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ABSTRACT

We study the capture of galactic dark matter particles (DMP) in two-body and few-body systems with a symplectic map description.
This approach allows modeling the scattering of 1016 DMPs after following the time evolution of the captured particle on about 109 or-
bital periods of the binary system. We obtain the DMP density distribution inside such systems and determine the enhancement factor
of their density in a center vicinity compared to its galactic value as a function of the mass ratio of the bodies and the ratio of the body
velocity to the velocity of the galactic DMP wind. We find that the enhancement factor can be on the order of tens of thousands.
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1. Introduction

In 1890, Henri Poincaré proved that the dynamics of the three-
body gravitational problem is generally non-integrable (Poincaré
1890). Even 125 yr later, many aspects of this problem remain
unsolved. Thus the capture cross-sectionσ of a particle that scat-
ters on the binary system of Sun and Jupiter has only recently
been determined, and it has been shown that σ is much larger
than the area of the Jupiter orbit (Khriplovich & Shepelyansky
2009; Lages & Shepelyansky 2013). The capture mechanism
is described by a symplectic dynamical map that generates a
chaotic dynamics of a particle. The scattering, capture, and dy-
namics of a particle in a binary system recently regained inter-
est with the search for dark matter particles (DMP) in the solar
system and the Universe (Bertone et al. 2005; Garrett & Dūda
2011; Merritt 2013). Thus it is important to analyze the capture
and ejection mechanisms of a DMP by a binary system. Such
a system can be viewed as a binary system with a massive star
and a light body orbiting it. This can be the Sun and Jupiter, a
star and a giant planet, or a super massive black hole (SMBH)
and a light star or black hole (BH). In this work we analyze the
scattering process of DMP galactic flow, with a constant space
density, in a binary system. One of the main questions here is
whether the density of captured DMPs in a binary system can be
enhanced compared to the DMP density of the scattering flow.

The results obtained by Lages & Shepelyansky (2013) show
that a volume density of captured DMPs at a distance of the
Jupiter radius r < rp = rJ is enhanced by a factor ζ ≈ 4000
compared to the density of Galactic DMPs which are captured
after one one orbital period around the Sun and which have an
energy corresponding to velocities v < vcap ∼ vp

√
mp/M ∼

1 km s−1 � u. Here, mp,M are the masses of the light and mas-
sive bodies, respectively, u ≈ 220 km s−1 is the average velocity
of a Galactic DMP wind for which, following Bertone et al.
(2005), we assume a Maxwell velocity distribution: f (v)dv =√

54/πv2/u3 exp(−3v2/2u2)dv.

Our results presented below show that for an SMBH binary
system with vcap > u there is a large enhancement factor ζg ∼ 104

of the captured DMP volume density, taken at a distance of about
a binary system size, compared to its galactic value for all scat-
tering energies (and not only for the DMP volume density at low
velocities v < vcap � u, as discussed by Lages & Shepelyansky
2013). We note that the Galactic DMP density is estimated at
ρg ∼ 4 × 10−25 g cm−3, while the typical intergalactic DMP den-
sity is estimated to be ρg0 ∼ 2.5× 10−30 g cm−3 (Garrett & Dūda
2011; Merritt 2013). At first glance, this high enhancement fac-
tor ζg ∼ 104 seems to be rather unexpected because it appar-
ently contradicts Liouville’s theorem, according to which the
phase space density is conserved during a Hamiltonian evolu-
tion. Because of this, it is often assumed (Gould & Alam 2001;
Lundberg & Edsjö 2004) that the volume (or space) DMP den-
sity cannot be enhanced for DMPs captured by a binary system,
and thus ζg ∼ 1. Below we show that this restriction is not valid
for the following reasons: first, we have an open system where
DMPs can escape to infinity, being ejected from the binary sys-
tem by a time-dependent force induced by binary rotation. This
means that the dynamics is not completely Hamiltonian. Second,
DMPs are captured (or they linger, or are trapped) and are accu-
mulated from continuum at negative coupled energies near the
binary during a certain capture lifetime (although not forever).
Thus, the longer the capture lifetime, the higher the accumu-
lated density. Third, we obtain the enhancement for the volume
density and not for the density in the phase space, for which the
enhancement is indeed restricted by Liouville’s theorem. We dis-
cuss the details of this enhancement effect in the next sections.

