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LARGE-TIME ASYMPTOTICS OF SOLUTIONS

TO THE KRAMERS-FOKKER-PLANCK EQUATION

WITH A SHORT-RANGE POTENTIAL

XUE PING WANG

Abstract. In this work, we use scattering method to study the Kramers-Fokker-
Planck equation with a potential whose gradient tends to zero at the infinity. For
short-range potentials in dimension three, we show that complex eigenvalues do not
accumulate at low-energies and establish the low-energy resolvent asymptotics. This
combined with high energy pseudospectral estimates valid in more general situations
gives the large-time asymptotics of the solution in weighted L

2 spaces.

1. Introduction

The Kramers equation, also called the Kramers-Fokker-Planck (or KFP in short)
equation, is the evolution equation for the distribution functions describing the Brow-
nian motion of particles in an external field ([16]):

∂W

∂t
=

(

−v · ∇x +∇v · (γv −
F (x)

m
)− γkT

m
∆v

)

W, (1.1)

where W =W (t; x, v), x, v ∈ Rn, t ≥ 0 and F (x) = −m∇V (x) is the external force. In
this equation, x and v represent position and velocity of particles, m the mass, k the
Boltzmann constant, γ the friction coefficient and T the temperature of the media. This
equation is a special case of the more general Fokker-Planck equation. After a change
of unknowns and for appropriate values of physical constants, the equation (1.1) can be
written into the form ([9, 16])

∂tu(t; x, v) + Pu(t; x, v) = 0, (x, v) ∈ R
n × R

n, n ≥ 1, t > 0 (1.2)

with the initial data
u(0; x, v) = u0(x, v). (1.3)

Here P is the Kramers-Fokker-Planck operator:

P = −∆v +
1

4
|v|2 − n

2
+ v · ∇x −∇V (x) · ∇v, (1.4)

where the potential V (x) is supposed to be a real-valued C1 function.

The large-time asymptotics of the solution is motivated by the trend to equilibrium
in statistical physics and is studied by several authors in the case where |∇V (x)| → ∞
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as x → ∞. See [1, 6, 8, 9, 10, 11, 17] and references quoted therein. Note that in
the work [11] on low-temperature analysis of the tunnelling effect, only the condition
|∇V (x)| ≥ C > 0 outside some compact set is needed. In these cases, the spectrum of
P is discrete in a neighbourhood of zero and nonzero eigenvalues of P are of positive
real parts. If in addition V (x) > 0 outside some compact set, the Maxiwilliam

m(x, v) =
1

(2π)
n
4

e−
1
2
( v

2

2
+V (x)), (1.5)

is an eigenfunction of P associated with the eigenvalue zero. It is proven in these
situations that the solution u(t) to (1.2) with initial data u0 converges exponentially
rapidly to the Maxwillian in the sense that there exists some σ > 0 such that for any
nice initial data u0, one has in appropriate spaces

u(t) = 〈m, u0〉m+O(e−σt), t→ +∞, (1.6)

where σ can be evaluated in some regimes in terms of the spectral gap in the real part
of the spectra between the eigenvalue zero and the other eigenvalues. Since the change
of unknowns from (1.1) to (1.2) is essentially u = mW for appropriate physical con-
stants, this result shows that the density of distribution functions described by (1.1)
converges to some constant exponentially rapidly at large times and describes the well-
known phenomenon of the return to equilibrium in statistical physics. Since the KFP
operator is neither elliptic nor selfadjoint, the proof of such result is highly nontrivial
and is realized first by the entropy method in [6] with a reminder estimate O(t−∞) (see
also [17]) and later on by microlocal and spectral methods in [9, 10, 11]. If V (x) is
slowly increasing so that |∇V (x)| → 0 as |x| → ∞, (for example, V (x) ∼ c〈x〉µ or
V (x) ∼ a ln |x| as |x| → ∞ for some 0 < µ < 1 and a, c > 0), the Maxwillian is still
an eigenfunction of P associated with the eigenvalue zero (in the second case it may
be an eigenfunction for some values of a and a resonant state for some other values of
a), but now the essential spectrum of P is equal to [0,+∞[ and there is no spectral
gap between the eigenvalue zero and the other part of the spectrum of P . A natural
question to ask at this connection is whether there still exists some phenomenon of the
return to the equilibrium in such cases.

The goal of this work is to study spectral properties of the KFP operator and large-
time asymptotics of the solutions to the KFP equation with a potential V (x) such that
|∇V (x)| → 0 as x→ ∞. Although our final result concerns only short-range potentials
in dimension three, some intermediate results hold for slowly increasing potentials in
any dimension. Throughout this work, we assume that V is C1 on Rn and

|∇V (x)| ≤ C〈x〉−1−ρ, x ∈ R
n, (1.7)

for some ρ ≥ −1, where 〈x〉 = (1 + |x|2)1/2. The KFP operator P with the maximal
domain in L2 is a closed, accretive ( ℜP ≥ 0) and hypoelliptic operator. Denote

P = P0 +W, (1.8)

with P0 = v · ∇x −∆v +
1
4
|v|2 − n

2
and W = −∇V (x) · ∇v. If ρ > −1, W is a relatively

compact perturbation of the free KFP operator P0: W (P0+1)−1 is a compact operator
in L2. One can check that the essential spectrum of P is equal to σ(P0) = [0,+∞[
and the non-zero complex eigenvalues of P have strictly positive real parts and may
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accumulate towards any point in the essential spectrum.

The main results of this paper can be summarized as follows.

Theorem 1.1. (a). Assume n ≥ 1 and the condition (1.7) ρ ≥ −1. Then there

exists C > 0 such that σ(P ) ∩ {z; |ℑz| > C, |ℜz| ≤ 1
C
|ℑz| 13} = ∅ and the resolvent

R(z) = (P − z)−1 satisfies the estiamtes

‖R(z)‖ ≤ C

|z| 13
, (1.9)

and

‖(1−∆v + v2)
1
2R(z)‖ ≤ C

|z| 16
, (1.10)

for |ℑz| > C and |ℜz| ≤ 1
C
|ℑz| 13 .

(b). Assume n = 3 and ρ > 1. Then P has no eigenvalues near 0. Let S(t) = e−tP

be the semigroup of contractions generated by −P . One has

‖S(t)‖L2,s→L2,−s ≤ Ct−
3
2 , t > 0. (1.11)

for any s > 3
2
. Here L2,s = L2(R2n

x,v; 〈x〉2sdxdv).

(c). Assume n = 3 and ρ > 2. Then for any s > 3
2
, there exists ǫ > 0 such that one

has the following asymptotics

S(t) =
1

8(πt)
3
2

〈m, ·〉m+O(t−
3
2
−ǫ), t→ +∞, (1.12)

as operators from L2,s to L2,−s.

It may be interesting to compare (1.6) with (1.12). (1.12) shows that for any ini-
tial datum u0 ∈ L2,s(R6

x,v), s >
3
2
, the density of distribution functions W (x, v; t) of

particles governed by the equation (1.1) tends to be constant in R2n
x,v, but this density

decays in time like t−
3
2 . It is well-known for Schrödinger operator with a potential

H = −∆x + U(x) that the space-decay rates of the stationary solutions of Hu = 0 de-
termine the singularities of the resolvent at the threshold zero, which in turn determine
time-decay rates of solutions to the evolution equation (see, for example, [18]). From
this point of views, one may expect that the solution to the KFP equation behaves like
t−α with α depending on a if V (x) ∼ a ln |x|, a ∈]n−2

2
, n
2
[. Notice that the KFP operator

is a differential operator of the first order in x-variables, but the large-time behavior of
solutions looks like those to the heat equation described by et∆x , t→ +∞. This is due
to the interplay between the diffusion part and the transport part of the KFP operator
P . Under stronger assumption on ρ, one can calculate the second term in large-time
asymptotics of solution which is of the order O(t−

5
2 ).

The method used in this work is scattering in nature: we regard the full KFP oper-
ator P as a perturbation of the free KFP operator P0 without potential. A large part
of this work is devoted to a detailed analysis of the free KFP operator. Several basic
questions remain open for P0 such as the high energy estimates for the free resolvent
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near the positive real axis. A key step in the proof of the large-time asymptotics of
solutions to the full KFP equation is to show that the complex eigenvalues of P do not
accumulate towards the threshold zero. So far as the author knows, such a statement
is not yet proven for non-selfadjoint Schrödinger operators −∆ + U(x) with a general
complex-valued potential satisfying |U(x)| = O(|x|−ρ), ρ > 2. (See however [14, 19] for
dissipative potentials (ℑU(x) ≤ 0)). Results like (1.11) and (1.12) may fail if there is a
sequence of eigenvalues tending to zero tangentially to the imaginary axis. For the KFP
operator P with a short-rang potential in dimension three, we prove that there are no
complex eigenvalues in neighbourhood of 0 by making use of the method of threshold
spectral analysis and the symmetries of the equation.

The organisation of this work is as follows. In Section 2, we study in detail the
spectral properties of the model operator P0 and establish some dispersive estimate for
the semigroup generated by −P0. We also prove the limiting absorption principles and
the low-energy asymptotics of the resolvent R0(z) = (P0 − z)−1, as well as some high
energy resolvent estimates inside the pseudospectra. The threshold spectral properties
of the full KFP operator P with a short-range potential is analyzed in Section 3. We
prove that there is no eigenvalue of P in a neighbourhood of zero and calculate the lower-
energy resolvent asymptotics. For technical reasons, we only prove these results when
the dimension n is equal to three, but we believe that they remain true when n ≥ 4.
Finally, in Section 4, we prove a high energy pseudospectral estimate in general situation
and this combined with the low energy resolvent estimates allows to prove the time-
decay and the large-time asymptotics of solutions. In Appendix A, we study a family
of nonselfadjoint harmonic oscillators which may be regarded as complex translation in
variables of selfadjoint harmonic oscillators. We prove some quantitative estimates with
respect to the parameters of translation, establish a spectral decomposition formula and
prove some uniform time-decay estimates of the semigroup, which are used in Section
2 to analyze the free KFP operator.

2. The free Kramers-Fokker-Planck operator

Denote by P0 the free Kramers-Fokker-Planck (KFP, inshort) operator (with ∇V =
0):

P0 = v · ∇x −∆v +
1

4
|v|2 − n

2
. (2.1)

P0 is a non-selfadjoint and hypoelliptic operator with loss of 1
3
derivative in x variables.

The following result is known. See [9, 15].

