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Additional illustrations of NL-SAR method for

resolution-preserving (Pol)(In)SAR denoising
Charles-Alban Deledalle, Loı̈c Denis, Florence Tupin, Andreas Reigber, and Marc Jäger

— About this document —

This document provides additional information and results of the method NL-SAR described in our paper: “NL-SAR: a unified

Non-Local framework for resolution-preserving (Pol)(In)SAR denoising” submitted to IEEE Trans. on Geoscience and Remote

Sensing [Deledalle et al., 2013]. NL-SAR is a fully automatic method for speckle reduction that handles amplitude, polarimetric

and/or interferometric SAR data. It can process single look and multi-look images. The source code of the method is freely

available at:

http://www.math.u-bordeaux1.fr/∼cdeledal/nlsar.php.

— Structure of the document —

The first part of the document provides some justifications for the design choices done in NL-SAR. The second part gives

numerous results of NL-SAR on both simulated and real SAR images.

1 Justification of some design choices 1

1.1 Pre-estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Patch comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Weights computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Additional results 5

2.1 Amplitude images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 PolSAR images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 InSAR images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

References 11

1. Justification of some design choices

This document cannot substitute for the full description of NL-SAR method given in the paper “NL-SAR: a unified Non-

Local framework for resolution-preserving (Pol)(In)SAR denoising”. We only recall here the general scheme of the method

before illustrating some of the steps:
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Noisy image Weights without prefiltering Result without prefiletring

Prefiletred image Weights with prefiltering Result with prefiletring

Fig. 1. (a) Top: non local means result by comparing 7 × 7 patches extracted from the noisy image. (Bottom) Same except patches are extracted in a
prefiltered image. Two pixels of interest (in red) are focused and their associated weights in the circle searching window (in green) are displayed. (b) NL-SAR
result that is an aggregation of several non local means results obtained for different prefiltering strengths, patch sizes and search window sizes.

1.1. Pre-estimation

Pre-filtering1 can help to better discriminate between similar and dissimilar patches. However, since it introduces some

blurring, it is not beneficial to high frequency structures/point-like objects. A rather coarse pre-filtering method can be used

in NL-SAR because the final result of the method is obtained after local selection of the best amount of smoothing. Figure

1 illustrates that the local selection step successfully chooses the results obtained with weights computed on the pre-filtered

image in regions where it improves the discrimination, and relies on the results without pre-filtering in other regions. Note that

pre-filtering impacts only the computation of weights and that the weighted combination is performed on the original data.

1.2. Patch comparison

Estimation of the similarity between two empirical covariance matrices C1 and C2 is difficult when the matrix dimension

D is larger than the number of looks L. Matrices C1 and C2 are then singular and their probability density function is no

more given by Wishart distribution.

The similarity criterion given by the generalized likelihood ratio under Wishart likelihood is defined as a ratio of determinants:

LG(C
′

1,C
′

1) =
|C ′

1|
L′

· |C ′

2|
L′

| 12 (C
′

1 +C
′

2)|
2L′

. (1)

This criterion must be adapted in the case of D > L. A satisfying similarity criterion should be sensitive to changes in

intensities, interferometric phase or polarimetric properties.

We illustrate in the case of interferometry (i.e., D = 2) that the criterion we use in NL-SAR is better behaved than some

alternate solutions, namely the computation of the determinants in equation (1) using only the largest eigenvalue, or skipping

null eigenvalues.

The empirical covariance matrix estimated from a pair of single look complex images is given by:

Σ̂p = Cp =

(
Ip

√
IpI ′pe

jφp

√
IpI ′pe

−jφp I ′p

)

(2)

where the two complex values at pixel p are
√
Ipe

j(ψp+φp) and
√
I ′pe

jψp . The first eigenvalue of this rank-one covariance

matrix is:

λp1 = Ip + I ′p . (3)

1in NL-SAR, pre-filtering is just a simple convolution with a truncated Gaussian kernel
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Fig. 2. Results on a simulated image with 2 × 2 covariance matrices in 1 look (case where L < D). From top to bottom: underlying information, noisy
version, restoration with γ = 0, restoration with the proposed γ⋆ = (L/D)1/3 ≈ 0.8.

