
HAL Id: hal-00955375
https://hal.science/hal-00955375

Submitted on 4 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamics of the association between a long-lived
understory myrmecophyte and its specific associated

ants
Jérôme Orivel, Luc Lambs, Pierre-Jean G. Malé, Céline Leroy, Julien

Grangier, Thierry Otto, Angélique Quilichini, Alain Dejean

To cite this version:
Jérôme Orivel, Luc Lambs, Pierre-Jean G. Malé, Céline Leroy, Julien Grangier, et al.. Dynamics of the
association between a long-lived understory myrmecophyte and its specific associated ants. Oecologia,
2011, 165 (2), pp.369-376. �10.1007/s00442-010-1739-5�. �hal-00955375�

https://hal.science/hal-00955375
https://hal.archives-ouvertes.fr


 

To link to this article  :  
DOI :10.1007/s00442-010-1739-5 

 URL : http://dx.doi.org/10.1007/s00442-010-1739-5 

To cite this version : 
Orivel, Jérôme and Lambs, Luc and Malé, Pierre-Jean G. and Leroy, 
Céline and Grangier, Julien and Otto, Thierry and Quilichini, 
Angélique and Dejean, Alain Dynamics of the association between a 
long-lived understory myrmecophyte and its specific associated 
ants. (2011) Oecologia, vol. 165 (n° 2). pp. 369-376. ISSN 0029-
8549 

Open Archive TOULOUSE Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ 
Eprints ID : 11094 

Any correspondance concerning this service should be sent to the repository 

administrator: staff-oatao@listes-diff.inp-toulouse.fr 

http://dx.doi.org/10.1007/s00442-010-1739-5
http://dx.doi.org/10.1007/s00442-010-1739-5
http://oatao.univ-toulouse.fr/
mailto:staff-oatao@listes-diff.inp-toulouse.fr


Dynamics of the association between a long-lived understory 
myrmecophyte and its speciWc associated ants

Jérôme Orivel · Luc Lambs · Pierre-Jean G. Malé · 
Céline Leroy · Julien Grangier · Thierry Otto · 
Angélique Quilichini · Alain Dejean 

Abstract Myrmecophytic symbioses are widespread in
tropical ecosystems and their diversity makes them useful
tools for understanding the origin and evolution of mutual-
isms. Obligate ant–plants, or myrmecophytes, provide a
nesting place, and, often, food to a limited number of
plant–ant species. In exchange, plant–ants protect their
host plants from herbivores, competitors and pathogens,
and can provide them with nutrients. Although most

studies to date have highlighted a similar global pattern of
interactions in these systems, little is known about the tem-
poral structuring and dynamics of most of these associa-
tions. In this study we focused on the association between
the understory myrmecophyte Hirtella physophora (Chry-
sobalanaceae) and its obligate ant partner Allomerus dece-
marticulatus (Myrmicinae). An examination of the life
histories and growth rates of both partners demonstrated
that this plant species has a much longer lifespan (up to
about 350 years) than its associated ant colonies (up to
about 21 years). The size of the ant colonies and their
reproductive success were strongly limited by the avail-
able nesting space provided by the host plants. Moreover,
the resident ants positively aVected the vegetative growth
of their host plant, but had a negative eVect on its repro-
duction by reducing the number of Xowers and fruits by
more than 50%. Altogether our results are important to
understanding the evolutionary dynamics of ant–plant
symbioses. The highly specialized interaction between
long-lived plants and ants with a shorter lifespan produces
an asymmetry in the evolutionary rates of the interaction
which, in return, can aVect the degree to which the inter-
ests of the two partners converge.

Keywords Allomerus decemarticulatus · Hirtella 
physophora · Lifespan · Mutualism · Myrmecophyte

Introduction

The evolutionary persistence of mutualisms depends on
the alignment of the reproductive interests of the inter-
acting partners. If each partner gains from the associa-
tion, the costs and beneWts involved in maintaining the
interaction can vary in both space and time. Such
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variability is the primary source of conXicts of interest
between the partners—especially if it is associated with a
horizontal mode of transmission—and promotes cheat-
ing. Hence, the challenge is to identify the mechanisms
that maintain evolutionarily stable, interspeciWc mutual-
isms in spite of the ubiquity of cheating (Bronstein et al.
2003; Herre et al. 1999; Sachs et al. 2004). Several fac-
tors, such as partner choice (i.e., Wltering), partner Wdel-
ity or spatial structure (i.e., limited dispersal) have been
identiWed as fostering the alignment of the mutualists’
interests (Foster and Wenseleers 2006; Herre et al. 1999;
Szilágyi et al. 2009). Consequently, both the spatial and
temporal dynamics of the interactions are important fea-
tures in understanding mutualistic associations between
species.