Proposition 2.1. One has

‖∆vu‖2 + ‖|v|2u‖2 + ‖|Dx|
2
3u‖2 ≤ C(‖P0u‖2 + ‖u‖2), u ∈ S(R2n

x,v) (2.2)

P0 defined on S(R2n
x,v) is essentially maximally accretive, i.e., the closure of P0 in

L2(R2n
x,v) with core S(R2n

x,v) is of maximal domain D(P0) = {u ∈ L2(R2n
x,v);P0u ∈

L2(R2n
x,v)} and ℜ〈P0u, u〉 ≥ 0 for u ∈ D(P0).
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Henceforth we still denote by P0 its maximal extension in L2 with domain D(P0) =
{u ∈ L2(R2n

x,v);P0u ∈ L2(R2n
x,v)}.

In terms of Fourier transform in x-variables, we have for u ∈ D(P0)

P0u(x, v) = F−1
x→ξP̂0(ξ)û(ξ, v), where (2.3)

P̂0(ξ) = −∆v +
1

4

n
∑

j=1

(vj + 2iξj)
2 − n

2
+ |ξ|2 (2.4)

û(ξ, v) = (Fx→ξu)(ξ, v) ,

∫

Rn

e−ix·ξu(x, v) dx. (2.5)

Denote

D(P̂0) = {f ∈ L2(R2n
ξ,v); P̂0(ξ)f ∈ L2(R2n

ξ,v)}. (2.6)

Then P̂0 , Fx→ξP0F−1
x→ξ is a direct integral of the family of complex harmonic operators

{P̂0(ξ); ξ ∈ Rn} which is studied in Appendix.

The following abstract result may be useful to determine the spectrum of operators
which are direct integral of a family of nonselfadjoint operators. See also Theorem 8.3
of [4] for bounded nonselfadjoint operators.

Theorem 2.2. Let H be a separable Hilbert space, X a non empty open set of Rn

and H = {f : X → H ; ‖f‖ = (
∫

X
‖f(x)‖2Hdx}

1
2 < +∞}. Here dx is the Lebesgue

measure of Rn. Suppose that both {Q(x); x ∈ X} and the adjoints {Q(x)∗; x ∈ X} are
strongly continuous families of closed, densely defined operators with constant domains
D,D∗ ⊂ H, respectively. Suppose in addition that for each z ∈ C \ ∪x∈Xσ(Q(x)), one
has

sup
x∈X

‖(Q(x)− z)−1‖ < +∞. (2.7)

Let Q be a closed, densely defined operator in H such that for any f in the domain of
Q one has f(x) ∈ D about everywhere and

Qf = Q(x)f(x) in H. (2.8)

Then one has

σ(Q) = ∪x∈Xσ(Q(x)) (2.9)

Proof. If z 6∈ ∪x∈Xσ(Q(x)), define Rz : H → H by (Rzf)(x) = (Q(x) − z)−1f(x),
f ∈ H. Then (2.7) shows that Rz is bounded on H. One can check that (Q− z)Rz = 1
on H and Rz(Q − z) = 1 on D(Q). Thus z is in resolvent set of Q. This shows that

σ(Q) ⊂ ∪x∈Xσ(Q(x)).

Conversely, if z ∈ σ(Q(x0)) for some x0 ∈ X , then either ‖(Q(x0) − z)un‖ → 0 or
‖(Q(x0) − z)∗vn‖ → 0 for some sequences {un}, {vn} in H with ‖un‖ = ‖vn‖ = 1. In
fact if one had both ‖(Q(x0)− z)u‖ ≥ c‖u‖ and ‖(Q(x0)− z)∗v‖ ≥ c‖v‖ for some c > 0
and for all u ∈ D and v ∈ D∗, one might conclude that z belongs to the resolvent set of
Q(x0). Since x → Q(x) is strongly continuous on D, for any ǫ > 0, we can find f ∈ H
in the form f = χ(x)un0 (or g = χ(x)vn0 ∈ H) for some n0 and for some numerical



6 XUE PING WANG

function χ supported in a sufficiently small neighborhood of x0 such that ‖f‖ = 1 and
‖(Q − z)f‖ < ǫ ( resp., ‖g‖ = 1 and ‖(Q − z)∗g‖ < ǫ ). This shows that z ∈ σ(Q).

Consequently, σ(Q) ⊃ ∪x∈Xσ(Q(x)) �

Remark that if the condition (2.7) is not satisfied, the equality (2.9) may fail. See
Theorem 8.3 of [4].

Proposition 2.3. Let P0 denote the free KFP operator with the maximal domain. Then
one has: σ(P0) = [0,+∞[.

Proof. We want to apply Theorem 2.2. One sees that P0 is unitarily equivalent with
P̂0 which is a direct integral of a family of operators {P̂0(ξ)} with constant domain D.
Lemma A.1 shows that

∪ξ∈Rnσ(P̂0(ξ)) = [0,+∞[.

It is clear that x→ P̂0(ξ) is strongly continuous on D. To apply Theorem 2.2, it remains
to check the condition (2.7): for each z 6∈ [0,+∞[,

‖(P̂0(ξ)− z)−1‖ ≤ Cz (2.10)

uniformly in ξ ∈ Rn. For ξ in a compact set, this follows from the fact that since P̂0(ξ)

forms a holomorphic family of type (A) in sense of Kato, the resolvent (P̂0(ξ)− z)−1 is
locally bounded in ξ ∈ Rn for each z 6∈ [0,+∞[. For |ξ| large (|ξ|2 > |ℜz| + 1), using
the representation

(P̂0(ξ)− z)−1 = −
∫ T

0

e−t(P̂0(ξ)−z) dt−
∫ ∞

T

e−t(P̂0(ξ)−z) dt

with T ≥ 3 fixed, one deduces from Corollary A.4 that there exists C = C(ℜz) inde-
pendent of ξ such that

‖(P̂0(ξ)− z)−1‖ ≤ C +
C

ξ2 − ℜz (2.11)

for ξ2 > |ℜz| + 1. The desired result follows from Theorem 2.2 and Lemma A.1. �

From Proposition A.3, one can deduce some time-decay estimates for e−tP0 in appro-
priate spaces. Denote

L2,s(R2n) = L2(R2n; 〈x〉2sdxdv).
and

Lp = Lp(Rn
x;L

2(Rn
v )), p ≥ 1,

equipped with their natural norms.

Theorem 2.4. (a). One has the following dispersive type estimate: ∃C > 0 such that

‖e−tP0u‖L∞ ≤ C

t
n
2

‖u‖L1, t ≥ 3, (2.12)

for u ∈ L1.
(b). For s > n

2
, one has for some Cs > 0

‖e−tP0u‖L2,−s ≤ Cs

t
n
2

‖u‖L2,s, (2.13)

for t ≥ 3 and u ∈ L2,s.
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Proof. For u ∈ S(R2n
x,v), we denote by û the Fourier transform of u in x-variables.

Proposition A.3 shows that

‖e−tP0u‖L∞ ≤ 1

(2π)n
‖e−tP̂0(ξ)û‖L1 (2.14)

Corollary A.4 gives

‖e−tP̂0(ξ)û‖L2
v
≤ e

−ξ2(t−2− 4
et−1

)

(1− e−t)n
‖û(ξ, ·)‖L2

v
. (2.15)

Since t− 2− 4
et−1

≥ c0 > 0 when t ≥ 3, one obtains that

‖e−tP̂0(ξ)û‖L1 ≤
∫

Rn
ξ

e
−ξ2(t−2− 4

et−1
)

(1− e−t)n
dξ‖u‖L1

≤ Ct−
n
2 ‖u‖L1 (2.16)

for t ≥ 3 and for any u ∈ S. An argument of density proves (a) for any u ∈ L1.

Part (b) of Theorem 2.4 is a consequence of Part (a). �

As another application of the spectral decomposition for the semigroup e−tP0 , we can
prove the following result on large-time approximation of solutions to the free KFP
equation. For a symbol a(x, v; ξ, η), denote by aw(x, v,Dx, Dv) the associated Weyl
pseudodifferential operator defined by

aw(x, v,Dx, Dv)u (2.17)

=
1

(2π)2n

∫ ∫

ei(x−x′)·ξ+i(v−v′)·ηa(
x+ x′

2
,
v + v′

2
, ξ, η)u(x′v′)dx′dv′dξdη

for u ∈ S(R2n
x,v).

Proposition 2.5. Let

a0(v, η, ξ) = 2
n
2 e−v2−η2+2iv·ξ

and aw0 , aw0 (v,Dv, Dx) be the pseudodifferential operator with Weyl symbol a0(v, η, ξ).
Then one has

‖e−tP0u− e(t−2)∆xaw0 u‖L∞ ≤ C
e−t

t
n
2

‖u− e−2∆xaw0 u‖L1, (2.18)

for t ≥ 3 and for any u ∈ L1 with e−2∆xu ∈ L1.

Proof. By a direction calculation, one can check that

F−1
x→ξΠ

ξ
0Fx→ξ = e−2∆xaw0 , (2.19)

F−1
x→ξe

−tP̂0(ξ)Πξ
0Fx→ξ = e(t−2)∆xaw0 . (2.20)

aw0 is continuous on L1. In fact, let τ : u(x, v) → u(x+ 2v, v). Then one has

aw0 u(x, v) = 〈ψ0, τu〉L2(Rn
v )(x)ψ0(v),
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where ψ0 =
1

(2π)
n
4
e−

v2

4 is the first eigenfunction of −∆v +
v2

4
. It follows that

‖aw0 u‖L1 ≤
∫

R2n

ψ0(v)|u(x+ 2v, v)|dxdv =
∫

R2n

ψ0(v)|u(y, v)|dydv ≤ ‖u‖L1.

Denote u0 = e−2∆xaw0 u for u ∈ L1 with suppξû compact. Following the proof of Theorem
2.4 with u replaced by u− u0, one has

‖e−tP0(u− u0)‖L∞ ≤ C

∞
∑

k=1

‖e−t(k+ξ2)Πξ
k(û− û0)‖L1

≤ C ′ e−t

(t− 2)
n
2

‖u− u0‖L1, t > 2. (2.21)

Since e−tP0u0 = e(t−2)∆xaw0 u, an argument of density proves the desired result. �

The time-decay of e−tP0 is governed by the first eigenvalue of the harmonic oscillator
in v-variables and propagation of energy due to the transport term v ·∇x. Although this
term is of the first order in ξ, Theorem 2.4 shows that solutions to the free Fokker-Planck
equation decay like those to the heat equation in space variables. A natural question
is to see if results of Theorem 2.4 are still true for the full Fokker-Planck operator with
a potential V (x) such that |∇V (x)| tends to zero sufficiently rapidly. This will be the
subject of the next two Sections.

