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MINIMIZING THE FUEL CONSUMPTION OF A VEHICLE FROM THE SHELL
ECO-MARATHON: A NUMERICAL STUDY ∗

Sophie Jan
1

Abstract. We apply four different methods to study an intrinsically bang-bang optimal control prob-
lem. We study first a relaxed problem that we solve with a naive nonlinear programming approach.
Since these preliminary results reveal singular arcs, we then use Pontryagin’s Minimum Principle and
apply multiple indirect shooting methods combined with homotopy approach to obtain an accurate
solution of the relaxed problem. Finally, in order to recover a purely bang-bang solution for the original
problem, we use once again a nonlinear programming approach.
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1. Introduction

In the context of environment preservation, Shell company organizes each year a competition named Shell
Eco-marathon. The aim is to design and build a vehicle, and to optimize the driving strategy in order to use as
little fuel as possible to travel a given distance L in a time less than a given duration T .

For example, for a competition on the race track displayed in Figure 1, L ≈ 25.5 km (7 laps) and T ≈ 51 min.
This quantity T corresponds to the time needed to travel the distance L with a mean speed of 30 km/h.

This paper is organized in four sections. In Section 1, we describe the problem and formulate it as an
intrinsically bang-bang optimal control problem. Then, we analyze, in Section 2, a relaxed version of this optimal
control problem using Pontryagin’s Minimum Principle. In the third section, we report numerical experiments
on both the relaxed and the original optimal control problems. Finally, we conclude in Section 4.

2. Position of the problem

In this section, we first describe the vehicle and the race track. Then we make explicit the dynamics of the
vehicle, and we introduce some scaling quantities that are numerically interesting. Finally, we model the problem
of minimizing the fuel consumption of the vehicle as an optimal control problem.

Keywords and phrases. Optimal control, singular arcs, nonlinear programming, continuation method, indirect multiple shooting.
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Figure 1. Left: Nogaro’s race circuit (South-West of France). Right: the vehicle of the
Toulouse Ingénierie Mécanique team (Université Paul Sabatier and Institut National des
Sciences Appliquées de Toulouse).

2.1. The vehicle

The vehicle is represented in Figure 1. It has three identical wheels, two at the front and one at the rear, whose
radius and moment of inertia are respectively denoted by R and Ir. We assume that the engine is well-balanced
and Γ denotes its torque. We denote by Cx and S the drag coefficient and frontal surface of the vehicle. The
quantity M depicts the total mass of the vehicle and its pilot.

In the sequel, we use d(t) and v(t) to denote respectively the distance covered by the vehicle from the starting
point and its speed at time t. We use k to represent the friction coefficient of the wheels on the road. It seems
physically quite reasonable to consider k as a function of the speed of the vehicle v. However, in this study,
we shall assume that the friction coefficient k(v) is essentially constant, equal to a certain k0. Since k(v) is
physically zero when the speed is zero, the function k(v) is assumed to be a function of class C2 that satisfies
the following constraints:

k(0) = 0, k(v) = k0 for all v ≥ ε, k′(ε) = 0, k′′(ε) = 0

for some given ε. The choice of ε is discussed in Section 3.2. The representative curve of k is displayed in
Figure 2.

In the eco-marathon competition, the allowed driving strategy consists in alternating periods where the engine
is “on” with periods where it is off. We use the variable u(t) to describe this strategy: u(t) is equal to one when
the engine is “on”, and it is zero otherwise.

2.2. The race track

The profile of the race track is only known through altitudes measured at some points. With these tabulated
data, we build a function α of class C2 using piecewise-cubic spline interpolation. The value α(d) represents the
angle between the horizontal axis and the slope of the road when the vehicle has covered a distance d on the
race track.
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Figure 2. Representative curve of the function k(v).

