I1(z, ξ) + I2(z, ξ). (2.30)

Since ℜP0(ξ) ≥ 0, it is clear that for each fixed T ,
∫ T

0
χ1(ξ)e

−t(P̂0(ξ)−z) dt is uniformly
bounded in ξ and z with ℜz ≤ a:

‖
∫ T

0

χ1(ξ)e
−t(P̂0(ξ)−z) dt‖B(L2(Rn

v ))
≤ TeaT ,

for all ξ ∈ Rn. Corollary A.4 with T = 3 shows that

‖e−t(P̂0(ξ)−z)‖B(L2(Rn
v )) ≤ Ce−t(ξ2−2−e−1−ℜz) (2.31)

for t ≥ 3. Since χ1 is supported in ξ2 ≥ a+ 3, I1(z, ξ) is holomorphic in z with ℜz < a

and verifies the estimate (2.29). To study I2(z, ξ), we decompose e−tP̂0(ξ) as

e−tP̂0(ξ) = J1(t, ξ) + J2(t, ξ),

where Jj(t, ξ) = e−tP̂0(ξ)Sξ
j with Sξ

1 =
∑l

k=0Π
ξ
k and Sξ

2 = 1 − Sξ
1. For ℜz < 0, the

contribution of J1(t, ξ) to R̂0(z, ξ) is
∫ ∞

0

etzJ1(t, ξ)dt =

l
∑

k=0

Πξ
k

ξ2 + k − z
.

By (A.4), one has for t ≥ T > 0

‖J2(t, ξ)‖B(L2(Rn
v ))

≤
∞
∑

k=l+1

e−t(k+ξ2)+2ξ2
k
∑

j=0

Cj
k

j!
(4ξ2)j , J21(t, ξ) + J22(t, ξ) (2.32)

where

J21(t, ξ) = e−ξ2(t−2)

l+1
∑

j=0

(4ξ2)j

j!

∞
∑

k=l+1

Cj
ke

−tk

J22(t, ξ) = e−ξ2(t−2)
∞
∑

j=l+2

(4ξ2)j

j!

∞
∑

k=j

Cj
ke

−tk.
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J21(t, ξ) and J22(t, ξ) can be evaluated as in the proof of Proposition A.3 (see also the
proof of (2.26) in the case l = 0) and we omit the details here. One has for some C, a > 0

J21(t, ξ) ≤ e−ξ2(t−2)−(l+1)t
l+1
∑

j=0

(4ξ2)jl!

j!(1− e−t)l+1
, (2.33)

J22(t, ξ) ≤ Ce−aξ2t−(l+1)t (2.34)

for t ≥ T . Since |ξ| is bounded on the support of χ, this implies that there exists some
constant C such that

‖J2(t, ξ)‖B(L2(Rn
v )) ≤ Ce−(l+1)t (2.35)

uniformly in ξ ∈ suppχ and t ≥ T . We obtain a decomposition for R̂0(z, ξ) when
ℜz < 0:

R̂0(z, ξ) =
l
∑

k=0

χ(ξ)
Πξ

k

ξ2 + k − z
+ rl(z, ξ), (2.36)

where

rl(z, ξ) = I1(z, ξ) +

∫ ∞

0

etzJ2(t, ξ)dt.

By the estimates (2.31) and (2.34), rl(z, ξ) is holomorphic in z with ℜz < a and verifies
the estimate (2.29). Since the both sides of (2.36) are holomorphic in z ∈ C \ R+ with
ℜz < a, this representation formula remains valid for z in this region. �

For r, s ∈ R, introduce the weighted Sobolev space

Hr,s = {u ∈ S ′(R2n); (1 + |Dv|2 + |v|2 + |Dx|
2
3 )

r
2 〈x〉su ∈ L2}.

Denote B(r, s; r′, s′) the space of continuous linear operators from Hr,s to Hr′,s′. The
hypoellipticity of P0 (Proposition 2.1) shows that (P0 + 1)−1 ∈ B(0, 0; 2, 0). A commu-
tator argument shows that (P0 + 1)−1 ∈ B(0, s; 2, s) for any s ∈ R.

Corollary 2.8. Set R0(z) = (P0 − z)−1, z 6∈ R+.

(a). Assume n ≥ 1. Let I be a compact interval of R which does not contain any non
negative integer. Then for any s > 1

2
, one has

sup
λ∈I;ǫ∈]0,1]

‖R0(λ± iǫ)‖B(0,s;2,−s) <∞ (2.37)

The boundary values of the resolvent R0(λ±i0) = limǫ→0+ R0(λ±iǫ) exists in B(0, s; 2,−s)
for λ ∈ I and is continuous in λ.

(b). Assume n ≥ 3. Let I be a compact interval containing some non negative integer.
Then for any s > 1, one has

sup
λ∈I;ǫ∈]0,1]

‖R0(λ± iǫ)‖B(0,s;2,−s) <∞ (2.38)

for any k ∈ N , the limite R0(k± i0) = limz→k,z 6∈R+ R0(z) exists in B(0, s; 2,−s) for any
s > 1. One has R0(0+ i0) = R0(0− i0) and R0(k+ i0)−R0(k− i0) ∈ B(0, s; 2,−s) for
any s > 1

2
if k ≥ 1.
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Proof. Proposition 2.7 shows that

R0(z) =
l
∑

k=0

χ(Dx)Π
Dx

k (−∆x + k − z)−1 + rl(z), (2.39)

for z ∈ C with ℜz < a and ℑz 6= 0 and that rl(z) is bounded on L2 and holomorphic
in z with ℜz < a. χ(Dx)Π

Dx

k , k = 0, 1, · · · , are Weyl pseudodifferential operators with
nice symbols bk independent of x:

χ(Dx)Π
Dx

k = bwk (v,Dx, Dv) (2.40)

with bk(v, ξ, η) given by

bk(v, ξ, η) =

∫

Rn

e−iv′·η/2





∑

|α|=k

χ(ξ)ψα(v + v′ + 2iξ)ψα(v − v′ + 2iξ)



 dv′. (2.41)

In particular,

b0(v, ξ, η) = 2
n
2 χ(ξ)e−v2−η2+2iv·ξ+2ξ2 . (2.42)

These Weyl pseudodifferential operators belong to B(r, s; r′, s) for any r, r′, s ∈ R ([12]).

Since for any compact interval I ′ ⊂ R, one has

sup
λ∈I′,ǫ∈]0,1]

‖〈x〉−s(−∆x − (λ± iǫ))−1〈x〉−s‖B(L2(Rn
x )) <∞ (2.43)

for any s > 1/2 if I ′ does not contain 0 and for any s > 1 and n ≥ 3 if I ′ contains 0, it
follows from (2.39) that for I ⊂]−∞, a[

sup
λ∈I;ǫ∈]0,1]

‖R0(λ± iǫ)‖B(0,s;0,−s) <∞ (2.44)

for s > 1
2
if I ∩ N = ∅ or s > 1 and n ≥ 3 if I ∩ N 6= ∅. Estimates (2.37) and (2.38)

follow from (2.44) and the resolvent equation

R0(z) = R0(−1) + (1 + z)R0(−1)R0(z)

by noticing that R0(−1) ∈ B(0, s; 2, s) for any s ∈ R. The other assertions of Corollary
2.8 can be proven by making use of the properties of (−∆x − (λ± i0))−1. �

The formula (2.39) can also be used to study the threshold asymptotics of the resol-
vent R0(z) as z → k, ℑz 6= 0, k ∈ N. To simplify calculations, we only consider the
threshold zero in the case n = 3.