In order to study the spectral properties of P , we establish here the limiting absorption
principle for the resolvent of P0 and its low-energy asymptotics. Different from the
limiting absorption principle for selfadjopint operators, the problem we want to study
here is pseudospectral in nature, because R+ is located in the interior of the numerical

range of P0. Set R0(z) = (P0−z)−1, R̂0(z) = (P̂0−z)−1 and R̂0(z, ξ) = (P̂0(ξ)−z)−1 for

z 6∈ R+. Then R0(z) = F−1
x→ξR̂0(z)Fx→ξ. Note that R̂0(z) is multiplication in ξ-variables

by R̂0(z, ξ).

Proposition 2.6. Let l ∈ N and l < a < l + 1 be fixed. Take χ ≥ 0 and χ ∈ C∞
0 (Rn

ξ )
with supp χ ⊂ {ξ, |ξ| ≤ a+ 4}, χ(ξ) = 1 when |ξ| ≤ a+ 3 and 0 ≤ χ(ξ) ≤ 1. Then one
has

R̂0(z, ξ) =
l
∑

k=0

χ(ξ)
Πξ

k

ξ2 + k − z
+ rl(z, ξ), (2.22)

for any ξ ∈ Rn and z ∈ C with ℜz < a and ℑz 6= 0. Here rl(z, ξ) is holomorphic in z
with ℜz < a and verifies the estimate

sup
ℜz<a,ξ∈Rn

‖rl(z, ξ)‖L(L2(Rn
v )) <∞. (2.23)
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Proof. Let χ1 = 1− χ. For ℜz < 0, one has

R̂0(z, ξ) =

∫ ∞

0

e−t(P̂0(ξ)−z) dt

=

∫ ∞

0

χ1(ξ)e
−t(P̂0(ξ)−z) dt+

∫ ∞

0

χ(ξ)e−t(P̂0(ξ)−z) dt

, I1(z, ξ) + I2(z, ξ). (2.24)

Since ℜP0(ξ) ≥ 0, it is clear that for each fixed T ,
∫ T

0
χ1(ξ)e

−t(P̂0(ξ)−z) dt is uniformly
bounded in ξ and z with ℜz ≤ a:

‖
∫ T

0

χ1(ξ)e
−t(P̂0(ξ)−z) dt‖B(L2(Rn

v )) ≤ a−1eaT ,

for all ξ ∈ Rn. Corollary A.4 with T = 3 shows that

‖e−t(P̂0(ξ)−z)‖B(L2(Rn
v )) ≤ Ce−t(ξ2−2−e−1−ℜz) (2.25)

for t ≥ 3. Since χ1 is supported in ξ2 ≥ a+ 3, I1(z, ξ) is holomorphic in z with ℜz < a
and verifies the estimate (2.23). To study I2(z, ξ), we write

e−tP̂0(ξ) = J1(t, ξ) + J2(t, ξ),

where Jj(t, ξ) = e−tP̂0(ξ)Sξ
j with Sξ

1 =
∑l

k=0Π
ξ
k and Sξ

2 = 1 − Sξ
1. For ℜz < 0, the

contribution of J1(t, ξ) to R̂0(z, ξ) is
∫ ∞

0

etzJ1(t, ξ)dt =
l
∑

k=0

Πξ
k

ξ2 + k − z
.

By (A.4), one has for t ≥ T > 0

‖J2(t, ξ)‖B(L2(Rn
v ))

≤
∞
∑

k=l+1

e−t(k+ξ2)+2ξ2
k
∑

j=0

Cj
k

j!
(4ξ2)j , J21(t, ξ) + J22(t, ξ) (2.26)

where

J21(t, ξ) = e−ξ2(t−2)

l+1
∑

j=0

(4ξ2)j

j!

∞
∑

k=l+1

Cj
ke

−tk

J22(t, ξ) = e−ξ2(t−2)
∞
∑

j=l+2

(4ξ2)j

j!

∞
∑

k=j

Cj
ke

−tk.

J21(t, ξ) and J22(t, ξ) can be evaluated as in the proof of Proposition A.3 and we omit
the details here. One has

J21(t, ξ) ≤ e−ξ2(t−2)−(l+1)t

l+1
∑

j=0

(4ξ2)jl!

j!(1− e−t)l+1
(2.27)

J22(t, ξ) ≤ Ce−ξ2(t−4)−(l+1)t (2.28)

Since |ξ| is bounded on the support of χ, this implies that there exists some constant
C such that

‖J2(t, ξ)‖B(L2(Rn
v )) ≤ Ce−(l+1)t (2.29)
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uniformly in ξ ∈ suppχ and t ≥ T . We obtain a representation formula for R̂0(z, ξ)
when ℜz < 0:

R̂0(z, ξ) =

l
∑

k=0

χ(ξ)
Πξ

k

ξ2 + k − z
+ rl(z, ξ), (2.30)

where

rl(z, ξ) = I1(z, ξ) +

∫ ∞

0

etzJ2(t, ξ)dt

is holomorphic in z with ℜz < a and verifies the estimate (2.23). Since the both sides of
(2.30) are holomorphic in z ∈ C \R+ with ℜz < a, this representation formula remains
valid for z in this region. �

For r, s ∈ R, introduce the weighted Sobolev space

Hr,s = {u ∈ S ′(R2n); (1 + |Dv|2 + |v|2 + |Dx|
2
3 )

r
2 〈x〉su ∈ L2}.

Denote B(r, s; r′, s′) the space of continuous linear operators from Hr,s to Hr′,s′. Propo-
sition 2.1 shows that (P0 + 1)−1 ∈ B(0, 0; 2, 0). A commutator argument shows that
(P0 + 1)−1 ∈ B(0, s; 2, s) for any s ∈ R.

Corollary 2.7. Set R0(z) = (P0 − z)−1, z 6∈ R+.

(a). Let I be a compact interval in R which does not contain any non negative integer.
Then for any s > 1

2
, one has

sup
λ∈I;ǫ∈]0,1]

‖R0(λ± iǫ)‖B(0,s;2,−s) <∞ (2.31)

The boundary values of the resolvent R0(λ±i0) = limǫ→0+ R0(λ±iǫ) exists in B(0, s; 2,−s)
for λ ∈ I and is continuous in λ.

(b). Assume n ≥ 3. Let I be a compact interval containing some non negative integer.
Then for any s > 1, one has

sup
λ∈I;ǫ∈]0,1]

‖R0(λ± iǫ)‖B(0,s;2,−s) <∞ (2.32)

for any k ∈ N , the limite R0(k± i0) = limz→k,z 6∈R+ R0(z) exists in B(0, s; 2,−s) for any
s > 1. One has R0(0+ i0) = R0(0− i0) and R0(k+ i0)−R0(k− i0) ∈ B(0, s; 2,−s) for
any s > 1

2
if k ≥ 1.

Proof. Proposition 2.6 shows that

R0(z) =
l
∑

k=0

χ(Dx)Π
Dx

k (−∆x + k − z)−1 + rl(z), (2.33)

for z ∈ C with ℜz < a and ℑz 6= 0 and that rl(z) is bounded on L2 and holomorphic in
z with ℜz < a. χ(Dx)Π

Dx

k is a Weyl pseudodifferential operator with nice symbol given
by

bk(v, ξ, η) =

∫

Rn

e−iv′·η/2





∑

|α|=k

χ(ξ)ψα(v + v′ + 2iξ)ψα(v − v′ + 2iξ)



 dv′. (2.34)
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In particular,

b0(v, ξ, η) = 2
n
2 χ(ξ)e−v2−η2+2iv·ξ+2ξ2 . (2.35)

These operators belong to B(r, s; r′, s) for any r, r′, s ∈ R.

Since for any compact interval I ′ ⊂ R, one has

sup
λ∈I′,ǫ∈]0,1]

‖〈x〉−s(−∆x − (λ± iǫ))−1〈x〉−s‖B(L2(Rn
x )) <∞ (2.36)

for any s > 1/2 if I ′ does not contain 0 and for any s > 1 and n ≥ 3 if I ′ contains 0, it
follows from (2.33) that for I ⊂]−∞, a[

sup
λ∈I;ǫ∈]0,1]

‖R0(λ± iǫ)‖B(0,s;0,−s) <∞ (2.37)

for s > 1
2
if I ∩N = ∅ or s > 1 and n ≥ 3 if I ∩N 6= ∅. Estimates (2.31) and (2.32) can

be deduced from (2.37) and the resolvent equation

R0(z) = R0(−1) + (1 + z)R0(−1)R0(z)

by noticing that R0(−1) ∈ B(0, s; 2, s) for any s ∈ R. In fact, Proposition 2.1 shows
that R0(−1) ∈ B(0, 0; 2, 0) and the case for general s follows from an easy commutator
technique. The other assertions of Corollary 2.7 can be proven by making use of the
properties of (−∆x − (λ± i0))−1. �

The formula (2.33) can also be used to study the threshold asymptotics of the resol-
vent R0(z) as z → k, ℑz 6= 0. To be simple, we only consider the threshold zero in the
case n = 3.

Proposition 2.8. Let n = 3. One has the following low-energy resolvent expansion for
R0(z): for s, s′ > 1

2
and s + s′ > 2, there exists ǫ > 0 such that

R0(z) = G0 +O(|z|ǫ), as z → 0, z 6∈ R+, (2.38)

as operators in B(−1, s; 1,−s′). More generally, for any integer N ≥ 1 and s > N + 1
2
,

there exists ǫ > 0

R0(z) =

N
∑

j=0

z
j
2Gj +O(|z|N2 +ǫ), as z → 0, z 6∈ R+, (2.39)

as operators in B(−1, s; 1,−s). Here the branch of z
1
2 is chosen such that its imaginary

part is positive when z 6∈ R+ and Gj ∈ B(−1, s; 1,−s) for s > j+ 1
2
, j ≥ 1. In particular,

G0 = F0 + F1, (2.40)

where F0 is the operator with integral kernel

F0(x, v; x
′, v′) =

ψ0(v)ψ0(v
′)

4π|x− x′| (2.41)

and F1 ∈ B(−1, s; 1,−s′) for any s, s′ ≥ 0 and s + s′ > 3
2
. G1 : H−1,s → H1,−s, s > 3

2
,

is an operator of rank one with integral kernel given by

K1(x, x
′; v, v′) =

i

4π
ψ0(v)ψ0(v

′). (2.42)
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Here ψ0 = (2π)−
3
4 e−

v2

4 is the first eigenfunction of the harmonic oscillator −∆v +
1
4
v2.