2.3. Dynamics of the vehicle

We describe now the dynamics of the vehicle using the second Newton’s law in the longitudinal direction.
This gives, for all t > 0, (

3Ir

R2
+ M

)
v̇(t) = −Mg sin(α(d(t))) (gravitation)

−1
2
ρCxSv(t)2 (aerodynamics)

−Mgk(v(t)) cos(α(d(t))) (rolling friction)

+u(t)
Γ

R
(engine),

where g is the gravity constant and ρ is the air density.
Then, denoting

A =
3Ir

R2
+ M > 0, B = −ρCxS

2A
< 0, C = −Mg

A
< 0, D =

Γ

RA
> 0,

and
C(d, v) = C

(
sin
(
α(d)

)
+ k(v) cos

(
α(d)

))
,

we may rewrite the preceding equation under the form of the following system of differential equations of order
one: (

ḋ(t)
v̇(t)

)
=
(

v(t)
Bv(t)2 + C(d(t), v(t)) + Du(t)

)
.

2.4. Rescaling

For numerical purposes, we perform the following rescaling:

t = tcτ, d(t) = xcδ(τ), v(t) = vcν(τ), u(t) = U(τ),

where τ ∈ [0, 1] and where tc := T , xc and vc are characteristic quantities of time, length and speed (respectively).
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With these new variables, the equations for the dynamics become
(

δ̇(τ)
ν̇(τ)

)
=
(

Ãν(τ)
B̃ν(τ)2 + C̃(δ(τ), ν(τ)) + D̃U(τ)

)
,

where

Ã :=
tcvc

xc
, B̃ := Bvctc, C̃(δ, ν) :=

tc
vc

C(xcδ, vcν), D̃ := D
tc
vc

·

Let us also introduce the following notations:

tf = tcτf , T = tcΥ, L = xcΔ.

2.5. The optimal control problem

The eco-marathon challenge can be modeled under the form of the following optimal control problem
(Lagrange form):

Minimize fuel consumption :=
∫ τf

0

U(τ)ν(τ)dτ

subject to 0 ≤ τf ≤ Υ, (final time),
U(τ) ∈ {0, 1} ∀τ ∈ [0, τf ], (engine on or off),
δ(0) = 0, ν(0) = 0, (initial conditions),

∀τ ∈ [0, τf ],
{

δ̇(τ) = Ãν(τ),
ν̇(τ) = B̃ν(τ)2 + C̃(δ(τ), ν(τ)) + D̃U(τ),

(dynamics),

δ(τf ) = Δ, (final condition),

where the unknowns are the function U and the final time τf .
This problem may be reformulated into the following Mayer form:

Minimize fuel consumption := X3(τf )
subject to 0 ≤ τf ≤ Υ,

U(τ) ∈ {0, 1} ∀τ ∈ [0, τf ],
X(0) = (0, 0, 0),
∀τ ∈]0, τf ], Ẋ(τ) = f(X(τ), U(τ)),
X1(τf ) = Δ,

(2.1)

where
X : [0, 1] → R

3

τ �→
(
δ(τ), ν(τ), e(τ)

)
,

and

f(X, U) =

⎛
⎝ Ãν,

B̃ν2 + C̃(δ, ν) + D̃U
Uν

⎞
⎠ .

In our application context, for τ ∈ [0, τf ] ⊂ [0, 1], it is obvious that both the distance δ covered by the vehicle
and its speed ν are bounded. Then, it is immediate to prove, using the Cauchy–Lipschitz theorem [10], that
there exists a unique solution for the problem:

X(0) = (0, 0, 0),
∀τ ∈]0, τf ], Ẋ(τ) = f(X(τ), U(τ)). (2.2)
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We study the following relaxed optimal control problem:

Minimize fuel consumption := X3(τf )
subject to 0 ≤ τf ≤ Υ,

U(τ) ∈ [0, 1] ∀τ ∈ [0, τf ],
X(0) = (0, 0, 0),
∀τ ∈]0, τf ], Ẋ(τ) = f(X(τ), U(τ)),
X1(τf ) = Δ,

(2.3)

where the control function U now takes values in the interval [0, 1]. This “continuous relaxation” means that
we are not restricted to on/off engine switches anymore: we are also allowed to accelerate more or less.

