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Cohomology and products of real weight filtrations

Thierry Limoges and Fabien Priziac

Abstract

We associate to each algebraic variety defined over R a filtered cochain complex, which
computes the cohomology with compact supports and Zs-coeflicients of the set of its real
points. This filtered complex is additive for closed inclusions and acyclic for resolution of
singularities, and is unique up to filtered quasi-isomorphism. It is represented by the dual
filtration of the geometric filtration on semialgebraic chains with closed supports defined by
McCrory and Parusinski, and leads to a spectral sequence which computes the weight filtra-
tion on cohomology with compact supports. This spectral sequence is a natural invariant
which contains the additive virtual Betti numbers.

We then show that the cross product of two varieties allows us to compare the product
of their respective weight complexes and spectral sequences with those of their product,
and prove that the cup and cap products in cohomology and homology are filtered with
respect to the real weight filtrations.

1 Introduction

In [3], Deligne showed the existence of a so-called weight filtration on the rational cohomology
with compact supports of complex algebraic varieties, using mixed Hodge structures. In the
real case, where there is no such structure, an analog of the weight filtration on the cohomology
with compact supports and Zs-coefficients of real algebraic varieties was proposed by Totaro
in [17], and in [14], McCrory and Parusinski developped a homological analog on the Borel-
Moore homology with Zs-coefficients of the set of real points of real algebraic varieties. These
real weight filtrations can be defined using the work of Guillén and Navarro-Aznar on cubical
hyperresolutions ([6] and [7]) : for a compact variety, the weight filtration is induced by the
spectral sequence (from its level two) associated to a cubical hyperresolution. Furthermore,
unlike the complex case with coefficients in @Q, in the real case, where we are dealing with
coefficients in Zy in order to have a (Zs-)orientation, the associated spectral sequence does not
degenerate at level two in general.

In [14], McCrory and Parusinski showed furthermore that the spectral sequence inducing
the weight filtration is itself a natural invariant of a real algebraic variety in the following
sense. There is a functor that assigns to each real algebraic variety a filtered chain complex,
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the so-called weight complex, which is unique up to filtered quasi-isomorphism, and functorial
for proper regular morphisms, inducing the weight filtration on Borel-Moore homology. The
spectral sequence induced by the weight complex, called the weight spectral sequence, coin-
cides from level one with the spectral sequence associated to a cubical hyperresolution in the
compact case, and we can extract from its level one the virtual Betti numbers ([12]), which
are the unique additive invariants of real algebraic varieties coinciding with the usual Betti
numbers on compact nonsingular varieties. Moreover, the weight complex can be realized at
the geometric chain level by a filtration defined on semialgebraic chains with closed supports,
using resolution of singularities. Extending it to the wider category of AS-sets ([9], [10]) using
Nash-constructible functions ([11], [13]), McCrory and Parusiiski showed that their geometric
filtration is also functorial with respect to semialgebraic maps with AS-graph.

In this paper, we first achieve the cohomological counterpart of McCrory and Parusinski’s
work. Using the extension criterion of Guillén and Navarro-Aznar ([7]), we associate to any
real algebraic variety a filtered cochain complex, which induces Totaro’s weight filtration on
the cohomology with compact supports and Zs-coefficients of the set of real points of real alge-
braic varieties (theorem 3.4, proposition 3.7 and corollary 3.8). This functor, that we call the
cohomological weight complex, is unique (with properties of extension, acyclicity and additiv-
ity) and well-defined from the level one of the spectral sequence it induces. The virtual Betti
numbers can be recovered from the rows of the level two of the reindexed cohomological weight
spectral sequence (proposition 3.10). In paragraph 3.4, we prove that, in the compact case,
the reindexed cohomological weight spectral sequence is isomorphic to the spectral sequence
associated to a cubical hyperresolution from the level two.

In section 4, we construct a filtration on the semialgebraic cochain complex (which we define
in section 2.3 to be the dual of the semialgebraic chain complex with closed supports of [14],
showing in proposition 2.2 that it does compute the cohomology with compact supports) that
realizes at the cochain level the cohomological weight complex (theorem 4.3). This filtration
is a dualization of the geometric filtration of [14]. It verifies on short exact sequences the dual
properties of additivity for a closed inclusion and acyclicity for a resolution of singularities
(lemma 4.2) and is filtered quasi-isomorphic to the canonical filtration on nonsingular projec-
tive real algebraic varieties. Moreover, since the spectral sequence induced by the dualized
filtration is naturally isomorphic (from level zero) to the dual spectral sequence of the original
filtration (remark 4.1), we deduce that the cohomological weight spectral sequence is dual to
the homological one and that the cohomological and homological weight filtrations are dual too
(corollary 4.4).

The second part of this paper is devoted to the question of the compatibility of the real
weight filtrations with products. First, if X and Y are two real algebraic varieties, we define
the product of two respective semialgebraic chains of X and Y in a natural way (definition
5.1). We then look at its compatibility with the geometric filtration (proposition 5.6). Finally,
we show that there is a filtered quasi-isomorphism between the tensor product of the geometric
filtrations of X and Y and the geometric filtration of the cross product X x Y (theorem 5.15).
In particular, the weight complex of the product is isomorphic to the product of the weight
complexes and the Kiinneth isomorphism is filtered with respect to the weight filtration. The



induced relations on weight spectral sequences can also be used to prove the multiplicativity
of the virtual Poincaré polynomial.

These results have their cohomological counterparts (paragraph 5.3) and we use them with
Y = X to define a cup product on the dual geometric filtration of X considered in the category
of filtered cochain complexes localized with respect to filtered quasi-isomorphisms (paragraph
5.4). We obtain an induced cup product on the cohomological weight spectral sequence of X
and furthermore the usual cup product on the cohomology with compact supports of (the set
of real points of) X is filtered with respect to the cohomological weight filtration (proposition
5.22). We define also a cap product, inducing the properties of the usual cap product on coho-
mology and homology from the ones on the (co)chain level (section 5.5). In the last subsection
5.6, we study the cap product with the fundamental class of a compact variety X at the weight
spectral sequences level. This morphism coincides with Poincaré duality isomorphism for X
nonsingular. We show that, when X is singular, the kernel contains the non-pure cohomology
classes (non-minimal weight) and the image is included in the pure homology classes (minimal
weight). However these inclusions are not equalities in general (remark 5.28). In particular,
this brings us some obstructions for a compact real algebraic variety to satisfy Poincaré duality.

Acknowledgements. The authors wish to thank G. Fichou, C. McCrory and A. Parusinski
for useful discussions and comments.

2 Framework

In this section, we set the context in which we work in this paper. We first fix precisely the
source categories (categories of schemes over R) and target categories (categories of filtered
chain and cochain complexes) of the functors we are going to deal with. We then describe the
geometry of real algebraic varieties we study.

2.1 Filtered cochain complexes

In this paper, we will work with cochain complexes equipped with a decreasing filtration. We
will use the following notations :

e ¢ will denote the category of bounded cochain complexes of Zs-vector spaces with bounded
decreasing filtration.

To each filtered complex (K*, F'*) of € is associated a second quadrant spectral sequence

E with FPEPHa FPE*
DA _ P4 _ prptq
Eo" = Forigopre A0d BYT = H <Fp+1K*> ’
the differential d of the spectral sequence being induced by the coboundary operator of
K*.

The filtration F'® on K* induces naturally a filtration on the cohomology of K* by setting

FPHY(K) = im [HI(FPK*) — HI(K*)],



and the spectral sequence E converges to the cohomology H*(K*) of K*, that is

pra _ FPHP-H](K*)
o T FrlHp(K*)

A morphism of filtered complexes which induces an isomorphism on F; (and therefore
on all E, from r > 1) will be called a quasi-isomorphism of €, or simply a filtered quasi-
isomorphism.

e Ho¢ denotes the localization of € with respect to quasi-isomorphisms of € (we keep the
notation of 7], 1.5.1).

e ® will denote the category of complexes of Zo-vector spaces, and a morphism of cochain
complexes which induces an isomorphism on their cohomology will be called a quasi-
isomorphism of ®, or simply a quasi-isomorphism.

e Ho® denotes the localisation of © with respect to quasi-isomorphisms of 2.

Remark 2.1. Let ¢ : € — ® be the forgetful functor forgetting the filtration. It can be
localized into a functor Ho€ — Ho®, which we denote again by ¢, because a filtered
quasi-isomorphism is in particular a quasi-isomorphism.

2.2 Real algebraic varieties

We are interested in the study of the geometry of the set of real points of real algebraic varieties.
In this paper, a real algebraic variety will be a reduced scheme of finite type defined over R.
We denote by :

e Sch.(R) the category of real algebraic varieties and proper regular morphisms.

* Reg,,,,(R) the full subcategory of Sch.(R) whose objects are compact nonsingular va-
rieties, that is proper regular schemes.

e V(R) the full subcategory of Sch.(R) whose objects are nonsingular projective varieties,
that is regular projective schemes.

For X a real algebraic variety of Sch.(R), we denote by Xgr the set of its real points.
Equipped with its sheaf of regular functions, the set Xg is a real algebraic variety in the sense
of [1], which can be locally embedded in an affine space R"™. We equip it with the strong
topology of R™, and then Xg is a Haussdorff space, locally compact.