The scattering and capture process of a DMP in a binary
system can be an important element of galaxy formation. This
process can also be useful to analyze cosmic dust and DMP in-
teraction with a supermassive black hole binary. This is expected
to play a prominent role in galaxy formation, see Graham et al.
(2015). Thus we hope that analyzing this process will be useful
for understanding the properties of velocity curves in galaxies,
which was started by Zwicky (1933) and Rubin et al. (1980).
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We note that the velocity curves of captured DMPs in our binary
system have certain similarities with those found in real galaxies.

2. Symplectic map description

Following the approach developed by Petrosky (1986), Chirikov
& Vecheslavov (1989), Malyshkin & Tremaine (1999), and
Lages & Shepelyansky (2013), we used a symplectic dark map
description of the DMP dynamics in one orbital period of a DMP
in a binary system

wn+1 = wn + F(xn), xn+1 = xn + w
−3/2
n+1 , (1)

where xn = tn/Tp (mod 1) is given by time tn taken at the mo-
ment of DMP nth passage through perihelion, Tp is the planet
period, and w = −2E/mdv

2
p. Here E,md, and vp are the energy,

mass of the DMP, and the velocity of the planet or star. The
amplitude J of the kick F-function is proportional to the mass
ratio J ∼ mp/M. The shape of F(x) depends on the DMP peri-
helion distance q, the inclination angle θ between the planetary
plane (x, y) and DMP plane, and the perihelion orientation an-
gle ϕ, as discussed by Lages & Shepelyansky (2013). In the fol-
lowing we use for convenience units with md = vp = rp = 1
(here md is the DMP mass, which does not affect the DMP
dynamics in gravitational systems).

For q > rp the amplitude J drops exponentially with q and
F(x) = J sin(2πx), as shown by Petrosky (1986). This func-
tional form of F(x) is significantly simpler than the real one at
q < rp, while it still produces chaotic dynamics at 0 < w � 1
and integrable motion with invariant curves above a chaos border
w > wch. In this regime the map takes the form

wn+1 = wn + J sin(2πxn), xn+1 = xn + w
−3/2
n+1 . (2)

The same map describes a microwave ionization of excited hy-
drogen atoms that is called the Kepler map (see Casati et al.
1987; Shepelyansky 2012). There, the Coulomb attraction plays
the role of gravity, while a circular planet rotation is effec-
tively created by the microwave polarization. The microwave
ionization experiments performed by Galvez et al. (1988) were
made for three-dimensional atoms, but the ionization process is
still well described by the Kepler map (see Casati et al. 1990;
Shepelyansky 2012). These results provide additional arguments
in favor of a simplified Kepler map description of DMP dynam-
ics in binary systems. The dynamics of the Kepler map can be
locally described by the Chirikov standard map (see Chirikov
1979). We note that the approach based on the Kepler map has
recently been used to determine chaotic zones in gravitating
binaries, see Shevchenko (2015).

The similarity of dynamics of dark (1) and Kepler (2) maps is
also well visible from comparing their Poincaré sections, shown
in Fig. 1, for the typical dark map parameters corresponding to
the Halley comet (see Fig. 1a in Lages & Shepelyansky 2013)
and the corresponding parameter J of the Kepler map.

