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2Institut français du pétrole, CEDI René Navarre, BP 3, 69390 Vernaison - France

March 4, 2015

Abstract

We present here a new index for measuring the quality of maximin space-filling design
for computer experiments. This index is based on a very accurate approximation of the
distribution of the minimum distance for uniform designs. Expressions are explicitly given in
terms of closed polynomial forms for any Lp distances, including L2, L1 and L∞ distances.
When the size of the design or the dimension of the space is large, approximations through
extreme value theory are exhibited. Some illustrations of our index are presented on simulated
data and on a real problem.
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AMS Classification: Primary 62K99

1 Introduction

Some of the major challenges for the automotive industry are the reduction of the greenhouse
gas emissions, the fossil fuel dependency and the local pollution. In many cases, phenomeno-
logical models are not predictive enough, and these objectives rely on engine calibration which
consists in determining experimentally the optimal set of parameters which satisfies some given
requirements. Indeed, in order to get a usable description of the engine under study, automo-
tive industrials launch experimental studies on test benches. Once the design is selected and
the responses observed, the usual approach is to approximate the relation between the inputs
and the output by means of a metamodel ?, which can then be viewed as the physical process
(see ? and ? for designing, modeling and analyzing physical experiments). An application of
these principles is done for instance in ? where the goal is to meet european Euro 5 emission
regulations.

Since the physical model is unkown, the quality of the approximation obtained through the
metamodel depends strongly on the points of simulations, which should spread points evenly
throughout the experimental region to cover all the input space (?). This is called the space-
filling property.

However, simple random sampling for small samples in high-dimensional regions often ex-
hibits clustering and poorly covered areas, as remarked in ?. In practice, LHS (namely Latin
Hypercube Sampling) are very commonly performed because of their ease of use and since they
guarantee that the points will be evenly spaced when projecting onto each factor separetely in
the experimental region. But LHS is not necessarily space-filling.
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Thus, additional criteria are necessary to select good space-filling. A review can be explored
in ?. Two main kinds of criteria fit the purpose of improving the design. A first family is based
on the distances between points, a design will be regarded as being of good quality if all points
are far from each other. ? have proposed two well known algorithms for distance based design:

• maximin distance: designs that maximize smallest distance between any two points in the
design.

• minimax distance: designs that minimize the largest distance between any point in the
experimental region and the design.

Another family of criteria, called discrepancy criteria, attempts to quantify the deviation
from the uniform distribution. We refer for instance to ?? and ?. A design will be considered of
good quality if the empirical cumulative distribution function is close to the uniform cumulative
distribution function, i.e. if its discrepancy is low.

The aim of this paper is to assess the quality of a design through the maximin criterion,
since it is very commonly used in practice, through a normalized index of quality which will
work whatever the dimension of the space (number of factors) and the size of the design (the
number of points in the design). This will allow comparisons between several designs. The user
will then be helped in his decision to keep the design or to generate a better one.

Though (L2) euclidean distance remains by far the most used in practice, (L1) Manhat-
tan and (L∞) Chebyshev distance and more generally (Lp) Minkowsky distance will also be
considered. A first motivation comes from the form of the experimental domain that is often
hypercubic and that does not correspond specifically to euclidian distance. Secondly, in the field
of computer experiments, gaussian process model remains the first choice, and the covariance
structure is directly linked to the distance choice. For example L1 corresponds to Ornstein-
Uhlenbeck covariance function. Finally, the covariance structure is rarely isotropic by rotation,
it then gives a special role to the axes.

The paper is organized as follows. Section 2 provides some probabilistic characteristics of
the distance between two random points drawn independently from the uniform distribution in
the unit hypercube. It appears that this distribution can be expressed in most situations as
closed polynomial form. Considering then that the distances of pairs among N points are almost
independent, Section 3 state the associated approximation for the distribution of the minimum
distance. Even based on some closed forms, these distributions become untractable when the
dimension of the space or the size of design increases. Some approximations are developed in
Section 4. Taking profit of all this theoretical material, we introduce in Section 5 a new index
of the quality of a maximin space-filling design. This new measure is more instructive than a
distance since, obtained from the probability measure of a particular event, it is normalized in
some sense. Finally in Section 6 we illustrate the performance of the index as a measure of quality
through a simulation study and on an example of space-filling design in engine calibration.