2.3 Semialgebraic chain and cochain complexes

Let X be a real algebraic variety. We will consider complexes of semialgebraic chains defined

using semialgebraic subsets of Xg. In this paper, we will always work with Zs-coefficients, so

that real algebraic varieties and arc-symmetric sets ([1], [10]) always have a (Zg-)orientation

and a fundamental class (recall that real algebraic varieties may not be Z-oriented, as P%(R)).
We will consider the two following dual complexes :



o the chain complex (C,(X), 0s) of semialgebraic chains of X with closed supports, whose
homology is the Borel-Moore homology H,(X) := HEM (X, Zs) of Xg with coefficients
in Zo (see Appendix, paragraph 6 of [14]),

e the cochain complex (C*(X),*) which will be by definition the dual of (Cy(X), 0,) and
whose cohomology (H,.(X))Y is, by proposition 2.2 below, isomorphic to the cohomology
with compact supports H} (Xr,Z2) of Xr with coefficients in Zs.

Proposition 2.2. With the notations above, the Borel-Moore homology H,(X) := HBM (Xg, Zs)
and the cohomology with compact supports H*(X) := H}(Xgr,Z2) of X(R) are dual :

H*(X) = (H.(X))"

Proof. Borel-Moore homology and cohomology with compact supports of Xg can be defined
using relative homology and cohomology of pairs. We have

HBM (X)) = H,(Xg, Xg \ Xg) := H.(C.(Xg, Xg \ Xr))

and
HY(XR) = H*(Xg, Xr \ Xg) := H*(C*(Xg, Xz \ Xr)),

with C,(Xg, Xg \ Xg) = C*C(*Y(%))() and C*(Xg, Xgr \ Xg) := C?(}%))()’ where X — X is an

open compactification, that is an embedding of X in a compact variety X, whose image is open
in X (notice that we have Xg \ Xr = (X \ X)r).

The closed inclusion YR\)_(R = Xr induces the following long exact sequences of homology
and cohomology of the pair (Xg, Xg \ Xr) :

oo — HPM (X \ Xp) — HPM(XR) — HPM(XR) — HPM(Xp \ Xg) — -

oo i— HY(Xg \ Xg) +— H"(XR) +— H"(Xg) — H" }(Xg \ Xg) ¢ ---

The dual of the first sequence is then isomorphic to the second one by the five lemma, because
the sets Xg and Xg \ Xg are compact and consequently their Borel-Moore homology and
cohomology with compact supports are respectively isomorphic to their singular homology and
cohomology which are dual to each other. O

Remark 2.3. The cohomology with compact supports is normally computed from the complex
of cochains with compact supports. However, this complex does not have good additivity
properties, in contrast with the complex C*.

3 Cohomological weight complex

We prove the existence and uniqueness of the cohomological weight complex in a way similar
to the method of [14], using Theorem 2.2.2 of Guillén and Navarro-Aznar in [7]. The cohomo-
logical weight complex is the unique extension to all real algebraic varieties and proper regular



morphisms, satisfying conditions of additivity for closed inclusions and acyclicity for general-
ized blow-ups, of the functor that assigns to a nonsingular projective variety its complex of
semialgebraic cochains with the canonical filtration.

The Theorem 2.2.2 of [7] is a criterion of extension for functors defined on nonsingular
projective varieties. Precisely, suppose that G is a functor defined on nonsingular projective
varieties. Theorem 2.2.2 of [7] ensures the existence of an extension G’ of G defined for all
(possibly singular or non-compact) varieties, as soon as some relation between the values of
G on a nonsingular projective variety X, a smooth closed subvariety Y, the blowup X of X
along Y and the exceptional divisor Y (these four varieties form a so-called elementary acyclic
square) is verified (proof of theorem 3.4, condition (F2)). The extended functor G’ then satisfies
a generalization (Theorem 3.4, condition (Ac)) of such a blowup formula for any morphism f :
X —» X of varieties that is an isomorphism over the complement of a subvariety ¥ of X (this
constitutes a so-called acyclic square).

The structure of the target category of the functor G is important in this theory. The
prototype is the derived category of chain complexes of an abelian category, where the set of
morphisms between two complexes is expanded to include the inverses of quasi-isomorphisms
(morphisms that induce isomorphisms on homology). Guillén and Navarro-Aznar introduced in
[7] a generalization of the category of chain complexes with the notion of category of cohomolog-
ical descent, such a category possessing a class of morphisms analogous to quasi-isomorphims
and a functor s from diagrams to objects that is analogous to the operation associating to a
diagram of chain complexes its total complex.

The category © that we defined above in 2.1 is an abelian category and its derived category
Ho® is a triangulated category. However € is not an abelian category, nevertheless it is a
category of cohomological descent (Proposition (1.7.5) of [7]). In order to replace the notions
of exact sequences and distinguished triangles in an abelian category, Guillén and Navarro-
Aznar introduced the notions of acyclicity of diagrams and acyclicity of objects in a category
of cohomological descent. In our context, an object in € is acyclic if by definition £} = 0 for
the associated spectral sequence.

In this paper we consider varieties over R. The target category will be Ho €, which is the
localization of the category € of filtered cochain complexes of Zo-vector spaces, with respect
to the class of filtered quasi-isomorphisms (2.1). The diagrams we will consider will be cubical
diagrams, on which is defined a functor s that associates to each cubical diagram its simple
filtered complex : see definition 3.1 below.

The initial functor will be the functor which assigns to a real nonsingular projective variety
its complex of semialgebraic cochains (2.3) equipped with the canonical filtration defined below
(definition 3.2). The blowup formula will follow from a short exact sequence for the cohomology
of a blowing-up (remark 3.5), showing the existence of an acyclic and additive extension called
the cohomological weight complex (paragraph 3.1).

In paragraph 3.2, we show that the spectral sequence induced by the cohomological weight
complex (well-defined only from level one) converges to the cohomogical weight filtration on
the cohomology with compact supports and, in paragraph 3.3, that one can recover, as in [14],



section 1, the virtual Betti numbers ([12]) from its level one terms. More precisely, the virtual
Betti numbers coincide with the Euler characteristics of the rows of the reindexed cohomological
weight spectral sequence.

Finally, in paragraph 3.4, we give to the cohomological weight spectral sequence of a com-
pact real algebraic variety the following viewpoint : it can be regarded as the spectral sequence
naturally induced from a cubical hyperresolution of the variety. Precisely, the spectral sequence
associated to a cubical hyperresolution of a compact variety is isomorphic from level two to its
cohomological weight spectral sequence, by the Deligne shift.

Definition 3.1. Keeping the notations from [14] and [7], for n > 0, let [J; be the set of subsets
of {0,1,...,n}, partially ordered by inclusion. A cubical diagram of type [} in a category X
is by definition a contravariant functor from [} to X. If K is a cubical diagram of type [} in
¢, let K*° be the complex labelled by the subset S C {0,1,...n} and |S| denote the number
of elements of S. The simple complex s is defined by

kE= @K
i+|S|—1=k

with differentials 6 : sK¥ —» skCF+1 defined as follows. For each S, let & : K% — K*+1S
be the differential of K*°. If T C S and |T| = |S| -1, let 657 : K*% — K*T be the cochain
map corresponding to the inclusion of T in S. If ¢ € K5, let

§"(a) ==Y dsr(a)
where the sum is taken over all 7' C S such that |T'| = |S| — 1, and

§(a) = &'(a) + 6" (a). (3.1)
The induced filtration on siC is given by FPsK := sFPK

(F'sK)f = € FP(K™) (3.2)
S| —1=k
Definition 3.2. Let (K*,0) be a cochain complex. We define the canonical filtration F,, by
K1 if g<-—p
FP . K?:=( keré, ifg=—p
0 ifg>-—p

Such a filtered complex defines a spectral sequence that converges to the cohomology of K*
at level one :

Lemma 3.3. The associated spectral sequence of the filtered complex FY,, K* is a second quad-
rant spectral sequence satisfying

kerd_,

——L = gPYI(K*) if =—
EPY =FP?={ imé_, 4 (K*) ifp+gq D,

0 otherwise.



Proof. We compute the first terms of the spectral sequence. We have

ker 6_,, if p4+q=—p,

K1
ErMf=¢ ————  if =-p—1
0 ker 5_p_1 it p+gq p )
0 otherwise,
and consequently
ker d_,,
— P2 = gPTIK*) if = —
Ef’q — im(s_p_l ( ) Ip+gq p

0 otherwise.

3.1 The construction of the cohomological weight complex

We define a functor WC* : Sch.(R) — Ho € such that, for X an objet of Sch.(R), the ho-
mology of the complex ¢(WC* (X)) is H*(X) (recall that ¢ denotes the forgetful functor). The
spectral sequence E,., r = 1,2,... associated to WC*(X), converges to H*(X). In particular,
it induces a filtration on the cohomology with compact supports of Xg.

Theorem (2.2.2) of [7] allows us to prove the existence and uniqueness of the functor WC*
with properties of extension, additivity and acyclicity. We keep the notations from [7] and [14].