It seems natural that the final time tf (respectively τf ) be equal to the maximal authorized time T (respec-
tively Υ ). This will be numerically demonstrated in Section 4.1.

As a consequence, in the next section, we shall analyse the relaxed optimal control problem (2.3) assuming
that the final time τf is fixed and equal to Υ .

3. Analysis of the optimal control problem

In this section, we analyze the following problem using Pontryagin’s Minimum Principle:

Minimize the consumption := X3 (Υ )
subject to U(τ) ∈ [0, 1] ∀τ ∈ [0, Υ ] ,

X(0) = (0, 0, 0),
∀τ ∈ ]0, Υ ] , Ẋ(τ) = f(X(τ), U(τ)),
X1 (Υ ) = Δ.

(3.1)

Assuming that we are not in a pathological case, the Hamiltonian associated with Problem (3.1) is defined
by

H(X, U, Λ) := pÃν + q
(
B̃ν2 + C̃(δ, ν) + D̃U

)
+ rUν,

where Λ = (p, q, r) represents the vector of adjoint variables or costates.
Consequently, the adjoint equations are

Λ̇(τ) = g(X(τ), U(τ), Λ(τ)), (3.2)

where

g(X, U, Λ) := −

⎛
⎜⎜⎜⎝

q
∂C̃
∂δ

(δ, ν)

pÃ + q
(
2B̃ν +

∂C̃
∂ν

(δ, ν)
)

+ rU

0

⎞
⎟⎟⎟⎠ .

3.1. Application of Pontryagin’s minimum principle

Applying Pontryagin’s Minimum Principle [3–6,11], we have that a necessary condition for (X(.), U(.)) being
a solution of (3.1) is the existence of a piecewise smooth vector Λ(.) := (p(.), q(.), r(.)) such that:

1. (X(.), Λ(.)) solves (2.2) and (3.2);
2. ∀U ∈ [0, 1], H(X(τ), U(τ), Λ(τ)) ≤ H(X(τ), U, Λ(τ)), for almost every τ ∈ [0, Υ ];
3. Λ(.) 
= 0;
4. q(Υ ) = 0, and r(Υ ) = 1.
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Using the so-called transversality condition r(Υ ) = 1 and the third equation of (3.2), we have that

r(τ) = 1, ∀τ ∈ [0, Υ ].

Since the Hamiltonian is linear with respect to the control, we have

H(X, U, Λ) := β(X, Λ)U + γ(X, Λ),

with β(X, Λ) := ν + D̃q and γ(X, Λ) := Ãpν + q(B̃ν2 + C̃(δ, ν)). We obtain easily that an optimal control
for (3.1) is given by

U(τ) =
{

0 if β(X(τ), Λ(τ)) > 0,
1 if β(X(τ), Λ(τ)) < 0.

The function Ψ(τ) := β(X(τ), Λ(τ)) is called the switching function.

3.2. Singular arcs

We analyze now the case where the switching function vanishes on a closed interval [τ0, τ1] ⊂ [0, Υ ]:

Ψ(τ) := ν(τ) + D̃q(τ) = 0, ∀τ ∈ [τ0, τ1]. (3.3)

In order to compute the singular control, we use a classical technique, recalled in [3] for example: we differ-
entiate relation (3.3) with respect to time until U appears explicitly.

Remark 3.1. For the sake of notational simplicity, we do not write explicitly the dependence on τ in the sequel
of this section.

First, we have Ψ̇(τ) = 0 for almost every τ ∈ [τ0, τ1]. This gives, using the Hamiltonian equations (2.2)–(3.2)
and relation (3.3),

0 = Ψ̇

= ν̇ + D̃q̇

= B̃ν2 + C̃(δ, ν) + D̃U − D̃

(
U + pÃ + q

(
2B̃ν +

∂C̃
∂ν

(δ, ν)
))

= B̃ν2 + C̃(δ, ν) − D̃Ãp + ν
(
2B̃ν +

∂C̃
∂ν

(δ, ν)
)

= 3B̃ν2 + C̃(δ, ν) − D̃Ãp + ν
∂C̃
∂ν

(δ, ν). (3.4)

