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Abstract

We present here a new index for measuring the quality of maximin space-filling design
for computer experiments. This index is based on a very accurate approximation of the
distribution of the minimum distance for uniform designs. Expressions are explicitly given in
terms of closed polynomial forms for any Lp distances, including L2, L1 and L∞ distances.
When the size of the design or the dimension of the space is large, approximations through
extreme value theory are exhibited. Some illustrations of our index are presented on simulated
data and on a real problem.
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1 Introduction

Some of the major challenges for the automotive industry are the reduction of the greenhouse
gas emissions, the fossil fuel dependency and the local pollution. In many cases, phenomeno-
logical models are not predictive enough, and these objectives rely on engine calibration which
consists in determining experimentally the optimal set of parameters which satisfies some given
requirements. Indeed, in order to get a usable description of the engine under study, automotive
industrials launch experimental studies on test benches. Once the design is selected and the
responses observed, the usual approach is to approximate the relation between the inputs and
the output by means of a metamodel Sacks et al. [1989], which can then be viewed as the physical
process (see Santner et al. [2003] and Fang et al. [2005] for designing, modeling and analyzing
physical experiments). An application of these principles is done for instance in Magand et al.
[2011] where the goal is to meet european Euro 5 emission regulations.

Since the physical model is unkown, the quality of the approximation obtained through the
metamodel depends strongly on the points of simulations, which should spread points evenly
throughout the experimental region to cover all the input space (Johnson et al. [1990]). This is
called the space-filling property.

However, simple random sampling for small samples in high-dimensional regions often ex-
hibits clustering and poorly covered areas, as remarked in Fang et al. [2005]. In practice, LHD
(namely Latin Hypercube Design) are very commonly performed because of their ease of use
and since they guarantee that the points will be evenly spaced when projecting onto each factor
separetely in the experimental region. But LHD is not necessarily space-filling.
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Thus, additional criteria are necessary to select good space-filling. A review can be explored
in Pronzato and Müller [2012]. Two main kinds of criteria fit the purpose of improving the
design. A first family is based on the distances between points, a design will be regarded as
being of good quality if all points are far from each other. Johnson et al. [1990] have proposed
two well known algorithms for distance based design:

• maximin distance: designs that maximize smallest distance between any two points in the
design.

• minimax distance: designs that minimize the largest distance between any point in the
experimental region and the design.

Another family of criteria, called discrepancy criteria, attempts to quantify the deviation from
the uniform distribution. We refer for instance to Niederreiter [1987], Hickernell [1998] and Fang
et al. [2005]. A design will be considered of good quality if the empirical cumulative distribution
function is close to the uniform cumulative distribution function, i.e. if its discrepancy is low.

The aim of this paper is to assess the quality of a design through the maximin criterion,
since it is very commonly used in practice, through a normalized index of quality which will
work whatever the dimension of the space (number of factors) and the size of the design (the
number of points in the design). This will allow comparisons between several designs. The user
will then be helped in his decision to keep the design or to generate a better one.

Though (L2) euclidean distance remains by far the most used in practice, (L1) Manhat-
tan and (L∞) Chebyshev distance and more generally (Lp) Minkowsky distance will also be
considered. A first motivation comes from the form of the experimental domain that is often
hypercubic and that does not correspond specifically to euclidian distance. Secondly, in the field
of computer experiments, gaussian process model remains the first choice, and the covariance
structure is directly linked to the distance choice. For example L1 corresponds to Ornstein-
Uhlenbeck covariance function. Finally, the covariance structure is rarely isotropic by rotation,
it then gives a special role to the axes.