To take into account that J decreases with q, we use the re-
lation J = J0 = const. for q < qb and J = J0 exp(−α(q − qb)))
for q ≥ qb (below J is used instead of J0). We use qb = 1.5
and α = 2.5, corresponding to typical dark map parameters (see
Fig. 1 in Lages & Shepelyansky 2013), but we checked that the
obtained enhancement is not affected by a moderate variation
of qb or α. The simplicity of map (2) allows increasing the num-
ber Np of injected DMPs by a factor one hundred compared to
map (1). The correspondence between (1) and (2) is established
by the relation J = 5mp/M, which works approximately for the
typical parameters of Halley comet case.

Fig. 1. Poincaré sections for the dark map (1) (top) and the Kepler
map (2) (bottom) for parameters of the Halley comet case in Eq. (1)
and J = 0.007 in Eq. (2) (see text).

Of course, as discussed by Lages & Shepelyansky (2013),
the dark map and moreover the Kepler map give an approxi-
mate description of DMP dynamics in binary systems. However,
this approach is much more efficient than the exact solution
of Newton equations used by (Peter 2009a,b), and Sivertsson
& Edsjö (2012) and allows obtaining results with very many
DMPs injected during the lifetime of the solar system (SS)
tS = 4.5 × 109 yr. The validity of such a map description is
justified by the results obtained by Petrosky (1986), Chirikov
& Vecheslavov (1989), Malyshkin & Tremaine (1999), Lages
& Shepelyansky (2013), Rollin et al. (2015), and Casati et al.
(1990).

3. Capture cross-section

The capture cross-section σ is computed as previously de-
scribed by Lages & Shepelyansky (2013) with σ(w)/σp =

(π2rp|w|)−1
∫ 2π

0
dθ
∫ π

0
dϕ
∫ ∞

0
dqh(q, θ, ϕ), where h is a fraction of

DMPs captured after one map iteration from w < 0 to w > 0,
given by an interval length inside the F(x) envelope at |w| =
const., σp = πr2

p. The equation for σ(w) is based on the ex-
pression for the scattering impact parameter r2

d = 2qrp/|w|. For
the Kepler map the h-function only depends on q, and the nu-
merical computation is straightforward. The differential energy
distribution of captured DMPs is dN/dw = σ(w)ng f (w)/2 with
ng = ρg/md.

The results for σ(ω) and dN/dw/Np, obtained for maps (1)

and (2), are shown in Fig. 2. Here Np =
∫ 1

0
dwngσpv

2
p f (w)/2

is the number of DMPs crossing the planet orbit area per unit
of time. The results of Fig. 2 show that both maps give similar
results, which provides additional support for the Kepler map
description. The theoretical dependence σ ∝ 1/|w|, predicted by
Khriplovich & Shepelyansky (2009), is clearly confirmed. The
only difference between maps (1) and (2) is that the kick ampli-
tude J ≈ 5mp/M for (2) is restricted, and thus after one kick we
may have only |w| ≤ J, while for (1) some orbits can be captured
with |w| > J = 5mp/M as a result of close encounters. However,
the probability of such events is low.
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Fig. 2. a) Dependence of the capture cross-section σ on DMP energy
w for Sun-Jupiter (black curve, data from Ref. (8)) and for the Kepler
map at J = 0.005 (red curve); the dashed line shows the dependence
σ ∝ 1/|w|. b) Dependence of the rescaled captured number of DMPs on
energy w for the models of the left panel. Here wcap = 0.001.
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Fig. 3. a) Number Ncap of captured DMPs as a function of time t in years
for the energy range w > 0 (black curve), w > 4 × 10−5 corresponding
to half the distance between Sun and the Alpha Centauri system (red
curve), w > 1/20 corresponding to r < 100 AU (blue curve); NJ =
4 × 1011 DMPs are injected during SS lifetime tS; data are obtained
from the map (2) at J = 0.005, u = 17 corresponding to the Sun-Jupiter
case. b) Top part: density distribution ρ(w) ∝ dN/dw in energy at time
tS (normalized as

∫ ∞
0
ρdw = 1), bottom part: Poincaré section of the

map (2); inset: density distribution of the captured DMPs in w (black
curve), the red line shows the slope –3/2.