Mutualistic ant–plant associations, which are wide-
spread in tropical ecosystems, oVer a suitable model for
exploring this issue. Obligate ant–plants, or myrmeco-
phytes, provide a nesting space, and, often, food to a lim-
ited number of plant–ant species. In exchange, plant–ants
protect their host plants from phytophagous animals,
competitors and pathogens, and can provide them with
nutrients (Beattie and Hughes 2002; Heil and McKey
2003; Solano and Dejean 2004). Ant–plants and plant–
ants share a common interest in growth, but not necessar-
ily in reproduction. For both parties, the reproductive
investments of the other are useless to the interaction.
Winged sexuals are not involved in protecting the plant
foliage and the energy invested by plants in producing
Xowers does not increase the nesting space for the ant col-
ony. Consequently, natural selection should favor cheat-
ing to maximize each species’ own beneWts. Indeed
castrating parasites have been identiWed in several ant–
plant mutualisms (Edwards and Yu 2008; Gaume et al.
2005; Izzo and Vasconcelos 2002; Stanton et al. 1999; Yu
and Pierce 1998). If castration can clearly reduce or even
prevent plant reproductive success, it has, nevertheless, to
be balanced against the overall reproductive activity of
the plant throughout its lifetime.

In this study we concentrated on a one-to-one mutual-
ism between the Neotropical understory myrmecophyte
Hirtella physophora Martius & Zuccharini (Chrysobalan-
aceae) and its obligate and speciWc ant-partner Allomerus
decemarticulatus Mayr (Myrmicinae). Due to the highly
specialized nature of the H. physophora–A. decemarticul-
atus association, we focused on the temporal structuring
and dynamics of this association by studying the life his-
tories and growth rates of both partners. Through Weld
inventories and using an experimental approach, we
investigated the lifespan of both the plants and their asso-
ciated ant colonies, and the beneWcial or detrimental
eVects they can have on the reproductive growth of the
other.

Materials and methods

Study site and model

This study was conducted between 2000 and 2009 in the
pristine forest situated around the Weld station at Petit Saut,
Sinnamary, French Guiana (05°03�30.0�N, 52°58�34.6�W).

Hirtella physophora grows strictly in the understory of
pristine Amazonian forests and mostly in patches located
on the upper slopes of hillsides (Solano et al. 2003). These
treelets have long-lived leaves that bear extraXoral nectar-
ies and a pair of pouches at the base of each lamina. The
leaf pouches that shelter ant colonies, diVer both morpho-
logically and anatomically from the lamina (Leroy et al.
2008). Each H. physophora is almost always associated
with A. decemarticulatus (99% of the inhabited plants, the
remaining being inhabited by Crematogaster sp. aV. cru-
cis), with a single colony per plant. Moreover, A. decemar-
ticulatus has never been found in association with another
myrmecophyte species in the study area (Solano et al.
2003). The A. decemarticulatus workers protect their host
plants through their predatory behavior, including by build-
ing a gallery-shaped trap along the stems to capture prey
(Dejean et al. 2005).

Peak Xowering periods in H. physophora in French Gui-
ana occur from December to February and June to August.
InXorescences arise at axillary fasciculate racemes and they
comprise three to six Xowers (Prance 1972).

Life history and growth rate ofH. physophora

A total of 1,320 H. physophora individuals were tagged,
and their height and trunk diameters were measured. The
measurements of trunk diameters were taken with calipers
on the lowest part of the base of the trunk, closest to the
ground.

The growth rate of H. physophora was estimated by
recording changes in the trunk diameters of 36 tagged Hir-
tella trees over 6 years (2000–2006). We also monitored
257 individuals for 3 years (2003–2006), and recorded the
number of trees that were heavily damaged by falling trees
or branches plus those that had dried out after the formation
of a tree-fall gap in their vicinity.