Theorem 3.4. The contravariant functor
FoonC* @ V(R) — Ho€

which assigns to a nonsingular projective variety M the semialgebraic cochain complex with
closed supports C*(M) equipped with the canonical filtration extends to a contravariant functor

WC* : Sch.(R) — Ho¢€
satisfying :

(Ac) For an acyclic square

Yy & X
e
Yy <& X

the simple filtered complex of the diagram

WCH(Y) <— We*(X)
TW* Tn*
WC*(Y) <— WC*(X)

1$ acyclic.



(Ad) For a closed inclusion Y 4 X, the simple filtered complex of the diagram
WC*(Y) +— WC*(X)
is quasi-isomorphic in € to WC*(X \'Y).

Such a functor WC™ is unique up to a unique filtered quasi-isomorphism.

Remark 3.5. The proof uses ingredients analogous to the ones in homological weight complex
existence and uniqueness’ proof in [14], in particular the fact that, for an elementary acyclic

square

Y & X
e
Y <& X

the sequences

0 — HI(X) — HY(X)®»HY(Y) — HY(Y) — 0
are exact for all ¢ € N (this uses Poincaré duality : see proof of Proposition 2.1 of [12]).
Proof. (of Theorem 3.4) Since the functor F,,,C* : V(R) — Ho€ can be factorized

through €, it is ®-rectified. It remains to check the hypotheses (F1) and (F2) of theorem
(2.2.2) of [7].

(F1) The inclusions X K XUYandY & xUY glue into an isomorphism C*(X UY) Ry
C*(X) ® C*(Y). As a consequence, Fo.,C*(X UY) = F.0,C*(X) @ FrenC*(Y).
(F2) For an elementary acyclic square

Y & X
e
Y <& X

we check that the following diagram, denoted by /C,

FoanC*(Y) &= FpnC*(X)
Tﬂ'* ' TTK’*
FoanC*(Y) ¢— FopnC*(X)

is acyclic. In other words, we check that the spectral sequence associated to its simple filtered
diagram satisfies E1(sK) = 0.

Let p € Z. We compute the p-th column (EJ™(sK),dP*) of Ey(sK) and we check that its
homology is 0. The terms Ef*(sK) are given by :

FP(sk)  s(FPK)

FrHl(sk)  s(FPTIK)




(FPsK)k

However W # 0 only if —p < k < —p+ 3, and we have
( 0 for k< —p—1,
CPH(X)
_ for k = —
ker 5—p—17X _ or b,
C P (X) c P l(Y)
PRI S T be C vo Sa W S orkm el
o (sK) = —p—1,X —p—1Y N
c—r1(y
0 @  ker 57p7)~( ® keri_p,y @ ﬁ for k= —p-+2,
—p—4
0 @ 0 <) 0 ®  ker 67])7? for k = —p + 3,
L 0 for k> —p+4.

The differentials are sums of morphisms (3.1), induced by the functoriality and the differentials
of the semialgebraic cochain complex C*, and the homology of (E}™, dP*) is given by

0 for k = —p,
ker |HP(X) — HP(X)e HP(Y)| fork=—-p+1,
ker |HP(X)® HP(Y) — HP(Y)
K/ Dok 3 — for k= —p+2,
HYE§") =1 im |H-?(X) — H-P(X) @H*P(Y)}
' H (Y
_ — ) — for k = —p+3,
im [H—P(X)® HP(Y) — H*P(Y)]
L 0 _ otherwise.
These spaces are all 0 (see previous remark 3.5) and therefore E;(sK) = 0. O

Remark 3.6. e The extension theorem 2.2.2 of [7] gives us also the fact that the functor
WC™ is P-rectified.

e Let (E,),>0 be the spectral sequence associated to the filtered complex WC*(X) provided
by theorem 3.4. By definition of the category Ho €, the terms F, for r = 1,2,... are
well-defined and do not depend on the construction of WC*(X). On the other hand,
Ey depends on this construction, that is on the chosen cubical hyperresolution of X (see
paragraph 3.4 below).

3.2 Cohomological weight filtration

For X a real algebraic variety, we call the filtered complex WC*(X) the cohomological weight
complexr of X.

To show that the cohomological weight complex computes the cohomology with compact
supports of the set of real points of real algebraic varieties, we prove that the functor C*(:)
satisfy the additivity and acyclicity properties of Theorem (2.2.2) of [7]. Therefore, since
¢ o WC* and C*(-) both satisfy these additivity and acyclicity properties and because they

10



are equal on objects of V(R), thanks to the unicity provided by the extension theorem, these
functors Sch.(R) — H o® are isomorphic. In particular, the semialgebraic cochain complex
with closed supports and the cohomological weight complex compute the same homology.

Proposition 3.7. For X an object of Sch.(R), the homology of the complex ¢(WC*(X)) is
H*(X).

Proof. The functor C*(-) is additive : consider, for a closed inclusion Y’ <i> X, the sequence
0— C*(X\Y) "5 05 (X) -5 0*(Y) — 0 (3.3)
which is the dual sequence of the sequence (Proposition 1.5 of [14])

0— CL(Y) -5 Cu(X) -5 CUX \Y) — 0

(where r is the restriction of chains of X to X \ 'Y given by Cu(X) : Cu(X\Y)

4] — [AnE\Y)] )
Since the latter is exact, the former is exact as well.

Yy = X
Considering now an acyclic square |, dx . Writing the additivity of the two closed
Yy <4 X

inclusions Y <% X and ¥ <% X, remarking that C*(X \ V) = C*(X \ Y) and chasing in the
following diagram

0 — C*(X\Y) % (X)) 5 oY) — 0

i/?* iﬂr* ‘ iﬂr*

0 — cx\v) & ox) L ooy — 0

we obtain the sequence
0— C*(X) " o X)ya oY) 4 c*(¥) — 0

and its exactness, that is the acyclicity of C*(-). Notice the latter short exact sequence is the

dual of the corresponding sequence of Proposition 1.5 in [14]. U

Corollary 3.8. By theorem 3.4 and previous property 3.7, we obtain a filtration on the coho-
mology with compact supports of the set of real points of real algebraic varieties :

HYX) =wWraHX) o WM X) o - o W HF(X) D WHHF(X) = {0},

called the cohomological weight filtration.
We say that the cohomological weight filtration of a variety X is pure if for all k € Z the
space WFHLHR (X)) is 0.

It will be shown in section 4.1 that the cohomological weight filtration is dual to the weight
filtration on Borel-Moore homology of [14]. In particular, the cohomological weight filtration
of a real algebraic variety X is pure if and only if its homological weight filtration is pure.

11



3.3 Cohomological weight spectral sequence and virtual Betti numbers

Analogously to [14], we recover the virtual Betti numbers from the cohomological weight spectral
sequence, which is by definition the spectral sequence E, associated to the cohomological weight
complex WC*(X) of X (it is well-defined for r > 1 : see remark 3.6). We reindex it by setting
EXT = p 9P 24 Notice that the column (—p) of E; is sent to the row p of Ej, the line
p+q = —p is sent to the vertical line p = 0 and the lines p + ¢ = constant are globally
preserved.

Lemma 3.9. The vector spaces appearing in Ey (or equivalently Eg ) have finite dimension.

Proof. 1t will be shown in paragraph 3.4 that, for compact varieties, the spectral sequence E, is
isomorphic to the spectral sequence Er of the double complex associated to a cubical hyperreso-
lution (from r > 2). Since the latter is computed from homologies of real algebraic varieties, its
terms are finite-dimensional. We next use the additivity property of the cohomological weight
complex to prove the non-compact case. ]

Proposition 3.10. The g-th virtual Betti number can be read on the q-th row of Ey :

dim X

By(X) = D (=1)? dimg, E3I(X)
p=0

Proof. We show that the right-hand side of the formula equals b,(X) := dimg, HY(X) for X

compact nonsingular, and is additive for a closed inclusion Y <5 X : this gives us the result
by the unicity with such properties of the virtual Betti numbers, see [12].

If X is compact nonsingular, then, according to proposition 3.11 below, WC*(X) is filtered
quasi-isomorphic to C*(X) equipped with the canonical filtration and, taking into account the
reindexing, we have

E_{ HPH(X) = HI(X) i p =0,
pa _

0 otherwise.
Consequently,
dim X _ _
S (~ 1P dimg, BI(X) = dim BS(X) = by(X).
p=0

Now, if Y < X is a closed inclusion, the property (Ad) of Theorem 3.4 tells us that
WC*(X\Y) is filtered quasi-isomorphic to s WC*(Y') «— WC*(X)]. This means, if we denote
the g-th line of Ey(X) by C*(X,q), with differential d*4 (and so as for ¥ and X \ Y), that
the simple filtered complex s[C*(X \Y,q) — C*(X,q) — C*(Y,q)] is acyclic (i.e. filtered
quasi-isomorphic to the zero complex), and consequently, we have a long exact sequence :

o ERYX\Y) — EYYX) — EPUY) — EFTNUXN\Y) — -

12



In particular,

dim X _ dim Y _ dim X\Y _
> (—1Pdimg, EPUX) = Y (1P dimg, EYUY)+ > (=1)Pdimg, EPY(X\Y).
p=0 p=0 p=0
O
P ition 3.11. For X t ingular, the cohomology of th ez 7O (X)
roposition o. . or compact nonstnaguiar € conomolo (0] e COMPLer —————
P jZ gular, 9y Plet S e ()

satisfies
I WPC*(X) \ [ HP(X) if k= —p,
Fwrtics(x)) T 0 otherwise.