2 Distance of a pair

Let d be an integer larger or equal to one. Denote by Hd the d-dimensional hypercube [0, 1]d.
Consider X = (X1, . . . , Xd) and Y = (Y1, . . . , Yd) two independent random points in Hd. Both
points have independent and identically distributed (i.i.d.) margins from the standard uniform

distribution on [0, 1]. Let us denote by Dp,d = (
∑d

i=1 |Xi − Yi|p)
1/p

and D∞,d = maxi=1,d |Xi−Yi|
the Minkowsky and the Chebyshev distance. With p = 1 and p = 2 we obtain the Manhattan
and the usual Euclidean distance respectively between X and Y.

Denote by Gp,d and gp,d the cumulative distribution function (c.d.f.) and the probabil-
ity density function (p.d.f.) of the random variable Dp,d, for p = 1, 2, ...,∞. In dimension
d = 1, the distributions are all the same with p.d.f. gp,1(x) = (2 − 2x)1[0,1](x) and c.d.f.
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Gp,1(x) = (2x− x2)1[0,1](x) + 1]1,∞](x).

The aim of the next proposition is to give exact expressions for Gp,1(x) on [0, 1], for p =
1, 2, ...,∞. Under the distance Lp and for general values of d, the whole support of the distribution
is [0, d1/p]. On the restricted interval [0, 1], expression of Gp,d(x) can be exhibited in polynomial
form.

Proposition 2.1 (Under the distance Lp). The c.d.f. Gp,d of the distance between two
points from the hypercube Hd with i.i.d. uniform margins is polynomial on [0, 1] and satisfies the
following properties.

- In dimension d ≥ 2, under the Lp distance and for x ∈ [0, 1], it has the general expression

Gp,d(x) =
2d∑
`=d

a
(`)
p,dx

`

where

a
(`)
p,d = (−1)l−d

(
d

l − d

)(
2

p

)d Γ(1/p)2d−lΓ(2/p)l−d

Γ(l/p+ 1)
.

- In dimension d ≥ 1, under the L∞ distance and for x ∈ [0, 1],

G∞,d(x) = (2x− x2)d.

- In dimension d = 1 and for x ∈ [0, 1], the distribution of the distance is independent of the
type of distance considered with c.d.f. Gp,1(x) = (2x− x2).

- In dimension d ≥ 2, under the L1 distance and for x ∈ [0, 1]

a
(`)
1,d = (−1)l−d

(
d

l − d

)
2d

l!
.

- In dimension d ≥ 2, under the L2 distance and for x ∈ [0, 1]

a
(`)
2,d = (−1)l−d

(
d

l − d

)
π(2d−l)/2

Γ(l/2 + 1)
.

Proof. These formula can be checked by recurrence. We focus on the general formula, available
for any positive value of p and any x ∈ [0, 1]. Easy calculus gives Gp,1(x) = 2x− x2.
Denoting fp,d the p.d.f. of the random variable Dp

p,d, we have for d = 1

fp,1(x) =
2

p

(
x1/p−1 − x2/p−1

)
and one can use the recurrence rule for higher values of d

fp,d(x) =

∫ x

0
fp,d−1(u)fp,1(x− u)du .

The p.d.f. of Dp,d is deduced from gp,d(x) = pxp−1fp,d(x
p) and the c.d.f. as a primitive.

The formula for a
(`)
p,d is easily checked for d = 2 since

Gp,2(x) =
2

p
B

(
1

p
,

1

p

)
x2 − 8

3p
B

(
2

p
,

1

p

)
x3 +

1

p
B

(
2

p
,

2

p

)
x4 .
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Assuming the formula is true until d− 1, and applying the recurrence rule, we have to evaluate

fp,d(x) =

2(d−1)∑
`=d−1

`

p
a
(`)
p,d−1

∫ x

0
u`/p−1fp,1(x− u)du.