Proof. Note that by a complex interpolation, the results on the resolvent R0(z) in
Corollary 2.7 also hold in B(−1, s; 1,−s).

For z 6∈ R+, (2.33) with l = 0 shows that

R0(z) = χ(Dx)Π
Dx

0 (−∆x − z)−1 + r0(z), (2.43)

with r0(z) ∈ B(−1, 0; 1, 0) holomorphic in z when ℜz < a for some a ∈]0, 1[. Here the
cut-off χ(ξ) is chosen such that χ ∈ C∞

0 and χ(ξ) = 1 in a neighbourhood of {|ξ|2 ≤ a}.
Therefore r0(z) admits a convergent expansion in powers of z for z near 0

r0(z) = r0(0) + zr′0(0) + · · ·
in B(−1, 0; 1, 0). It is sufficient to analyze the lower-energy expansion of χ(Dx)Π

Dx

0 (−∆x−
z)−1.

The integral kernel of χ(Dx)Π
Dx

0 (−∆x − z)−1, z 6∈ R+, is given by

K(x, x′; v, v′; z) =

∫

R3

ei
√
z|y−(x−x′)| 1

4π|y − (x− x′)|Φ(v, v
′, y) dy (2.44)

with

Φ(v, v′, y) = (2π)−
9
2 e−

1
4
(v2+v′2)

∫

R3

ei(y−v−v′)·ξ+2ξ2χ(ξ) dξ.

Since χ ∈ C∞
0 , one has the following asymptotic expansion for K(x, x′; v, v′; z) : for any

ǫ ∈ [0, 1] and N ≥ 0

|K(x, x′; v, v′; z)−
N
∑

j=0

z
j

2Kj(x, x
′, v, v′)| ≤ CN,ǫ|z|

N+ǫ
2 |x− x′|N−1+ǫe−

1
4
(v2+v′2)) (2.45)

where

Kj(x, x
′) =

ij

4π

∫

R3

|y − (x− x′)|j−1Φ(v, v′, y)dy. (2.46)

Remark that for N ≥ 1, s′, s > N + 1
2
and 0 < ǫ < min{s, s′} −N − 1

2
,

〈x〉−s〈x′〉−s′|x− x′|N−1+ǫe−
1
4
(v2+v′2) ∈ L2(R12)

and the same is true if N = 0 and s, s′ > 1
2
with s+ s′ > 2. We obtain the asymptotic

expansion for χ(Dx)Π
Dx

0 (−∆x − z)−1 in powers of z
1
2 for z near 0 and z 6∈ R+.

χ(Dx)Π
Dx

0 (−∆x − z)−1 =

N
∑

j=0

z
j

2Kj +O(|z|N2 +ǫ), as (2.47)

as operators in B(0, s′; 0,−s), s′, s > N + 1
2
(and s + s′ > 2 if N = 0). By the

hypoelltpticity of P0 (Proposition 2.1), this expansion still holds in B(−1, s′; 1,−s).
This proves (2.39) with

G2j = K2j +
r
(j)
0 (0)

j!
, G2j+1 = K2j+1, j ≥ 0. (2.48)
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To show (2.40) and (2.8), note that since χ(0) = 1, one has
∫

R3

Φ(v, v′, y) dy = χ(0)ψ0(v)ψ0(v
′) = ψ0(v)ψ0(v

′).

One can then calculate that

K0(x, x
′, v, v′) =

1

4π

∫

R3

Φ(v, v′, y)
1

|y − (x− x′)|dy

=
1

4π|x− x′|ψ0(v)ψ0(v
′) (2.49)

+
1

4π

∫

R3

Φ(v, v′, y)(
1

|y − (x− x′)| −
1

|x− x′|)dy

and

K1(x, x
′, v, v′) =

i

4π

∫

R3

Φ(v, v′, y)dy =
i

4π
ψ0(v)ψ0(v

′). (2.50)

This shows (2.8) and that G0 = F0+F1 with F1 = K0,1+ r0(0), K0,1 being the operator
with the integral kernel

K0,1(x, x
′, v, v′) =

1

4π

∫

R3

Φ(v, v′, y)(
1

|y − (x− x′)| −
1

|x− x′|)dy.

K0,1(x, x
′, v, v′) is a smooth function and for |x− x′| large one has

K0,1(x, x
′, v, v′) = O(ψ0(v)ψ0(v

′)|x− x′|−2).

Therefore K0,1 is bounded in B(−1, s; 1,−s′) for any s, s′ ≥ 0 and s + s′ > 3
2
. This

proves that F1 = K0,1 + r0(0) has the same continuity property. �

Note that the numerical range of P0 is equal to the right-half complexe plane. The
following high-energy pseudo-spectral estimate of the resolvent is of interest in itself.

Proposition 2.9. Let n ≥ 1. Then for every δ > 0, there exists M > 0 such that

‖R0(z)‖ ≤ M

|z| 13
, (2.51)

and

‖(1−∆v + v2)
1
2R0(z)‖ ≤ M

|z| 16
, (2.52)

for |ℑz| > δ and ℜz ≤ 1
M
|ℑz| 13 .

Proof. We firstly prove that for some constant C > 0

‖R0(z)‖ ≤ C

|z| 13
, (2.53)

for z = −n
2
+ iµ with µ ∈ R. It suffices to show that

‖R̂0(−
n

2
+ iµ, ξ)‖B(L2(Rn

v )) ≤
C

|z| 13
, (2.54)

uniformly in ξ. Proposition 2.1 shows that for some C1 > 0

(|ξ| 23 − C1(|z|+ 1))‖u‖ ≤ C1‖(P̂0(ξ)− z)u‖, u ∈ D.
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which gives

‖R̂0(z, ξ)‖B(L2
v)
≤ C1

1 + |z| , (2.55)

if |ξ| ≥ [(C1 + 1)(|z|+ 1)]
3
2 . Making use of the resolvent equation

R̂0(z, ξ) = R̂0(z, 0)− R̂0(z, ξ)iv · ξR̂0(z, 0)

and the estimates ‖R̂0(z, 0)‖ ≤ 1
|ℑz| and ‖v · ξR̂0(z, 0)‖ ≤ C′|ξ|√

|ℑz|
, ℑz 6= 0, one obtains

‖R̂0(z, ξ)‖B(L2
v) ≤

C

|ℑz| , (2.56)

if |ξ| ≤ c1
√

|z| for some c1 > 0. For c|z| 12 ≤ |ξ| ≤ c−1|z| 32 with c > 0 small enough, since
we are concerned with the estimates with |z| large, we can use a rescaling to reduce to

a semiclassical problem. Set A(h) = −h2∆v +
v2

4
+ iv1. Then

‖R̂0(z, ξ)‖ = |ξ|−2‖(A(h)− z′)−1‖

where h = |ξ|−2 and z′ = |ξ|−2(n
2
+ z). According to Theorem 1.4 of [5], one has

‖(A(h)− z′)−1‖ ≤ Ch−
2
3 , (2.57)

if 0 < h ≤ h0, |z′| ≤ C and ℜz′ ≤ |ℑz′|2
4

. In particular, for z = −n
2
+ iµ with µ real, one

has

‖R̂0(z, ξ)‖ ≤ C ′h
1
3 ≤ C ′′|z|− 1

3 , (2.58)

for c|z| 12 ≤ |ξ| ≤ c−1|z| 32 . This proves (2.53). Now to prove (2.51), set z = λ + iµ with
λ, µ ∈ R and write

R0(λ+ iµ) = R0(−
n

2
+ iµ)− (λ+

n

2
)R0(−

n

2
+ iµ)R0(λ+ iµ).

According to (2.53),

‖(λ+
n

2
)R0(−

n

2
+ iµ)‖ ≤ C|λ+ n

2
|

|z| 13
≤ 1

2

if |λ| ≤ 1
M
|µ| 13 and |µ| ≥ M for some M > 1 large enough. (2.51) follows from (2.53)

and the equation R0(λ+ iµ) = (1+(λ+ n
2
)R0(−n

2
+ iµ))−1R0(−n

2
+ iµ) when |λ| 1

M
|ℑz| 13

with M > 0 sufficiently large. The estimate (2.51) for λ < − 1
M
|ℑz| 13 follows from the

accretivity of P0

To show (2.52), notice that for z = λ+ iµ with λ, µ ∈ R, one has the identity

‖∇vu‖2 +
1

4
‖|v|u‖2 = (λ+

n

2
)‖u‖2 + ℜ〈(P0 − z)u, u〉
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for u ∈ D. One obtains from (2.51) that

‖∇vR0(z)u‖2 +
1

4
‖|v|R0(z)u‖2

≤ |λ+ n

2
|‖R0(z)u‖2 + ‖u‖‖R0(z)u‖

≤ C(
|λ|
|z| 23

+
1

|z| 13
)‖u‖2

for |ℑz| > M and ℜz ≤ 1
M
|ℑz| 13 . (2.52) is proven. �

From Propositions 2.8 and 2.9, we deduce the following

Corollary 2.10. Let n = 3. Let S0(t), t ≥ 0, denote the semigroup generated by −P0.
Then for any integer N ≥ 1 and s > N + 1

2
, the following asymptotic expansion holds

for some ǫ > 0

e−tP0 =
∑

k∈N,2k+1≤N

t−
2k+3

2 βkG2k+1 +O(t−
N+2
2

−ǫ), t→ +∞, (2.59)

in B(0, s, 0s). Here βk is some non zero constant. In particular, β1G1 is a rank-one
operator given by

β1G1 =
1

8π
3
2

〈1⊗ ψ0, ·〉m0 : L2,s → L2,−s (2.60)

for any s > 3
2
. Here m0(x, v) = 1⊗ ψ0(v).

The proof of Corollary 2.10 uses a representation of the semigroup as contour integral
of the resolvent in the right half complex plane. See Section 5 for more details in the
case V 6= 0. In Section 4, we will prove a similar result or the full KFP operator P (cF
(1.12)). In the final step of its proof, we need the following Proposition 2.12 to compute
the leading term. As a preparation for its proof, we first establish some formulai on the
evolution of observables which may be of interest in themselves.