In other words, the cohomological weight filtration of a compact nonsingular real algebraic
variety 1S pure.

Proof. The proof is similar to the proof of Proposition 1.8. in [14]. Since the inclusion V(R) —
Reg ., (R) has the extension property of [7] (2.1.10), the functor F;,,C* : V(R) — Ho€
extends to a functor Reg.,,,(R) — Ho€, unique up to filtered quasi-isomorphism with
extension, additivity and acyclicity properties. Since Fp,,C* : Reg.y,,(R) — Ho€ and
WC™ : Reg.pmp(R) — Ho€ both are such extensions (see the remark 3.5 and the proof of
theorem 3.4 : Fi., C* is acyclic on acyclic squares in Reg,,,,,(R)), they are quasi-isomorphic

in € and we obtain the result by lemma 3.3. O

3.4 Cohomological weight complex, cubical hyperresolutions and the Deligne
shift

This subsection gives the following viewpoint for the weight complex : the spectral sequence
given by Theorem 3.4 is quasi-isomorphic to the spectral sequence of the double complex asso-
ciated to a cubical hyperresolution. For an introduction to cubical hyperresolutions of algebraic
varieties, see [15], ch. 5.

Here, we keep the notations from [7]. For any compact real algebraic variety X, there
exists a so-called cubical hyperresolution of X, which is a special case of cubical diagram (see
definition 3.1) denoted by

Xo= [XF — X],

where X is the so-called augmented cubical diagram.

A cubical hyperresolution X, of X is composed of varieties Xg, S € P[1,n], associated to
the vertices of a n-dimensional cube, with Xy = X and Xg compact nonsingular for S # 0,
and of morphisms w1 : Xg — X7 for T'C S, such that rgr =g gonmgr if T'C S C R.

According to [7], proof of Theorem 2.1.5, we can compute the cohomological weight complex
of X from the functor WC* applied to a cubical hyperresolution of X. Guillén and Navarro-
Aznar use such a property to extend functors (a cubical hyperresolution is a particular case of
diagram of cohomological descent : see [15], Definition 3.6).

13



Let X4 be a cubical hyperresolution of a compact real algebraic variety X. We associate to
X,e a double complex C*7, defined by

X0 .= | | Xg
Sc[1,n],|S|=i+1

and N ' ' ‘
Chi=CI(Xx) = P ¢/ (Xg)
|S|=it1

for i,j > 0, and equipped with the differentials
8 CI(XD) — oI (X)),

induced by the morphisms X(+1) — x() (that is by the morphisms Xg¢ — X7 with 7" C S
and |T| =|S| — 1), and
1 ] i j+1 i
& CI(XWy — I (X D)
which are the coboundary operators of the X ®)’s (recall that we do not need to care about
signs because we work with Zy coefficients).

The double complex C%/ leads to a filtered complex (C*, a ) @ it is the associated total com-
plex equipped with the naive filtration coming from the cubical diagram structure. Precisely,

chi= P c/(x)

it+j=k

we set

and
Freh = okix ),
izp
the differential being 6 := ¢’ + §”.
In the following, we show that the spectral sequence E induced by the filtered complex
(C*, F) associated to the cubical hyperresolution X, of X is isomorphic to the (reindexed)
cohomological weight spectral sequence of X (from level two).

First, the construction of cubical hyperresolutions implies that the functor WC™ is acyclic
for cubical hyperresolutions (see again [7], proof of Theorem 2.1.5) : the cubical diagram
WC*(X,) is acyclic, that is s )WC™(X,)] is isomorphic to the zero complex in Ho €. In other
words, the cohomological weight complex WC*(X) of X is filtered quasi-isomorphic to the
total complex associated to the double complex given by WC%I := W(C7 (X)), equipped with
the filtration induced as in 3.1. Since the varieties Xg are compact nonsingular for S # (), the
latter filtered cochain complex is filtered quasi-isomorphic to the cochain complex C* equipped
with (the filtration induced by) the canonical filtration denoted by Fiq,.

Now, using the so-called Deligne shift ([2] Paragraph 1.3), we give, in lemma 3.12 below, a

relation between the filtrations F' and F*" of C*, the latter computing the weight filtration of
X.

14



If (K, F) is a filtered cochain complex, the Deligne shift Dec(F) of the filtration F is a new
filtration on K*, given by

. Kn+1
no.__ . n n
Dec(F)PK™ :=ker [0 : FPT"K" — Fotntijontl |’
such that (]2])
EP"P(K, Dec(F)) = BT P(K, F) (34)

In our situation, this gives :

Lemma 3.12. The Deligne shift of the naive filtration E' on C* is the canonical filtration

Dec(F)P~kCk = ppkck

can

Proof. We compute the Deligne shift of the filtration FonC*:

R r R Ck—i—l
Dec(F)P~*C* =ker |6 : FPCF — FTC’“H} (by definition of the Deligne shift)
P

=ker |§ : @Ck—i(X(i)) . @Ck+1—i(X(i))

1Zp i<p

— ker [5;;,1, L CFP(X )y — C’“*p“(X(p))] o P crix®)
_ prk;ck 1>p

can

O

This finally allows us to prove the isomorphism between the cohomological weight spectral
sequence of X and the spectral sequence induced by the filtration ' on C* :

Proposition 3.13. Forr > 2 B
Bab = Bab(C, F)

Proof. We have the following relations, for » > 1 :

Efjrr?ﬁp(X) = EP"P(X) by definition
= EP"P(C™, Fean) by the theory of cubical hyperresolutions
= EP"P(C*, Dec(F)) by Lemma 3.12
= Ef}:{z’_p(C*, F) by the relation 3.4.

O

Remark 3.14. If U is a non-compact real algebraic variety, take a compactification X of U and
consider the complement X \ U of U in X. Then, using the additivity property of the weight
complex and the proposition 3.13 above, we can compute the cohomological weight spectral
sequence of X from the spectral sequences induced by cubical hyperresolutions of X and X\ U.
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4 The dual geometric filtration

In [14], McCrory and Parusinski built a functor GeCy : Sch.(R) — C (where C is the category
of bounded filtered chain complexes, see [14]) representing the weight complex functor WC,
defined in HoC (up to filtered quasi-isomorphisms only). Dualizing the geometric filtration G,
we obtain a functor representing the cohomological weight complex WC* at the cochain level.
Therefore, our cohomological weight complex functor

WC* : Sch.(R) — Ho€
can be factorized into a functor
G*C* : Sch.(R) — ¢

through the canonical localization € — Ho €.

Analogously we can dualize the Nash filtration N, that extends the geometric filtration
on the wider category yas of AS-sets (if X is a real algebraic variety, we have NeC\(X) =
GoC(X), see section 3 of [14]), and then extend the functor G*C* to the category x.as, show-
ing in particular that the semialgebraic chain complex equipped with the dualized geometric
filtration is functorial with respect to semialgebraic morphisms with AS graph.

We remark also that the cohomological weight spectral sequence F, is dual to the homo-
logical weight spectral sequence for r > 0 and deduce that the cohomological weight filtration
can be obtained by dualizing the homological weight filtration.

4.1 Definition

Let X be a real algebraic variety. We dualize the geometric filtration on the semialgebraic
chain complex of (the set of real points of) X in the following way. We set

GPCYX) ={peCUX) | p=00nG,_1C,(X)}

i.e. GPCY(X) consists of the linear forms defined on Cy(X) and vanishing on G,—1Cy(X).
We get a decreasing filtration on C*(X) :

CF(X)=gFCk(X) o g7*1Ck(X) o .- o ¢Ck(X) o ¢k (X) =0,

that we call the cohomological geometric filtration of X. We show in Proposition 4.3 that the
induced spectral sequence E, (well-defined for r = 0,1,... and functorial in X) coincides with
the spectral sequence of the weight complex from r > 1.

The cohomological geometric filtration satisfies the properties of short exact sequences of
additivity and acyclicity (Lemma 4.2), dual to the ones of Theorem (2.7) and (3.6) of [14].
These properties are stronger than the additivity and acyclicity properties (Ad) and (Ac) of
WC™*, which can be recovered by the snake lemma.

Co(X) 1\
Remark 4.1. We have GPCY(X) = <L> , since we can factorize a linear form on
G,1Cy(X)
Cy(X) which kernel contains G, 1Cy(X) through Cy(X) — % Furthermore, if we
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consider the restriction of morphisms of GPC9(X) to G,Cy(X), the quotients on chains and

cochains are related by :
grenx) ( GpCy(X) )V
griicuX)  \GpCy(X)/) -
Since the isomorphisms are compatible with the differentials of the complexes which are
dual to one another, they induce a duality between the spectral sequence associated the cochain
complex G*C*(X) and the spectral sequence associated to the chain complex GoC\y(X) :

B = (5"

(from r > 0).