This relation does not depend on the control U .
We differentiate once more to obtain, almost everywhere on [τ0, τ1]:

0 = Ψ̈

= 6B̃νν̇ +
∂C̃
∂δ

(δ, ν)δ̇ +
∂C̃
∂ν

(δ, ν)ν̇ − ÃD̃ṗ + ν̇
∂C̃
∂ν

(δ, ν) + ν

(
∂2C̃
∂ν∂δ

(δ, ν)δ̇ +
∂2C̃
∂ν2

(δ, ν)ν̇

)

=

(
∂C̃
∂δ

(δ, ν) + ν
∂2C̃
∂ν∂δ

(δ, ν)

)
δ̇ − ÃD̃ṗ +

(
6B̃ν + 2

∂C̃
∂ν

(δ, ν) + ν
∂2C̃
∂ν2

(δ, ν)

)
ν̇.

Using now the Hamiltonian equations and relation (3.3), we have

0 = Ψ̈

=

(
∂C̃
∂δ

(δ, ν) + ν
∂2C̃
∂ν∂δ

(δ, ν)

)
Ãν + ÃD̃q

∂C̃
∂δ

(δ, ν) +

(
6B̃ν + 2

∂C̃
∂ν

(δ, ν) + ν
∂2C̃
∂ν2

(δ, ν)

)
(B̃ν2 + C̃(δ, ν) + D̃U)

=

((
6B̃ +

∂2C̃
∂ν2

(δ, ν)
)
ν + 2

∂C̃
∂ν

(δ, ν)

)
(B̃ν2 + C̃(δ, ν) + D̃U) + Ãν2 ∂2C̃

∂ν∂δ
(δ, ν). (3.5)
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The way the parameter ε has been chosen in the definition of the function k renders negative the first factor

in (3.5) for all δ ∈ [0, Δ], for all ν ∈
[
0,

3vm

vc

]
(vm is the mean speed of 30 km/h). Thus, the Legendre–Clebsch

necessary optimality condition for the existence of a singular arc is satisfied [8]. More precisely:

− ∂

∂U

(
d2

dt2
∂H

∂U

)
≥ 0.

Using (3.4) and (3.3), we first obtain, almost everywhere on [τ0, τ1]:

p(τ) =
3B̃ν(τ)2 + C̃(δ, ν) + ν

∂C̃
∂ν

(δ, ν)

ÃD̃
and q(τ) = −ν(τ)

D̃
·

We then derive U by using (3.5):

U(τ) = − 1
D̃

⎛
⎜⎜⎝ Ãν2 ∂2C̃

∂ν∂δ
(δ, ν)(

6B̃ +
∂2C̃
∂ν2

(δ, ν)
)
ν + 2

∂C̃
∂ν

(δ, ν)
+ B̃ν(τ)2 + C̃(δ, ν)

⎞
⎟⎟⎠ . (3.6)

3.3. Summary

A necessary condition for (X(.), U(.)) to be a solution of (3.1) is the existence of a nontrivial vector Λ(.) :=
(p(.), q(.)) such that Y (.) := (X(.), Λ(.)) is solution of

Ẏ (τ) = h(Y (τ), U(τ)) (3.7)

with

h(Y, U) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ãν,

B̃ν2 + C̃(δ, ν) + D̃U
Uν

−q
∂C̃
∂δ

(δ, ν)

−
(

Ãp(τ) + q(τ)

(
2B̃ν +

∂C̃
∂ν

(δ, ν)

)
+ U

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with the two-point boundary conditions:

Y1(0) = 0, Y2(0) = 0, Y3(0) = 0, Y1(Υ ) = Δ, Y5(Υ ) = 0,

and

U(τ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if Ψ(τ) > 0,

− 1
D̃

⎛
⎜⎜⎝ Ãν2 ∂2C̃

∂ν∂δ
(δ, ν)(

6B̃ +
∂2C̃
∂ν2

(δ, ν)
)
ν + 2

∂C̃
∂ν

(δ, ν)
+ B̃ν(τ)2 + C̃(δ, ν)

⎞
⎟⎟⎠ if Ψ(τ) = 0 for τ ∈ [τ0, τ1] ⊂ [0, Υ ],

1 if Ψ(τ) < 0,

with the switching function Ψ(τ) := ν(τ) + D̃q(τ).
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Table 1. Parameters of the numerical tests.