Lemma 2.11. For t ≥ 0 and 0 ≤ s ≤ t, one has the following equalities as operators
from S(R2n

x,v) to L
2(R2n

x,v), n ≥ 1.

e−(t−s)P0vje
−sP0 = e−tP0(vj cosh s− 2 sinh s∂vj + 2(cosh s− 1)∂xj

) (2.61)

e−(t−s)P0∂vje
−sP0 = −1

2
e−tP0((vj sinh s− 2 cosh s∂vj + 2 sinh s∂xj

)) (2.62)

e−(t−s)P0xje
−sP0 = e−tP0(xj + vj sinh s− 2(cosh s− 1)∂vj

+2(sinh s− s)∂xj
) (2.63)

Proof. Let f(s) = e−(t−s)P0vje
−sP0. Proposition 2.1 shows that for u ∈ S, Ake−tP0u ∈

L2 for any k ∈ N, where A may be any one of the operators vj, ∂vj , ∂xj
. As operators

from S to L2, one has:

f ′(s) = e−(t−s)P0 [P0, vj ]e
−sP0 = −2e−(t−s)P0∂vje

−sP0 (2.64)

f ′′(s) = −2e−(t−s)P0 [
v2

4
+ v · ∂x, ∂vj ]e−sP0 = f(s) + 2∂xj

e−tP0 (2.65)
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This shows that f(s) = C1e
s + C2e

−s − 2∂xj
e−tP0 . C1, C2 can be determined by the

initial data f(0) = e−tP0vj and f
′(0) = −2e−tP0∂vj :

C1 = e−tP0(
1

2
vj − ∂vj + ∂xj

), C2 = e−tP0(
1

2
vj + ∂vj + ∂xj

).

This proves (2.61). (2.62) follows from (2.61) and the equality

e−(t−s)P0∂vje
−sP0 = −1

2
f ′(s).

To prove (2.63), one can check the following commutator relation:

[e−tP0 , xj] = −
∫ t

0

e(t−s)P0vje
−sP0ds (2.66)

= −e−tP0
(

vj sinh t− 2(cosh t− 1)∂vj + 2(sinh t− t)∂xj

)

.

This means that the commutator initiall defined as forms on S×S extends to operators
from S to L2 and the equality (2.66) holds. A successive application of this commutator
relation shows that if u ∈ S, then 〈x〉se−tP0u ∈ L2 for any s. It follows from (2.61) that

e−(t−s)P0xje
−sP0 = e−tP0xj +

∫ s

0

e−(t−τ)P0vje
−τP0 dτ

= e−tP0(xj + vj sinh s− 2(cosh s− 1)∂vj + 2(sinh s− s)∂xj
).

This proves (2.63) �

Proposition 2.12. Assume that u ∈ L2,−s for some 3
2
< s < 2 such that there exists

some constant c0 and ψ ∈ L2
v with (−∆v + v2)ψ ∈ L2

v such that

u(x, v)− c0(1⊗ ψ) ∈ L2,δ(R6
x,v)

for some δ > 0. Then on has

lim
λ→0−

λR0(λ)u = −c0〈ψ0, ψ〉L2
v
m0 (2.67)

in L2,−s for any s > 3
2
.

Proof. For λ < 0, R0(λ) maps L2,−s to L2,−s for any s and one has

‖R0(λ)‖B(0,0;0,0) ≤
C

|λ| , ‖R0(λ)‖B(0,s′;0,−s) ≤ Cs,s′

if s, s′ > 1
2
with s + s′ > 2, uniformly in λ ∈] − 1, 0[. An argument of complex

interpolation shows that for any s, s′ > 0, there exists ǫ > 0 such that

‖R0(λ)‖B(0,s′;0,−s) ≤ C|λ|−1+ǫ. (2.68)

This shows that

λR0(λ)(u− c0(1⊗ ψ)) = o(1), as λ→ 0−

in L2,−s for any s > 0. To prove Proposition 2.12, it suffices to study the limit
limλ→0− λR0(λ)(1 ⊗ ψ). By Proposition 2.6, the resolvent R0(λ) can be decomposed
as

R0(λ) = χ(Dx)Π
Dx

0 (−∆x − λ)−1 + r0(λ) (2.69)
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where χ is a smooth cut-off around 0 with compact support and r0(λ) is uniformly
bounded as operators in L2 for λ < a for some a ∈]0, 1[.

We claim that the following estimate holds uniformly in λ < a:

‖〈x〉−2r0(λ)〈x〉2f‖ ≤ C(‖f‖+ ‖H0f‖) (2.70)

for any f ∈ D(H0), whereH0 = −∆v+v
2−∆x. Remark that r0(λ) is a pseudodifferential

operator in x-variables: r0(λ) = r0(λ,Dx), with operator-valued symbol r0(λ, ξ) ∈ B(L2
v)

(see (2.30)). The proof of Proposition 2.6 shows that r0(λ, ξ) can be decomposed as

r0(λ, ξ) = r0,1(λ, ξ) + r0,2(λ, ξ)

with

r0,1(λ, ξ) =

∫ T

0

χ1(ξ)e
−t(P̂0(ξ)−λ)dt

for some fixed T ≥ 3 and r0,2(λ, ξ) is smooth and rapidly decreasing in ξ, uniformly for
λ < a (see (2.25), (2.27) and (2.28)). Since r0,2(λ,Dx) is a convolution in x-variables
with a smooth and rapidly decreasing kernel, one has 〈x〉−sr0,2(λ,Dx)〈x〉s is uniformly
bounded for any s. To study r0,1(λ,Dx), we use commutator techniques. One writes

〈x〉−2r0,1(λ,Dx)x
2 = 〈x〉−2

(

x2r0,1(λ,Dx) +

n
∑

j=1

[ [r0,1(λ,Dx), xj], xj ]

)

.

Making use of (2.66), one can calculate

[r0,1(λ,Dx), xj]

= −i(∂ξjχ1)(Dx)

∫ T

0

e−t(P̂0(ξ)−λ)dt+ χ1(Dx)

∫ T

0

[e−t(P̂0(ξ)−λ), xj ]dt

= −i(∂ξjχ1)(Dx)

∫ T

0

e−t(P̂0(ξ)−λ)dt (2.71)

+χ1(Dx)

∫ T

0

e−t(P0−λ)(vj sinh t− 2(cosh t− 1)∂vj + 2(sinh t− t)∂xj
)dt

Since P0 is accretive, one obtains

‖[r0,1(λ,Dx), xj]f‖ ≤ C(‖f‖+ ‖vjf‖+ ‖∂vjf‖+ ‖∂xj
f‖), f ∈ S.

Similarly, one can check that the second commutator [ [r0,1(λ,Dx), xj ], xj ] verifies

‖[ [r0,1(λ,Dx), xj], xj ]f‖ ≤ C(‖f‖+ ‖H0f‖).
This proves that

‖〈x〉−2r0,1(λ)〈x〉2f‖ ≤ C(‖f‖+ ‖H0f‖) (2.72)

for any f ∈ D(H0), which gives (2.70). It follows from (2.70) and the uniform bound-
edness of ‖r0(λ)‖ that for any s ∈ [0, 2]

‖〈x〉−sr0(λ)〈x〉sf‖ ≤ C(‖f‖+ ‖H0f‖), (2.73)

Since 1⊗ ψ = 〈x〉sfs with fs ∈ D(H0) for any s >
3
2
, it follows that

λr0(λ)(1⊗ ψ) = O(|λ|) (2.74)
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in L2,−s for any s > 3
2
.

Finally we calculate λχ(Dx)Π
Dx

0 (−∆x − λ)−1(1⊗ ψ) which is independent of λ < 0.
In fact, according to (2.44) one has for λ < 0

λχ(Dx)Π
Dx

0 (−∆x − λ)−1(1⊗ ψ) (2.75)

=

∫

R9

λe−
√

|λ||y−(x−x′)|

4π|y − (x− x′)|Φ(v, v
′, y)ψ(v′) dydx′dv′

=

∫

R3

λe−
√

|λ||x′|

4π|x′| dx′
∫

R6

Φ(v, v′, y)ψ(v′) dydv′

= −
∫

R3
v′

(

∫

R3

Φ(v, v′, y) dy)ψ(v′) dv′

= −χ(0)〈ψ0, ψ〉L2
v
ψ0(v) = −〈ψ0, ψ〉L2

v
ψ0(v).

This finishes the proof of Proposition 2.12. �

3. Threshold spectral properties of the Kramers-Fokker-Planck

operator

Consider the Kramers-Fokker-Planck operator P = v·∇x−∇xV (x)·∇v−∆v+
1
4
|v|2−n

2

with a C1 potential V (x) satisfying

|∇xV (x)| ≤ C〈x〉−ρ−1, x ∈ R
n, (3.1)

for some ρ ≥ −1. In fact, it is sufficient to suppose that V (x) is a Lipschitz function
satisfying (3.1) about everywhere and one can even include some mild local singularities
in ∇V (x), by using hypoellipiticiy of the operator. But we will not care about such
conditions. P defined on D(P ) = D(P0) is maximally dissipative. By Proposition
2.1, if ρ > −1, ∇xV (x) · ∇v is relatively compact with respect to P0. Consequently,
the spectrum of P is discrete outside R+ and the complex eigenvalues of P may only
accumulate towards points in R+. The thresholds of P are the eigenvalues of −∆v +
1
4
|v|2 − n

2
which are equal to N. To be simple, we study only the threshold zero in

dimension n = 3.
Denote W = −∇xV (x) · ∇v. One has W ∗ = −W and

(P − z)R0(z) = 1 +R0(z)W = 1 +G0W +O(|z|ǫ), ǫ > 0,

in B(0,−s; 0,−s) for 1 < s < (1 + ρ)/2 and z near 0 and z 6∈ R+.

Lemma 3.1. Assume n = 3 and (3.1) with ρ > 1 (i.e., the potential is of short-range).
G0W is a compact operator on H1,−s for 1 < s < (1 + ρ)/2. and

kerL2,−s(1 +G0W ) = {0}. (3.2)

Proof. For 1 < s < (1 + ρ)/2, take 1 < s′ < s. Proposition 2.8 (and the arguments
used in the proof of Corollary 2.7) shows that G0W ∈ B(0,−s; 1,−s′). The injection
H1,−s′ into L2,−s is compact. Therefore G0W is a compact operator on L2,−s. Let u ∈
L2,−s with u+G0Wu = 0. Then one can check that u ∈ H2,−s and Pu = 0. According
to (2.40) u = −F0Wu − F1Wu. Since Wu ∈ H−1,ρ+1−s and F0 ∈ B(−1, s; 1,−s′) for
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any s, s′ > 1
2
and s + s′ > 2, il follows that u is in fact in H2,−s for any s > 1

2
and

consequently F1Wu ∈ L2. By (2.41), one can calculate the asymptotic behavior of
u(x, v) for |x| large and deduces that

u(x, v) = w(x, v) + r(x, v), (3.3)

where 〈v〉2r ∈ L2(R6
x,v) and w(x, v) = C(u) e

−
v2

4

|x| with

C(u) =

∫ ∫

R6

e−
v2

4

2(2π)
5
2

∇xV (x) · ∇vu(x, v) dxdx. (3.4)

Let χ ∈ C∞
0 (R) be a cut-off with χ(τ) = 1 for |τ | ≤ 1 and χ(τ) = 0 for |τ | ≥ 2 and

0 ≤ χ(τ) ≤ 1. Set χR(x) = χ( |x|
R
), R > 1 and x ∈ R3 and uR(x) = χR(x)u(x, v). Then

one has

PuR =
v · x̂
R

χ′(
|x|
R

)u.