Proposition 2.9. Let n = 3. One has the following low-energy resolvent asymptotics
for R0(z): for s, s′ > 1

2
and s+ s′ > 2, there exists ǫ > 0 such that

R0(z) = G0 +O(|z|ǫ), as z → 0, z 6∈ R+, (2.45)

as operators in B(−1, s; 1,−s′). More generally, for any integer N ≥ 1 and s > N + 1
2
,

there exists ǫ > 0

R0(z) =

N
∑

j=0

z
j

2Gj +O(|z|N2 +ǫ), as z → 0, z 6∈ R+, (2.46)
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as operators in B(−1, s; 1,−s). Here the branch of z
1
2 is chosen such that its imaginary

part is positive when z 6∈ R+ and Gj ∈ B(−1, s; 1,−s) for s > j+ 1
2
, j ≥ 1. In particular,

G0 = F0 + F1, (2.47)

where F0 is the operator with integral kernel

F0(x, v; x
′, v′) =

ψ0(v)ψ0(v
′)

4π|x− x′| (2.48)

and F1 ∈ B(−1, s; 1,−s′) for any s, s′ ≥ 0 and s + s′ > 3
2
. G1 : H−1,s → H1,−s, s > 3

2
,

is an operator of rank one with integral kernel given by

K1(x, x
′; v, v′) =

i

4π
ψ0(v)ψ0(v

′). (2.49)

Here ψ0 = (2π)−
3
4 e−

v2

4 is the first eigenfunction of the harmonic oscillator −∆v +
v2

4
.

Proof. Note that by a complex interpolation, the results on the resolvent R0(z) in
Corollary 2.8 also hold in B(−1, s; 1,−s).

For z 6∈ R+, (2.39) with l = 0 shows that

R0(z) = bw0 (v,Dx, Dv)(−∆x − z)−1 + r0(z), (2.50)

with r0(z) ∈ B(−1, 0; 1, 0) holomorphic in z when ℜz < a for some a ∈]0, 1[. Here the
cut-off χ(ξ) is chosen such that χ ∈ C∞

0 and χ(ξ) = 1 in a neighbourhood of {|ξ|2 ≤ a}.
Therefore r0(z) admits a convergent expansion in powers of z for z near 0

r0(z) = r0(0) + zr′0(0) + · · ·
in B(−1, 0; 1, 0). It is sufficient to analyze the lower-energy expansion of bw0 (v,Dx, Dv)(−∆x−
z)−1.

The integral kernel of bw0 (v,Dx, Dv)(−∆x − z)−1, z 6∈ R+, is given by

K(x, x′; v, v′; z) =

∫

R3

ei
√
z|y−(x−x′)| 1

4π|y − (x− x′)|Φ(v, v
′, y) dy (2.51)

with

Φ(v, v′, y) = (2π)−
9
2 e−

1
4
(v2+v′2)

∫

R3

ei(y−v−v′)·ξ+2ξ2χ(ξ) dξ.

Since χ ∈ C∞
0 , one has the following asymptotic expansion for K(x, x′; v, v′; z) : for any

ǫ ∈ [0, 1] and N ≥ 0

|K(x, x′; v, v′; z)−
N
∑

j=0

z
j

2Kj(x, x
′, v, v′)| ≤ CN,ǫ|z|

N+ǫ
2 |x− x′|N−1+ǫe−

1
4
(v2+v′2) (2.52)

where

Kj(x, x
′; v, v′) =

ij

4π

∫

R3

|y − (x− x′)|j−1Φ(v, v′, y)dy. (2.53)

Remark that for N ≥ 1, s′, s > N + 1
2
and 0 < ǫ < min{s, s′} −N − 1

2
,

〈x〉−s〈x′〉−s′|x− x′|N−1+ǫe−
1
4
(v2+v′2) ∈ L2(R12)
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and the same is true if N = 0 and s, s′ > 1
2
with s+ s′ > 2. We obtain the asymptotic

expansion for bw0 (v,Dx, Dv)(−∆x − z)−1 in powers of z
1
2 for z near 0 and z 6∈ R+.

bw0 (v,Dx, Dv)(−∆x − z)−1 =

N
∑

j=0

z
j
2Kj +O(|z|N2 +ǫ), as (2.54)

as operators in B(0, s′; 0,−s), s′, s > N + 1
2
(and s + s′ > 2 if N = 0). By the

hypoelltpticity of P0, this expansion still holds in B(−1, s′; 1,−s). This proves (2.46)
with Gk given by

G2j = K2j +
r
(j)
0 (0)

j!
, G2j+1 = K2j+1, j ≥ 0. (2.55)

To show (2.47) and (2.49), note that since χ(0) = 1, one has
∫

R3

Φ(v, v′, y) dy = χ(0)ψ0(v)ψ0(v
′) = ψ0(v)ψ0(v

′).

One can then calculate that

K0(x, x
′, v, v′) =

1

4π

∫

R3

Φ(v, v′, y)
1

|y − (x− x′)|dy

=
1

4π|x− x′|ψ0(v)ψ0(v
′) (2.56)

+
1

4π

∫

R3

Φ(v, v′, y)(
1

|y − (x− x′)| −
1

|x− x′|)dy

and

K1(x, x
′, v, v′) =

i

4π

∫

R3

Φ(v, v′, y)dy =
i

4π
ψ0(v)ψ0(v

′). (2.57)

This shows (2.49) and that G0 = F0+F1 with F1 = K0,1+r0(0), K0,1 being the operator
with the integral kernel

K0,1(x, x
′, v, v′) =

1

4π

∫

R3

Φ(v, v′, y)(
1

|y − (x− x′)| −
1

|x− x′|)dy,

which is a smooth function and

K0,1(x, x
′, v, v′) = O(ψ0(v)ψ0(v

′)|x− x′|−2)

for |x − x′| large. Therefore K0,1 is bounded in B(−1, s; 1,−s′) for any s, s′ ≥ 0 and
s + s′ > 3

2
. This shows that F1 = K0,1 + r0(0) has the same continuity property, which

proves the decomposition (2.47) for G0. �

The following high-energy pseudo-spectral estimate is used in the proof of Theorem
1.1 (a).

Proposition 2.10. Let n ≥ 1. Then for every δ > 0, there exists M > 0 such that

‖R0(z)‖ ≤ M

|z| 13
, (2.58)
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and

‖(1−∆v + v2)
1
2R0(z)‖ ≤ M

|z| 16
, (2.59)

for |ℑz| > δ and ℜz ≤ 1
M
|ℑz| 13 .

Proof. We first prove that for some constant C > 0

‖R0(z)‖ ≤ C

|z| 13
, (2.60)

for z = −n
2
+ iµ with µ ∈ R. It suffices to show that

‖R̂0(−
n

2
+ iµ, ξ)‖B(L2(Rn

v ))
≤ C

|z| 13
, (2.61)

uniformly in ξ ∈ Rn. Notice that P̂0(0) is selfadjoint and that one has

‖R̂0(z, 0)‖ ≤ 1

|ℑz| and ‖v · ξR̂0(z, 0)‖ ≤ C ′|ξ|
√

|ℑz|
,

for ℑz 6= 0. Making use of the resolvent equation

R̂0(z, ξ) = R̂0(z, 0)− R̂0(z, ξ)iv · ξR̂0(z, 0),

one obtains

‖R̂0(z, ξ)‖B(L2
v) ≤

C

|ℑz| , (2.62)

if |ξ| ≤ c1
√

|z| for some c1 > 0. For c|z| 12 ≤ |ξ| with c > 0 small enough, since we are
concerned with estimates for |z| large, we can use a rotation and a rescaling to reduce

to a semiclassical problem. Set A(h) = −h2∆v +
v2

4
+ iv1. Then

‖R̂0(z, ξ)‖ = |ξ|−2‖(A(h)− z′)−1‖
where h = |ξ|−2 and z′ = |ξ|−2(n

2
+ z). According to Theorem 1.4 of [5], one has

‖(A(h)− z′)−1‖ ≤ Ch−
2
3 , (2.63)

if 0 < h ≤ h0, |z′| ≤ C and ℜz′ ≤ |ℑz′|2
4

. In particular, for z = −n
2
+ iµ with µ real, one

has
‖R̂0(z, ξ)‖ ≤ C ′h

1
3 ≤ C ′′|z|− 1

3 , (2.64)

for c|z| 12 ≤ |ξ| ≤ c−1|z| 32 . This proves (2.60). Now to prove (2.58), set z = λ + iµ with
λ, µ ∈ R and write

R0(λ+ iµ) = R0(−
n

2
+ iµ)− (λ+

n

2
)R0(−

n

2
+ iµ)R0(λ+ iµ).