Vehicle

Vehicle drag coefficient Cx = 0.1

Frontal vehicle surface m2 S = 0.35

Wheel inertia moment kg m2 Ir = 0.041

Wheel radius m R = 0.2375

Vehicle (including pilot) mass kg M = 69

Engine torque kg m2 s−2 Γ = 5.5

Race track

Mean speed m s−1 vm = 30/3.6 (30 km h−1)

Distance to be covered m L = 3636 (one lap)

Maximum time allowed s T = L/vm

Universal constants

Air density kg m−3 ρ = 1.23

Gravity constant m s−2 g = 9.81

4. Numerical experiments

In this section, we apply the same techniques as in [3]. In a first step, in order to have an idea of the difficulty
of the problem, we use a naive and simple nonlinear-programming approach. Then, since it is well known that
indirect shooting methods are more accurate, we use such techniques to obtain more precise results. However,
the major drawback of indirect methods lies in its initialization. That is why we combine indirect methods with
a continuation process. Finally, we compare the preceding results with a purely bang-bang solution that we
obtain via another nonlinear-programming approach.

To compute the results depicted in this section, we have considered the race track from Figure 1 and we have
chosen the following characteristic quantities:

tc := T, xc := L and vc := vm,

where vm is the mean speed of 30 km/h. With this choice, we have

Υ = 1, and Δ = 1.

The other parameters defining our test problem here are summarized in Table 1.
In the sequel, we report results for two cases: the general one and the simplified one. In the latter, we assume

that the race track is flat. This means that the function α that represents the angle between the horizontal
plane and the slope of the road is identically zero. Consequently, C̃ only depends on ν:

C̃(δ, ν) :=
tc
vc

Ck(vcν).

4.1. A naive approach to solve the relaxed optimal control problem with τf free in [0, Υ ]
In this section, we report results for the problem (2.3). First, we consider that the final time τf is free on the

interval [0, Υ ]. Then, we discretize the time interval [0, τf ] into N subintervals of equal size Δτ := τf/N , and
we consider that the control remains constant on each of these subintervals. Let us set the following notation:

• τi := iΔτ , for i = 0, . . . , N ;
• Ii := [τi−1, τi] , for i = 1, . . . , N ;
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Figure 3. Results obtained by the naive nonlinear-programming approach (4.1) with N :=
40 subintervals of [0, τf ]. Top: flat race track. Bottom: general case.

• Ui is the value of the control on the subinterval Ii, for i = 1, . . . , N ;
• X(τ, 1) is the solution of (2.2) on I1 with U(τ) ≡ U1 and X(τ0, 1) = (0, 0, 0);
• X(τ, i) is the solution of (2.2) on Ii with U(τ) ≡ Ui and X(τi−1, i) = X(τi−1, i − 1) for i = 2, . . . , N .

Then, we consider the following problem:

Minimize X3(τN , N)
subject to 0 ≤ Ui ≤ 1, i = 1, . . . , N,

0 ≤ τf ≤ Υ,
X1(τN , N) = Δ,

(4.1)

where the unknowns are the N values of Ui, and the value of the final time τf .
To solve problem (4.1), we use the SQP fmincon (with the integrator ode113) routine of Matlab for various

values of N , and various random initial guesses of the unknowns. Our results are displayed in Figure 3.
A first observation is that these results confirm numerically the fact that τf = Υ . Consequently, from now

on, we assume that the final time τf is equal to Υ and we consider problem (3.1).
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These results also reveal the existence of singular arc(s). For the simplified case, we observe one singular arc.
In the general case, it is more difficult to determine both the number of singular arcs, and their junction points
with regular arcs.