The empirical covariance matrix estimated from the two locations 1 and 2 is:

Σ̂12 =
1

2
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1

2
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whose eigenvalues are roots of λ2 − Tr(Σ̂12)λ+ |Σ̂12|, hence, its 1st eigenvalue is

(λ12)1 =
Tr(Σ̂12) +

√

Tr(Σ̂12)2 − 4|Σ̂12|

2
. (5)

If only the largest eigenvalue is used in place of the determinants in equation (1), the similarity criterion writes:

c(C1,C2) =
(λ1)

2
1(λ2)

2
1

|(λ12)1|2
. (6)

Since the determinant |Σ̂12| can be expanded as

|Σ̂12| =
I1I

′

2 + I2I
′

1 − 2
√

I1I
′

1I2I
′

2 cos(φ1 − φ2)

4
, (7)

for given values of I1, I ′1, I2 and I ′2, the determinant decreases when φ1 and φ2 become closer. Hence, the similarity criterion

(6) mistakenly indicates that covariance matrices at locations 1 and 2 are more dissimilar when the interferometric phases φ1

and φ2 are actually getting closer.
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Noise free image Small patches (our kernel) 3x3 patches (our kernel) Aggregated result (our kernel)

Noisy image Small patches (kernel [35]) 3x3 patches (kernel [35]) Aggregated result (kernel [35])

Fig. 3. Comparisons between kernels that adapt to the distribution of the criterion versus kernel based on moments of the criterion only (similar to the one
of [35]). Green circles illustrates that the first kernels ensure a same level of noise reduction in homogeneous regions, while red kernels illustrates that the
second kernel does not.

The following alternative similarity criterion suffers from insensibility to some intensity changes:

c(C1,C2) =
(λ1)

2
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2
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Indeed, for all α > 0,

c(C1,C2) = c(C1, αC2) . (9)

The similarity criterion used in NL-SAR behaves in a more favorable way. Indeed, by weighting off-diagonal terms of the

covariance matrices by γ, the similarity criterion becomes:
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Note that when γ → 1, we have, for any α > 0:
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meaning that we are no more discriminant in intensities. When γ → 0, we are obviously no more discriminant in phase. For
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The first term decreases when intensities I1 and I ′1 gets closer to I2 and I ′2 respectively. The second term seems to compensate

for inter-channel correlations. The last term decreases when phases φ1 and φ2 get closer. This criterion clearly measures both

the dissimilarity in intensity and in interferometric phase. Figure 2 illustrates that the criterion used in NL-SAR can discriminate

changes in interferometric phase even if no change occur in amplitude compared to an intensity-only criterion.
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Fig. 4. Illustration on denoising scalar (intensity) simulated images. (a) True image. (b) Noisy image (L=1). (c) It. PPB filter. (d) Our result. (e) SAR-BM3D.

1.3. Weights computation

Fig. 3 gives an illustration that kernels adapted to the distribution can preserve a same level of noise reduction in homogeneous

areas compared to other kernels. The smoothness level in the aggregated result is then controlled.

We can observe that the resulting aggregated results are however not that much different. The most significant advantage

of our kernel is that no manual tuning is required. In comparison, the kernel of [35] is parameterized and this parameter has

been set by hand, and should be tuned for different level of noise.

2. Additional results

2.1. Amplitude images

We give some additional illustrations of how NL-SAR compares to state-of-the-art speckle reduction methods when applied

to amplitude images.

a) Qualitative and quantitative performance on some reference images:

Figure 4 and 5 compare the results of NL-SAR with iterative PPB [Deledalle et al., 2009] and SAR-BM3D [Parrilli et al.,

2012] in the case of low signal-to-noise ratio (single look images, figure 4) and good signal-to-noise ratio (16 looks images,

figure 5). The performance of each method is compared in terms of PSNR and SSIM in table I. These images can help identify

what kind of artifact is introduced by each method.
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Fig. 5. Illustration on denoising scalar (intensity) simulated images. (a) True image. (b) Noisy image (L=16). (c) It. PPB filter. (d) Our result. (e) SAR-BM3D.