Radiocarbon dating the trees

Due to the lack of true annual growth rings in many tropical
species, the estimation of the age of such plant individuals
cannot be made dendrometrically. We therefore used radio-
carbon (14C) dating together with estimations of diametrical
increments of the trunk to address this question. Four wood
samples from H. physophora trees were analyzed along
with samples taken from Pinus caribaea Morelet and



Avicennia germinans (L.) L. of known ages growing in
neighboring areas and that served as references (see Table1
for details on trunk diameters, wood density and weight of
samples). The pine sample was taken from a plantation
whose age is known, while the mangrove tree is a natural
pioneer species whose age was deduced from aerial photo-
graphs.

Plants assimilate 14C during photosynthesis, and once
trapped in the wood, the amount of 14C decreases according
to the exponential law of radioactive decay (T1/2 =
5,730 years), so that the 14C content can permit us to date
the age of the wood. However, concentrations of atmo-
spheric 14C doubled between 1950 and 1965 due to the
aboveground explosions of atomic bombs; and then
declined (Nydal and Lövseth 1983). Consequently, radio-
carbon-dating wood formed before or after the detonation
of the atomic bombs requires diVerent methods of calcula-
tion. For trees formed after 1950, these changes in atmo-
spheric 14C are directly detectable by measuring
radiocarbon. Dating older wood is complicated by the tem-
poral variation in atmospheric 14C resulting from massive
emissions of CO2 containing million-year-old 14C that can
trigger an overestimation of the age of the wood (Nydal and
Lövseth 1983; Stuiver and Becker 1986). The age of wood
samples is usually expressed after calibration as a percent-
age of modern C (PMC) for periods following the explo-
sion of the bombs, or in the years before the present for
trees that date from before the explosion of the bombs (BP
years; where the present is arbitrarily deWned as 1950).

We used the Calibomb program (http://calib.qub.ac.uk/
CALIBomb) and the Wellington data set programmed for
the Southern Hemisphere to estimate the age of the wood
samples displaying a PMC value greater than 100, or wood
formed after 1950. For the samples displaying a PMC value
less than 100, or wood formed before 1950, we used the
Calib 5.02 program (http://calib.qub.ac.uk/calib/calib.html)
with the calibration curve shcal04.14c proposed by McCormac
et al. (2004).

Evaluating the lifespan ofA. decemarticulatus colonies

To evaluate the lifespan of A. decemarticulatus colonies,
193 H. physophora individuals were monitored twice each
year between 2002 and 2005 (800 days). Each time, we
recorded the presence or absence of an ant colony and its
developmental status according to the quality of the galler-
ies interconnecting the leaf pouches. Indeed the building of
the gallery-shaped trap by A. decemarticulatus enables us
to estimate the development of the colony and its death as
the fungus they use in the galleries dies soon after the death
of the ant colony. Consequently, the death of a given col-
ony and the recolonization of the plant between two cen-
suses can be easily determined as the trap is built after the
colony develops (i.e., the length of the galleries is linked to
the increase in the number of inhabited domatia on the
plant). We hypothesized that all ages were represented in
the ant colonies at the Wrst census and that the death of the
colonies was directly related to their age. This permitted us
to establish a linear regression of the number of surviving
colonies as a function of time, and the rate of colony extinc-
tion was used to estimate the half-life and maximum age of
the colonies.

Ants’ eVect on plant growth and reproduction

To assess both the short- and long-term eVects of the ants
on the plants, each month for 16 months we monitored the
vegetative and reproductive growth rates of individuals
from which the ants were removed (n = 25) as well as
control plants (n = 22). Both groups of plants were similar
in size expressed as the number of leaves (mean§ SE =
17.04§ 3.6 vs. 16.5§ 5.3 for ant-excluded and control
plants, respectively, two-sample t-test: t = 0.335, df = 45,
P = 0.74). We eliminated the ants by injecting an aqueous
solution (2‰) of pyrethrum 25% inside all of the domatia.
The rapid knockdown eVect of the pyrethrum immediately
killed all of the resident ants, and its photolability prevented

Table 1 Sample information, accelerator mass spectrometry 14C measurements, and minimum AD age (relative to 2005) for the wood samples of
Hirtella physophora, Pinus Caribaea and Avicennia germinans