4.2. Structure of the control for the relaxed optimal control problem with τf = Υ

Since we have numerically established in the preceding section that the final time is equal to the maximum
authorized time, we concentrate now on problem (3.1). Our aim is to identify accurately the structure of the
control solution for this problem. For this purpose, we use multiple indirect shooting methods. In order to avoid
the well-known difficulties to initialize such indirect methods, we combine them with a continuation technique.

4.2.1. Quadratic penalty

Let us add to problem (3.1) a term quadratic in U [3]. We obtain, for λ ∈ [0, 1]:

minimize the consumption := X3(Υ )
subject to U(τ) ∈ [0, 1] ∀τ ∈ [0, Υ ],

X(0) = (0, 0, 0),
∀τ ∈]0, Υ ], Ẋ(τ) = fλ(X(τ), U(τ)),
X1(Υ ) = Δ,

(4.2)

where

fλ(X, U) = f(X, U) +

⎛
⎝ 0

0
(1 − λ)U2

⎞
⎠ .

The Hamiltonian associated with problem (4.2) is

Hλ(X, U, Λ) := H(X, U, Λ) + (1 − λ)U2

and consequently the Hamiltonian equations are the same as for (3.1), i.e. (3.7).
For λ = 1, (4.2) reduces to the problem (3.1) that we want to solve. The interesting point is that for λ ∈ [0, 1[,

problem (4.2) is smooth, U �→ Hλ(X, U, Λ) is convex, and the control U is continuous.

4.2.2. Indirect shooting method to solve the penalized problem

We consider here that λ ∈ [0, 1[ is fixed.
Using the analysis performed in Section 3.1, we have that a necessary condition for (X(.), U(.)) to be a

solution of (4.2) is the existence of a non-zero vector Λ(.) := (p(.), q(.)) such that Y := (X, Λ) is solution, for
τ ∈]0, Υ [, of

Ẏ (τ) = hλ(Y (τ), U(τ)), (4.3)

where

hλ(Y, U) = h(Y, U) +

⎛
⎜⎜⎜⎝

0
0

(1 − λ)U2

0
0

⎞
⎟⎟⎟⎠ ,

with the two-point boundary values

X(0) = (0, 0, 0), X1(Υ ) = Δ, Λ2(Υ ) = 0,

and

U :=

⎧⎨
⎩

0 if U∗ < 0,
1 if U∗ > 1,
U∗ otherwise,

(4.4)
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where U∗ = − ν + D̃q

2(1 − λ)

(
solution of

∂Hλ

∂U
(U∗) = 0

)
.

Indirect shooting methods consist in searching a zero of the following shooting function

Zλ : R
2 → R

2

(p0, q0) �→ (Y1(Υ ) − Δ, Y5(Υ )),

where Y solves (4.3) with Y (0) = (0, 0, 0, p0, q0) as initial conditions, and where U is defined in (4.4).

4.2.3. Multiple indirect shooting method to solve the penalized problem

For computational efficiency and robustness, we use a multiple shooting method to solve problem (4.2).
Let us introduce the following notation:

• M is the number of subintervals of [0, Υ ];
• Δτ := Υ/M is the length of each of these subintervals;
• τi = iΔτ , for i = 0, 1, . . . , M ;
• z0 := (0, 0, 0, p0, q0) and zi := (δi, νi, ei, pi, qi), for i = 1, . . . , M − 1;
• for i = 0, . . . , M − 1: zλ(τ, τi, zi) is the solution of (4.3) for τ ∈]τi, τi+1], with Y (τi) = zi and U defined

in (4.4).

Thus, here the multiple indirect shooting method consists in finding a zero of the function Zλ,M defined from
R

2+5(M−1) to R
5(M−1)+2 as follows:

Zλ,M (p0, q0, δ1, ν1, e1, p1, q1, . . . , δM−1, νM−1, eM−1, pM−1, qM−1)

:= (zλ(τ1, τ0, z0) − z1, . . . , zλ(τM−1, τM−2, zM−2) − zM−1,

δ(τM , τM−1, zM−1) − Δ, q(τM , τM−1, zM−1)).