The primitive of the u`/p−1fp,1(x− u) are the beta functions. Finally, we obtain

fp,d(x) =

2(d−1)∑
`=d−1

2`

p2
a
(`)
p,d−1

(
x

`+1
p
−1
B

(
`

p
,

1

p

)
− x

`+2
p
−1
B

(
`

p
,

2

p

))
.

Using the relations B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
and Γ(x+ 1) = xΓ(x) and after some simplifications, we

get the expected expression for a
(`)
p,d.

Comments.

- The expressions of Gp,d(x) are generally not polynomial when x ≥ 1. When p = 2,
expressions of Gp,d(x) involve trigonometric functions, as can be seen in ? and ? who gives
detailed expressions until d = 4.

- Under L1 distance, x varies on [0, d], and G1,d(x) is piecewise polynomial on every interval
[i − 1, i] for all i in [1, d]. Expressions for these polynomials can be found by recurrence
from their p.d.f.. In dimension 1, we have g1,1(x) = 2(1− x) for x ∈ [0, 1]. In dimension d
and for i ∈ {2, . . . , d− 1}

g1,d(x) =


∫ x
0 g1,d−1(u)g1,1(x− u)du, if x ∈ [0, 1],∫ x
x−1 g1,d−1(u)g1,1(x− u)du, if x ∈ [i− 1, i],∫ d
x−1 g1,d−1(u)g1,1(x− u)du, if x ∈ [d− 1, d].

The reader should be aware that when x lies in [i−1, i], the expression of g1,d−1(u) takes a
first polynomial form on [x−1, i−1] and a second on [i−1, x]. Even if the detailed results
of this convolution are not shown here, exact calculations can be done with any symbolic
manipulation software. If these softwares are not available, numerical approximated results
can still be easily obtained for any Lp distances and any dimension d, by repeatedly drawing
a pair of two random points and taking their distance.

- The first term a
(d)
p,dx

d in Gp,d(x) is exactly the volume of a hypersphere of radius x in
dimension d.

3 Smallest distance between any pair from a design of N points

Let X(1) = (X
(1)
1 , . . . , X

(1)
d ), . . . ,X(N) = (X

(N)
1 , . . . , X

(N)
d ) be independent random points in the

hypercube Hd, such that any margins have uniform distribution on [0, 1]. The set of N points
X(1), . . . ,X(N) will represent the experimental design in Section 5 and 6.

As already explained in the introduction, from the theoretical point of view, the variable of
interest is the smallest distance between any pair from the design. It has the general expression

∆p,N,d := min
1≤i,j≤N
i 6=j

Dp,d(X
(i),X(j)) .

Denote by Hp,N,d and hp,N,d the cumulative probability function (c.d.f.) and the probability
density function (p.d.f.) of the random variable ∆p,N,d, for p = 1, 2, ...,∞.
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The distances Dp,d(X
(i),X(j)) are clearly not independent since each point contributes to

N − 1 normalized distances. However, one can check that the independence assumption yields
a good approximation when taking the minimum as soon as the value of N is not too small and
the dimension d ≥ 2, e.g. N = 30 points in dimension d = 10. In other words, one can observe
that the smallest distance satisfies for N large enough

Hp,N,d(x) ' 1− (1−Gp,d(x))N(N−1)/2 . (1)

Note that in dimension d = 1, it is well known from the theory of uniform spacing that
Hp,N,1(x) = 1− (1− (N − 1)x)N (see ?).

The independence approximation is illustrated in Figure 1. The probability density function
hp,N,d are obtained from simulation based on 1000 runs of the random variable ∆p,N,d for the
two distance L1 (left panel) and L2 (right). The approximations from Equation (1) are plotted
in terms of density, corresponding to

hp,N,d(x) ' N(N − 1)

2
gp,d(x) (1−Gp,d(x))N(N−1)/2−1 .