Notice that the construction of the dual geometric filtration can be generalized to any
filtered chain complex of C, providing the same duality on the induced spectral sequences : if
(K, Fy) € C, we define the dual filtration of Fy by

FIKY = {p € (K" | ¢ =0on F, 1Ky(X)}

and then
EPUKy, Fy) = (E) (K, F))"

from r > 0.
Lemma 4.2. For any closed inclusion Y < X and any p,q € 7, the sequence

0 — GPCUX \Y) 25 GPCY(X) -5 GPCUY) — 0

18 exact. '
y 4 X
For an acyclic square |, dx and any p,q € Z, the sequence
Y <& X
0 — gPCI(X) " groa(X) @ groa(y) L gPCI(Y) — 0
18 exact.

Proof. We prove the exactness of the short sequence of additivity. The exactness of the short
sequence of acyclicity comes from similar arguments.

Let Y <% X be a closed inclusion. The short sequences on chains with closed supports
0 — Gp1Co(Y) == Gp1Co(X) = Gpo1Cy(X\Y) — 0
are exact for p,q € Z. Consequently, we have the following exact sequences of quotients :

CY) a, Co(X) ., Gy(X\Y)
Gp-1Co(Y)  GpaGy(X) Gy Gy(X\Y)

that we dualize to obtain the exactness of the short sequences for the cohomological geometric
filtration (remark 4.1). O

0—> — 0
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4.2 Realization of the cohomological weight complex

We now use the previous lemma 4.2 to show that the cohomological geometric filtration realizes
the cohomological weight filtration :

Proposition 4.3. The dual geometric filtration G*C* : Sch.(R) — C induces the functor
WC* : Sch.(R) — HoC.

Proof. The functor G*C*, composed with the canonical localization € — Ho € verifies the
properties (Ac) and (Ad) of Theorem 3.4 by Lemma 4.2 (use the snake lemma). If it verifies
also the extension property, by unicity of the cohomological weight complex, the two functors
G*C*, WC* : Sch.(R) — Ho € will be isomorphic.

Let X be a nonsingular projective real algebraic variety. We show that G*C*(X) is filtered
quasi-isomorphic to F,, C*(X). According to [14] Theorem 2.8., the complexes GoC,(X) and
F{nCy(X) are filtered quasi-isomorphic (through the inclusion morphism). By remark 4.1, we

deduce that, on the cohomological spectral sequences level,
E'(G°CY) = (E1(GaCy))” = (Er(FE™Cu(X))" = B (F)], C* (X)),
where the dual canonical filtration (F*")?, C*(X) is given by

(F™P CUX) = {go eCIX)|p=0o0n szf’}Cq(X)} =4q imd,—; ifg=—-(p—1),
CluX) ifg<—(p-1),

(notice that a linear form on Cy(X) which vanishes on ker d, can be factorised into a linear
form on C?71(X) through 9, and then belongs to im &,_1).

We observe that there is an inclusion of the canonical filtration given by

0 if ¢ > —p,
FP CYX)= ker 64 if g =—p,

in the (bounded decreasing) filtration (F°*)?, C*(X), that induces a quasi-isomorphism in €.
Indeed
EPI((Fem)y CH(X)) = (BPU(FY™CH(X))Y = = EP? (F£,C™ (X))

can

HPH(X) if p+q=—p,
0 otherwise.

(see Paragraph 1.1 of [14] and lemma 3.2).

can

F?,.C*(X) are isomorphic in Ho €. O

As a consequence, E' (G*C*) = E! ((F°")}, C*(X)) = E1 (F?2,,C*(X)) and G°C*(X) and
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Corollary 4.4. We have isomorphisms

WPHI(X) <Wqu<X> )
WHTHI(X) 1)

- Wp—1Ho(X

and the weight filtrations on Borel-Moore homology in [14] and cohomology with compact sup-
ports in 3.8 are related by

WPHIX)={p e H(X) | p=0o0on W, 1Hy(X)}

Proof. We use the facts that the homological and cohomological geometric filtrations realize re-
spectively the homological and cohomological weight spectral sequences, and that these spectral
sequences are dual to one another (remark 4.1) : the first assertion is just the isomorphism

Fy = (E*)Y.

= (s

We deduce that

l.e.

WPHI(X) = {p € HI(X) | ¢ =0 on W, Hy(X)}.
Ol

In a similar way, we can define a filtration N'* on the semialgebraic cochain complex C*(X)
of an AS-set, dual to the Nash filtration N, of [14], section 3. This dual filtration defines a
functor
NC* : xas — C

from the category of AS-sets, which extends G*C* : Sch.(R) — C. In particular we obtain :

Proposition 4.5. The dual geometric filtration and its spectral sequence are functorial with
respect to semialgebraic morphisms with AS-graph.

5 Weight filtrations and products

In this section, we define the cross product of semialgebraic chains with closed supports, which
induces a filtered quasi-isomorphism with respect to the geometric filtration, relating the weight
complex of the cross product of real algebraic varieties with the tensor product of the weight
complexes by an isomorphism of HoC. The isomorphism of Ho € on the cohomological coun-
terpart allows us to define cup and cap products on the localized chain and cochain level. This
shows in particular that the induced cup and cap products on the (co)homology level are fil-
tered with respect to the weight filtrations. Finally, we give obstructions for a compact real
algebraic variety to satisfy Poincaré duality, relating to its weight filtrations.
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If X and Y are two real algebraic varieties and ¢ and ¢’ two respective chains, we define
the chain ¢ x ¢ of X x Y in a natural way (definition 5.1). We first check that it is well-
defined and give its behaviour under the boundary operator (lemmas 5.2 and 5.4). We then
look at its behaviour with respect to the geometric filtration (proposition 5.6) : if ¢ is a ¢-
dimensional chain of X of filtration index p and ¢’ a ¢’-dimensional chain of Y of index p’, the
product ¢ x ¢ is a (¢ + ¢')-dimensional chain of X x Y of index (p+ p’). The product of chains
induces then a well-defined morphism wu from the tensor product of the geometric filtrations
of X and Y to the geometric filtration of the cross product X x Y (theorem 5.15). Using the
naturality property of the extension criterion of Guillén and Navarro-Aznar in [7], we show that
it is a filtered quasi-isomorphism. Consequently, the tensor product of the weight complexes
is isomorphic in HoC to the weight complex of the product, the induced relations between
the weight spectral sequences terms implying in particular the multiplicativity of the virtual
Poincaré polynomial (without the use of the weak factorization theorem) and the fact that
the Kiinneth isomorphism is filtered with respect to the weight filtration. In paragraph 5.3,
dualizing the quasi-isomorphism wu, we show the cohomological counterparts of these results :
the tensor product of the dual geometric filtrations of X and Y and the dual geometric filtration
of their product are related by the two filtered quasi-isomorphisms in opposite directions u"
and w (proposition 5.19).

Composing the isomorphism (u")~!ow of Ho@ with the morphism induced by the diagonal
map, we define a cup product on the dual geometric filtration of a real algebraic variety X at
the localized cochain level (subsection 5.4). It induces the usual cup product on the cohomology
of its real points, showing that the latter is filtered with respect to the cohomological weight
filtration. We then use this cup product in Ho € to define also a cap product on the cochain
and chain level (subsection 5.5). Finally, in paragraph 5.6, we focus on the cap product with
the fundamental class [X] of a compact real algebraic variety X, showing that the image of any
cohomology class by Poincaré duality map in (co)homology is pure with respect to the weight
filtration, the non-pure classes of the cohomological weight filtration being sent to zero. In
particular, a compact variety with non-pure weight filtration do not satisfy Poincaré duality.

5.1 Product of semialgebraic chains

Let X and Y two real algebraic varieties. We define a product operation between the chains
of X and the chains of Y, checking in lemma 5.2 that this operation is well-defined.

Definition 5.1. For any chains ¢ = [A] € Cy(X) and ¢ = [B] € Cy(Y), we define
exd :=[AxB]€Cpyg(X xY).
Lemma 5.2. Let A and A’, respectively B and B’, two closed semialgebraic subsets of (the set

of real points) of X, respectively Y, such that [A] = [A] in Cp(X) and [B] = [B'] in C,(Y)
for some nonnegative integers n and m. Then

[Ax Bl =[A" x B']

m Cner(X X Y)
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Proof. We check that [Ax B]+[A"x B'] = 0in Cp1,(X xY'). By the definition of semialgebraic
chains with closed supports in the Appendix of [14], we have

[Ax B]+ [A" x B'] = [clxxy (Ax B+ A" x B')].

Since AX BUA'xB' C (AUA)x (BUB')and Ax BNA'"x B'=(AnA") x (BNB'), we
have

AxB+A'xB' C (AUA")x(BUB")\(ANA")x(BNB') = ((A+ A") x (BUB"))U((AUA") x (B+ B')).
But dim(A + A’) < n and dim(B + B’) < m, therefore
dimclxxy (Ax B+ A xB')=dimAxB+ A" xB <n+m
and [A x B] 4 [A’ x B'] = 0. O
We then verify that the product of chains is distributive over the sum :

Lemma 5.3. If ¢, co are two chains of X and ¢ is a chain of Y,
(c1+e)xd=c1xd +ecaxd,
and if ¢ is a chain of X and ¢, ¢ are two chains of Y,
ex (i +dy)=cxd+exd.