The paper is organized as follows. Section 2 provides some probabilistic characteristics of
the distance between two random vectors drawn independently from the uniform distribution
in the unit hypercube. It appears that this distribution can be expressed in most situations as
closed polynomial form. Considering then that the distances of pairs among N points are almost
independent, Section 3 state the associated approximation for the distribution of the minimum
distance. Even based on some closed forms, these distributions become untractable when the
dimension of the space or the size of design increases. Some approximations are developed in
Section 4. Taking profit of all this theoretical material, we introduce in Section 5 a new index
of the quality of a maximin space-filling design. This new measure is more instructive than a
distance since, obtained from the probability measure of a particular event, it is normalized in
some sense. Finally in Section 6 we illustrate the performance of the index as a measure of quality
through a simulation study and on an example of space-filling design in engine calibration.

2 Distance of a pair

Let d be an integer larger or equal to one. Denote by Hd the d-dimensional hypercube [0, 1]d.
Consider X = (X1, . . . , Xd) and Y = (Y1, . . . , Yd) two independent random vectors in Hd. Both
vectors have independent and identically distributed (i.i.d.) margins from the standard uniform

distribution on [0, 1]. Let us denote by D2,p =
√

∑d
i=1 |Xi − Yi|p and D∞,d = maxi=1,d |Xi − Yi|

the Minkowsky and the Chebyshev distance. With p = 1 and p = 2 we obtain the Manhattan
and the usual Euclidean distance respectively between X and Y.

Denote by Gp,d and gp,d the cumulative distribution function (c.d.f.) and the probabil-
ity density function (p.d.f.) of the random variable Dp,d, for p = 1, 2, ...,∞. In dimension
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d = 1, the distributions are all the same with p.d.f. gp,1(x) = (2 − 2x)1[0,1](x) and c.d.f.
Gp,1(x) = (2x− x2)1[0,1](x) + 1]1,∞](x).

The aim of the next proposition is to give exact expressions for Gp,1(x) on [0, 1], for p =
1, 2, ...,∞. Under the distance Lp and for general values of d, the whole support of the distribution
is [0, d1/p]. On the restricted interval [0, 1], expression of Gp,d(x) can be exhibited in polynomial
form.

Proposition 2.1 (Under the distance Lp). The c.d.f. Gp,d of the distance between two

points from the hypercube Hd with i.i.d. uniform margins is polynomial on [0, 1] and satisfies the

following properties.

- In dimension d ≥ 2, under the Lp distance and for x ∈ [0, 1], it has the general expression

Gp,d(x) =
2d
∑

ℓ=d

a
(ℓ)
p,dx

ℓ

where

a
(ℓ)
p,d = (−1)l−d

(

d

l − d

)(

2

p

)d Γ(1/p)2d−lΓ(2/p)l−d

Γ(l/p+ 1)
.

- In dimension d ≥ 1, under the L∞ distance and for x ∈ [0, 1],

G∞,d(x) = (2x− x2)d.

- In dimension d = 1 and for x ∈ [0, 1], the distribution of the distance is independent of the

type of distance considered with c.d.f. Gp,1(x) = (2x− x2).

- In dimension d ≥ 2, under the L1 distance and for x ∈ [0, 1]

a
(ℓ)
1,d = (−1)l−d

(

d

l − d

)

2d

l!
.

- In dimension d ≥ 2, under the L2 distance and for x ∈ [0, 1]

a
(ℓ)
2,d = (−1)l−d

(

d

l − d

)

π(2d−l)/2

Γ(l/2 + 1)
.

Proof. These formula can be checked by recurrence. We focus on the general formula, available
for any positive value of p and any x ∈ [0, 1]. Easy calculus gives Gp,1(x) = 2(x− x2).
Denoting fp,d the p.d.f. of the random variable Dp

p,d, we have for d = 1

fp,1(x) =
2

p

(

x1/p−1 − x2/p−1
)

and one can use the recurrence rule for higher values of d

fp,d(x) =

∫ x

0
fp,d−1(u)fp,1(x− u)du .

The p.d.f. of Dp,d is deduced from gp,d(x) = pxp−1fp,d(x
p) and the c.d.f. as a primitive.