For large N , this approximation is very accurate for any value of d: the dotted curves match
very closely the solid lines. This would also be the case for other distances. However when N is
small, differences are large enough to be noticed.

4 Approximations from extreme value theory

As the dimension increases, highest degree of polynomials involved in the expressions of Proposi-
tion 2.1 increase as well, thus making their evaluation numerically difficult. Some approximations
that may prove useful are provided for large number d of factors, or large design size N . These
approximations both rely on the independence approximation. Note also that when the di-
mension of the input space augments, it is natural to increase the number N of points in the
space-filling design as well.

Two kinds of approximation will be developed in this section, Weibull and Gumbel approxi-
mations

4.1 Weibull approximation

Weibull approximations of Hp,N,d are valid when N the number of points is large and/or when
x is close to 0. They are obtained by retaining only the first term in the expression of Gp,d(x)
and taking the limit in Hp,N,d.

Let us start by the approximation of the distribution of the distance of a pair, already
discussed in Section 2.

Proposition 4.1. As x tends to zero, Gp,d(x) = cp,dx
d+o(xd) with c2,d =

πd/2

Γ(d/2 + 1)
, c1,d =

2d

d!
,

c∞,d = 2d, and more generally

cp,d =

(
2

p

)d Γ(1/p)d

Γ(d/p+ 1)
.

Combining the independence approximation (1) and the expansions of Gp,d at the point 0
from Proposition 4.1 leads to

Hp,N,d

 x(
N(N−1)

2

)1/d
 ' 1−

1−Gp,d

 x(
N(N−1)

2

)1/d


N(N−1)/2

' 1−

(
1− cp,d

xd

N(N−1)
2

)N(N−1)/2

−−−−→
N→∞

(
1− exp(−cp,dxd)

)
1x>0 .
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Figure 1: Independence approximation. Probability density function hp,N,d obtained from
simulation (solid line) and its approximations from Equation (1) (dashed line). Distance L1

(left) and distance L2 (right). Number of points N = 25 (first line) and N = 100 (second line).

The limit is the well-known Weibull distribution with shape and scale parameters respectively

equal to d and c
−1/d
p,d . Consequently, as soon as N is large enough

Hp,N,d(x) '
(

1− exp

(
−cp,d

N(N − 1)

2
xd
))

1x>0 . (2)

Figure 2 plots the density hp,N,d of the random variable ∆p,N,d for N = 100 and N = 1000,
with its approximation deduced from (2). Note that these approximations are more accurate for
small values of x and large values of N . However, they remain a powerful tool since they only
require the knowledge of one parameter, namely cp,d, that is known for any values of d and any
Lp distances (including p =∞).
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Figure 2: Weibull approximation. Probability density function hp,N,d obtained from simula-
tion (solid line) and its approximations from Equation (2) (dashed line). Distance L1 (left) and
distance L2 (right). Number of points N = 100 (first row) and N = 1000 (second row).

4.2 Gumbel approximation

It is also possible to propose an approximation available when the dimension d becomes very
large, and this approximation is linked again to the extreme value distributions. Indeed, in a first
step, as Dp

p,d =
∑d

i=1 |Xi − Yi|p, for large d, by the application of the Central Limit Theorem,

we obtain a normal approximation for Dp
p,d. In a second step, we use the fact that the law of

the minimum of n independent gaussian normal variables tends toward a Gumbel law.
We start by applying the Central Limit Theorem on the distribution of a pair. In the following

we restrict ourself to p = 1 and p = 2 for simplicity reasons.

Proposition 4.2. Let Φ stands for the standard normal cumulative distribution function. From
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the application of the Central limit Theorem,

G1,d(x) ∼d→∞ Φ

(
x− dµ1√

dσ1

)
(3)

with µ1 = 1/3, σ21 = 1/18 and

G2,d(x) ∼d→∞ Φ

(
x2

d − µ2
σ2/
√
d

)
(4)

with µ2 = 1/6 and σ22 = 7/180.