According to (2.60),

‖(λ+
n

2
)R0(−

n

2
+ iµ)‖ ≤ C|λ+ n

2
|

|z| 13
≤ 1

2

if |λ| ≤ 1
M
|µ| 13 and |µ| ≥ M for some M > 1 large enough. (2.58) follows from (2.60)

and the equation R0(λ+ iµ) = (1+(λ+ n
2
)R0(−n

2
+ iµ))−1R0(−n

2
+ iµ) when |λ| 1

M
|ℑz| 13

with M > 0 sufficiently large. The estimate (2.58) for ℜz = λ < − 1
M
|ℑz| 13 follows from
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the accretivity of P0

To show (2.59), notice that for z = λ+ iµ with λ, µ ∈ R, one has the identity

‖∇vu‖2 +
1

4
‖|v|u‖2 = (λ+

n

2
)‖u‖2 + ℜ〈(P0 − z)u, u〉

for u ∈ D. One obtains from (2.58) that

‖∇vR0(z)w‖2 +
1

4
‖|v|R0(z)w‖2

≤ |λ+ n

2
|‖R0(z)w‖2 + ‖u‖‖R0(z)w‖

≤ C(
|λ|
|z| 23

+
1

|z| 13
)‖w‖2, w ∈ L2,

for |ℑz| > M and ℜz ≤ 1
M
|ℑz| 13 . (2.59) is proven. �

Remark that when n ≥ 3, Corollary 2.8 shows the existence of the boundary values
of the free resolvent R0(λ ± i0) for any λ > 0. But so far it is still unclear what kind
of upper bound one can expect for R0(λ± i0) as λ→ +∞. From Propositions 2.9 and
2.10, one can deduce the following

Corollary 2.11. Let n = 3. Let S0(t), t ≥ 0, denote the semigroup generated by −P0.
Then for any integer N ≥ 1 and s > N + 1

2
, the following asymptotic expansion holds

for some ǫ > 0

e−tP0 =
∑

k∈N,2k+1≤N

t−
2k+3

2 βkG2k+1 +O(t−
N+2
2

−ǫ), t→ +∞, (2.65)

in B(0, s, 0s). Here βk is some non zero constant. In particular, the leading term β0G1

is a rank-one operator given by

β0G1 =
1

8π
3
2

〈m0, ·〉m0 : L2,s → L2,−s (2.66)

for any s > 3
2
. Here m0(x, v) = 1⊗ ψ0(v).

The proof of Corollary 2.11 uses a representation of the free semigroup e−tP0 as con-
tour integral of the resolvent R0(z) in the right half complex plane. See Section 4 for
more details in the case V 6= 0 where we shall prove a similar result for the full KFP
operator P (see (1.12)). In the final step of the proof of (1.12), we shall apply Propo-
sition 2.13 below to compute the leading term. As a preparation for the proof of this
proposition, we establish some formulae on the evolution of observables which may be
of interest in themselves.
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Lemma 2.12. Let n ≥ 1. For t ≥ 0 and 0 ≤ s ≤ t, one has the following equalities as
operators from S(R2n

x,v) to L
2(R2n

x,v):

e−(t−s)P0vje
−sP0 = e−tP0(vj cosh s− 2∂vj sinh s+ 2(cosh s− 1)∂xj

) (2.67)

e−(t−s)P0∂vje
−sP0 = −1

2
e−tP0((vj sinh s− 2∂vj cosh s+ 2∂xj

sinh s)) (2.68)

e−(t−s)P0xje
−sP0 = e−tP0(xj + vj sinh s− 2(cosh s− 1)∂vj

+2(sinh s− s)∂xj
) (2.69)

Proof. For fixed t > 0, set f(s) = e−(t−s)P0vje
−sP0, 0 ≤ s ≤ t. Proposition 2.1 shows

that for u ∈ S, Ake−tP0u ∈ L2 for any k ∈ N, where A may be one of the operators
vj , ∂vj , ∂xj

, j = 1, · · · , n. As operators from S to L2, one has:

f ′(s) = e−(t−s)P0 [P0, vj ]e
−sP0 = −2e−(t−s)P0∂vje

−sP0 (2.70)

f ′′(s) = −2e−(t−s)P0

[

v2

4
+ v · ∂x, ∂vj

]

e−sP0 = f(s) + 2∂xj
e−tP0 (2.71)

This shows that f(s) = C1e
s + C2e

−s − 2∂xj
e−tP0 . C1, C2 can be determined by the

initial data f(0) = e−tP0vj and f
′(0) = −2e−tP0∂vj :

C1 = e−tP0(
1

2
vj − ∂vj + ∂xj

), C2 = e−tP0(
1

2
vj + ∂vj + ∂xj

).

This proves (2.67). (2.68) follows from (2.67) and the equality

e−(t−s)P0∂vje
−sP0 = −1

2
f ′(s).

To prove (2.69), one can check the following commutator relation:

[e−tP0 , xj] = −
∫ t

0

e(t−s)P0vje
−sP0ds (2.72)

= −e−tP0
(

vj sinh t− 2(cosh t− 1)∂vj + 2(sinh t− t)∂xj

)

,

which means that the commutator initially defined as forms on S × S extends to op-
erators from S to L2 and the equality (2.72) holds. A successive application of this
commutator relation shows that if u ∈ S, then 〈x〉re−tP0u ∈ L2 for any r ∈ R. It follows
from (2.67) that

e−(t−s)P0xje
−sP0 = e−tP0xj +

∫ s

0

e−(t−τ)P0vje
−τP0 dτ

= e−tP0(xj + vj sinh s− 2(cosh s− 1)∂vj + 2(sinh s− s)∂xj
).

This proves (2.69). �

Proposition 2.13. Let n = 3. Assume that u ∈ L2,−s for some 3
2
< s < 2 such that

there exists some constant c0 and ψ ∈ L2
v with (−∆v + v2)ψ ∈ L2

v such that

u(x, v)− c0(1⊗ ψ) ∈ L2,δ(R6
x,v)

for some δ > 0. Then on has

lim
λ→0−

λR0(λ)u = −c0〈ψ0, ψ〉L2
v
m0 (2.73)
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in L2,−s for any s > 3
2
, where m0 = 1⊗ ψ0(v).

Proof. For λ < 0, R0(λ) maps L2,−s to L2,−s for any s and one has

‖R0(λ)‖B(0,0;0,0) ≤
C

|λ| , ‖R0(λ)‖B(0,s′;0,−s) ≤ Cs,s′

if s, s′ > 1
2
with s + s′ > 2, uniformly in λ ∈] − 1, 0[. An argument of complex

interpolation shows that for any s, s′ > 0, there exists ǫ > 0 such that

‖R0(λ)‖B(0,s′;0,−s) ≤ C|λ|−1+ǫ. (2.74)

This shows that

λR0(λ)(u− c0(1⊗ ψ)) = o(1), as λ→ 0− (2.75)

in L2,−s for any s > 0. To prove Proposition 2.13, it suffices to study the limit
limλ→0− λR0(λ)(1 ⊗ ψ). By Proposition 2.7, the resolvent R0(λ) can be decomposed
as

R0(λ) = bw0 (v,Dx, Dv)(−∆x − λ)−1 + r0(λ) (2.76)

where

b0(v, ξ, η) = 2
3
2χ(ξ)e−v2−η2+2iv·ξ+2ξ2

with χ a smooth cut-off around 0 with compact support, and r0(λ) is uniformly bounded
as operators in L2 for λ < a for some a ∈]0, 1[.