The first 5(M − 1) relations impose the continuity of the states and co-states on the whole trajectory, and the
last two relations are the final conditions given by Pontryagin’s Minimum Principle.

4.2.4. Continuation

The idea of the continuation method is to go smoothly from the solution of (4.2) with λ = 0, which is easy
to compute, to the solution of (4.2) with λ ≈ 1.

More precisely, for a fixed number of subintervals M , we solve a chain of sub-problems Zλk,M (ζ) = 0 for an
increasing sequence (λk)k∈N. This sequence is chosen such that

1. λ0 = 0 and it is easy to find a solution ζ0 of Z0,M (ζ) = 0;
2. the solution ζk of Zλk,M (ζ) = 0 is used as a starting point for computing ζk+1;
3. after P steps, ζP should be a good starting point for computing a solution of the relaxed optimal control

problem (3.1) (with τf = Υ ).

Remark 4.1. In the general case, the above first step (with λ0 = 0) is not straightforward. For this reason, we
propose performing a first continuation on the length of the race track in order to solve initial problem (with
λ0 = 0) Z0,M (ζ) = 0.

We implement the above way of doing in Matlab, using

• the ode113 routine to solve the ordinary differential equations;
• the fsolve routine, with the (‘Jacobian’,‘on’) option, to find a solution to Zλk,M (ζ) = 0. We compute

the exact Jacobian of the shooting function using the variational equations.

Figure 4 displays the results. They confirm the existence of singular arc(s). Indeed, in the case of the flat
race track, there is one singular arc for τ between around 0.15 and 0.65. In the general case, it remains difficult
to evaluate the number of singular arcs.
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Figure 4. Results obtained by the quadratic penalty continuation method with M := 20 subin-
tervals of [0, Υ ]. Top: flat race track. Bottom: general case.

4.3. Accurate solution of the relaxed optimal control problem with τf = Υ in the case
of a flat race track

Thanks to the preceding numerical experiments, the structure of the optimal control for problem (3.1) on a
flat race track seems to be of type “on-singular-off”. Let us now determine precisely the switching times. For
this purpose, we use once more a multiple indirect shooting method.

Let us introduce the following notation:

• zon(τ) denotes the solution of (3.7), for τ ∈]0, τ1] with Y (0) = z0 and U = 1;
• zsing(τ) is the solution of (3.7) for τ ∈]τ1, τ2] with Y (τ1) = z1 and U is as defined in (3.6);
• zoff(τ) is the solution of (3.7) for τ ∈]τ2, Υ ] with Y (τ2) = z2 and U = 0.

The multiple indirect shooting method therefore consists in finding a zero of the function Z defined from
R

2+1+5+1+5 to R
5+5+2+2 as follows:

Z(p0, q0, τ1, δ1, ν1, e1, p1, q1, τ2, δ2, ν2, e2, p2, q2) := (zon(τ1) − z1, zsing(τ2) − z2,

ν1 + D̃q1, 3B̃ν2
1 + C̃k0 − ÃD̃p1, δoff(Υ ) − 1, qoff(Υ )).
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Figure 5. Results obtained by a multiple indirect shooting method on problem (3.1) in the
simplified case.

The first 10 relations impose the continuity of the states and co-states on the whole trajectory. The last two
relations are the final conditions given by Pontryagin’s Minimum Principle. The other two relations correspond
to the zero values at the first switching time of the switching function and its first derivative. As for starting
points, we have used approximate values obtained at the end of the continuation process.

Using Matlab and the same routines as before (but with the (‘Jacobian’,‘off’) option), we obtain the
results displayed in Figure 5. These give us precise values for the switching times and optimal consumption:

τ1 = 0.069, τ2 = 0.6368 and eoff(Υ ) = 0.10165.

Remark 4.2. In the simplified case of a flat race track, since the function C̃ only depends on ν, the singular
control is given by (3.6):

U(τ) = − 1
D̃

(
B̃ν(τ)2 + C̃(δ, ν)

)
.