Figure 3 displays the performance of the Gaussian approximations (3) and (4). Note that the
Central limit Theorem furnishes a more accurate expansion under the distance L1 than under
the distance L2. It is the main reason why we only present the Gumbel approximation under
the distance L1.

Figure 3: TCL approximation. Probability density function gp,d (solid line) and its approx-
imations from the Central limit Theorem (dashed line). Distance L1 (left) and distance L2

(right).

First recall that if Z1, . . . , Zn are n independent and identically distributed random variables
from the standard normal distribution, then mn = min{Z1, . . . , Zn} satisfies

P(an(mn − bn) ≤ x) −−−→
n→∞

1− exp(− exp(x))

for an = (2 log n)1/2 and bn = −an + log logn+log(4π)
an

.

Since we know from Proposition 4.2 that for µ1 = 1/3 and σ21 = 1/18 and under the Mahanttan
distance

G1,d(x) ∼d→∞ Φ

(
x− dµ1√

dσ1

)
.

It follows that

H1,N,d(x) ' P
(
mN(N−1)

2

≤ x− dµ1√
dσ1

)
,
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and consequently that

H1,N,d(x) 'N,d→∞ 1− exp

[
− exp

{
aN(N−1)

2

(
x− dµ1√

dσ1
− bN(N−1)

2

)}]
. (5)

These approximations are illustrated on Figure 4. The expansion seems really informative for
high values of d.

Figure 4: Gumbel approximation. Probability density function h1,N,d obtained from simu-
lation (solid line) and its approximations from Equations (5) (dashed line). Distance L1 only.
Dimension d ∈ {10, 20, 50, 100} (left) and d ∈ {100, 200, 500, 1000} (right).

5 New measure for the quality of a design

Let x = {x1, . . . ,xN} be a deterministic experimental design in a d-dimensional space. Let us
denote by δx = δx(p,N, d) the smallest Lp distance between any pair from x. Taking into account
the motivation of space-filling methodology, the larger the value δx, the better the design. From
what precedes, it is possible to define the following quantity − log10 (1−Hp,N,d(δx)) as a measure
of the quality of the design.

Since the distribution Hp,N,d is not completely known, we first use the independence approx-
imation that has been illustrated in Section 3. Let us set the index as

Ip,N,d(x) := −N(N − 1)

2
log10(1−Gp,d(δx)) .

Rephrased in an other way, we see that Gp,d(δx) = 1− 10−Ip,N,d(δx), and the index measures the
closeness to 1: logarithmic expression is preferred since in many cases in maximin space-filling
design Hp,N,d(δx) is very close to 1, while, for small values of δx, the index is still calculable, in
the same way.

Ip,N,d can vary from 0 to +∞. An index close to 0 indicates that the minimum distance
between the points of the design is easily reachable by a random uniform design, while a high
value (say greater than 2) shows that the corresponding design is unlikely to come from a random
uniform design, and may be resulting from an optimization process. Naturally, in maximin
design, high values of Ip,N,d should be preferred.
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The maximin distance for a design is bounded (?) and depends on both the number of points
N and the dimension d. Moreover, this distance relies strongly on the type of design and the
algorithm and is difficult to interpret, contrary to the proposed index, which is normalized in a
certain way. Note however that the index depends on the type of distance used, so that indices
for L1 distance will not be equivalent to indices under L2 or L∞.

When the size of the design N is large, this definition could be replaced by

Ĩp,N,d(x) :=
(δx)dN(N − 1)cp,d

2 ln(10)
,

where cp,d is given in Proposition 4.1 . This last expression comes directly from the main idea
of the index and the expansions (2).

Typical random sampling gives the curves displayed on Figure 5 where the dimension of the
space varies between 2 and 10. As already noticed, the minimum distance increases with the
dimension d. At the end of each curve, when the distance is sufficiently large, the c.d.f. is
numerically equal to one, but the index remains calculable.