Proof. We write ¢ = [A1], ¢a = [A2] and ¢ = [B]. We then have

c1 xd +eaxd = [A; x B]+[A2 x B]
[

clxwy (Al X B) - (A2 X B))]

o
Qo
O
X X
<N
ESREN
L
2
D
X%
= w

I
Q.
5
X
b.<
=~

|

S
N

X
=

The equality (¢} + c4) = ¢ x ¢} + ¢ x ¢ comes from a symmetric computation.

O

The next lemma describes the behaviour of the semialgebraic boundary operator with re-
spect to the product on semialgebraic chains we defined above.

Lemma 5.4. The boundary of the product of two chains ¢ € Cy(X) and ¢ € Cy(Y) wverifies,
m Cq+q1_1(X X Y),
Iexd)y=0cxd +cxad.
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Proof. Let A C X and B C Y be closed semialgebraic sets representing respectively ¢ and ¢’
Then, by definition, the closed semialgebraic set A x B C X x Y represents the chain ¢ x ¢/
and J(c x ) = [0(A x B)] (see Appendix of [14]).
We show that
J(Ax B)=0Ax BUAX 0B,

and then d(cx ') = [0Ax B]+[Ax0B| = dcxd +¢xdc (notice that 0Ax BNAxIB = 0AXJB
and dim9dA x OB < ¢+ ¢ — 2).

First recall that, for a semialgebraic set S, S = {x € S | x(lk(z,S)) =1 mod 2}, where
k(z,S) := S(z,e) NS for € small enough. In the lemma 5.5 below, we prove that, for a
fixed point (a,b) € A x B, the link lk((a,b),A x B) of (a,b) in A x B is semialgebraically
homeomorphic to the set

M@ B) + (1= N)(a,b) | A€ [0,1], B € k(b B), a € Ik(a, A)}.
By additivity of the Euler characteristic x, we deduce
X(k((a,b), A x B)) = x({a} x (b, B)) + x(Ik(a, A) x {b}) + x(C"),

where C' := {A\(a, B) + (1 — A) (e, b) | A €]0,1[, B € 1k(b,B), o € Ik(a, A)}.
Notice that two segments |(a, ), (a, b)[ and ](a, '), (¢/,b)[ of C’, with (a, 8) # (&, '),
do not intersect, providing us a semialgebraic homeomorphism between C’ and the product

({a} x 1k(b, B)) x]0,1[x (Ik(a, A) x {b}).
As a consequence we have

x(k((a,b), A x B)) = x(Ik(a, A)) + x(k(b, B)) = x(Ik(a, A))x(k(b, B)).

Therefore, if (a,b) € O(A x B), that is by definition x(lk((a,b),A x B)) =1 mod 2, we
deduce from the above equality that x(lk(a,A)) = 1 mod 2 or x(lk(b,B)) = 1 mod 2 i.e.
a€dAorbedB.

Conversely, if a € 9A, i.e. x(Ik(a, A)) =1 mod 2, then necessarily, x(lk((a,b), Ax B)) =1
mod 2. Consequently, 0A x B C 9(A x B) and symmetrically A x 0B C (A x B).

We proved

J(Ax B)=0Ax BUAx0B.
O

Lemma 5.5. Let (a,b) € A x B, then the link 1k((a,b), A x B) of (a,b) in A x B is semialge-
braically homeomorphic to the set

(Ma, B) + (1= M\)(a,b) | A€ [0,1], 8 €lk(b, B), ac lk(a, A)}.

Proof. Suppose X C R™ and Y C R™ for some n, m > 0.
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Consider the continuous semialgebraic function p; : R® x {b} = R ; (x,b) — ||z — a|>. By
Hardt’s theorem, for € small enough, there exists a semialgebraic trivialization of p; over ]0, €?],
compatible with A x {b}, given by :

By(a,€) x {b} —]0,€%] x Sp(a,€) x {b} ; (2,b) — (||z — aHQ,El(x),b)

with 7L1 continuous and semialgebraic such that El 1S, (a,e) = 1d.
Symmetrically, there exists a semialgebraic trivialization of the function py : {a} x R™ —
R ; (a,y) — |ly — b||? over |0, €], compatible with {a} x B given by

{a} x Buu(b,€) =10,¢% x {a} x Su(b.€) 5 (a,y) = |y — b a, ha(y)

with ks continuous and semialgebraic such that 7L2 S (bye) = Ld.

We then define

r—al?® ~ -b|? -~
£ Sinl(@0).) = € () o G ) ) 4 I ),

where C' = {A(a,0) + (1 — A)(o,b) | X € [0,1], B € Sp(be), o € Sy(a,e)}, which is a
semialgebraic homeomorphism. Since the trivializations of p; and py over ]0, €2] are compatible
with A x {b} and {a} x B respectively, we have

F(Snam((a,b),e)NAxB) = {\(a, B)+(1-X)(a,b) | A € [0,1], B € Spn(b,€)NB, o € Sy (a,e)NA}.
U

5.2 Product and geometric filtration
Now we study the behaviour of the product of chains with respect to the geometric filtration :

Proposition 5.6.
(1) If c € GyCy(X) and ¢ € GyCy(Y), then

c X Cl S gp+p/ q+q’(X X Y)

(2) If c € Cy(X), € Cy(Y) and cx ' € GsCyyy (X XY'), then there exists p, p’ with p+p’ = s,
such that
c € GpyCy(X) and ¢ € Gy Cy(Y)

Remark 5.7. Because the filtration G, is increasing, the proposition shows in particular that the
index p+p’ of the product ¢x ¢ in the filtration is minimal if and only if the indices p of ¢ and p’
of ¢ are minimal. In other words, if ¢ € G,Cy(X)\Gp—1Cy(X) and ¢’ € G Cy (Y)\Gpy_1Cy(Y),
then

cxd < Qp+p/ q+q’(X X Y) \Qp+p/_1Cq+q/(X X Y),

and if ¢ € G,Cy(X) and ¢ € Gy Cy (V) with ¢ x ¢ ¢ Gpipy_1C4e (X X Y) then

¢ Gp1Cy(X) and ¢ ¢ Gy 1Cy(Y).
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For the proof of Proposition 5.6, we use the notion of adapted resolutions (see [14], section
2). Adapted resolutions allow us to work with chains lying in a nonsingular ambient space,
with boundary belonging to a normal crossing divisor.

Lemma 5.8. Suppose X is compact and consider a chain ¢ = [A] of X. We can assume that
the dimension of A is maximal, equal to the dimension of X, by considering the Zariski closure
Ac A’ of A, since the filtration is only depending on the support of ¢ (Theorem 2.1 (1) of
[14]) : we have

¢ € G,O1(X) = c € G,C(A7).

With this assumption, there exists a resolution of singularities T : X — X of X such that
supp(d(m~te)) € D, where D is a normal crossing divisor of X.

Such a resolution is called a resolution of X adapted to the chain c. Notice that the pullback
77 1c of ¢ is defined because 7 is a resolution of singularities (the pullback operation on chains
is more generally defined for any acyclic square of real algebraic varieties : see [14] Appendix).

Proof. First consider a resolution 7+ X’ — X of X to make the ambient space nonsingular,
then consider a resolution X — X’ of the embedded variety supp (0(7'~'c)) (which is a
hypersurface of X’), so that it is in a normal crossing divisor. O

Proof. (of Proposition 5.6) The first point can be proved using the description of geometric
filtration using Nash-constructible fonctions. We keep the notations from [14]. There exist
generically Nash-constructible functions ¢ : X — 29"PZ and ¢ : Y — 29+7'7, such that

c=[{zeX |p(@) ¢ 2712)] and ¢ = [{y e ¥ | v(y) ¢ 2712}
Denote by 7x : X XY — X and 7y : X X Y — Y the projections. We define the function

X xY —s 90tdptr'y

n=7x(p) my(¥) : (,y) — o(x)-Y(y)

which is Nash-constructible because the pullback of a Nash-constructible function and the
product of Nash-constructible functions are Nash-constructible. Since,

exd = {(wy) € X xY | n(ay) ¢ 2tz L]
the chain ¢ x ¢ is in Gy Cyr (X X Y).

To prove the second point of the proposition, we use the very definition of the geometric
filtration (see [14] Theorem 2.1. and Proposition 2.6.). We first assume X and Y to be compact
and we proceed by induction on the dimension of X x Y. Suppose ¢ x ¢ € GsCypy(X X Y).

Let 7: X — X be an adapted resolution of ¢ (it exists by lemma 5.8 above). Then, if we
set ¢ := 7~ !(c), the support supp(9¢) is included in a normal crossing divisor D of X , and by
definition of the geometric filtration, we have

c € GyCy(X) < 0ce G,Cy_1(D).
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In the same way, consider Y —Y an adapted resolution of . We have supp(@g’ )yC D,
with ¢/ := 7/~1(¢/) and D’ a normal crossing divisor of Y, and

¢ € GuCy(Y) <= 0 € GyCy_1(D)).