4. Chaotic dynamics

The injection, capture, evolution, and escape of DMPs is com-
puted as described by Lages & Shepelyansky (2013): we nu-
merically modeled a constant flow of scattered DMPs with an
energy distribution dNs = σ(w)v2p f (w)dw/2 per time unit (we
used q ≤ qmax = 4rp). For Jupiter we have u ≈ 17 � 1 and
dNs ∝ dqdw. However, for an SMBH we can have u2 < J
so that one kick captures almost all the DMPs from the galac-
tic distribution f (w). In this case, we used the whole distribu-
tion f (w) (w = v2). Map (2) is simpler than (1) since the kick
function only depends on q, which allows performing simula-
tions with more DMPs.

The scattering and evolution processes were followed during
the whole lifetime tS of the SS. The total number of DMPs, in-
jected during time tS for |w| ≤ J and all q is NJ . For the Kepler
map the highest value is NJ = 4×1011, which is 100 times higher
than for the dark map.

The time dependence Ncap(t) for the Kepler map, shown in
Fig. 3, is very similar to that found for the dark map by Lages
& Shepelyansky (2013). For a finite SS region w > 1/20 the
growth of Ncap(t) saturates after a time scale of td ≈ 107 yr.
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Fig. 4. a) Stationary radial density ρ(r) ∝ dN/dr from the Kepler map
at J = 0.005 with u = 17 at time tS (red curve) and u = 0.035 at time
tu ≈ 4 × 108 Tp (black curve); data from the dark map at mp/M = 10−3

are shown by the blue curve at u = 17 and time tS for the Sun-Jupiter
case, and by the green curve at u = 0.035 and tS for the SMBH; the

normalization is fixed as
∫ 6rp

0
ρdr = 1, rp = 1. b) Volume density ρv =

ρ/r2 from the data of panel a), the dashed line shows the slope −2.

This scale approximately corresponds to a diffusive escape time
td ∼ 12 yr/D ∼ 106 yr, where the diffusion rate is taken in a
random phase approximation to be D ≈ J2/2 (see, e.g., Casati
et al. 1987). The diffusive spreading extends from w ∼ 0 up to
chaos border wch ≈ 0.3. This value agrees well with the theo-
retical value wch = (3πJ)2/5 = 0.29 obtained from the Chirikov
criterion (Chirikov 1979; see discussion for DMP dynamics in
Petrosky 1986; Casati et al. 1987; Khriplovich & Shepelyansky
2009). The validity of the Chirikov criterion in this system was
also demonstrated in Shevchenko (2015). As for the dark map,
we obtain a density distribution of ρ(w) ∝ 1/w3/2, corresponding
to the ergodic estimate according to which ρ(w) is proportional
to time period at a given w. The results of Figs. 1–3 confirm the
close similarity of dynamics described by maps (1) and (2).

5. Radial variation of the dark matter density

To compute the DMP density, we considered captured orbits NAC
with w > 4 × 10−5. The radial density ρ(r) was computed by the
method described by Lages & Shepelyansky (2013): NAC were
determined at instant time tS; for them the dynamics in real space
was recomputed during a time period Δt ∼ 100 yr of planet. The
value of ρ(r) was computed by averaging over k = 103 points
randomly distributed over Δt for all NAC orbits.

We also checked that a semi-analytical averaging, using
an exact density distribution over Kepler ellipses for each
of NAC orbits, gives the same result: assuming ergodicity
ρw,q(r)dr = w3/2dt/2π and using Kepler’s equation, the radial
density of the DMPs on a given orbit is ρw,q(r) = (rw2/2π)((1 −
qw)2 − (1− rw)2)−1/2, then adding the radial density of each NAC
orbit, we retrieve the DMP radial density ρ(r) shown in Fig. 4.
From the obtained space distribution we determine a fraction ηri

of NAC DMP orbits located inside a range 0 ≤ r ≤ ri by comput-
ing ηri = ΔNi/(kNAC), where ΔNi is the number of points inside
the above range (we used ri/rp = 0.2, 1, and 6).