PMC percentage of modern C

Sample name Laboratory 
code

Trunk 
diameter 
(cm)

Density Sample 
weight 
(g)

�
13C 

(‰)
Error 
�

13C
PMC Error 

PMC
Minimum 
age

Age 
14C BP

Growth 
rate 
(cm/years)

P. caribaea Poz 13575 14.9 0.69 0.65 ¡26.1 0.1 118.00 0.39 17 – 0.876

A. germinans Poz 13574 14.3 0.66 0.26 ¡23.8 0.8 114.30 0.40 14 – 1.021

H. physophora sample A Poz 13595 1.9 0.95 0.30 ¡37.7 0.1 103.05 0.36 48 – 0.040

H. physophora sample B Poz 13594 2.2 0.95 0.40 ¡34.3 0.4 101.44 0.35 50 – 0.044

H. physophora sample C Poz 13598 2.9 0.93 0.40 ¡36.7 1.4 98.12 0.35 – 150§ 30 –

H. physophora sample D Poz 13592 3.2 0.93 0.24 ¡32.8 0.5 98.67 0.34 – 110§ 30 –

http://calib.qub.ac.uk/CALIBomb
http://calib.qub.ac.uk/CALIBomb
http://calib.qub.ac.uk/calib/calib.html


any residual eVects on phytophagous insects. As founding
queens re-colonized certain plants during the course of the
experiment, we re-injected the pyrethrum solution into the
domatia occupied by new queens 3 times over the
16 months. We recorded the total number of leaves, the
number of new leaves as well as the number of Xoral buds,
Xowers and fruits on each plant individual monthly. Control
and ant-excluded plants were compared according to either
their total vegetative or reproductive investments during the
16-month period. We started the census 2 months after
removing the ants because Grangier et al. (2008) demon-
strated that excluding the ants has no eVect on the rate of
herbivory after 40 days.

To investigate the potential castrating virulence of
A. decemarticulatus, 23 H. physophora bearing at least two
early stage inXorescences were selected. Ant workers were
removed from one inXorescence and their access to the
Xoral buds was prevented using Tanglefoot; while the other
inXorescence was used as a control. The numbers of Xowers
as well as the number of fruits produced were counted each
week after treatment.

Size and structure of the ant colonies

We collected the ant colonies inhabiting 35 H. physophora,
which ranged in size from having 7–96 domatia, and we
investigated the relationship between colony size and the
number of domatia on the host plant. All of the leaves and
stems on each plant individual were cut oV and placed into
a plastic bag, and then preserved in 70% ethanol. Each
domatium was then dissected and the number of workers,
pupae, larvae, queens, and alate males and females was
recorded. The number of workers that were in the galleries
built under the stems of the plant was also recorded.

Results

Diameter and height distribution ofH. physophora trees

The frequency distributions for height and stem diameter of
the 1,320 plants measured were in both cases unimodal
with a mean diameter of 1.6§ 0.94 cm and a mean height
of 1.31§ 1.0 m (Fig.1; data not shown for height distribu-
tion). The structure of the distributions showed that most of
the trees were in the middle of the size range for both diam-
eter and height, with a relatively small number of seedlings
and a constant decrease toward the tallest individuals.

Even if tree height and diameter showed a positive corre-
lation, the variance between groups of individuals was not
homogeneous [14 groups from 0.1 to 0.3 cm in diameter to
>4 cm; Fig.1; Levene test F(13,1306)= 61.24, P < 0.01],
highlighting the large variation observed in tree height as

the trees age and, consequently, the amount of damage they
can sustain during their lifetime. Indeed, during the 3-year-
long monitoring period, a total of 29 trees out of 257 were
aVected in some way, resulting in 4% of the trees aVected
each year.

Determining the age of the trees

The 14C analyses conducted using the Calibomb program
for wood with PMC values greater than 100 generally
resulted in one single date (Table1). The Calibomb pro-
gram estimated the ages of two trees of known ages (P. car-
ibaea and A. germinans) to within 1–2 years of their real
ages. The evaluation of the ages of the two of H. physo-
phora tree samples with 1.9- and 2.2-cm-wide trunks corre-
sponded to 48 and 50 years, respectively (Table1). Thus,
the corresponding mean growth rate from seedlings of such
trees was about 0.042 cm/year [0.040 (1.9/48) and 0.044
(2.2/50) for the 1.9- and the 2.2-cm-wide trees, respec-
tively]. Note that the diVerences in age and trunk diameter
reXect possible variations in environmental conditions for
these two individuals, but their growth rate was quite
similar.