Taking the real part of the equality 〈PuR, uR〉 = 〈 v·x̂
R
χ′( |x|

R
)u, uR〉, one obtains

∫ ∫

R6

|(∂v +
v

2
)u(x, v)|2χ( |x|

R
)2 dxdv = 〈v · x̂

R
χ′(

|x|
R

)u, uR〉 (3.5)

Since w is even in v, one has

〈v · x̂
R

χ′(
|x|
R

)w, χRw〉 = 0

and the right hand side of the equality (3.5)

|〈v · x̂
R

χ′(
|x|
R

)u, uR〉| (3.6)

= |2ℜ〈v · x̂
R

χ′(
|x|
R

)w, χRr〉+ 〈v · x̂
R

χ′(
|x|
R

)r, χRr〉|

≤ CR−(1−s)(‖w‖L2,−s + ‖r‖L2)‖〈v〉r‖L2

for some 1
2
< s < 1. Taking the limit R → +∞ in (3.5), one obtains that (∂v +

v
2
)u(x, v) ∈ L2 and

∫ ∫

R6

|(∂v +
v

2
)u(x, v)|2 dxdv = 0. (3.7)

This shows that (∂v +
v
2
)u(x, v) = 0, a.e. in x, v. Since u ∈ L2,−s for any s > 1

2
, one sees

that u is of the form u(x, v) = C(x)e−
v2

4 for some C ∈ L2,−s(R3
x) verifying the equation

v · ∇xC(x) +
1

2
v · ∇V (x)C(x) = 0 (3.8)

a.e. in x for all v ∈ R3. This proves that C(x) = c0e
−V (x)

2 a.e. for some constant c0 and

u(x, v) = c0e
− 1

2
( v

2

2
+V (x)).

Since u ∈ L2,−s for any s > 1
2
and V (x) is bounded, one deduces that c0 = 0. This

proves that u = 0 and kerL2,−s(1 +G0W ) = {0}. �

Lemma 3.1 shows that 0 is neither eigenvalue nor resonance of P . This makes easier
the zero-threshold spectral analysis for Kramers-Fokker-Planck operators.
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Theorem 3.2. Assume n = 3 and ρ > 1. Then zero is not an accumulation point of
the eigenvalues of P and one has for any s, s′ > 1

2
with s+ s′ > 2, ∃ǫ > 0 such that

R(z) = A0 +O(|z|ǫ), z → 0, z 6∈ R+, (3.9)

in B(−1, s; 1,−s′), where
A0 = (1 +G0W )−1G0. (3.10)

There exists δ > 0 such that boundary values of the resolvent

R(λ± i0) = lim
ǫ→0+

R(λ± iǫ), λ ∈]0, δ]

exist in B(−1, s; 1,−s) for any s > 1
2
and is continuous in λ.

Proof. Remark that G0 ∈ B(−1, s; 1,−s′) for any s, s′ > 1
2
and s + s′ > 2. Lemma

3.1 implies that kerH1,−s(1 + G0W ) = {0} and G0W is compact on H1,−s for 1 < s <
(1 + ρ)/2. Therefore 1 +G0W is invertible on H1,−s with bounded inverse. This shows
that 1 +R0(z)W is invertible on H1,−s for |z| small and z 6∈ R+ and that

(1 +R0(z)W )−1 = (1 +G0W )−1 +O(|z|ǫ), as |z| → 0, z 6∈ R+. (3.11)

Since R0(z)(P − z) = 1 +R0(z)W , this shows that P has no eigenvalues for |z| < δ for
some δ > 0 small enough and that

R(z) = (1 +R0(z)W )−1R0(z) = A0 + O(|z|ǫ), z 6∈ R+, (3.12)

with A0 = (1 + G0W )−1G0. The existence of R(λ± i0) for 0 < λ < δ follows from the
first equality in (3.12). �

Theorem 3.3. Assume n = 3 and ρ > 2. Then for any s > 3
2
, there exists ǫ > 0 such

that
R(z) = A0 + z

1
2A1 +O(|z| 12+ǫ), (3.13)

in B(−1, s; 1,−s) for |z| small and z 6∈ R+, where A1 is an operator of rank one given
by

A1 = (1 +G0W )−1G1(1−WA0). (3.14)

Proof. For s > 3
2
, one has

R0(z) = G0 + z
1
2G1 +O(|z| 12+ǫ)

in B(−1, s; 1,−s). If ρ > 2, one has W ∈ B(0,−r; 1, ρ+ 1 − r). Therefore for 3
2
< s <

(ρ+ 1)/2, it

R0(z)W − (G0 + z
1
2G1)W = O(|z| 12+ǫ)

in B(0,−s; 0,−s). Since B0 , (1 +G0W )−1 ∈ B(0,−s; 0,−s), it follows that
(1 +R0(z)W )−1 = B0 − z

1
2B0G1WB0 +O(|z| 12+ǫ).

From the resolvent equation R(z) = (1 +R0(z)W )−1R0(z), we obtain that

R(z) = B0G0 + z
1
2B0G1(1−WB0G0) +O(|z| 12+ǫ)

in B(0, s; 0,−s). An argument of hypoellticity shows that the same asymptics holds in
B(−1, s; 1,−s). Remark that A1 = B0G1(1 −WB0G0) is a rank one operator, because
G1 is of rank one. �
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4. Large-time behaviors of solutions

The large-time behaviors of solutions to the KFP equation with a potential will be
deduced from resolvent asumptotics. To establish a useful representation formula for
the semigroup S(t) = e−tP in terms of the resolvent, we need the following high energy
pseudospectral estimate.

Theorem 4.1. Let n ≥ 1 and assume (3.1) with ρ ≥ −1. Then there exists C > 0 such

that σ(P ) ∩ {z; |ℑz| > C,ℜz ≤ 1
C
|ℑz| 13} = ∅ and

‖R(z)‖ ≤ C

|z| 13
, (4.1)

and

‖(1−∆v + v2)
1
2R(z)‖ ≤ C

|z| 16
, (4.2)

for |ℑz| > C and ℜz ≤ 1
C
|ℑz| 13 .

Proof. LetW = −∇xV (x) ·∇v. (2.52) shows that ‖WR0(z)‖+‖R0(z)W‖ = O(|z|− 1
6 )

for z in the region {z; |ℑz| > M,ℜz ≤ 1
M
|ℑz| 13}. Therefore (1+R0(z)W )−1 exists and is

uniformly bounded if {z; |ℑz| > M,ℜz ≤ 1
M
|ℑz| 13} with M sufficiently large. Theorem

4.1 follows from Proposition 2.9 and the resolvent equation R(z) = (1+R0(z)W )−1R0(z)

for |ℑz| > C and ℜz ≤ 1
C
|ℑz| 13 with C ≥M sufficiently large. �

Lemma 4.2. Let n ≥ 1 and assume (3.1) with ρ ≥ −1. Then

S(t)f =
1

2πi

∫

γ

e−tzR(z)fdz (4.3)

for f ∈ L2 and t > 0, where the contour γ is chosen such that

γ = γ− ∪ γ0 ∪ γ+
with γ± = {z; z = ±iC + λ ± iCλ3, λ ≥ 0} and γ0 is a curve in the left-half complexe
plane joining −iC and iC for some C > 0 sufficiently large, γ being oriented from −i∞
to +i∞.

Proof. The spectrum of P is void in the left side of γ. By Theorem 4.1, for C > 0
sufficiently large, γ is contained in the resolvent set of P and

‖R(z)‖ ≤ C

|z| 13
, z ∈ γ.

Therefore, the integral S̃(t) = 1
2πi

∫

γ
e−tzR(z)dz is norm convergent. In addition, one

can check as in the standard case (see, for example, [13]) that S̃ ′(t)f = −P S̃(t)f for
f ∈ D(P0) and that limt→0+ S̃(t) = I strongly. The uniqueness of solution to the

evolution equation u′(t) + Pu(t) = 0 for t > 0 and u(0) = u0 implies that S̃(t) = S(t),
t > 0. �

Corollary 4.3. Assume that n = 3 and ρ > 1. One has

〈S(t)f, g〉 = 1

2πi

∫

Γ

e−tz〈R(z)f, g〉dz, t > 0, (4.4)
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for any f, g ∈ L2,s, s > 1. Here

Γ = Γ− ∪ Γ0 ∪ Γ+

with Γ± = {z; z = δ + λ ± iδ−1λ3, λ ≥ 0} for δ > 0 small enough and Γ0 = {z =
λ± i0;λ ∈ [0, δ]}. Γ is oriented from −i∞ to +i∞.

Proof. P has no eigenvalues with real part equal to zero (see the arguments used
in the proof of Lemma 3.1) and their only possible accumulation points are in R+. If
n = 3 and ρ > 1, Theorem 3.2 and Theorem 4.1 imply that there exists some δ0 > 0
such that

σp(P ) ∩ {z;ℜz ≤ δ0} = ∅. (4.5)

Consequently if 0 < δ < δ0 is small enough, there is no spectrum of P in the interior
of the region between γ and Γ and the resolvent is holomorphic there. In addition, the
limiting absorption principles at low energies ensure that the integral

∫

Γ

e−tz〈R(z)f, g〉dz, t > 0,

is convergent for any f, g ∈ L2,s with s > 1. By analytic deformation, we conclude from
(4.1) that

〈S(t)f, g〉 = 1

2πi

∫

γ

e−tz〈R(z)f, g〉dz = 1

2πi

∫

Γ

e−tz〈R(z)f, g〉dz, t > 0,

for any f, g ∈ L2,s with s > 1. �

The formula (4.4) is useful for studying the time-decay of solutions to the Fokker-
Planck equation with a short-range potential (ρ > 1).

Theorem 4.4. Assume n = 3.