In Fig. 4 we show the dependence of radial ρ(r) and vol-
ume ρv = ρ/r2 densities on distance r. For the Kepler map data,
the density ρ(r) has a characteristic maximum at rmax that is de-
termined by the chaos border position rmax ≈ 2/wch (this de-
pendence, as well as the relation wch = (3πJ)2/5, is numerically
confirmed for the studied range 10−3 < J < 10−2 for the Kepler
map with a given fixed J). The density profile ρ(r) is not sen-
sitive to the value of u and remains practically unchanged for
u = 17, 0.035. For the dark map a variation of the kick function
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Fig. 5. Density of captured DMPs at present time tS/Tp ≈ 4 × 108

for the dark map at mp/M = 10−3 and u/vp = 0.035. Top panels:
DMP surface density ρS ∝ dN/dzdrρ shown at the left in the cross
plane (0, y, z) perpendicular to the planetary orbit (data are averaged
over rρ =

√
x2 + y2 = const.), at the right in the planet plane (x, y, 0);

only the range |r| ≤ 6 around the center is shown. Bottom panels: cor-
responding DMP volume density ρv ∝ dN/dxdydz at the left in the
plane (0, y, z), at the right in the planet plane (x, y, 0); only the range
|r| ≤ 2 around the SMBH is shown. The color is proportional to the
density with yellow/black for maximum/zero density.

with q and angles leads to a variation of wch that leads to a slow
growth of ρ at large r. A power-law fit of ρv ∝ 1/rβ in a range
2 < r < 100 gives β ≈ 2.25 ± 0.003 for the Kepler map data and
β = 1.52 ± 0.002 for the dark map. We attribute the difference
in β values to a larger fraction of integrable islands for the dark
map, as is visible in Fig. 1 for typical parameters. We note that
an effective range of radial variation is bounded by the kick am-
plitude with r < rcap ≈ 1/J, and in the range rp < r < rcap the
data are compatible with ρ ∼ const. (dashed line in Fig. 4b).

We note that the value of u does not significantly affect the
density variation with r, as is clearly seen in Fig. 4. The spacial
density distribution of computed from the dark map at u = 0.035
shown in Fig. 5 is also very similar to those at u = 17 (see Fig. 5
by Lages & Shepelyansky 2013). This independence of u arises
because ρ(r) is determined by the dynamics at w > 0, which is
practically insensitive to the DMP energies at −J < w < 0 that
are captured by one kick.

6. Enhancement of dark matter density

To determine the enhancement of the DMP density captured
by a binary system we followed the method developed by
Lages & Shepelyansky (2013). We computed the total mass of
DMP flow crossing the range q ≤ 4rp during time tS: Mtot =∫ ∞

0
dvv f (v)σρgtS ≈ 35ρgtSkrp M/u, where we used the cross-

section σ = πr2
d = 8πkMrp/v

2 for injected orbits with q ≤ 4rp,
w = v2, k is the gravitational constant. For SS at u/vp ≈ 17 we
have Mtot ≈ 0.5 × 10−6 M.
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Fig. 6. Dependence of the DMP density enhancement factor ζ =
ρv(ri)/ρgJ on J at u/vp = 17 (Jupiter); here ρgJ is the galactic DMP vol-
ume density for an energy range of 0 < |w| < J and ri = 0.2rp, rp, 6 rp

(blue, black, red); points and squares show results for map (2) with the
number of injected particles NJ = 4 × 109 and 4 × 1011, respectively;
crosses show data for map (1) with NJ = 4 × 109 and J = 5mp/M.
b) Dependence of the galactic enhancement factor ζg = ρv(ri)/ρg on
u/vp at rζ = rp and J = 0.005 in (2) (points) and mp/M = 0.001 in (1)
(crosses), here ρg is the global galactic density; lines show dependen-
cies ζg ∝ 1/u (red) and ζg ∝ 1/u3 (blue). c) Dependence of ζg on J at
u/vp = 17; d) the same at u/vp = 0.035, parameters of symbols are as
in a), b). The green curve shows theory (3) in all panels.