The 14C analyses concerning the two largest H. physo-
phora trees (2.9- and 3.2-cm-wide trunks) resulted in PMC
values lower than 100, and thus had to be recalibrated using
the Calib 5.02 program. This recalibration resulted in three
theoretically possible dendro-ages for each sample
(H. physophora sample C, 73§ 75 BP, 150§ 30 BP and
244§ 25 BP; H. physophora sample D, 36§ 30 BP,
110§ 30 BP and 240§ 20 BP). This multi-age result orig-
inates from the very low rate of decrease in atmospheric
14C and from the fact that this logarithmic curve is not
smooth: it has many small peaks, which can be matched
with the measured PMC value. To select the right age, we
used the growth rate of adult trees determined in the Weld
by measuring the increase in trunk diameters between

Fig. 1 Distribution of the trunk base diameters of a population of
1,320 Hirtella physophora. The age of the plants is indicated based on
radiocarbon dating
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2000 and 2006: (mean§ SE) 2.078§ 0.755 to 2.181§
0.776 cm. The mean diVerence (0.103§ 0.070 cm) corre-
sponds to a mean growth of 0.0171 cm/year over this
period for H. physophora trees whose trunk diameters were
already about 2 cm, so about half from early growth, know-
ing that these 2-cm-wide trees are around 50 years old.
Consequently, a tree with a 3-cm-wide trunk is theoretically
approximately 108 years old [50 + (1/0.0171)], permitting
us to estimate that H. physophora samples C and D were
150 and 110 BP-years old, respectively (Table1). These BP
values correspond to real ages of about 205 and 165 years,
respectively.

To evaluate the age of the individual in our dataset with
the widest trunk (6 cm), we based our calculations on the
ages of the 14C-dated trees with trunk diameters of about
3 cm (see above). We thus estimated that this tree was
between approximately 340 [165 + (2.8/0.0171)] and 385
[205 + (3.1/0.0171)] years old.

Evaluating the lifespan ofA. decemarticulatus colonies

The linear regression of the number of surviving ant colo-
nies as a function of time resulted in r2 = 0.97, permitting
us to estimate a colony half-life (i.e., the point in time at
which 50% of the initial number of colonies would have
survived) at 10.13 years. As it takes about 1 year for a col-
ony to reach maturity (J.O., personal observation), a better
estimate of the half-life of the colonies would be closer,
therefore, to 11 years. The estimated maximum age of the
colonies is 20.36 years (a minimum of 21 years starting
from foundation), and, thus, by far shorter than that of the
host H. physophora individuals.

Ants’ eVect on plant growth and reproduction

Removing the ants over a long period of time aVected the
vegetative growth of the plants, and the H. physophora
leaves produced after the ants were removed suVered from
herbivory (Fig.2). Indeed, the plants devoid of ants pro-
duced a signiWcantly lower number of new leaves than the
control plants (mean number per plant§ SE = 17.4§ 7.4
vs. 24.9§ 6.7 for ant-excluded and control plants, respec-
tively; Mann–Whitney U test: U = 134.5, P < 0.01), which
resulted in a lower vegetative growth rate over the course of
the experiment for plants devoid of ants (Fig.2; Table2).
However, no signiWcant diVerences in reproductive growth
rates could be discerned. Reproductive investment occurred
in most of the plants (21/25 vs. 19/22 for ant-excluded and
control plants, respectively; Fisher’s exact test P = 0.57)
and the reproductive eVort of those plants did not diVer
between the two groups (Xoral buds, mean number per
plant§ SE = 21.4§ 13.0 vs. 22.9§ 12.9 for ant-excluded
and control plants, respectively; Mann–Whitney U test,

U = 40.5, P = 0.29; Xowers, 4.6§ 2.8 vs. 5.6§ 3.1,
U = 51.5, P = 0.64). The percentage of plants that produced
fruits did not diVer between both groups (5/25 vs. 7/22 for
ant-excluded and control plants, respectively; Fisher’s
exact test P = 0.28). Moreover, and as usually observed in
H. physophora, fruit production was very low and the
diVerence between plants that produced fruits was not sig-
niWcant between the two groups (mean number per
plant§ SE = 1.4§ 0.5 vs. 2.3§ 1.3 for ant-excluded and
control plants, respectively, Mann–Whitney U test:
U = 12.5, P = 0.42).