Now mx 7 : X xY — X XY ; (2,y) = m(z) x 7'(y) is an adapted resolution of ¢ x ¢’.

Indeed, by Lemma 5.4,
AT xd)=0cxd +¢xd, (5.1)
in particular,
supp(A(Ex ¢)) C (D x Y)U (X x D') :

the subvarieties D x Y and X x D’ are normal crossing divisors of X x Y because X and Y
are nonsingular, and their union that we denote by D is again a normal crossing divisor of
X x Y since they have no common irreducible component (their intersection is D x D’ which
has strictly smaller dimension).

Therefore ¢ x ¢ € GsCprg(X X Y) & 0(C x J) e QSCq+q/,1(5). We then use the lemma
5.9 below to deduce that () x ¢ € GsCyyqg—1(D x Y) (and & x () € GsCyyq—1(X x D')).

By induction on dimension, there exists p and p’ in Z such that p+p’ = s, 9(¢) € G,Cy—1(D)
and ¢ € gp/Cq/(f/), that is ¢ € G,Cy(X) and ¢ € Gy Cy(Y) (since Y is nonsingular and ¢ € D/,
we have ¢ € gp/Cq/(f/) s 0(d) e G,Cq—1(D")).

Finally, to prove the result in the general case, consider real algebraic compactifications X
and Y of X and Y respectively. Then X x Y is a compactification of X x Y and, by definition
of the geometric filtration,

exd €GsCpig(X xY) & exd €GsCpig(X xY).

The closure ¢ x ¢ of the chain ¢ x ¢ is equal to € x ¢ and, by what we proved above in the
compact case, there exist p and p’ in Z such that p +p’ = s and

RS ngq(Y) and g € gp/Cq/ (?)

which is equivalent to

c € G,Cy(X) and ¢ € GyCy (V).

Lemma 5.9. With the above notations, we have

N N 8(@) x ¢ € GCypry-1(D X Y)
d(cxd)eGiCoryg_1(D) = and B
Ex () € GCyig—1(X x D)

Proof. The implication from right to left follows from the definition of the geometric filtration
(D xY and X x D’ are two subvarieties of D) and the formula 5.1.
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We prove the implication from left to right using the description of the geometric filtration
via Nash-constructible functions ([14], section 3). N

First denote A := supp(d(c) x ), B := supp(c x 9(c)), then the closed semialgebraic set
A U B represents the chain 9(¢ x /) in Cq+q/_1(ﬁ) (because AN B C D x D' is of strictly

smaller dimension). Furthermore, because it belongs to gqu+q1_1(ﬁ), the chain 9(¢ x ¢) is
represented by a Nash-constructible function ¢ : D — 20171457 and we have

AUB ={(z,y) € D | pl,y) ¢ 207 L},

up to a set of dimension < ¢+ ¢’ — 1.
Consider now the characteristic functions ¢4 and ¢ on D of the Zariski closures of A and
B respectlvely The Nash-constructible function ¢ -4 : D — 20+d' ~1+s7 represents the chain

[(A UB)N 47| in Cq+q/_1(D). But, since the intersection of the Zariski closures of A and B is
of dimension < ¢+ ¢’ — 1 (because it is a subvariety of D x D'), we have [(AU B) N ZZ] = [A]
and the Nash-constructible function -1 4 : D — 20t¢'~1ts7, represents the chain [A] = d(c) xc.
Consequently, 9(¢) x ¢ € GsCyyqy—1(D) and, since supp(9(¢) x /) C D x Y, we have

9(@) x ¢ € GeCyyg1(D xY),

Symmetrically, the Nash-constructible function ¢ ¥ p : D — 2atd'~1+s7 represents ¢ X (9(c~’ )
and " -
c X 3(0’) S gSCq+q/_1(X X D/)

O

Next, we want to find a relation between the geometric filtration of the product variety
X xY and the product of the geometric filtrations of X and Y. First, we have to make precise
what we mean by a product of filtered complexes :

Definition 5.10. Let (K., F) et (M,,J) be two filtered complexes in the category C. We
define ((K ®z, M)., F ® J) to be the complex given by

(K@M)= @ Ki®z, M
i+j=n

equipped with the differential
dz®y) =dry+z®dy

and the bounded increasing filtration given by

(FRIN(E&M)y,:= P Y F.K @z, M
i+j=n a+b=p

Remark 5.11. Notice that there is no sign in the definition of the differential because we are
working with Z, coefficients.
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Therefore, a product of filtered complexes of C induces a spectral sequence converging to
its homology. In lemma 5.13 below, we give the relation between this spectral sequence and
some product of the spectral sequences induced by each filtered complex. This result will follow
from the Kiinneth isomorphism (see for instance [5], Theorem 29.10) that we recall here. This
theorem allows one to compare the homology a product of complexes with the tensor product
of their homologies. Because Zs is a field, there is no torsion.

Theorem 5.12. For any K, and M, two chain complexes over Zs, we have a so-called Kiinneth
isomorphism
H.(K)® H.(M) — H.(K @ M) ;
i particular, for all n € 7,
H, (K ® M) = @ Hi(K) ®z, Hj(M).
i+j=n

Lemma 5.13. Let (K., F) and (M,,J) be two filtered chain complexes. The spectral sequence
of their product verifies, for r > 0,

KoM= @ LK) ® EL(M). (5:2)

p+s=a,q+t=b

Proof. We prove this lemma by induction on r. First we have, for a, b € Z,
(F @ J)a(K @ M)ayp
(F & J)a-1(K @ M)ayp
St e FalSi © J5M;
Zoz-l—ﬁ:a—l FoK @ JﬁM]

EJ(K@M) =

i+j=a+b

- ® @ e
i+j=a+ba+L=a Fo 1K Jﬁ_le

= D EE)eE,M)
p+s=a,q+t=b

S ise aFaK ®J5M; P K JsM; .
Ki®JsM; Disj—ars Datp—a Fo1K; & T, 1

We prove the equality @, ;_,
the lemma 5.14 below.

Za+[3 a— 1

Then suppose the property is true for a fixed » > 0. The term E"(K ® M) of the spectral
sequence induced by the filtered tensor product of K, and M, is composed of chain complexes
(EL ., d; ) whose homology computes the term E™ Y (K®M). Applying homology and Kiinneth
1somorphlsm to the formula 5.2 given at level r by induction, we obtain the property at level
r+ 1.

O

Lemma 5.14. Let a and b be in Z. Keeping the notations fmm Lemma 5.13 above, we have

o I,
ZaJrB:a 1F K ®J5M z+]e%+ba§5@ Fo— 1K J571Mj'

i+j=a+b

27



Proof. Let i,j € Z such that i + j = a + b, we prove that

Za+5:a FaKi & JﬁMj ~ FO,KZ' JgMj

Yatpmat Faki @ JsM; — N Fo 1 K;  JpaM;

Denoting simply F,,K; by F,, and JgM; by Jg, let ¢ be the Zs-linear map

F J

Y oo P 0L
_ _ Foq Jﬁfl

a+fB=a a+pB=a

(well-)defined by, if r @y € F, ® Jg, Y(r Qy) =T RY € Ffal ®

The map ¢ is surjective and >, . | F. ® J; C kery. Now let v € kery. Then, v =
> otfea Dicl, ST ® ylﬁ with 2% € F, and ylﬁ € Jg for all o, B,i. We have

0=v) =Y YT ay
a,B 1

that is, for all «, 3, Zﬁ@y? = 0 and thus, for all 7, there exist zia*l € F,_1 and wiﬁf1 € Js_1
such that >7,(z¢ + 2071 ® (ylﬁ + wiﬁfl) =0 ie.

me‘@y? :fo‘@wiﬁ*l+Zz?71®y5+22?71®w§371 EF,®Jg_1+ Foq @ Jg.

As a consequence, y € > . . F,. ® J, and we get the result by universal quotient property.
O

This lemma 5.13 will allow us to relate the weight spectral sequence of a product of real
algebraic varieties and the product of the weight spectral sequences, as an interpretation of the
following result. We relate the product of geometric filtrations with the geometric filtration of
the product : the map that associates to a tensor product of chains their cross product is a
filtered quasi-isomorphism with respect to the geometric filtration.

Theorem 5.15. We have a filtered quasi-isomorphism
U GoCh(X) @ GoCu(Y) — GO (X x Y)

given by
cx ey — cx X cy

if ex € GpCy(X) and ¢y € GyCy(Y) withp+p = s and ¢+ ¢ =n.

The morphism u is filtered by proposition 5.6 (recall also the definition 5.1 of the product
of filtered complexes).
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Corollary 5.16. The filtered complezes WCy(X)®z, WC(Y') and WC (X xY) are isomorphic
in HoC and the above map u induces a filtered isomorphism

o i WoH(X) @ WoH,(Y) — WoH, (X x Y).