TABLE I
PSNR / SSIM

Method L = 1 L = 2 L = 4 L = 16 L = 1 L = 2 L = 4 L = 16

House Mandrill

Noisy -3.54 / 0.098 -0.78 / 0.157 2.13 / 0.229 8.13 / 0.437 -3.72 / 0.422 -0.93 / 0.552 1.99 / 0.675 7.94 / 0.862

Pretest 9.02 / 0.613 11.50 / 0.724 13.86 / 0.793 17.62 / 0.858 4.89 / 0.514 6.03 / 0.629 7.11 / 0.748 10.47 / 0.900

PPB 10.30 / 0.647 12.78 / 0.727 14.47 / 0.782 17.34 / 0.853 4.99 / 0.500 6.11 / 0.623 7.61 / 0.754 10.40 / 0.900

NL-SAR 11.05 / 0.690 12.77 / 0.749 14.70 / 0.799 18.24 / 0.862 5.45 / 0.594 6.57 / 0.692 7.97 / 0.778 11.83 / 0.913

SARBM3D 12.29 / 0.746 14.42 / 0.794 16.09 / 0.828 19.37 / 0.883 6.06 / 0.649 7.33 / 0.749 8.83 / 0.832 12.09 / 0.929

Mire Mosaic

Noisy 0.37 / 0.536 3.17 / 0.646 6.05 / 0.745 12.04 / 0.899 -1.56 / 0.240 1.25 / 0.322 4.11 / 0.412 10.10 / 0.604

Pretest 9.07 / 0.928 12.23 / 0.974 14.64 / 0.988 19.59 / 0.996 6.61 / 0.605 7.92 / 0.711 9.62 / 0.810 13.16 / 0.925

PPB 10.56 / 0.953 12.45 / 0.973 14.40 / 0.984 18.81 / 0.994 7.03 / 0.614 8.40 / 0.697 9.99 / 0.785 12.73 / 0.898

NL-SAR 11.25 / 0.957 15.39 / 0.984 19.87 / 0.994 25.77 / 0.999 8.53 / 0.691 9.88 / 0.769 11.67 / 0.846 15.82 / 0.947

SARBM3D 12.98 / 0.969 15.79 / 0.986 18.14 / 0.992 22.61 / 0.998 8.80 / 0.720 10.06 / 0.791 11.75 / 0.863 15.26 / 0.946

b) Results obtained with the benchmark methodology of [Di Martino et al., 2013]:

Figure 6 and table II give the result of NL-SAR on the 5 test cases proposed in [Di Martino et al., 2013] to evaluate the

performance of speckle reduction methods. We invite the interested reader to refer to [Di Martino et al., 2013] for a detailed

description of each criterion. Even though NL-SAR does not perform best on this benchmark, it is in a par with other state-
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(a) (b) (c) (d) (e)

Fig. 6. Restoration of 5 test cases proposed in [Di Martino et al., 2013]: (a) homogeneous region; (b) texture (image of a synthetic fractal DEM); (c) squares
image; (d) point target; (e) building.

TABLE II
QUANTITATIVE EVALUATION OF [DI MARTINO ET AL., 2013] WITH COMPARISONS BETWEEN THE PPB FILTER, THE SAR-BM3D FILTER AND OUR

APPROACH. FOR EACH CRITERIA, THE TWO BEST APPROACHES ARE HIGHLIGHT IN BOLD.

Measures for Homogeneous

MoI MoR VoR ENL ENL* DG

Clean 1.000 1.003 1.011 445.77 515.57
Noisy 1.003 0.99 0.99 0
PPB 1.005 0.956 0.824 118.81 124.46 20.12

SAR-BMD3D 0.985 0.975 0.813 90.69 93.65 19.16
NL-SAR 0.989 0.990 0.907 152.19 167.82 20.82

Measures for DEM

MoI MoR VoR Cx DG

Clean 1.000 0.984 0.967 2.40
Noisy 0.987 3.55 0
PPB 0.984 0.911 0.558 2.71 3.63
SAR-BMD3D 0.953 0.833 0.418 2.45 5.19

NL-SAR 0.917 0.851 0.553 2.18 4.91

Measures for Squares

ES (up) ES (down) FOM

Clean 0.932
Noisy 0.021 0.105 0.708
PPB 0.080 0.334 0.800

SAR-BMD3D 0.059 0.221 0.826

NL-SAR 0.079 0.234 0.677

Measures for Corner

CNN CBG

Clean 7.18 30.54
Noisy 7.19 30.52
PPB 5.70 27.29
SAR-BMD3D 6.83 29.55

NL-SAR 5.57 33.59

Measures for Building

CDR BS

Clean 59.88
Noisy 59.87 0.12
PPB 58.84 5.99

SAR-BMD3D 59.86 1.47

NL-SAR 63.90 11.74

of-the-art methods (namely PPB and SARBM3D), often belonging in the top two ranked methods.

c) Results on a satellite SAR image:

In figure 7, NL-SAR and IDAN [Vasile et al., 2006] are applied to a TerraSAR-X image to compare their performance for

speckle reduction.