Nevertheless, the presence of the ants had a negative
eVect on the reproduction of their host plants that was dem-
onstrated when the ants were selectively removed from the
inXorescences of their host (Fig.3). The inXorescences to
which the ants had access indeed produced signiWcantly
fewer Xowers than the ant-excluded ones (mean percentage
of Xowers per inXorescence compared to the initial number
of buds§ SE = 24.5§ 32.3 vs. 76.9§ 24.8 for control and
ant-excluded inXorescences, respectively; Wilcoxon test:
W= 193, P < 0.0001). This negative eVect was also reXected

Fig. 2 Vegetative growth expressed as the mean number §SE of
leaves in ant-removed (empty circles) and control (Wlled circles)
H. physophora plants during a 16-month Weld experiment
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Table 2 Repeated-measures ANOVA examining the impact of ant
removal from the plant on the number of H. physophora leaves over time

MS mean square
a Probabilities corrected for sphericity are provided using the Green-
house–Geisser correction (G–G)

df MS F P value G–Ga

Treatment 1 947.47 1.531 0.222

Error 45 618.98

Time 16 22.10 5.530 <0.001 <0.001

Time £ treatment 16 19.08 4.775 <0.001 0.001

Error 720 3.99



in the number of plants that produced fruits (12/23 vs. 3/23
for control and ant-excluded inXorescences, respectively;
Fisher’s exact test P = 0.005) and in the number of fruits
produced (mean percentage of fruits per inXorescence com-
pared to the initial number of buds§ SE = 2.3§ 1.3 vs.
17.1§ 3.8 for control and ant-excluded inXorescences,
respectively; Wilcoxon test: W = 78, P < 0.0025).

Size and structure of the ant colonies

There was a positive and linear relationship between the
size of the ant colony and the number of domatia on the
host plant (Fig.4; r2 = 0.8356). This relationship accounts
for most of the variation in colony size and strongly sug-
gests that for all plant sizes, the amount of available nesting
space is an important limiting factor for colony growth. The

lack of curvilinearity in the relationship (test of signiWcance
for domatia2: F = 0.109, P = 0.80) also showed that the
amount of available nesting space is probably one of the
most important limiting factors in colony development.

The onset of alate production begins early in colony
development (e.g., when there are fewer than 300 workers),
but most of the alate individuals are produced in colonies
containing more than 600 workers. Moreover, the number
of alates (brood and adult males and females), and thus the
rate of alate production is also strongly correlated with the
amount of nesting space oVered by the host plant (Fig.4;
r2 = 0.7984). The same relationship exists when colony size
rather than the number of domatia is taken into account.
Then, the amount of available nesting space not only limits
colony size, but also its rate of reproduction.

Discussion

Altogether our results highlight some important features
that can deeply inXuence the evolutionary dynamics of

Fig. 3 Allomerus decematiculatus’ impact on the reproduction of
H. physophora expressed as the number of Xowers (a) or fruits
(b) produced according to the initial number of buds per inXorescences
in ant-excluded or control inXorescences. Error bars above and below
the boxes indicate the 90th and 10th percentiles, the ends of the boxes
indicate the 25th and 75th percentiles and crosses indicate outliers
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ant–plant symbioses. As in most ant–plant mutualisms, the
myrmecophytism in H. physophora clearly enhances the
growth of individuals, but A. decemarticulatus also nega-
tively aVects its host’s reproduction by reducing by two-
thirds the number of Xowers and thus the number of fruits.
However, such a negative eVect has to be balanced over the
entire lifetime of the plant individuals and it appears that
the overall eVect of the ants on their host plant is clearly
positive. Indeed, even if the reproductive eVort does not
diVer between ant-inhabited plants and plants devoid of
ants, the latter nevertheless suVer from herbivory. Thus,
over the long term, this can be detrimental to their growth
and survival.