From the numerically known fractions ηri of the previous
section and the fraction of captured orbits ηAC = NAC/Ntot we
find the mass Mri = ηriηACMtot inside the volume Vi = 4πr3

i /3
of radius r < ri (ri = 0.2rp; rp; 6rp). Here Ntot is the total number
of injected orbits during the time tS, while the number of orbits
injected in the range |w| < J (only those can be captured) is

NJ = Ntot(
∫ J

0
dw f (w)/w)/(

∫ ∞
0

dw f (w)/w). For J � u2 we have
κ = Ntot/NJ = 2u2/(3J) ≈ 3.8 × 104 for u/vp = 17 and κ = 1 for
u/vp = 0.035 at J = 0.005. Thus for u/vp = 17 the number of
orbits, injected at 0 < |w| < J, NJ = 4 × 1011, corresponds to the
total number of injected orbits Ntot ≈ 1.5 × 1016. Finally, we ob-
tain the global density enhancement factor ζg(ri) = ρv(ri)/ρg ≈
16πηriηAC(rp/ri)3τSvp/u, where τS = tS/Tp is the injection time
expressed in the number of planet periods Tp = 2πrp/vp. For
u2 � J it is useful to determine the enhancement ζ = ρv(ri)/ρgJ

of the scattered galactic density in the range 0 < |w| < J, whose
density is ρgJ ≈ 1.38ρgJ3/2(vp/u)3. Thus ζ = 0.72ζg(u/vp)3/J3/2.

The results of the DMP density enhancement factors ζ and ζg
are shown in Fig. 6. At (u/vp)2 � J we have ζ � 1 and ζg � 1.
At u/vp = 17 we find that ζ ∝ 1/J (the fit gives exponent a =
1.04 ± 0.01) and ζg ∝

√
J (the fit exponent is a = 0.46 ± 0.1) in

agreement with the above relation between ζ and ζg. In general,
we have ζg ∝ 1/u for u/vp �

√
J and ζg ∝ 1/u3 for u/vp �

√
J.

There is only weak variation of ζg with J for u/vp �
√

J. The
values of ζ and ζg have similar values for the dark and Kepler
maps (a part of the fact that at ri = 0.2rp and ri = rp the dark
map has approximately the same ζ since there ρv(r) ∼ const.
for r ≤ rp).
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Fig. 7. Logarithm of DMP density enhancement factor log10 ζg from (3),
shown by color and log value-levels, as a function of u/vp and J; two
points are for J = 0.005, u/vp = 17 (SS) and u/vp = 0.035 (SMBH;
such vp is about 2% of the light velocity).

All these results can be summarized by the following for-
mula for the chaotic enhancement factor of DMP density in a
binary system:

ζg = A
√

J(vp/u)3
/ [

1 + BJ(vp/u)2
]
, J = 5mp/M. (3)

Here ζg is given for DMP density at ri = rp and A ≈ 15.5, B ≈
0.7. This formula describes the numerical data of Fig. 6 well. For
(u/vp)2 � J we have ζg � 1, but we still have an enhancement
of ζ = 0.72ζg(u/vp)3/J3/2 ≈ 0.72A/J � 1. For (u/vp)2 � J we
have the global enhancement ζg ≈ 22(vp/u)/