(a). If ρ > 1, one has for any s > 3
2

‖S(t)‖B(0,s;0,−s) ≤ Cst
− 3

2 , t > 0. (4.6)

(b). If ρ > 2, then for any s > 3
2
, there exists some ǫ > 0 such that

S(t) = t−
3
2B1 +O(t−

3
2
−ǫ) (4.7)

in B(0, s; 0,−s) as t→ +∞, where

B1 =
1

2i
√
π
A1 (4.8)

is an operator of rank one.
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Proof. Assume that n = 3 and ρ > 1. By Corollary 4.3, one has for f, g ∈ L2,s with
s > 1 and for t > 0

〈S(t)f, g〉 =
1

2πi

∫ δ

0

e−tλ〈(R(λ+ i0)− R(λ− i0))f, g〉dλ

+
e−tδ

2πi

∫ ∞

0

e−t(λ+iδ−1λ3)〈R(δ + λ+ iδ−1λ3)f, g〉(1 + 3iδ−1λ2)dλ (4.9)

− e−tδ

2πi

∫ ∞

0

e−t(λ−iδ−1λ3)〈R(δ + λ− iδ−1λ3)f, g〉(1− 3iδ−1λ2)dλ

, I1 + I2 + I3.

For I2 and I3, one can apply Theorem 4.1 to estimate

|〈R(δ + λ± iδ−1λ3)f, g〉| ≤ CM‖f‖H−1,s‖g‖H−1,s

for s > 1
2
and λ ∈]0,M ] for each fixed M > 0 and

|〈R(δ + λ± iδ−1λ3)f, g〉| ≤ CMλ
− 1

3‖f‖L2‖g‖L2

for λ > M with M > 1 sufficiently large. Therefore, if ρ > 1

|Ik| ≤ Ce−tδ‖f‖H0,s‖g‖H0,s (4.10)

for k = 2, 3 and for any s > 1
2
.

To show (4.6), it remains to prove that if ρ > 1 and n = 3, one has

|
∫

Γ0

e−tz〈R(z)f, g〉dz| ≤ Ct−
3
2‖f‖L2,s‖g‖L2,s (4.11)

for any f, g ∈ L2,s, s > 3
2
. For 1 < s < (ρ+ 1)/2, one has for some ǫ0 > 0

W (R0(z)−G0) = O(|z|ǫ0), in B(0, s; 0, s)
for z near 0 and z 6∈ R+. By Lemma 3.1, 1 +WG0 is invertible in B(0, s; 0, s) for any
1 < s < (ρ+ 1)/2. One obtains

R(z) = R0(z)(1 +WR0(z))
−1 =

N
∑

j=0

R0(z)T (z)
j(1 +WG0)

−1 +O(|z|(N+1)ǫ0) (4.12)

in B(0, s; 0, s) with s > 1, where N is taken such that (N + 1)ǫ0 >
1
2
and

T (z) = (1 +WG0)
−1W (R0(z)−G0). (4.13)

Consequently

|
∫

Γ0

e−tz〈(R(z)− R0(z)
N
∑

j=0

T (z)j(1 +WG0)
−1)f, g〉dz| ≤ Ct−

3
2
−ǫ‖f‖L2,s‖g‖L2,s, ǫ > 0,

(4.14)
if s > 1. (4.11) follows from the following lemma which achieves the proof of (4.6). �
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Lemma 4.5. For each j ≥ 0 and 3
2
< s < ρ+ 1

2
, there exists some C > 0 such that

|
∫

Γ0

e−tz〈R0(z)T (z)
j(1 +WG0)

−1f, g〉dz| ≤ Ct−
3
2‖f‖L2,s‖g‖L2,s (4.15)

for any f, g ∈ L2,s and t > 0.

Proof. We want to show that

|〈(R0(z)T (z)
j − R0(z)T (z)

j)(1 +WG0)
−1f, g〉| ≤ C

√
λ‖f‖L2,s‖g‖L2,s (4.16)

for z = λ + i0 with λ ∈ [0, δ] and for f, g ∈ L2,s with 3
2
< s < ρ + 1

2
. Recall that

R0(z) = bw0 (v,Dx, Dv)(−∆x−z)−1+r1(z) with r1(z) a bounded operator-valued function
holomorphic in z when ℜz < 1 (see (2.43)). In particular,

R0(z)− R0(z̄) = bw(v,Dx, Dv)((−∆x − z)−1 − (−∆x − z̄)−1) (4.17)

for z = λ + i0 with λ ∈ [0, δ], 0 < δ < 1. Making use of the explicit formula for the
integral kernel of (−∆x − z)−1, one obtains

R0(z)− R0(z̄) = O(
√
λ), λ ∈ [0, δ] (4.18)

in B(−1, s; 1,−s) for any s > 3
2
. By Proposition 2.8, R0(z) is uniformly bounded in

B(−1, s; 1,−s′) for s, s′ > 1
2
and s + s′ > 2. It follows that WG0 and (1 +WG0)

−1

belongs to B(0, s; 0, s) and T (z) = O(|z|ǫ0) in B(0, s; 0, s) for any 1
2
< s < ρ+ 1

2
. Notice

that for any 3
2
< s < ρ+ 1

2
,

T (z)− T (z̄) = (1 +WG0)
−1W (R0(z)− R0(z̄)) = O(

√
λ)

in B(0, s; 0, s) for z = λ+ i0. Since

R0(z)T (z)
j −R0(z)T (z)

j (4.19)

= (R0(z)−R0(z̄))T (z)
j +R0(z)(T (z)− T (z))

j−1
∑

k=0

T (z)kT (z)j−k−1

one can estimate |〈(R0(z)T (z)
j − R0(z)T (z)

j)(1 +WG0)
−1f, g〉| by

|〈(R0(z)T (z)
j − R0(z)T (z)

j)(1 +WG0)
−1f, g〉|

≤ C{‖(R0(z)−R0(z̄))‖B(0,s; 0,−s)‖T (z)‖jB(0,s; 0,s) (4.20)

+‖R0(z)‖B(0,s; 0,−s)‖(T (z)− T (z))‖B(0,s; 0,s)‖T (z)‖j−1
B(0,s; 0,s)}‖f‖L2,s‖g‖L2,s

≤ C
√
λ‖f‖L2,s‖g‖L2,s

for 3
2
< s < ρ+ 1

2
. This proves (4.16) which implies (4.15). (4.6) is proven.

Assume now ρ > 2. Theorem 3.3 gives that if ρ > 2,

R(z) = A0 +
√
zA1 +O(|z| 12+ǫ), z → 0, z 6∈ R+, (4.21)

in B(−1, s; 1,−s), s > 3
2
. According to (4.21), I1 can be evaluated by

I1 =
1

πi

∫ δ

0

e−tλ〈(
√
λA1 +O(λ

1
2
+ǫ))f, g〉dλ
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and

|I1 −
1

t
3
2

〈B1f, g〉| ≤ Ct−( 3
2
+ǫ)‖f‖H−1,s‖g‖H−1,s (4.22)

with

B1 =
1

πi
A1

∫ ∞

0

e−s
√
s ds =

1

2i
√
π
A1. (4.23)

This proves (4.7). �

Proof of Theorem 1.1. Part (a) of Theorem 1.1 is Theorem 4.1, Part(b) is contained
in Theorem 3.2 and Theorem 4.4 (a). See Theorem 4.4 (b), to prove Theorem 1.1 (c),
it remains to calculate B1 given in Theorem 4.4.

For u ∈ L2,s with s > 3
2
, one can write

B1u =
1

8π
3
2

〈m0, (1−WA0)u〉(1 +G0W )−1
m0 (4.24)

=
1

8π
3
2

〈(1−WA0)
∗
m0, u〉(1 +G0W )−1

m0

=
1

8π
3
2

〈ν0, u〉µ0

where

µ0 = (1 + G0W )−1
m0, ν0 = (1−WA0)

∗
m0. (4.25)

Since m0 ∈ L2,−s for any s > 3
2
and (1+G0W )−1 ∈ B(0,−s; 0,−s), G0W and (WA0)

∗ ∈
B(0,−s, ; 0,−s′) for any s′ > 1

2
and 3

2
< s < ρ+1

2
(if ρ > 2), ν0, µ0 belong to L2,−s for

any s > 3
2
. In addition, µ0 satisfies the equation

lim
z→0,z 6∈R+

(1 +R0(z)W )µ0 = (1 +G0W )µ0 = m0

in L2,−s. It follows that

Pµ0 = P0m0 = 0. (4.26)

Similarly, since A0 = limz→0,z 6∈R+ R(z) in B(−1, s; 1,−s′) for any s, s′ > 1
2
with s+s′ > 2

and (1−WA0)
∗ = 1 + A∗

0W (W being skew-adjoint), one can check that

P ∗ν0 = (P0 +W )∗ +W )m0 (4.27)

= P ∗
0m0 = 0.

To prove that µ0 = m, we remark that the solution of the equation (1+G0W )µ = m0

is unique in L2,−s for any s > 3
2
. Therefore it suffices to check that m also verifies the

equation (1 + G0W )m = m0. To show this, we notice that since (P0 +W )m = 0, one
has for λ < 0

(1 +R0(λ)W )m = −λR0(λ)m (4.28)

For ρ > 2, one has m−m0 ∈ L2,s for any 0 < s < ρ− 3
2
. Proposition 2.12 with ψ = ψ0

shows that

lim
λ→0−

λR0(λ)m = −m0. (4.29)
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Taking the limit λ→ 0− in (4.28), one obtains (1+G0W )m = m0 = (1+G0W )µ0. The
invertibility of the operator 1 +G0W in L2,−s for any s > 3

2
gives µ0 = m.

To show that ν0 = m, we notice 1 +WG0 ∈ B(0, s; 0, s) for any 3
2
< s < ρ+1

2
and is

invertible:

(1 +WG0)
−1 = 1−W (1 +G0W )−1G0 = 1−WA0. (4.30)

Therefore ν0 = (1 −WA0)
∗
m0 = (1 − G∗

0W )−1
m0. Since m verifies also the equation

P ∗
m = (P ∗

0 −W )m = 0, the argument used above allows to conclude that (1−G∗
0W )m =

m0 which shows ν0 = m = (1−G∗
0W )−1

m0. This shows

B1u =
1

8π
3
2

〈m, u〉m for u ∈ L2,s with s >
3

2
, (4.31)

which proves (1.12) of Theorem 1.1. �

Remarks. (a). Several interesting questions remain open. In particular, we do not
know if results like (1.11) and (1.12) hold for S(t) = e−tP as operators from L1 to L∞.
See Theorem 2.4 for the free KFP operator.