We claim that the following estimate holds uniformly in λ < a:

‖〈x〉−2r0(λ)〈x〉2f‖ ≤ C(‖f‖+ ‖H0f‖) (2.77)

for any f ∈ D(H0), whereH0 = −∆v+v
2−∆x. Remark that r0(λ) is a pseudodifferential

operator in x-variables: r0(λ) = r0(λ,Dx), with operator-valued symbol r0(λ, ξ) ∈ B(L2
v)

(see (2.36)). The proof of Proposition 2.7 shows that r0(λ, ξ) can be decomposed as

r0(λ, ξ) = r0,1(λ, ξ) + r0,2(λ, ξ)

with

r0,1(λ, ξ) =

∫ T

0

χ1(ξ)e
−t(P̂0(ξ)−λ)dt

for some fixed T ≥ 3 and r0,2(λ, ξ) is smooth and rapidly decreasing in ξ, uniformly for
λ < a (see (2.31), (2.33) and (2.34)). Since r0,2(λ,Dx) is a convolution in x-variables
with a smooth and rapidly decreasing kernel, one has 〈x〉−sr0,2(λ,Dx)〈x〉s is uniformly
bounded for any s. To study r0,1(λ,Dx), we use commutator techniques. One writes

〈x〉−2r0,1(λ,Dx)x
2 = 〈x〉−2

(

x2r0,1(λ,Dx) +

n
∑

j=1

[ [r0,1(λ,Dx), xj], xj ]

)

.



THE KRAMERS-FOKKER-PLANCK EQUATION 19

Making use of (2.72), one can calculate

[r0,1(λ,Dx), xj]

= −i(∂ξjχ1)(Dx)

∫ T

0

e−t(P̂0(ξ)−λ)dt+ χ1(Dx)

∫ T

0

[e−t(P̂0(ξ)−λ), xj ]dt

= −i(∂ξjχ1)(Dx)

∫ T

0

e−t(P̂0(ξ)−λ)dt (2.78)

+χ1(Dx)

∫ T

0

e−t(P0−λ)(vj sinh t− 2(cosh t− 1)∂vj + 2(sinh t− t)∂xj
)dt

Since P0 is accretive, one obtains

‖[r0,1(λ,Dx), xj]f‖ ≤ C(‖f‖+ ‖vjf‖+ ‖∂vjf‖+ ‖∂xj
f‖), f ∈ S.

Similarly, one can check that the second commutator [ [r0,1(λ,Dx), xj ], xj ] verifies

‖[ [r0,1(λ,Dx), xj], xj ]f‖ ≤ C(‖f‖+ ‖H0f‖).
This proves that

‖〈x〉−2r0,1(λ)〈x〉2f‖ ≤ C(‖f‖+ ‖H0f‖) (2.79)

for any f ∈ D(H0), which gives (2.77). It follows from (2.77) and the uniform bound-
edness of ‖r0(λ)‖ for λ < a, a > 0, that for any s ∈ [0, 2]

‖〈x〉−sr0(λ)〈x〉sf‖ ≤ C(‖f‖+ ‖H0f‖), (2.80)

Since 1⊗ ψ = 〈x〉sfs with fs = 〈x〉−s ⊗ ψ ∈ D(H0) for any s >
3
2
, it follows that

λr0(λ)(1⊗ ψ) = O(|λ|), λ→ 0, (2.81)

in L2,−s for any s > 3
2
, which together with (2.75) implies that

λR0(λ)u− c0λb
w
0 (v,Dx, Dv)(−∆x − λ)−1(1⊗ ψ) = o(1) (2.82)

in L2,−s, s < 3
2
, as λ→ 0−. This estimate is valid in all dimensions.

Finally we calculate λbw0 (v,Dx, Dv)(−∆x−λ)−1(1⊗ψ) which is independent of λ < 0
in dimension n = 3. In fact, according to (2.51) one has for λ < 0 and n = 3

λbw0 (v,Dx, Dv)(−∆x − λ)−1(1⊗ ψ) (2.83)

=

∫

R9

λe−
√

|λ||y−(x−x′)|

4π|y − (x− x′)|Φ(v, v
′, y)ψ(v′) dydx′dv′

=

∫

R3

λe−
√

|λ||x′|

4π|x′| dx′
∫

R6

Φ(v, v′, y)ψ(v′) dydv′

= −
∫

R3
v′

(

∫

R3

Φ(v, v′, y) dy)ψ(v′) dv′

= −χ(0)〈ψ0, ψ〉L2
v
ψ0(v) = −〈ψ0, ψ〉L2

v
ψ0(v).

This finishes the proof of Proposition 2.13. �
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3. Threshold spectral properties of the Kramers-Fokker-Planck

operator

Consider the Kramers-Fokker-Planck operator P = v·∇x−∇xV (x)·∇v−∆v+
1
4
|v|2−n

2

with a C1 potential V (x) satisfying

|∇xV (x)| ≤ C〈x〉−ρ−1, x ∈ R
n, (3.1)

for some ρ ≥ −1. In fact, it is sufficient to suppose that V (x) is a Lipschitz function
satisfying (3.1) about everywhere and one can even include some mild local singularities
in ∇V (x), by using hypoellipiticiy of the operator. But we will not care about such
generalization. P defined on D(P ) = D(P0) is maximally dissipative. By Proposition
2.1, if ρ > −1, ∇xV (x) · ∇v is relatively compact with respect to P0. Consequently,
the spectrum of P is discrete outside R+ and the complex eigenvalues of P may only
accumulate towards points in R+. The thresholds of P are the eigenvalues of −∆v +
1
4
|v|2 − n

2
which are equal to N. To be simple, we study only the threshold zero in

dimension n = 3 under the condition ρ > 1.
Denote W = −∇xV (x) · ∇v. One has W ∗ = −W and

(P − z)R0(z) = 1 +R0(z)W = 1 +G0W +O(|z|ǫ), ǫ > 0,

in B(0,−s; 0,−s) for 1 < s < (1 + ρ)/2 and z near 0 and z 6∈ R+.

Lemma 3.1. Assume n = 3 and let (3.1) be satisfied with ρ > 1 (i.e., the potential is
of short-range). Then, G0W is a compact operator in L2,−s for 1 < s < (1 + ρ)/2 and

kerL2,−s(1 +G0W ) = {0}. (3.2)

Proof. For 1 < s < (1 + ρ)/2, take 1 < s′ < s. Proposition 2.9 (and the arguments
used in the proof of Corollary 2.8) shows that G0W ∈ B(0,−s; 1,−s′). The injection
H1,−s′ into L2,−s is compact when s′ < s. Therefore G0W is a compact operator in L2,−s.

Let u ∈ L2,−s with u+G0Wu = 0. Then by the hypoellipticity of P0, one can check
that u ∈ H2,−s for any s > 1 and Pu = 0. According to (2.47), u can be decomposed as

u = −F0Wu− F1Wu.

Since Wu ∈ H−1,ρ+1−s and F0 ∈ B(−1, s; 1,−s′) for any s, s′ > 1
2
and s + s′ > 2, it

follows that u is in fact in H2,−s for any s > 1
2
. Using the condition ρ > 1 and repeating

the above argument, we deduce that F1Wu ∈ L2. By (2.48), one can calculate the
asymptotic behavior of F0Wu for |x| large and obtains that

u(x, v) = w(x, v) + r(x, v), (3.3)

where 〈v〉2r ∈ L2(R6
x,v) and w(x, v) = C(u) e

−
v2

4

|x| with

C(u) =

∫ ∫

R6

e−
v2

4

2(2π)
5
2

∇xV (x) · ∇vu(x, v) dxdx. (3.4)

Let χ ∈ C∞
0 (R) be a cut-off with χ(τ) = 1 for |τ | ≤ 1 and χ(τ) = 0 for |τ | ≥ 2 and

0 ≤ χ(τ) ≤ 1. Set χR(x) = χ( |x|
R
), R > 1 and x ∈ R

3 and uR(x) = χR(x)u(x, v). Then
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one has

PuR =
v · x̂
R

χ′(
|x|
R

)u.