√
J � 1. The color

representation of dependence (3) is shown in Fig. 7.
Equation (3) can be understood on the basis of simple esti-

mates. The total captured mass Mcap ≈ MAC is accumulated dur-
ing the diffusive time td and hence Mcap ∼ v2pJtdMtot/(πu2tS) ∼
ρgτd J(vp/u)3, where τd = td/Tp, and we omit numerical coeffi-
cients. This mass is concentrated inside a radius rcap ∼ 1/J so
that at r ∼ 1/J the volume density is ρv(r = 1/J) ∼ Mcap/r3

cap ∼
ρgJ2w2

ch(vp/u)3 ∼ ρgJ J1/2w2
ch ∼ ρgJ J1.3, where we use a relation

τd ∼ w2
ch/J

2 ∼ 1/J6/5. (Our modeling of the injection process in
the Kepler map with a constant injection flow in time, counted
as the number of map iterations, shows that the number of ab-
sorbed particles scales as NK ∼ τd ∼ J−6/5 at small J.) It is
important to stress that ρv(r = 1/J) � ρgJ in contrast to the
naive expectation that ρv(r = 1/J) ∼ ρgJ . Using our empirical
density decay ρv ∝ 1/rβ with β ≈ 2.25 for the Kepler map, we
obtain ζ ∝ 1/J0.95, which is close to the dependence ζ ∼ 1/J
and ζg ∼ J1/2/(u/vp)3 from (3) at u2 � J. For the dark map we
have β ≈ 1.5 but wch ∼ const. as a result of the sharp variation
of F(x) with x, which again gives ζ ∼ 1/J. It is difficult to ob-
tain the exact analytical derivation of the relation ζ ∼ 1/J due
to contributions of different q values (which have different τd)
and different kick shapes in (1) that affect τd and the structure of
chaotic component. In the regime (u/vp)2 � J the entire energy
range of the scattering flow is absorbed by one kick, and Mcap

is increased by a factor (u/vp)2/J, leading to an increase of ζg
by the same factor, which yields ζg ∝ vp/(u

√
J), in agreement

with (3).
We note that for galaxies the value of exponent β is de-

bated (see Merritt 2013). For the adiabatic growth model, we
have 2.25 ≤ β ≤ 2.5, which is close to the value obtained from
our symplectic map simulations.

The nontrivial properties of the distribution of the captured
DMPs in q are shown in Fig. 8 in a stationary regime at times
tS/Tp ≈ 4 × 108 for the Kepler map. While for u/vp ∼ 17 � 1
we have a smooth drop of DMP density ρ(q) at q > 1.5rp, for
u/vp = 0.04 � 1 we have an increase of ρ(q) by a factor 3
for q/rp ≈ 2.5 compared to q/rp ≈ 1. We attribute this varia-
tion to different capture conditions at u � √

Jvp, where only
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Fig. 8. Density distribution of DMPs ρ(q) over q obtained from the
Kepler map at J = 0.005 and time tu ≈ 4 × 108 Tp: a) u/vp = 17;
b) u/vp = 0.04; the density is normalized to unity (

∫ ∞
0
ρdq/rp = 1).

DMPs at low velocities are captured by one kick, and u� √Jvp,
where practically all DMPs are captured by one kick. As a re-
sult of the dependence of J on q, we also have various diffusive
timescales td ∝ 1/J2 that can affect the contribution of the DMPs
at different q values in the volume density distribution on r.

Finally, we stress the importance of the obtained result of
large enhancement factors ζ and ζg. This result is drastically dif-
ferent from the frequent claims that there is no enhancement
of the DMP density in the center vicinity of a binary system
compared to its galactic value because of the Liouville theo-
rem, which implies that the density of DM in the phase space is
conserved during the evolution (Gould & Alam 2001; Lundberg
& Edsjö 2004). However, this statement does not take into ac-
count the actual dynamics of captured DMPs. Indeed, the galac-
tic space density ρg is obtained from all energies of DMPs in
the Maxwell distribution. The analysis of symplectic DMP dy-
namics shows that DMPs at large q � 1 are not captured, while
DMPs with q ∼ 1 are captured, and by diffusion, they penetrate
up to high values w ∼ wch, thus accumulating DMPs with typi-
cal distance values r ∼ 1/wch. The symplectic map approach also
determines an effective size of our binary system of rcap ∼ 1/J
corresponding to an energy range w ∼ J. If we assume that
the DMP density in this range is the same as its galactic value,
then we should conclude that the enhancement factor should be
ζg ∼ (rcap/rp)β ∼ 1/wcap

β ∼ 1/Jβ ∼ 1.5 × 105 for typical values
J = 0.005 and β = 2.25 (we consider here the case u/vp �

√
J).