2.2. PolSAR images

Figures 9 to 15 compare the performance of NL-SAR with IDAN [Vasile et al., 2006] and refined Lee [Lee et al., 2003]

filters on PolSAR data. A wide diversity of images are considered, from high-resolution aerial data (figure 9, 8, 10, 11) to

low-resolution aerial data (figure 12), with vegetation areas and urban areas. In order to provide some insight into estimated

polarimetric properties, figures 14 and 15 display the H/α polarimetric decompositions.
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(a) (b) (c)

Fig. 7. Restoration of a TerraSAR-X image near Toulouse (France) ©DLR: (a) original image; (b) speckle reduction with IDAN; (c) speckle reduction with
NL-SAR.

(a) (b) (c)

Fig. 8. Restoration of a polarimetric E-SAR image of Dresden ©DLR: (a) original image; (b) speckle reduction with IDAN; (c) speckle reduction with
NL-SAR.

(a) (b) (c)

Fig. 9. Restoration of a polarimetric F-SAR image near Kaufbeuren (Germany) with complex information (vegetation and fields) ©DLR: (a) original image;
(b) speckle reduction with IDAN; (c) speckle reduction with NL-SAR.
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(a) (b) (c)

Fig. 10. Restoration of a polarimetric F-SAR image near Kaufbeuren (Germany) ©DLR: (a) original image; (b) speckle reduction with IDAN; (c) speckle
reduction with NL-SAR.

(a) (b) (c)

Fig. 11. Restoration of a polarimetric F-SAR image near Kaufbeuren (Germany) ©DLR: (a) original image; b) speckle reduction with IDAN; (c) speckle
reduction with NL-SAR.

(a) (b) (c)

Fig. 12. Restoration of a polarimetric AIRSAR image in L-band of San Francisco (California) ©NASA-JPL-Caltech: (a) original image; (b) speckle reduction
with IDAN; (c) speckle reduction with NL-SAR.
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Fig. 13. Colormap used in the H/α based classification

Refined Lee H − Refined Lee Alpha − Refined Lee Classif with Refined Lee

IDAN H − IDAN Alpha − IDAN Classif with IDAN

NL−SAR H − NL−SAR Alpha − NL−SAR Classif with NL−SAR

Fig. 14. Classification based on H/α decomposition of an image of Kaufbeuren (Germany) sensed by F-SAR ©DLR. Color labels are given by Fig. 13

2.3. InSAR images

Figures 16 and 17 compare IDAN [Vasile et al., 2006] and NL-SAR on aerial interferometric SAR images. Figure 18 give

results obtained with IDAN, refined Lee [Lee et al., 2003] and NL-SAR on satellite interferometric SAR images
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Refined Lee H − Refined Lee Alpha − Refined Lee Classif with Refined Lee

IDAN H − IDAN Alpha − IDAN Classif with IDAN

NL−SAR H − NL−SAR Alpha − NL−SAR Classif with NL−SAR

Fig. 15. Classification based on H/α decomposition of an image of San Francisco (USA) sensed by AIRSAR ©NASA-JPL-Caltech. Color labels are given
by Fig. 13
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(a) (b) (c)

(d)

(e)

Fig. 16. Restoration of an interferometric RAMSES image of Cheminot (France) ©ONERA: (a,b,c) original amplitude, phase and coherence images; (d)
estimation with IDAN; (e) estimation with NL-SAR.
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(a) (b) (c)

(d)

(e)

Fig. 17. Restoration of an interferometric RAMSES image of Bayard (France) ©ONERA: (a,b,c) original amplitude, phase and coherence images; (d)
estimation with IDAN; (e) estimation with NL-SAR.
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(a) (b) (c)

(d)

(e)

(f)

Fig. 18. Restoration of an interferometric TerraSAR-X image of the Serre-Ponçon dam (France) ©Astrium: (a,b,c) original amplitude, phase and coherence
images; (d) with the refined Lee filter; (e) estimation with IDAN; (f) with NL-SAR.