Taking the real part of the equality 〈PuR, uR〉 = 〈 v·x̂
R
χ′( |x|

R
)u, uR〉, one obtains

∫ ∫

R6

|(∂v +
v

2
)u(x, v)|2χ( |x|

R
)2 dxdv = 〈v · x̂

R
χ′(

|x|
R

)u, uR〉 (3.5)

Since w is even in v (see (3.3)), one has

〈v · x̂
R

χ′(
|x|
R

)w, χRw〉 = 0

and the right hand side of the equality (3.5) satisfies

|〈v · x̂
R

χ′(
|x|
R

)u, uR〉| (3.6)

= |2ℜ〈v · x̂
R

χ′(
|x|
R

)w, χRr〉+ 〈v · x̂
R

χ′(
|x|
R

)r, χRr〉|

≤ CR−(1−s)(‖w‖L2,−s + ‖r‖L2)‖〈v〉r‖L2

for some 1
2
< s < 1. Taking the limit R → +∞ in (3.5), one obtains that (∂v +

v
2
)u(x, v) ∈ L2 and

∫ ∫

R6

|(∂v +
v

2
)u(x, v)|2 dxdv = 0. (3.7)

This shows that (∂v +
v
2
)u(x, v) = 0, a.e. in x, v. Since u ∈ L2,−s for any s > 1

2
and

Pu = 0, one sees that u is of the form u(x, v) = C(x)e−
v2

4 for some C ∈ L2,−s(R3
x)

verifying the equation

v · ∇xC(x) +
1

2
v · ∇V (x)C(x) = 0 (3.8)

a.e. in x for all v ∈ R3. This proves that C(x) = c0e
−V (x)

2 a.e. for some constant c0 and

u(x, v) = c0m.

Since u ∈ L2,−s for any s > 1
2
and m 6∈ L2,−s if 1

2
< s < 3

2
when V (x) is bounded, one

concludes that c0 = 0, therefore u = 0. This proves that kerL2,−s(1 +G0W ) = {0}. �

A solution, u, of the stationary equation Pu = 0 is called a resonant state if u ∈ L2,−s

for any s > 1
2
, but u 6∈ L2 and zero is then called a resonance of P . Lemma 3.1 shows that

zero is neither an eigenvalue nor a resonance (i.e., a regular point) of the KFP operator
P if the potential is of short-range. This is in sharp contrast to Schrödinger operators
for which zero resonance may exist even for smooth and compactly supported potentials.
Lemma 3.1 makes easier the threshold spectral analysis for the KFP operator.

Theorem 3.2. Assume n = 3 and ρ > 1. Then zero is not an accumulation point of
the eigenvalues of P and one has for any s, s′ > 1

2
with s+ s′ > 2, ∃ǫ > 0 such that

R(z) = A0 +O(|z|ǫ), z → 0, z 6∈ R+, (3.9)

in B(−1, s; 1,−s′), where
A0 = (1 +G0W )−1G0. (3.10)
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There exists δ > 0 such that boundary values of the resolvent

R(λ± i0) = lim
ǫ→0+

R(λ± iǫ), λ ∈]0, δ]

exist in B(−1, s; 1,−s) for any s > 1
2
and are continuous in λ.

Proof. Remark that G0 ∈ B(−1, s; 1,−s′) for any s, s′ > 1
2
and s + s′ > 2. Lemma

3.1 implies that kerH1,−s(1 + G0W ) = {0} and G0W is compact on H1,−s for 1 < s <
(1 + ρ)/2. Therefore 1 +G0W is invertible on H1,−s with bounded inverse. Since

1 +R0(z)W = 1 +G0W +O(|z|ǫ), in B(1,−s; 1,−s), ǫ > 0,

for |z| small and z 6∈ R+, it follows that 1 +R0(z)W is invertible on H1,−s for |z| small
and z 6∈ R+ and that

(1 +R0(z)W )−1 = (1 +G0W )−1 +O(|z|ǫ), as |z| → 0, z 6∈ R+. (3.11)

In particular, 1+R0(z)W is injective in L2,−s for z near 0 and z 6∈ R+. Since R0(z)(P −
z) = 1 + R0(z)W , this shows that P has no eigenvalues for |z| < δ for some δ > 0 and
that

R(z) = (1 +R0(z)W )−1R0(z) = A0 + O(|z|ǫ), z 6∈ R+, (3.12)

with A0 = (1+G0W )−1G0. The existence of the boundary values R(λ±i0) for 0 < λ < δ
follows from the first equality in (3.12). �

Theorem 3.3. Assume n = 3 and ρ > 2. Then for any s > 3
2
, there exists ǫ > 0 such

that

R(z) = A0 + z
1
2A1 +O(|z| 12+ǫ), (3.13)

in B(−1, s; 1,−s) for |z| small and z 6∈ R+, where A1 is an operator of rank one given
by

A1 = (1 +G0W )−1G1(1−WA0). (3.14)

Proof. For s > 3
2
, one has

R0(z) = G0 + z
1
2G1 +O(|z| 12+ǫ)

in B(−1, s; 1,−s). If ρ > 2, one has W ∈ B(0,−r; 1, ρ+ 1 − r). Therefore for 3
2
< s <

(ρ+ 1)/2, it

R0(z)W − (G0 + z
1
2G1)W = O(|z| 12+ǫ)

in B(0,−s; 0,−s). Since B0 , (1 +G0W )−1 ∈ B(0,−s; 0,−s), it follows that
(1 +R0(z)W )−1 = B0 − z

1
2B0G1WB0 +O(|z| 12+ǫ).

From the resolvent equation R(z) = (1 +R0(z)W )−1R0(z), we obtain that

R(z) = B0G0 + z
1
2B0G1(1−WB0G0) +O(|z| 12+ǫ)

in B(0, s; 0,−s). An argument of hypoellticity shows that the same asymptics holds in
B(−1, s; 1,−s). Remark that A1 = B0G1(1 −WB0G0) is a rank one operator, because
G1 is of rank one. �
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4. Large-time behaviors of solutions

The large-time behaviors of solutions to the KFP equation with a potential will be
deduced from resolvent asumptotics and a representation formula of the semigroup
S(t) = e−tP in terms of the resolvent. To this purpose, we need the following high
energy pseudospectral estimate.

Theorem 4.1. Let n ≥ 1 and assume (3.1) with ρ ≥ −1. Then there exists C > 0 such

that σ(P ) ∩ {z; |ℑz| > C,ℜz ≤ 1
C
|ℑz| 13} = ∅ and

‖R(z)‖ ≤ C

|z| 13
, (4.1)

and

‖(1−∆v + v2)
1
2R(z)‖ ≤ C

|z| 16
, (4.2)

for |ℑz| > C and ℜz ≤ 1
C
|ℑz| 13 .

Proof. LetW = −∇xV (x) ·∇v. (2.59) shows that ‖WR0(z)‖+‖R0(z)W‖ = O(|z|− 1
6 )

for z in the region {z; |ℑz| > M,ℜz ≤ 1
M
|ℑz| 13}. Therefore (1 + R0(z)W )−1 exists

and is uniformly bounded if {z; |ℑz| > M,ℜz ≤ 1
M
|ℑz| 13} with M sufficiently large.

Theorem 4.1 follows from Proposition 2.10 and the resolvent equation R(z) = (1 +

R0(z)W )−1R0(z) for |ℑz| > C and ℜz ≤ 1
C
|ℑz| 13 with C ≥M sufficiently large. �

Lemma 4.2. Let n ≥ 1 and assume (3.1) with ρ ≥ −1. Then

S(t)f =
1

2πi

∫

γ

e−tzR(z)fdz (4.3)

for f ∈ L2 and t > 0, where the contour γ is chosen such that

γ = γ− ∪ γ0 ∪ γ+
with γ± = {z; z = ±iC + λ ± iCλ3, λ ≥ 0} and γ0 is a curve in the left-half complexe
plane joining −iC and iC for some C > 0 sufficiently large, γ being oriented from −i∞
to +i∞.

Proof. The spectrum of P is void in the left side of γ. By Theorem 4.1, for C > 0
sufficiently large, γ is contained in the resolvent set of P and

‖R(z)‖ ≤ C

|z| 13
, z ∈ γ.

Therefore, the integral S̃(t) = 1
2πi

∫

γ
e−tzR(z)dz is norm convergent. In addition, one

can check as in the standard case (see, for example, [13]) that S̃ ′(t)f = −P S̃(t)f for
f ∈ D(P0) and that limt→0+ S̃(t) = I strongly. The uniqueness of solution to the

evolution equation u′(t) + Pu(t) = 0 for t > 0 and u(0) = u0 implies that S̃(t) = S(t),
t > 0. �

Corollary 4.3. Assume that n = 3 and ρ > 1. One has

〈S(t)f, g〉 = 1

2πi

∫

Γ

e−tz〈R(z)f, g〉dz, t > 0, (4.4)
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for any f, g ∈ L2,s, s > 1. Here

Γ = Γ− ∪ Γ0 ∪ Γ+

with Γ± = {z; z = δ + λ ± iδ−1λ3, λ ≥ 0} for δ > 0 small enough and Γ0 = {z =
λ± i0;λ ∈ [0, δ]}. Γ is oriented from −i∞ to +i∞.