(b). The assumptions on dimension and the decay rate of the potentials are only
used in low-energy resolvent asymptotics. While we think that the condition n = 3
is technical, the condition on the decay rate ρ is more essential for our method based
on the model operator P0. To study the low-energy resolvent asymptotics for slowly
increasing potentials, one may try to use other models such as the Witten Laplacian

−∆V = (−∇x +∇V (x)) · (∇x +∇V (x))

When V (x) is slowly increasing, under some additional reasonable conditions −∆V is a
Schrödinger operator −∆x+U(x) with a potential U(x) positive outside some compact
and slowly decreasing at the infinity. The threshold spectral properties for this class
of selfadjoint elliptic operators can be well analyzed. The open question is to study to
which extent the approximation of the KFP operator by the Witten Laplacian is valid
in scattering problems. We hope to return to this problem in a forthcoming work. See
[8, 9, 11] the use of the Witten Laplacian in eigenvalue problems when the spectrum is
discrete near 0.

Appendix A. A family of complex harmonic oscillators

In this appendix, we study some basic spectral properties of a family of non-selfadjoint
harmonic oscillators

P̂0(ξ) = −∆v +
v2

4
− n

2
+ iv · ξ, (A.1)

where ξ ∈ Rn are regarded as parameters. By Fourier transform in x-variables, the free
KFP P0 is a direct integral of the family {P̂0(ξ); ξ ∈ Rn}. We give here some quanti-
tative results with explicit bounds in ξ. Note that non-selfadjoint harmonic operators
with complex frequency −∆x + ωx2, ω ∈ C, are studied by several authors. See for
example [2, 3] and references quoted therein.
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The operator P̂0(ξ) can be written as

P̂0(ξ) = −∆v +
1

4

n
∑

j=1

(vj + 2iξj)
2 − n

2
+ |ξ|2.

{P̂0(ξ), ξ ∈ R
n} is a holomorphic family of type (A) in sense of Kato with constant

domain D = D(−∆v + v2

4
) in L2(Rn

v ). Let Fj(s) = (−1)je
s2

2
dj

dsj
e−

s2

2 , j ∈ N, be the
Hermite polynomials and

ϕj(s) = (j!
√
2π)−

1
2 e−

s2

4 Fj(s)

the normalized Hermite functions. For ξ ∈ Rn and α = (α1, α2, · · · , αn) ∈ Nn, define

ψα(v) =
n
∏

j=1

ϕαj
(vj) and ψ

ξ
α(v) = ψα(v + 2iξ). (A.2)

Then ξ → 〈ψξ
α, ψ

−ξ
j 〉 extends to an entire function for ξ ∈ C and is constant on iR.

Therefore 〈ψξ
α, ψ

−ξ
j 〉 is a constant and one has

〈ψξ
α, ψ

−ξ
β 〉 = δαβ =

{

1, α = β,
0, α 6= β.

, ∀α, β ∈ N
n, ξ ∈ R

n. (A.3)

Using the definition of the Hermite functions, one can check that for α = (α1, · · · , αn) ∈
Nn

‖ψξ
α‖2 = e2ξ

2
n
∏

m=1

(

αm
∑

j=1

Cj
αm

j!
(2ξm)

2j). (A.4)

In fact, when n = 1, ξ = ξ1 and k ∈ N, one has

‖ψξ
k‖2 =

∫

R

ϕk(y + 2iξ)ϕk(y − 2iξ)dy

= (k!
√
2π)−1e2ξ

2

∫

R

Fk(y + 2iξ)Fk(y − 2iξ)e−
y2

2 dy

= (k!
√
2π)−1e2ξ

2

∫

R

(
k
∑

j=0

Cj
k(2iξ)

k−jFj(y))
k
∑

l=0

C l
k(−2iξ)k−lFl(y))e

− y2

2 dy

= e2ξ
2

k
∑

j,l=0

(k!
√
2π)−1Cj

kC
l
k(j!

√
2π)

1
2 (l!

√
2π)

1
2 (2iξ)k−j(−2iξ)k−l

∫

R

ψj(y)ψl(y)dy

= e2ξ
2

k
∑

j=0

j!(Cj
k)

2

k!
(4ξ2)k−j

= e2ξ
2

k
∑

j=0

Cj
k

j!
(4ξ2)j .

The general case n ≥ 1 follows from the product formula:

‖ψξ
α‖2 =

n
∏

j=1

‖ϕαj
(·+ 2iξj)‖2.
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(A.4) shows that if ξ 6= 0, ‖ψξ
α‖ grows exponentially as |α| → +∞.

Lemma A.1. The spectrum of P̂0(ξ) is purely discrete:

σ(P̂0(ξ)) = {El , l + ξ2; l ∈ N}. (A.5)

Each eigenvalue El is semi-simple (i.e., its algebraic multiplicity and geometric multi-
plicity are equal) with multiplicity ml = #{α ∈ Nn; |α| = α1 + α2 + · · ·+ αn = l}. The
Riesz projection associated with the eigenvalue l + ξ2 is given by

Πξ
lφ =

∑

α,|α|=l

〈ψ−ξ
α , φ〉ψξ

α, φ ∈ L2. (A.6)

Proof. It is clear that the spectrum of P̂0(ξ) is purely discrete and ψξ
α(v) is an eigen-

function associated with the eigenvalue El. This means that σ(P̂0(ξ)) ⊃ {l+ ξ2; l ∈ N}.
Since P̂0(ξ)

∗ = P̂0(−ξ) and that the linear span of {ψ−ξ
α (v);α ∈ Nn} is dense in

L2, P̂0(−ξ) can not have other eigenvalues than El, l = 0, 1, · · · . This proves that

σ(P̂0(ξ)) = {El = l + ξ2; l ∈ N}.
To show that El is semisimple, assume by contradiction that ∃ϕ ∈ D such that

(P̂0(ξ) − El)ϕ = cψξ
α, |α| = l and c ∈ C∗. Then ψξ

α is in the range of P̂0(ξ) − El and

hence is orthogonal to the kernel of (P̂0(ξ)−El)
∗ = P̂0(−ξ)−El. In particular, one has

〈ψξ
α, ψ

−ξ
α 〉 = 0.

This is impossible due to (A.3). This contradiction shows that the eigenvalue El = l+ξ2

is semisimple. Since the pole of the resolvent (P̂0(ξ) − z)−1 is simple at z = El, the
range of the associated Riesz projection defined by

Πξ
lφ =

i

2π

∫

|z−El|= 1
2

(P̂0(ξ)− z)−1φdz

is equal to ker(P̂0(ξ)) − El) and the kernel of Πξ
l is equal to the range of P̂0(ξ) − El.

The latter is the orthogonal complement of ker(P̂0(−ξ)) − El) which is spanned by
{ψ−ξ

α ; |α| = l}. The representation formula (A.6) then follows from (A.3). �

Lemma A.2. Let n = 1. Then one has for t > 0

∞
∑

k=0

e−t(k+ξ2)‖Πξ
k‖ =

e−ξ2(t−2)

1− e−t
e

4ξ2

et−1 , ξ ∈ R. (A.7)

Proof. In the case n = 1, one has for any k ∈ N

‖Πξ
k‖ = ‖ψξ

k‖‖ψ−ξ
k ‖ = ‖ψξ

k‖2 = e2ξ
2

k
∑

j=0

Cj
k

j!
(4ξ2)j . (A.8)
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The right-hand side of (A.7) is norm convergent when t > 0. In fact, one can calculate
the sum of the series as follows

∞
∑

k=0

e−t(k+ξ2)‖Πξ
k‖

=

∞
∑

k=0

e−t(k+ξ2)+2ξ2
k
∑

j=0

Cj
k

j!
(4ξ2)j

=

∞
∑

k=0

e−t(k+ξ2)+2ξ2 +

∞
∑

k=1

e−t(k+ξ2)+2ξ2
k
∑

j=1

Cj
k

j!
(4ξ2)j

=
e−ξ2(t−2)

1− e−t
+ e−ξ2(t−2)

∞
∑

j=1

(4ξ2)j

j!

∞
∑

k=j

Cj
ke

−tk

=
e−ξ2(t−2)

1− e−t
+ e−ξ2(t−2)

∞
∑

j=1

(4ξ2e−t)j

(j!)2

∞
∑

k=j

k(k − 1) · · · (k − j + 1)e−t(k−j)

=
e−ξ2(t−2)

1− e−t
+ e−ξ2(t−2)

∞
∑

j=1

(4ξ2e−t)j

(j!)2

∞
∑

k=0

(k + j)(k + j − 1) · · · (k + 1)e−tk

=
e−ξ2(t−2)

1− e−t
+ e−ξ2(t−2)

∞
∑

j=1

(4ξ2e−t)j

(j!)2
{ d

j

dxj
1

1− x
} |x=e−t

=
e−ξ2(t−2)

1− e−t
(1 +

∞
∑

j=1

1

j!
(

4ξ2

et − 1
)j)

=
e−ξ2(t−2)

1− e−t
e

4ξ2

et−1 .

�

Proposition A.3. Let n ≥ 1. For any ξ ∈ Rn and t > 0, one has the following spectral
decomposition:

e−tP̂0(ξ) =

∞
∑

l=0

e−t(l+ξ2)Πξ
l , (A.9)

where Πξ
l is the Riesz projection associated with the eigenvalue l of P̂0(ξ) and the series

is norm convergent as operators on L2(Rn
v ).

Proof. For n ≥ 1, one has

‖Πξ
l ‖ ≤

∑

k=(k1,··· ,kn)∈Nn;|k|=l

n
∏

j=1

‖ϕkj (·+ 2iξkj)‖2.
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By Lemma A.2, the righthand side of (A.9) is norm convergent for every t > 0 and can
be evaluated by

∞
∑

l=0

e−t(l+ξ2)‖Πξ
l ‖ ≤

n
∏

j=1





∞
∑

αj=0

e−t(αj+ξ2j )‖Πξj
αj
‖



 (A.10)

=
e
−ξ2(t−2− 4

et−1
)

(1− e−t)n
.

Since the both sides of (A.9) are equal on the dense subspace spanned by {ψξ
α;α ∈ N},

an argument of density shows that they are equal on the whole space L2. �

As a consequence of the proof, we obtain the following estimate on the semigroup.

Corollary A.4. The following estimate holds for t > 0 and ξ ∈ R
n

‖e−tP̂0(ξ)‖B(L2(Rn
v ))

≤ e
−ξ2(t−2− 4

et−1
)

(1− e−t)n
(A.11)
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