The formula for a
(ℓ)
p,d is easily checked for d = 2 since

Gp,2(x) =
2

p
B

(

1

p
,
1

p

)

x2 − 8

3p
B

(

2

p
,
1

p

)

x3 +
1

p
B

(

2

p
,
2

p

)

x4 .
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Assuming the formula is true until d− 1, and applying the recurrence rule, we have to evaluate

fp,d(x) =

2(d−1)
∑

ℓ=d−1

ℓ

p
a
(ℓ)
p,d−1

∫ x

0
uℓ/p−1fp,1(x− u)du.

The primitive of the uℓ/p−1fp,1(x− u) are the beta functions. Finally, we obtain

fp,d(x) =

2(d−1)
∑

ℓ=d−1

2ℓ

p2
a
(ℓ)
p,d−1

(

x
ℓ+1
p

−1
B

(

ℓ

p
,
1

p

)

− x
ℓ+2
p

−1
B

(

ℓ

p
,
2

p

))

.

Using the relations B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
and Γ(x+1) = xΓ(x) and after some simplifications, we

get the expected expression for a
(ℓ)
p,d.

Comments.

- The expressions of Gp,d(x) are generally not polynomial when x ≥ 1. When p = 2,
expressions of Gp,d(x) involve trigonometric functions, as can be seen in Philip [2007] and
Philip [2010] who gives detailed expressions until d = 4.

- Under L1 distance, x varies on [0, d], and G1,d(x) is piecewise polynomial on every interval
[i − 1, i] for all i in [1, d]. Expressions for these polynomials can be found by recurrence
from their p.d.f.. In dimension 1, we have g1,1(x) = 2(1− x) for x ∈ [0, 1]. In dimension d
and for i ∈ {2, . . . , d− 1}

g1,d(x) =











∫ x
0 g1,d−1(u)g1,1(x− u)du, if x ∈ [0, 1],

∫ i−1
x−1 g1,d−1(u)g1,1(x− u)du+

∫ x
i−1 g1,d−1(u)g1,1(x− u)du, if x ∈ [i− 1, i],

∫ d
x−1 g1,d−1(u)g1,1(x− u)du, if x ∈ [d− 1, d].

Even if the detailed results of this convolution are not shown here, exact calculations can
be done with any symbolic manipulation software. In fact, exact expressions can also be
numerically obtained for any Lp distances and any dimension d.

- The first term a
(d)
p,dx

d in Gp,d(x) is exactly the volume of a hypersphere of radius x in
dimension d.

3 Smallest distance between any pair from a design of N points

Let X(1) = (X
(1)
1 , . . . , X

(1)
d ), . . . ,X(N) = (X

(N)
1 , . . . , X

(N)
d ) be independent random points in the

hypercube Hd, such that any margins have uniform distribution on [0, 1]. The set of N points
X(1), . . . ,X(N) will represent the experimental design in Section 5 and 6.

As already explained in the introduction, from the theoretical point of view, the variable of
interest is the smallest distance between any pair from the design. It has the general expression

∆p,N,d := min
1≤i,j≤N

i 6=j

Dp,d(X
(i),X(j)) .

Denote by Hp,N,d and hp,N,d the cumulative probability function (c.d.f.) and the probability
density function (p.d.f.) of the random variable ∆p,N,d, for p = 1, 2, ...,∞.

The distances Dp,d(X
(i),X(j)) are clearly not independent since each point contributes to

N − 1 normalized distances. However, one can check that the independence assumption yields
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a good approximation when taking the minimum as soon as the value of N is not too small and
the dimension d ≥ 2, e.g. N = 30 points in dimension d = 10. In other words, one can observe
that the smallest distance satisfies for N large enough

Hp,N,d(x) ≃ 1− (1−Gp,d(x))
N(N−1)/2 . (1)

Note that in dimension d = 1, it is well known from the theory of uniform spacing that
Hp,N,1(x) = 1− (1− (N − 1)x)N (see David [1980]).