Proof. P has no eigenvalues with real part equal to zero (see the arguments used
in the proof of Lemma 3.1) and their only possible accumulation points are in R+. If
n = 3 and ρ > 1, Theorem 3.2 and Theorem 4.1 imply that there exists some δ0 > 0
such that

σp(P ) ∩ {z;ℜz ≤ δ0} = ∅. (4.5)

Consequently if 0 < δ < δ0 is small enough, there is no spectrum of P in the interior
of the region between γ and Γ and the resolvent is holomorphic there. In addition, the
limiting absorption principles at low energies ensure that the integral

∫

Γ

e−tz〈R(z)f, g〉dz, t > 0,

is convergent for any f, g ∈ L2,s with s > 1. By analytic deformation, we conclude from
(4.1) that

〈S(t)f, g〉 = 1

2πi

∫

γ

e−tz〈R(z)f, g〉dz = 1

2πi

∫

Γ

e−tz〈R(z)f, g〉dz, t > 0,

for any f, g ∈ L2,s with s > 1. �

The formula (4.4) is useful for studying the time-decay of solutions to the KFP
equation with a short-range potential (satisfying (1.7) with ρ > 1).

Theorem 4.4. Assume n = 3.

(a). If ρ > 1, one has for any s > 3
2

‖S(t)‖B(0,s;0,−s) ≤ Cst
− 3

2 , t > 0. (4.6)

(b). If ρ > 2, then for any s > 3
2
, there exists some ǫ > 0 such that

S(t) = t−
3
2B1 +O(t−

3
2
−ǫ) (4.7)

in B(0, s; 0,−s) as t→ +∞, where

B1 =
1

2i
√
π
A1 (4.8)

is an operator of rank one.
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Proof. Assume that n = 3 and ρ > 1. By Corollary 4.3, one has for f, g ∈ L2,s with
s > 1 and for t > 0

〈S(t)f, g〉 =
1

2πi

∫ δ

0

e−tλ〈(R(λ+ i0)− R(λ− i0))f, g〉dλ

+
e−tδ

2πi

∫ ∞

0

e−t(λ+iδ−1λ3)〈R(δ + λ+ iδ−1λ3)f, g〉(1 + 3iδ−1λ2)dλ (4.9)

− e−tδ

2πi

∫ ∞

0

e−t(λ−iδ−1λ3)〈R(δ + λ− iδ−1λ3)f, g〉(1− 3iδ−1λ2)dλ

, I1 + I2 + I3.

For I2 and I3, one can apply Theorem 4.1 to estimate

|〈R(δ + λ± iδ−1λ3)f, g〉| ≤ CM‖f‖H−1,s‖g‖H−1,s

for s > 1
2
and λ ∈]0,M ] for each fixed M > 0 and

|〈R(δ + λ± iδ−1λ3)f, g〉| ≤ CMλ
− 1

3‖f‖L2‖g‖L2

for λ > M with M > 1 sufficiently large. Therefore, if ρ > 1

|Ik| ≤ Ce−tδ‖f‖H0,s‖g‖H0,s (4.10)

for k = 2, 3 and for any s > 1
2
.

To show (4.6), it remains to prove that if ρ > 1 and n = 3, one has

|
∫

Γ0

e−tz〈R(z)f, g〉dz| ≤ Ct−
3
2‖f‖L2,s‖g‖L2,s (4.11)

for any f, g ∈ L2,s, s > 3
2
. For 1 < s < (ρ+ 1)/2, one has for some ǫ0 > 0

W (R0(z)−G0) = O(|z|ǫ0), in B(0, s; 0, s)
for z near 0 and z 6∈ R+. By Lemma 3.1, 1 +WG0 is invertible in B(0, s; 0, s) for any
1 < s < (ρ+ 1)/2. One obtains

R(z) = R0(z)(1 +WR0(z))
−1 =

N
∑

j=0

R0(z)T (z)
j(1 +WG0)

−1 +O(|z|(N+1)ǫ0) (4.12)

in B(0, s; 0, s) with s > 1, where N is taken such that (N + 1)ǫ0 >
1
2
and

T (z) = (1 +WG0)
−1W (R0(z)−G0). (4.13)

Consequently

|
∫

Γ0

e−tz〈(R(z)− R0(z)
N
∑

j=0

T (z)j(1 +WG0)
−1)f, g〉dz| ≤ Ct−

3
2
−ǫ‖f‖L2,s‖g‖L2,s, ǫ > 0,

(4.14)
if s > 1. (4.11) follows from the following lemma which achieves the proof of (4.6). �
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Lemma 4.5. For each j ≥ 0 and 3
2
< s < ρ+ 1

2
, there exists some C > 0 such that

|
∫

Γ0

e−tz〈R0(z)T (z)
j(1 +WG0)

−1f, g〉dz| ≤ Ct−
3
2‖f‖L2,s‖g‖L2,s (4.15)

for any f, g ∈ L2,s and t > 0.

Proof. We want to show that

|〈(R0(z)T (z)
j − R0(z)T (z)

j)(1 +WG0)
−1f, g〉| ≤ C

√
λ‖f‖L2,s‖g‖L2,s (4.16)

for z = λ + i0 with λ ∈ [0, δ] and for f, g ∈ L2,s with 3
2
< s < ρ + 1

2
. Recall that

R0(z) = bw0 (v,Dx, Dv)(−∆x−z)−1+r0(z) with r0(z) a bounded operator-valued function
holomorphic in z when ℜz < a for some 0 < a < 1 (see (2.50)). Without loss, we can
choose δ > 0 small such that 0 < δ < a which gives

R0(z)− R0(z̄) = bw0 (v,Dx, Dv)((−∆x − z)−1 − (−∆x − z̄)−1) (4.17)

for z = λ + i0 with λ ∈ [0, δ], 0 < δ < 1. Making use of the explicit formula for the
integral kernel of (−∆x − z)−1, one obtains

R0(z)− R0(z̄) = O(
√
λ), λ ∈ [0, δ] (4.18)

in B(−1, s; 1,−s) for any s > 3
2
. By Proposition 2.9, R0(z) is uniformly bounded in

B(−1, s; 1,−s′) for s, s′ > 1
2
and s + s′ > 2. We deduce that for any 1

2
< s < ρ + 1

2
,

WG0 and (1 +WG0)
−1 belongs to B(0, s; 0, s) and

T (z) = O(|z|ǫ0) in B(0, s; 0, s). (4.19)

Seeing (4.18), one obtains that for any 3
2
< s < ρ+ 1

2
and s′ = 1 + ρ− s > 1

2
,

T (z)− T (z̄) = (1 +WG0)
−1W (R0(z)− R0(z̄)) = O(

√
λ) (4.20)

in B(0, s; 0, s′) for z = λ + i0. Since for j ≥ 1,

R0(z)T (z)
j −R0(z)T (z)

j (4.21)

= (R0(z)−R0(z̄))T (z)
j +R0(z)

j−1
∑

k=0

T (z)k(T (z)− T (z))T (z)j−k−1

one can estimate |〈(R0(z)T (z)
j − R0(z)T (z)

j)(1 +WG0)
−1f, g〉| by

|〈(R0(z)T (z)
j − R0(z)T (z)

j)(1 +WG0)
−1f, g〉|

≤ C{‖(R0(z)− R0(z̄))‖B(0,s; 0,−s)‖T (z)‖jB(0,s; 0,s) (4.22)

+

j−1
∑

k=0

‖R0(z)‖B(0,s′; 0,−s)‖(T (z)− T (z))‖B(0,s; 0,s′)‖T (z)‖kB(0,s′; 0,s′)‖T (z)‖j−k−1
B(0,s; 0,s)}