Figure 5: Index representation under uniform designs. Several c.d.f. H2,100,d (left panel)
and corresponding index I2,100,d (right panel) for N = 100 points drawn uniformly in the unit
hypercube when the dimension d varies from 2 to 10.

One could be interested by the behaviour of our index on more reallistic designs. Indeed,
the previous example was based on classical Monte-Carlo sampling. The same exercise has been
continued with Latin Hypercube Sampling, a well known method since ?. The initial output of
this algorithm can be improved by running a fixed number of iterations and selecting for example
the best response which maximizes the minimum distance between the points of the design (see
for example maximinlhs from package lhs in R).

However, special algorithms have been proposed, based on simulated annealing algorithm, to
improve a first initial drawing (?), for instance maximinSA LHS in the package DiceDesign in R.
In this case, the improvement clearly shows a big difference : for example, in dimension d = 10
with a design containing N = 100 points and after 1000 iterations, the mean minimum distance
with the optimized routine maximinSA LHS is around 0.9074, which corresponds to an index of
166, while with maximinlhs from package lhs the mean minimum distance is around 0.5568 with
an index of 3.7. The results are presented in Figure 6 showing that the optimized algorithm is
much more efficient than classical LHS.

This previous comparison can be further investigated for other dimensions and numbers of
points. Indeed, in many applications, one is not interested in finding the ”best” design but
only a ”good” design, with a given index id. In this case the number of iterations is not fixed
in advance but set by the algorithms which are run until the searched id is reached. In this
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Figure 6: Index representation under LHS. On the left panel, we have repeated 1000
times the following procedure: we draw 5, 100 and 1000 ’classical’ LHS of N = 100 points in
dimension d = 10 (run with lhsdesign from Matlab), and among them, we choose the design
with the maximum minimum distance. The right panel is based on a simulated annealing
optimized algorithm implemented with maximinSA LHS from DiceDesign with the same number
of iterations. The abscissa is the minimum distance between the points of the design, while the
y axis is the simulated cdf for the algorithms we are considering.

context, two methods for building such a design are possible : the first consists in applying an
optimization routine, the second consists in generating uniform designs until index exceeds id.
The question is then: how many uniform designs should be generated before observing one with
index id, compared to the number of iterations needed by the optimization routine to obtain
the same result? Note that we call ”uniform design”, a design which points have been randomly
chosen.

Let us consider a design of N points in dimension d with index id. Let δid be the minimal
distance between two points of this design. From the definition of the index, δid can be approx-
imated by δid = G−1p,d(1 − 10−id) which means that if a design has an index higher than id, its
minimal distance between two points is higher than δid. In the following, we compare K, the
number of uniform designs that must be generated until observing one with a maximin criterion
higher than δid to R, the number of iterations of an optimization routine to produce such a
design. The chosen routine is maximinSA LHS from the package DiceDesign. This routine has
been slightly adapted to produce non LHS designs, in order not to bias the comparison.

The theoretical probability distribution of K is a geometric law of parameter 10−id. The
mean of the distribution is then 10id and the quantile of order 1− α is K1−α = ln(α)

ln(1−10−id)
, such

that the probability of waiting more than K1−α simulations before observing a design of index
id is α. Note that this probability is independent of the dimension d and the number of points
of the design N .

If we now want to compare the distribution of R to the distribution of K it is sufficient to
compare empirical realizations of R to the theoretical law of K. Tests have been done for three
values of the index (id = 1, id = 3 and id = 5) and two different numbers of points (N = 100 and
N = 500). On the top of Figure 7, i.e. id = 1, it can be seen that the geometrical law performs
better than the distribution of R for all the dimensions and for the two numbers of points. In
this case, the expectation of K is 10 whereas the number of iterations of the optimization routine
is distributed between 0 and 500 for N = 100 (or between 0 and 1500 for N = 500). When
id equals 3 comparison reverses : the cumulative distribution function of R is going to 1 faster
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that the geometric distribution regardless of the dimension or the number of points. Note that
the comparison is less favorable when the dimension or the number of points is high, that is to
say when the optimization problem is more complex. When id = 5, the use of an optimization
method is inescapable, the expectation of the corresponding law for K being extremely high
(E(K) = 1

1−10−5 = 100000). This case is not represented on Figure 7.
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Figure 7: Random versus optimization. Cumulative distribution functions of R (solid line)
for different dimensions d ∈ {2, 4, 6, 8, 10}, id = 1 (first row) and id = 3 (second row), N = 100
(left) and N = 500 (right). Cumulative distribution function of K (dashed line).