Functioning and importance of myrmecophytism

Through their predatory behavior, which includes the con-
stant patrolling of their host tree foliage and their induced
response to foliar wounds (Grangier et al. 2008), resident
ants protect the foliage of their host plant. This also beneWts
the ants as the production of new leaves is the only means
by which their nesting space can increase. The limitation in
colony growth and reproduction induced by the amount of
available nesting space highlights the importance of this
limiting factor for the ants (Fonseca 1993, 1999). Accord-
ing to these results, it is in A. decemarticulatus’ best inter-
est to favor the vegetative growth of their host plant, like in
any protective ant–plant symbioses, not only in terms of the
production of more food rewards or domatia, but also to
maximize their own reproductive success.

Moreover, castration also enables host-plant resources to
be reallocated from reproduction to vegetative growth
(Frederickson 2009; Yu 2001). Castrating parasites have
been identiWed in several systems and especially in all of
those involving the Allomerus ant species studied so far
(Izzo and Vasconcelos 2002; Yu and Pierce 1998). Allo-
merus decemarticulatus is no diVerent in this matter than
the other Allomerus species. But, A. decemarticulatus
destroy about two-thirds of the Xoral buds whereas the
other Allomerus species generally destroy 100% of the
Xoral buds, reducing their host reproduction to zero (but see
Edwards and Yu 2008). In the present case, the combina-
tion of both the positive eVect of the Allomerus on the veg-
etative growth of H. physophora and the much longer
longevity of the host plants than their speciWc plant–ants
are important factors favoring the persistence of the interac-
tion. The loss of ant inhabitation by the plant can be consid-
ered as a Wtness valley as the loss of biotic protection would
aVect the survival of the plants. In absence of alternative
solution for H. physophora, this system could be thus con-
sidered as an example of a local adaptive peak.

Beside its myrmecophytism, H. physophora also shares
several biological traits with many plant species from the

understory that enables its survival in this environment,
such as shade tolerance and slow growth, mortality, and
recruitment rates (Easdale et al. 2007; Gourlet-Fleury et al.
2005; Nascimento et al. 2005; Vieira et al. 2005). More-
over, like for any plant species in the understory, the impact
and consequences of the physical damage caused by debris
falling from the canopy are of importance. The frequency
of the damage suVered by H. physophora is of the same
magnitude as that recorded in other studies, with around
4% of the trees aVected per year (Clark and Clark 1989,
1991; Gartner 1989). However, the ability of this plant spe-
cies to develop reiterations from its lower part reXects its
adaptation to these frequent disturbances.

Evolutionary consequences of the asymmetry 
in the partners’ lifespan

Because the plants are colonized early in their develop-
ment, they will host several successive ant colonies during
their lifetime. Neither the ontogenetic successions of diVer-
ent partners nor the secondary polygyny of A. decemarti-
culatus colonies have been noted in H. physophora, thus
requiring the de novo colonization of the plant by founding
queens (Djiéto-Lordon et al. 2005; Feldhaar et al. 2000,
2003; Young et al. 1997). The temporal succession of colo-
nies induces periods of time during which the plants are not
protected by their associated plant–ants and, thus these
periods are unfavorable to their growth and survival. How-
ever, given that the re-colonization process is rapid and
continuous throughout the year, these unfavorable periods
of time are generally kept to a minimum. Moreover, the
evolutionary persistence of this association is favored by
the highly specialized nature of the interaction that ensures
the constant re-colonization of the plants by A. decemarti-
culatus queens (Grangier et al. 2009).

Altogether these results demonstrate that the special-
ized interaction between long-lived plants and ants with a
shorter lifespan produces an asymmetry in the genera-
tional turnover and the evolutionary rates of the two part-
ners. On the one hand, such an asymmetry could be seen
as a destabilizing factor for the association because the
populations of the long-lived mutualist can only respond
slowly to increases in densities among the shorter-lived
partner. Thus, when members of this shorter-lived guild
of mutualists compete for access to their host, asymme-
tries in the generational turnover may increase the inten-
sity of this competition (Stanton 2003). However, in the
present case interspeciWc competition for the occupancy
of H. physophora individuals is extremely weak (Grangier
et al. 2009). Thus, the evolutionary persistence of the
H. physophora–A. decemarticulatus association seems
possible due to the absence of an alternative partner for
the plant combined with the dynamics of the interaction



which enables H. physophora to still produce oVspring
during their lifetime.
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