×‖f‖L2,s‖g‖L2,s

≤ C ′√λ‖f‖L2,s‖g‖L2,s

for 3
2
< s < ρ+ 1

2
and s′ = 1 + ρ− s > 1

2
. The above estimate is clearly also true when

j = 0. This proves (4.16) which implies (4.15) and consequently (4.6). �
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Assume now ρ > 2. Theorem 3.3 gives that if ρ > 2,

R(z) = A0 +
√
zA1 +O(|z| 12+ǫ), z → 0, z 6∈ R+, (4.23)

in B(−1, s; 1,−s), s > 3
2
. According to (4.23), I1 can be evaluated by

I1 =
1

πi

∫ δ

0

e−tλ〈(
√
λA1 +O(λ

1
2
+ǫ))f, g〉dλ

and

|I1 −
1

t
3
2

〈B1f, g〉| ≤ Ct−( 3
2
+ǫ)‖f‖H−1,s‖g‖H−1,s (4.24)

with

B1 =
1

πi
A1

∫ ∞

0

e−s
√
s ds =

1

2i
√
π
A1. (4.25)

This proves (4.7). �

Proof of Theorem 1.1. Theorem 1.1 (a) is just Theorem 4.1, Theorem 1.1 (b) is con-
tained in Theorem 3.2 and Theorem 4.4 (a). Seeing Theorem 4.4 (b), to prove Theorem
1.1 (c), it remains to calculate the operator B1 given in Theorem 4.4.

For u ∈ L2,s with s > 3
2
, one can write

B1u =
1

8π
3
2

〈m0, (1−WA0)u〉(1 +G0W )−1
m0 (4.26)

=
1

8π
3
2

〈(1−WA0)
∗
m0, u〉(1 +G0W )−1

m0

=
1

8π
3
2

〈ν0, u〉µ0

where

µ0 = (1 + G0W )−1
m0, ν0 = (1−WA0)

∗
m0. (4.27)

Since m0 ∈ L2,−s for any s > 3
2
and (1+G0W )−1 ∈ B(0,−s; 0,−s), G0W and (WA0)

∗ ∈
B(0,−s, ; 0,−s′) for any s′ > 1

2
and 3

2
< s < ρ+1

2
(if ρ > 2), ν0, µ0 belong to L2,−s for

any s > 3
2
. In addition, µ0 satisfies the equation

lim
z→0,z 6∈R+

(1 +R0(z)W )µ0 = (1 +G0W )µ0 = m0

in L2,−s. It follows that

Pµ0 = P0m0 = 0. (4.28)

Similarly, since A0 = limz→0,z 6∈R+ R(z) in B(−1, s; 1,−s′) for any s, s′ > 1
2
with s+s′ > 2

and (1−WA0)
∗ = 1 + A∗

0W (W being skew-adjoint), one can check that

P ∗ν0 = (P0 +W )∗ +W )m0 (4.29)

= P ∗
0m0 = 0.

To prove that µ0 = m, we remark that the solution of the equation (1+G0W )µ = m0

is unique in L2,−s for any s > 3
2
. Therefore it suffices to check that m also verifies the
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equation (1 + G0W )m = m0. To show this, we notice that since (P0 +W )m = 0, one
has for λ < 0

(1 +R0(λ)W )m = −λR0(λ)m (4.30)

For ρ > 2, one has m−m0 ∈ L2,s for any 0 < s < ρ− 3
2
. Proposition 2.13 with ψ = ψ0

shows that
lim
λ→0−

λR0(λ)m = −m0. (4.31)

Taking the limit λ → 0− in (4.30), one obtains (1 + G0W )m = m0 = (1 + G0W )µ0.
According to Lemma 3.1 with ρ > 2, the operator 1 + G0W is invertible in L2,−s for
any 3

2
< s < 1+ρ

2
, which gives µ0 = m = (1 +G0W )−1

m0.

To show that ν0 = m, we notice that 1+WG0 ∈ B(0, s; 0, s) for any 3
2
< s < ρ+1

2
and

is invertible and its inverse is given by:

(1 +WG0)
−1 = 1−W (1 +G0W )−1G0 = 1−WA0. (4.32)

Therefore ν0 = (1 −WA0)
∗
m0 = (1 − G∗

0W )−1
m0. Since m verifies also the equation

P ∗
m = (P ∗

0 −W )m = 0, the similar arguments as those used above allow to conclude
that (1−G∗

0W )m = m0 which shows ν0 = (1−G∗
0W )−1

m0 = m. This shows

B1u =
1

8π
3
2

〈m, u〉m for u ∈ L2,s with s >
3

2
, (4.33)

which proves (1.12) of Theorem 1.1. �

In the proof of Theorem 1.1 (c), we showed that solutions to the equation Pu = 0
with u ∈ L2,−s for any s > 3

2
, are given by u = cm for some constant c. If V is smooth

and coercive (|∇V (x)| → ∞ and V (x) > 0 outside some compact), the hypoelliptic
estimate for P allows to conclude that if Pu = 0 and u ∈ S ′, then u ∈ S and u = cm for
some constant c. See [8, 11]. This kind of uniqueness result seems to be unknown for
potentials whose gradient tends to zero. Our proof not only shows that µ0 = cm, but
also compute the constant c which allows to give the universal constant in the leading
term of (1.12.

Remarks. (a). Several interesting questions remain open. In particular, we do not
know if results like (1.11) and (1.12) hold for S(t) = e−tP as operators from L1 to L∞.
See Theorem 2.4 for the free KFP operator.

(b). The assumptions on dimension and on the decay rate of the potential are only
used in low-energy resolvent asymptotics. While we believe that the condition n = 3
is only technical, the condition on the decay rate ρ is more essential to our approach
which consists in regarding the free KFP operator P0 as model operator for the full KFP
operator with a potential. To study the low-energy resolvent asymptotics for potentials
with more slowly decreasing gradients, one may try to use other models such as the
Witten Laplacian

−∆V = (−∇x +∇V (x)) · (∇x +∇V (x))

See [7, 8, 10] for relations between the KFP operator and the Witten Laplacian in
eigenvalue problems, when |∇V (x)| → +∞ and the spectrum is discrete near 0. When
|∇V (x)| is slowly decreasing, under some reasonable additional conditions −∆V is a
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Schrödinger operator −∆x+U(x) with a potential U(x) positive outside some compact
and slowly decreasing at the infinity. The threshold spectral properties for this class of
selfadjoint elliptic operators can be fairly well analyzed, making use of known results on
Schrödinger operators with globally positive and slowly decreasing potentials ([15, 22]).
The open question here is to see to which extent the approximation of the KFP operator
by the Witten Laplacian is valid in a scattering framework. We hope to return to this
problem in a forthcoming work.

Appendix A. A family of complex harmonic oscillators

In this appendix, we study some basic spectral properties of a family of non-selfadjoint
harmonic oscillators

P̂0(ξ) = −∆v +
v2

4
− n

2
+ iv · ξ, (A.1)

where ξ ∈ Rn are regarded as parameters. By Fourier transform in x-variables, the free
KFP P0 is a direct integral of the family {P̂0(ξ); ξ ∈ Rn}. We give here some quanti-
tative results with explicit bounds in ξ. Note that non-selfadjoint harmonic operators
with complex frequency −∆x + ωx2, ω ∈ C, are studied by several authors. See for
example [2, 3] and references quoted therein.

The operator P̂0(ξ) can be written as

P̂0(ξ) = −∆v +
1

4

n
∑

j=1

(vj + 2iξj)
2 − n

2
+ |ξ|2.

{P̂0(ξ), ξ ∈ Rn} is a holomorphic family of type (A) in sense of Kato with constant

domain D = D(−∆v + v2

4
) in L2(Rn

v ). Let Fj(s) = (−1)je
s2

2
dj

dsj
e−

s2

2 , j ∈ N, be the
Hermite polynomials and

ϕj(s) = (j!
√
2π)−

1
2 e−

s2

4 Fj(s)

the normalized Hermite functions. For ξ ∈ Rn and α = (α1, α2, · · · , αn) ∈ Nn, define

ψα(v) =
n
∏

j=1

ϕαj
(vj) and ψ

ξ
α(v) = ψα(v + 2iξ). (A.2)

For α, β ∈ N
n, ξ → 〈ψξ

α, ψ
−ξ
β 〉 extends to an entire function for ξ ∈ C and is constant

on iR. Therefore 〈ψξ
α, ψ

−ξ
β 〉 is constant for ξ ∈ C and one has

〈ψξ
α, ψ

−ξ
β 〉 = δαβ =

{

1, α = β,
0, α 6= β.