The independence approximation is illustrated in Figure 1. The probability density function
hp,N,d are obtained from simulation based on 1000 runs of the random variable ∆p,N,d for the
two distance L1 (left panel) and L2 (right). The approximations from Equation (1) are plotted
in terms of density, corresponding to

hp,N,d(x) ≃
N(N − 1)

2
gp,d(x) (1−Gp,d(x))

N(N−1)/2−1 .

For large N , this approximation is very accurate for any value of d: the dotted curves match
very closely the solid lines. This would also be the case for other distances. However when N is
small, differences are large enough to be noticed.

4 Approximations from extreme value theory

As the dimension increases, highest degree of polynomials involved in the expressions of Proposi-
tion 2.1 increase as well, thus making their evaluation numerically difficult. Some approximations
that may prove useful are provided for large number d of factors, or large design size N . These
approximations both rely on the independence approximation. Note also that when the di-
mension of the input space augments, it is natural to increase the number N of points in the
space-filling design as well.

4.1 Weibull approximation

Let us start by the approximation of the distribution of the distance of a pair, already discussed
in Section 2.

Proposition 4.1. As x tends to zero, Gp,d(x) = cp,dx
d+o(xd) with c2,d =

πd/2

Γ(d/2 + 1)
, c1,d =

2d

d!
,

c∞,d = 2d, and more generally

cp,d =

(

2

p

)d Γ(1/p)d

Γ(d/p+ 1)
.

Combining the independence approximation (1) and the expansions of Gp,d at the point 0
from Proposition 4.1 leads to

Hp,N,d







x
(

N(N−1)
2

)1/d






≃ 1−






1−Gp,d







x
(

N(N−1)
2

)1/d













N(N−1)/2

≃ 1−
(

1− cp,d
xd

N(N−1)
2

)N(N−1)/2

−−−−→
N→∞

(

1− exp(−cp,dx
d)
)

1x>0 .

The limit is the well-known Weibull distribution with shape and scale parameters respectively

equal to d and c
−1/d
p,d . Consequently, as soon as N is large enough

Hp,N,d(x) ≃
(

1− exp

(

−cp,d
N(N − 1)

2
xd
))

1x>0 . (2)
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Figure 1: Independence approximation. Probability density function hp,N,d obtained from
simulation (solid line) and its approximations from Equation (1) (dashed line). Distance L1

(left) and distance L2 (right). Number of points N = 25 (first line) and N = 100 (second line).

Figure 2 plots the density hp,N,d of the random variable ∆p,N,d for N = 100 and N = 1000,
with its approximation deduced from (2). Note that these approximations are more accurate for
small values of x and large values of N . However, they remain a powerful tool since they only
require the knowledge of one parameter, namely cp,d, that is known for any values of d under
the two distances under consideration.

4.2 Gumbel approximation

It is also possible to propose an approximation available when the dimension d becomes very
large, and that is linked again to the extreme value distributions. We start by the application
of the Central Limit Theorem on the distribution of a pair.
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Figure 2: Weibull approximation. Probability density function hp,N,d obtained from simula-
tion (solid line) and its approximations from Equation (2) (dashed line). Distance L1 (left) and
distance L2 (right). Number of points N = 100 (first row) and N = 1000 (second row).

Proposition 4.2. Let Φ stands for the standard normal cumulative distribution function. From

the application of the Central limit Theorem,

G1,d(x) ∼d→∞ Φ

(

x− dµ1√
dσ1

)

(3)

with µ1 = 1/3, σ2
1 = 1/18 and

G2,d(x) ∼d→∞ Φ

(

x2

d − µ2

σ2/
√
d

)

(4)

with µ2 = 1/6 and σ2
2 = 7/180.
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Figure 3 displays the performance of the Gaussian approximations (3) and (4). Note that the
Central limit Theorem furnishes a more accurate expansion under the distance L1 than under
the distance L2. It is the main reason why we only present the Gumbel approximation under
the distance L1.

Figure 3: TCL approximation. Probability density function gp,d (solid line) and its approx-
imations from the Central limit Theorem (dashed line). Distance L1 (left) and distance L2

(right).