This implies that the second component of the function h used in (3.7) is zero. Consequently, the speed ν and
the control are constant between τ1 and τ2. This can be seen in Figure 5.

4.4. A first heuristics to solve the original intrinsically bang-bang optimal control problem

In the preceding sections, we have studied a relaxed optimal control problem in which the control is allowed
to take any value between 0 and 1. However, our original problem is concerned with purely 0−1 solutions.
In this section, we describe a first heuristics that allows us to find purely bang-bang solutions to the original
problem (2.1).

First, we assume that there is a given number N of switching times. Let us introduce the following notation:

• 0 = τ0 ≤ τ1 ≤ τ2 ≤ . . . ≤ τN ≤ τN+1 = τf ≤ Υ ;
• Ii := [τi−1, τi] , for i = 1, . . . , N + 1;
• for i = 1, . . . , N + 1,

Ui =
{

1 for odd i,
0 for even i;
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Figure 6. Results obtained by the nonlinear programming approach (4.5) with N = 11 switch-
ing times into [0, τf ]. Top: flat race track. Bottom: general case.

• X(τ, 1) is the solution of (2.2) on I1 with U(τ) ≡ U1 and X(τ0, 1) = (0, 0, 0);
• X(τ, i) is the solution of (2.2) on Ii with U(τ) ≡ Ui and X(τi−1, i) = X(τi−1, i − 1) for i = 2, . . . , N + 1.

We consider the following problem:

Minimize X3(τN+1, N + 1)
subject to 0 = τ0 ≤ τ1 ≤ τ2 ≤ . . . ≤ τN ≤ τN+1 = τf ≤ Υ,

X1(τN+1, N + 1) = Δ,
(4.5)

where the unknowns are the N + 1 values of τi.
We tackle problem (4.5) with the interior-point fmincon (with the integrator ode113) routine of Matlab for

N = 1, 2, . . . , 19. We perform fmincon for different random initial guesses of the unknowns, and this for each
of considered values of N . An example of results we can obtain with this method is displayed in Figure 6.

In both cases, we observe in Figure 7 that the cost of the solution of (4.5) decreases when the number of
switching times N increases. When the race track is flat, this cost seems to converge to the optimal cost of the
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Figure 7. Decreasing of the consumption (plain) with the number of switching times and
comparison with the optimal consumption of the relaxed problem (dashed). Top: flat race
track. Bottom: general case.
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Figure 8. Comparison, for the case of a flat race track, between the solution of Problem (4.5)
(plain) and the accurate solution of the relaxed problem (dashed).

relaxed problem. In the general case, the existence of local minima may explain the small fluctuations we can
observe on the cost.

A comparison is made in Figure 8 between the results obtained with this heuristics for N = 20 and the singular
arc obtained for the relaxed problem when the race track is flat. We can observe that the consumption and the
speed obtained with these two different methods are very similar. This is obtained thanks to an accumulation
of switching times during the singular arc.

Finally, we show in Figure 9 the impact of the final time on the criterion. As expected, the cost of the solution
of (4.5) increases when the final time decreases.

With this methodology, we confirm once more the intuitive fact that τf = Υ . However, these results are not
completely satisfactory because we have no guarantee of optimality. It would be interesting to study whether
the guaranteed global optimization techniques used in [7] are applicable here.
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Figure 9. Impact of the final time on the consumption, in the case of the flat race track.

5. Conclusions and perspectives

We have studied the behaviour of an intrinsically bang-bang optimal control problem by considering its
continuous relaxation. Using different methodologies (nonlinear programming and indirect shooting methods),
we have numerically established that the relaxed problem involves singular arcs. Finally, we could recover
purely bang-bang solutions of the original problem of minimizing the fuel consumption of a vehicle from the
Shell Eco-marathon using a nonlinear programming approach.

It would be interesting to extend our study in several ways. First, it could be interesting to study other
techniques such as branch-and-bound based global optimization methods using interval analysis [7]. Then, in
this paper, the race track is considered as a straight line. We should study the influence of the curves of the
race track on the numerical results. Another issue involves considering an engine torque that depends on the
vehicle speed v.
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