This estimate gives a value ζg that is even higher than that given
by relation (3). In fact, relation (3) takes into account that only
bounded values of q are captured, it also estimates the chaos re-
gion, where DMPs are accumulated during the chaotic diffusion
process, populating a part of the phase space volume from w ∼ 0
up to w ∼ wch ∼ 1. This gives a lower value of ζg than the above
simplified estimate. We also note that at u/vp �

√
J the typical

kinetic energy of an ejected DMP Jv2p is significantly higher than
the typical DMP energy u2 in the galactic wind. For these rea-
sons, there is no contradiction with the Liouville theorem, and a
large enhancement of the captured DMP density is possible.

7. Few-body model

Above we considered the DMP capture in a two-body gravitat-
ing system. We expect that a central SMBH binary dominat-
ing the galaxy potential can be viewed as a simplified galaxy
model. Recent observations of Graham et al. (2015) indicate that
such systems may exist. Within the Kepler map approach it is
easy to analyze the whole SS (an SMBH binary) including all
eight planets (eight stars) with given positions ri and velocities
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Fig. 9. a) Radial density ρ(r) ∝ dN/dr for the Kepler models of SS (red
curve) and SMBH binary (black curve) at tS/Tp ≈ 4 × 108; the nor-

malization is fixed as
∫ 6rp

0
ρdr = 1, rp = 1 for the fifth body. b) Volume

density ρv = ρ/r2 from the data of a), the dashed line shows the slope −2
(see text for details).

vi measured in units of orbit radius rp and velocity vp of Jupiter
for SS at u/vp = 17 (and of, e.g., the fifth star for an SMBH
binary at u/vp = 0.035). Thus in (2) we have now for the SS
eight kick terms with Ji ∼ (mi/M)(vi/vp)2. For the SMBH bi-
nary model we consider eight stars modeled by map (2) with
the values J1 = 2.5 × 10−4, J2 = 5 × 10−4, J3 = 7.5 × 10−4,
J4 = 10−3, J5 = 2.5× 10−3, J6 = 6.25× 10−4, J7 = 5× 10−4, and
J8 = 1.25 × 10−4 with the same ratio ri/rp as for the SS. In both
cases we injected NJ = 2.8×1010 particles considering evolution
during τS orbital periods of Jupiter (fifth star). The steady-state
density distribution is shown in Fig. 9. For the SS, ρ(r) is very
close to the case of only one Jupiter discussed above. This result
is natural since its mass is dominant in the SS. For the SMBH
binary model we also find a similar distribution (see Fig. 4) with
a slightly slower decay of ρv(r) with r (β = 2.06 ± 0.002) due
to the contribution of more stars. We obtain ζ = 3000 (SS) and
ζg = 3× 104 (SMBH). These two examples show that the binary
model captures the main physical effects of the DMP capture and
evolution.

8. Discussion

Our results show that DMP capture and dynamics inside two-
body and few-body systems can be efficiently described by sym-
plectic maps. The numerical simulations and analytical analysis
show that in the center of these systems the DMP volume density
can be enhanced by a factor ζg ∼ 104 compared to its galactic
value. The values of ζg are highest for a high velocity vp of a
planet or star rotating around the system center. We note that
our approach based on a symplectic map description of the re-
stricted three-body problem is rather generic. Thus it can also be
used to analyze comet dynamics, cosmic dust, and free-floating
constituents of the Galaxy.
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