In conclusion to this comparison, we can say that if the requested quality of the space filling
design is not too high, it is more efficient to independently generate uniform designs as necessary
than to run an optimization procedure, especially when the optimization problem is difficult
(high dimension or high number of points). Rather, an optimization routine should be preferred
when the required quality is high.

Our new index is effective for design comparison whatever dimension and number of points.
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Moreover, since it is normalized, when considering a standalone design, our index gives an eval-
uation of the quality of the design without the need of interpreting distances.

6 Application

As already indicated in the introduction, we are motivated by a real example from automotive
industry. Engine calibration consists in defining the optimal tuning of parameters used by
engine control strategies, for example for achieving low consumption or low pollution. Due to
the increasing number of these parameters, manual tuning of engine parameters is now replaced
by mathematically assisted calibration process, that is based on design of experiments. The
dimension of the input space for parameters is d = 11, among which we can find injection engine
speed, load, air flow rate, injection parameters, as described in ?. To avoid useless complications,
all the parameters are supposed to vary between 0 and 1.

To prevent the engine from going in forbidden regions, some constraints (linear and non
linear) have to be added, and the final experimental area is not any longer hypercubic. Design
in constrained domains is still an active domain of research. ? and more recently ? propose
performing strategies in constrained regions based on simulated algorithm. ? consider the case
where linear constraints passing through the origin restrict the available domain.

Here we propose the following strategy to calculate the index. If we were calculating the
volume of the constrained region by Monte-Carlo simulations, we would simply count the number
N of points falling in the targeted region out of a total number of draws Ntot, and the volume
would be V = N/Ntot. Conversely, N points uniformly drawn in the experimental area should
correspond to N/V points in the unit hypercube where V is the volume of the constrained
region. Then if δx is the minimum distance obtained for the points in the experimental region,
the probability that a random uniform design will have a minimum distance bigger than δx in
the unit hypercube is given by

P (∆p,N/V,d > δx) = 1−Hp,N/V,d(δx) = (1−Gp,d(δx))
N/V (N/V−1)

2

where Gp,d(x) is defined as in Section 3.
Under L2 distance. Simulation of designs from the uniform distribution and selection of the
points falling in the targeted region allows to estimate the volume of the constrained region
around V = 0.23. With N = 250 points, the minimum L2 distance between pairs of such design
is around δx = 0.33, corresponding to an index of 1.06 calculated with an equivalent number
equal to N/V points. As it is done n ? or ?, this first initial design can be improved by ex-
changing coordinates. After the application of this procedure, the minimum distance becomes
δx = 0.395 and the index equals 6. As the cumulative distribution function is very stiff, this
small change in the distance has an important impact on the index.
Under L1 distance. The same calculations can be done with L1 distances for maximin designed
as in ?. We find δx = 0.52 in the initial design and 0.98 after exchanging coordinates. These
values correspond to an index of 0.006 for the initial design and 4 for the modified one. Note
that these calculations are only indicative here, since maximin designs depend on the chosen
distance.

Conclusion. In this paper, we propose a new index to measure the quality of space-
filling designs, based on the probability distribution of the minimum distance of N points drawn
uniformly in the unit hypercube of dimension d. This index depends on the chosen distance, the
number of points and the dimension of the space. In most common situations, it can be very well
approximated by polynomial form. When the number of points in the design is large or under
high dimension, since formulas can become cumbersome to evaluate, we give some powerfull
approximations of the index.
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