, ∀α, β ∈ N
n, ξ ∈ R

n. (A.3)

Using the definition of Hermite functions, one can check that for α = (α1, · · · , αn) ∈ Nn

‖ψξ
α‖2 = e2ξ

2
n
∏

m=1

(

αm
∑

j=1

Cj
αm

j!
(2ξm)

2j). (A.4)
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In fact, when n = 1, ξ = ξ1 and k ∈ N, one has

‖ψξ
k‖2 =

∫

R

ϕk(y + 2iξ)ϕk(y − 2iξ)dy

= (k!
√
2π)−1e2ξ

2

∫

R

Fk(y + 2iξ)Fk(y − 2iξ)e−
y2

2 dy

= (k!
√
2π)−1e2ξ

2

∫

R

(
k
∑

j=0

Cj
k(2iξ)

k−jFj(y))
k
∑

l=0

C l
k(−2iξ)k−lFl(y))e

− y2

2 dy

= e2ξ
2

k
∑

j,l=0

(k!
√
2π)−1Cj

kC
l
k(j!

√
2π)

1
2 (l!

√
2π)

1
2 (2iξ)k−j(−2iξ)k−l

∫

R

ψj(y)ψl(y)dy

= e2ξ
2

k
∑

j=0

j!(Cj
k)

2

k!
(4ξ2)k−j

= e2ξ
2

k
∑

j=0

Cj
k

j!
(4ξ2)j .

The general case n ≥ 1 follows from the product formula:

‖ψξ
α‖2 =

n
∏

j=1

‖ϕαj
(·+ 2iξj)‖2.

(A.4) shows that if ξ 6= 0, ‖ψξ
α‖ grows exponentially as |α| → +∞.

Lemma A.1. The spectrum of P̂0(ξ) is purely discrete:

σ(P̂0(ξ)) = {El , l + ξ2; l ∈ N}. (A.5)

Each eigenvalue El is semi-simple (i.e., its algebraic multiplicity and geometric multi-
plicity are equal) with multiplicity ml = #{α ∈ Nn; |α| = α1 + α2 + · · ·+ αn = l}. The
Riesz projection associated with the eigenvalue l + ξ2 is given by

Πξ
lφ =

∑

α,|α|=l

〈ψ−ξ
α , φ〉ψξ

α, φ ∈ L2. (A.6)

Proof. It is clear that the spectrum of P̂0(ξ) is purely discrete and ψξ
α(v) is an eigen-

function associated with the eigenvalue El. This means that σ(P̂0(ξ)) ⊃ {l+ ξ2; l ∈ N}.
Since P̂0(ξ)

∗ = P̂0(−ξ) and that the linear span of {ψ−ξ
α (v);α ∈ Nn} is dense in

L2, P̂0(−ξ) can not have other eigenvalues than El, l = 0, 1, · · · . This proves that

σ(P̂0(ξ)) = {El = l + ξ2; l ∈ N}.
To show that El is semisimple, assume by contradiction that ∃ϕ ∈ D such that

(P̂0(ξ) − El)ϕ = cψξ
α, |α| = l and c ∈ C∗. Then ψξ

α is in the range of P̂0(ξ) − El and

hence is orthogonal to the kernel of (P̂0(ξ)−El)
∗ = P̂0(−ξ)−El. In particular, one has

〈ψξ
α, ψ

−ξ
α 〉 = 0.

This is impossible due to (A.3). This contradiction shows that the eigenvalue El = l+ξ2

is semisimple. Since the pole of the resolvent (P̂0(ξ) − z)−1 is simple at z = El, the
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range of the associated Riesz projection defined by

Πξ
lφ =

i

2π

∫

|z−El|= 1
2

(P̂0(ξ)− z)−1φdz

is equal to ker(P̂0(ξ)) − El) and the kernel of Πξ
l is equal to the range of P̂0(ξ) − El.

The latter is the orthogonal complement of ker(P̂0(−ξ)) − El) which is spanned by
{ψ−ξ

α ; |α| = l}. The representation formula (A.6) then follows from (A.3). �

Lemma A.2. Let n = 1. Then one has for t > 0
∞
∑

k=0

e−t(k+ξ2)‖Πξ
k‖ =

e−ξ2(t−2)

1− e−t
e

4ξ2

et−1 , ξ ∈ R. (A.7)

Proof. In the case n = 1, one has for any k ∈ N

‖Πξ
k‖ = ‖ψξ

k‖‖ψ−ξ
k ‖ = ‖ψξ

k‖2 = e2ξ
2

k
∑

j=0

Cj
k

j!
(4ξ2)j . (A.8)

The left-hand side of (A.7) is norm convergent when t > 0. In fact, one can calculate
the sum of the series as follows

∞
∑

k=0

e−t(k+ξ2)‖Πξ
k‖

=
∞
∑

k=0

e−t(k+ξ2)+2ξ2
k
∑

j=0

Cj
k

j!
(4ξ2)j

=
∞
∑

k=0

e−t(k+ξ2)+2ξ2 +
∞
∑

k=1

e−t(k+ξ2)+2ξ2
k
∑

j=1

Cj
k

j!
(4ξ2)j

=
e−ξ2(t−2)

1− e−t
+ e−ξ2(t−2)

∞
∑

j=1

(4ξ2)j

j!

∞
∑

k=j

Cj
ke

−tk

=
e−ξ2(t−2)

1− e−t
+ e−ξ2(t−2)

∞
∑

j=1

(4ξ2e−t)j

(j!)2

∞
∑

k=j

k(k − 1) · · · (k − j + 1)e−t(k−j)

=
e−ξ2(t−2)

1− e−t
+ e−ξ2(t−2)

∞
∑

j=1

(4ξ2e−t)j

(j!)2

∞
∑

k=0

(k + j)(k + j − 1) · · · (k + 1)e−tk

=
e−ξ2(t−2)

1− e−t
+ e−ξ2(t−2)

∞
∑

j=1

(4ξ2e−t)j

(j!)2

{

dj

dxj
1

1− x

}

|x=e−t

=
e−ξ2(t−2)

1− e−t

(

1 +
∞
∑

j=1

1

j!
(

4ξ2

et − 1
)j

)

=
e−ξ2(t−2)

1− e−t
e

4ξ2

et−1 .

�
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Proposition A.3. Let n ≥ 1. For any ξ ∈ Rn and t > 0, one has the following formula
of spectral decomposition:

e−tP̂0(ξ) =

∞
∑

l=0

e−t(l+ξ2)Πξ
l , (A.9)

where Πξ
l is the Riesz projection associated with the eigenvalue l of P̂0(ξ) and the series

is norm convergent as operators on L2(Rn
v ).

Proof. For n ≥ 1, one has

‖Πξ
l ‖ ≤

∑

α=(α1,··· ,αn)∈Nn;|α|=l

n
∏

j=1

‖ϕαj
(·+ 2iξj)‖2.

By Lemma A.2, the right-hand side of (A.9) is norm convergent for every t > 0 and can
be evaluated by

∞
∑

l=0

e−t(l+ξ2)‖Πξ
l ‖ ≤

n
∏

j=1





∞
∑

αj=0

e−t(αj+ξ2j )‖Πξj
αj
‖



 (A.10)

=
e
−ξ2(t−2− 4

et−1
)

(1− e−t)n
.

Since the both sides of (A.9) are equal on the dense subspace spanned by {ψξ
α;α ∈ N},

an argument of density shows that they are equal on the whole space L2. �

As a consequence of the proof of Proposition A.3, we obtain the following estimate
on the semigroup

Corollary A.4. The following estimate holds for t > 0 and ξ ∈ Rn

‖e−tP̂0(ξ)‖B(L2(Rn
v )) ≤

e
−ξ2(t−2− 4

et−1
)

(1− e−t)n
(A.11)
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