First recall that if Z1, . . . , Zn are n independent and identically distributed random variables
from the standard normal distribution, then mn = min{Z1, . . . , Zn} satisfies

P(an(mn − bn) ≤ x) −−−→
n→∞

1− exp(− exp(x))

for an = (2 log n)1/2 and bn = −an + log logn+log(4π)
an

.

Recall now from Proposition 4.2 that for µ1 = 1/3 and σ2
1 = 1/18 and under the Mahanttan

distance

G1,d(x) ∼d→∞ Φ

(

x− dµ1√
dσ1

)

.

It follows that

H1,N,d(x) ≃ P

(

mN(N−1)
2

≤ x− dµ1√
dσ1

)

,

and consequently that

H1,N,d(x) ≃N,d→∞ 1− exp

[

− exp

{

aN(N−1)
2

(

x− dµ1√
dσ1

− bN(N−1)
2

)}]

. (5)

These approximations are illustrated on Figure 4. The expansion seems really informative for
high values of d.

5 New measure for the quality of a design

Let x = {x1, . . . ,xN} be a deterministic experimental design in a d-dimensional space. Let us
denote by δx = δx(p,N, d) the smallest Lp distance between any pair from x. Taking into account

8



Figure 4: Gumbel approximation. Probability density function h1,N,d obtained from simu-
lation (solid line) and its approximations from Equations (5) (dashed line). Distance L1 only.
Dimension d ∈ {10, 20, 50, 100} (left) and d ∈ {100, 200, 500, 1000} (right).

the motivation of space-filling methodology, the larger the value δx, the better the design. From
what precedes, it is possible to define the following quantity − log10 (1−Hp,N,d(δx)) as a measure
of the quality of the design.

Logarithmic expression is preferred since in many cases in maximin space-filling design
Hp,N,d(δx) is very close to 1, while, for small values of δx, the index is still calculable, in the
same way. Since the distribution Hp,N,d is not completely known, we first use the independence
approximation that has been illustrated in Section 3. Let us set the index as

Ip,N,d(x) := −N(N − 1)

2
log10(1−Gp,d(δx)) .

Note that this definition could be replaced by

Ĩp,N,d(x) :=
(δx)

dN(N − 1)cp,d
2 ln(10)

,

where cp,d is given in Proposition 4.1 when the size of the design N is large. This last expression
comes directly from the main idea of the index and the expansions (2).

The maximin distance for a design is bounded (Van Dam et al. [2009]) and depends on both
the number of points N and the dimension d. Moreover, this distance relies strongly on the type
of design and the algorithm and is difficult to interpret, contrary to the proposed index, which
is normalized in a certain way. Note however that the index depends on the type of distance
used, so that indices for L1 distance will not be equivalent to indices under L2 or L∞.

Typical random sampling gives the curves displayed on Figure 5 where the dimension of the
space varies between 2 and 10. As already noticed, the minimum distance increases with the
dimension d. At the end of each curve, when the distance is sufficiently large, the c.d.f. is
numerically equal to one, but the index remains calculable.

One could be interested by the behaviour of our index on more reallistic designs. Indeed,
the previous example was just based on the function rand in Matlab. The same exercise has
been continued with the function lhsdesign from Matlab. In Matlab, lhsdesign outputs a latin
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Figure 5: Index representation under uniform designs. Several c.d.f. H2,100,d (left panel)
and corresponding index I2,100,d (right panel) for N = 100 points drawn uniformly in the unit
hypercube when the dimension d varies from 2 to 10.

hypercube sample, chosen by default to maximize the minimum distance between the points
of the design, by selecting the best response after a fixed number of iterations. lhsdesign is
equivalent to randomlhs from the library lhs in R, both are based on the same algorithm and
results are comparable.

However, special algorithms have been constructed, based on simulated annealing algorithm,
to improve a first initial drawing, for instance maximin-SA in the package DiceDesign in R. In
this case, the improvement clearly shows a big difference : for example, in dimension d = 10
and with a design containing N = 100 points, the mean minimum distance with maximin-SA is
around 0.9074, which corresponds to an index of 166, while for maximinlhs, the mean minimum
distance is around 0.4380 with an index of 0.4682. The results are presented in Figure 6 showing
that the algorithm of the maximin-SA routine is much more efficient than maximinlhs. These
observations are confirmed for other dimensions and numbers of points.

Figure 6: Index representation under LHS. On the left panel, 1000 runs of lhsdesign from
Matlab have been performed and their minimum distances calculated with 5, 100 and 1000
iterations of the algorithm. The right panel is based on maximin-SA from DiceDesign.

Our new index is effective for design comparison whatever dimension and number of points.
Moreover, since it is normalized, when considering a standalone design, our index gives an eval-
uation of the quality of the design without the need of interpreting distances.

10



6 Application

As already indicated in the introduction, we are motivated by a real example from automotive
industry. Engine calibration consists in defining the optimal tuning of parameters used by
engine control strategies, for example for achieving low consumption or low pollution. Due to
the increasing number of these parameters, manual tuning of engine parameters is now replaced
by mathematically assisted calibration process, that is based on design of experiments. The
dimension of the input space for parameters is d = 11, among which we can find injection engine
speed, load, air flow rate, injection parameters, as described in Magand et al. [2011]. To avoid
useless complications, all the parameters are supposed to vary between 0 and 1.

To prevent the engine from going in forbidden regions, some constraints (linear and non
linear) have to be added, and the final experimental area is not any longer hypercubic. Design
in constrained domains is still an active domain of research. Stinstra et al. [2003] and more
recently Auffray et al. [2012] propose performing strategies in constrained regions based on
simulated algorithm. Petelet et al. [2010] consider the case where linear constraints passing
through the origin restrict the available domain.

Here we propose the following strategy to calculate the index. If we were calculating the
volume of the constrained region by Monte-Carlo simulations, we would simply count the number
N of points falling in the targeted region out of a total number of draws Ntot, and the volume
would be V = N/Ntot. Conversely, N points uniformly drawn in the experimental area should
correspond to N/V points in the unit hypercube where V is the volume of the constrained
region. Then if δx is the minimum distance obtained for the points in the experimental region,
the probability that a random uniform design will have a minimum distance bigger than δx in
the unit hypercube is given by

P (∆p,N/V,d > δx) = 1−Hp,N/V,d(δx) = (1−Gp,d(δx))
N/V (N/V −1)

2

where Gp,d(x) is defined as in Section 3.
Under L2 distance. Simulation of designs from the uniform distribution and selection of the
points falling in the targeted region allows to estimate the volume of the constrained region
around V = 0.23. With N = 250 points, the minimum L2 distance between pairs of such design
is around δx = 0.33, corresponding to an index of 1.06 calculated with an equivalent number
equal to N/V points. As it is done n Jin et al. [2005] or Petelet et al. [2010], this first initial
design can be improved by exchanging coordinates. After the application of this procedure, the
minimum distance becomes δx = 0.395 and the index equals 6. As the cumulative distribution
function is very stiff, this small change in the distance has an important impact on the index.
Under L1 distance. The same calculations can be done with L1 distances for maximin designed
as in Husslage [2006]. We find δx = 0.52 in the initial design and 0.98 after exchanging coordi-
nates. These values correspond to an index of 0.006 for the initial design and 4 for the modified
one. Note that these calculations are only indicative here, since maximin designs depend on the
chosen distance.

Conclusion. In this paper, we propose a new index to measure the quality of space-
filling designs, based on the probability distribution of the minimum distance of N points drawn
uniformly in the unit hypercube of dimension d. This index depends on the chosen distance, the
number of points and the dimension of the space. In most common situations, it can be very well
approximated by polynomial form. When the number of points in the design is large or under
high dimension, since formulas can become cumbersome to evaluate, we give some powerfull
approximations of the index.
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