Above theorem 5.15 has an interpretation from the viewpoint of spectral sequences : u is a
morphism of filtered complexes which induces an isomorphism on spectral sequences from level
one

Uy B} (GeCi(X) @ GoCu(Y)) — Ep (X xY)

for r > 1. Using Lemma 5.13, we get an isomorphism

ul P B (X)®z, EL(Y) "5 B (X xY) (5.3)
p+s=a, q+t=b

(for r > 1). In particular, using this isomorphism, we show the multiplicativity property of the
virtual Poincaré polynomial
- Z By )ud,

q=0

without using the weak factorization theorem as in [12] and [4]. Precisely, taking the alternating
sum of the E' terms in the equation 5.3 as in proposition 3.10, we obtain the following relation
on the virtual Betti numbers :

Bu(X xY) = Y By(X)

pt+q=n

Consequently,
BIX x Y)(u) = B(X)(u)B(Y)(u).

Furthermore, the Kiinneth isomorphism in homology is filtered through the isomorphisms

ul, P ENX) @z, ES(Y) " ES(X xY)
p+s=a,q+t=>b

Remark 5.17. To prove theorem 5.15, we use the naturality property of the extension theorem of
[7] (Proposition 1.4 of [14]). We first show that w is a filtered quasi-isomorphism for nonsingular
projective real algebraic varieties and then use this naturality to prove that u is a filtered
quasi-isomorphism for all real algebraic varieties. We do not know whether the theorem follows
directly from the geometric filtration of [14] and Proposition 5.6, without the theory of cubical
hyperresolutions of [7].

Proof. (of Theorem 5.15) When X and Y are nonsingular projective varieties, so is the product
variety X x Y and the three induced weight spectral sequences verify

EOO :El — Hp+q 1fp+q:_p
0 otherwise.

Therefore, by lemma 5.13, the morphism u : GeCy(X) ® GeCi(Y) — GoCi(X x Y') induces
on E' = E* the morphism H,(X) ®z, H.(Y) — H.(X x Y), which is the classical Kiinneth
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isomorphism in singular homology. Thus, u is a filtered quasi-isomorphism when X and Y are
projective nonsingular.

Let Y be now a fixed nonsingular projective variety and consider the two functors
¢1:Sch.(R) - C; X —» GC(X)®gGC(Y)

and

¢2:Sch.(R) - C; X —»GC(X xY)

(in this part of the proof, we drop the subscripts of filtrations and complexes for readability).
We proved above that these two functors are quasi-isomorphic in C on V(R) (we denote by
1 and @y their respective restrictions to V(R)). Furthermore, they both verify the additivity
and acyclicity conditions of Theorem (2.2.2) of [7]. Indeed, if Z < X is a closed inclusion, the
additivity of the geometric filtration (see Theorem 2.7. of [14]) induces the exactness of the
sequences

0 GC(Z)®GC(Y) = GO(X) @ GC(Y) = GC(X \ Z) @ GC(Y) = 0

and
0=>GC(ZxY)=>GC(XxY)=>GC(X\Z)xY)—=0

(the induced morphism Z x Y — X x Y is also a closed inclusion). Now, if the diagram
Z - X
3 3
Z — X
is an acyclic square, we check that the simple filtered complexes associated to the induced
diagrams N N
GO(Z)y®gC(ly) — gGoX)agl(y)
3 3
GO(Z)®gC(yY) — gGoX)®gl(y)
denoted by K;(Y), and
GC(ZxY) — GO(X xY)

{ 1
GC(ZxY) — GO(X xY)

denoted by Ko(Y), are acyclic. The simple filtered complex sKo(Y') is acyclic because the
geometric filtration verifies the acyclicity condition for an acyclic square (see Theorem 2.7. of
[14]) and the diagram
ZxY — XxY
3 3
ZxY — XxY
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is acyclic. The spectral sequence induced by sK;(Y') verifies E1 = 0 because sK;(Y) is nothing
more than the tensor product of filtered complexes sKy ® GC(Y'), where Ky is the diagram

GC(Z) — GC(X)
1 1
gc(z) — Go(X)

and therefore, by lemma 5.13, E;b(lCl(Y)) = EB E;q(sKO) ® Esl,t(gC(Y)) =0, for all

p+s=a,q+t=b
a,b € 7, again because of the acyclicity of the geometric filtration (notice that in both cases,

we did not use the fact that Y was projective nonsingular).

Consequently, the localizations ¢}, ¢, : Sch.(R) — HoC of ¢; and ¢9 respectively are the
unique extensions of their respective restrictions ¢}, ¢} : V(R) — HoC given by the Theorem
2.2.2. of [7] (notice that the above arguments prove also that the functors p; and @9 satisfy
the disjoint additivity condition (F3) and the elementary acyclicity condition (F5)). By the
naturality of this extension (see Proposition 1.4 of [14]), the localization of the filtered quasi-
isomorphism u(Y') : ¢1 — @2 extends uniquely into a morphism ¢; — ¢4, and this morphism
is an isomorphism of HoC. Since the localization of

w(Y): 1= ¢2 5 X = (GeCu(X) © GaCu(Y) — GoCi(X x Y))

is such an extension, the latter is a quasi-isomorphism of C, that is the morphism u : GoCy(X)®
GeCi(Y) — GoCi(X x Y) is a filtered quasi-isomorphism for any real algebraic variety X and
Y a nonsingular projective variety.

Now fix X to be any real algebraic variety and consider the morphism of functors
U(X) Y = (GeCu(X) @ GeCh(Y) — GoCi(X X Y)).

We prove in the same way as above that the localization of the restriction of u(X) to V(R)
extends uniquely into a morphism of functors on Sch.(R), which is an isomorphism of HoC
because so is the restriction to V(R). Because of the uniqueness of the extension, we finally
obtain that

U GeCh(X) @ GoCu(Y) — GO (X x Y)

is a filtered quasi-isomorphism for any real algebraic varieties X and Y. O

Remark 5.18. A morphism between the filtered complexes WC, (X)@WC,(Y) and WC, (X xY)
for any varieties X and Y can also be obtained without using the geometric filtration. Indeed,
using a method similar to the one in the previous proof, we can extend to all real algebraic
varieties the morphism of filtered complexes

FenC, (X)) @ FEC(Y) — FOC (X x Y)

(given by the product in Definition 5.1) restricted to nonsingular projective varieties.
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5.3 Product and cohomological weight complex

As for the homological weight complex, we show that we can relate the cohomological weight
complex of a product with the tensor product of the cohomological weight complexes, so that
these two filtered complexes are isomorphic in the localized category Ho€. More precisely,
this isomorphism of Ho€ is induced by two opposite-directional filtered quasi-isomorphisms
of cochain complexes, one of them being the dualization of the quasi-isomorphism in C in
Theorem 5.15.

Proposition 5.19. The filtered complezes G*C*(X)®@G*C*(Y) and G*C*(X xY) are isomor-
phic in Ho €.

Corollary 5.20. The filtered complexes WC*(X)@WC*(Y') and WC*(X xY') are isomorphic
i Ho€ and the Kunneth isomorphism in cohomology
WCH(X)@W*H*(Y) — W*H*(X xY)

18 a filtered isomorphism with respect to the cohomological weight filtration.

Proof. Consider the filtered quasi-isomorphism
U GoCk(X) ® GoCi(Y) — GoCu(X X Y)
defined in Theorem 5.15. Its dual

(C(X x Y)Y — (Cu(X) @ Cu(Y))"

Z CX,i & Cy; — Z n(ex,i x CY,i)]

7 i

[/

is also a filtered quasi-isomorphism if we equip the dualized complexes with the corresponding
dual filtrations (remark 4.1).
On the other hand, the map

(C(X))Y @ (Cu(Y))Y — (Cu(X) @ Cu(Y))Y
v PR — [Z cx,i ® cyi —> Z plexi) - T,Z)(CY,@')]

where the right-hand side complex is equipped with the same filtration as above (induced by the
geometric filtrations of X and Y) and the left-hand side complex is the filtered tensor product
of the dual geometric filtrations of X and Y, is also a filtered quasi-isomorphism. Indeed, for
a,b € 7., we have
EPY ((Cu(X)Y @2, (CV)) = @D (By(X))" @z, (BL(Y))”
p+s=a,q+t=>b
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and

Ef? ((Cu(X) ®2, Cu(Y))Y) = (B3 (Cu(X) 02, C.(Y)) ' = €D (B (X) @z, EL(Y))"
p+s=a,q+t=b

by lemma 5.13 (or its cohomological version), and the morphism w induces on the Ej-level the
morphisms
v v v
(E;q(X)) Q174 (E;t(y)) — (Ez;q(X) Q74 E;t(Y)) )
given by 7 ® ¢ — (Y, exi®@cy,i— > ¢(cxi) - ¥(eyy)], which are isomorphisms (the terms
of the weight spectral sequences of X and Y are finite-dimensional).

Therefore, we have the following diagram in €
(CL(X x Y)Y == (Cu(X) @z, Cx(Y))Y ¢ (Cu(X))¥ @2, (CLY))",

where the morphisms u" and w are filtered quasi-isomorphisms. Consequently, in the localiza-
tion Ho € of € with respect to filtered quasi-isomorphisms, the filtered complexes G*C*(X) ®
G*C*(Y) and G*C*(X x Y) are isomorphic.

O

Remark 5.21. As for the homological case, a morphism between the filtered complexes WC* (X )®
WC*(Y) and WC*(X x Y) can be obtained without using the geometric filtration. In-
deed, in the previous proof, consider the canonical filtration in place of the geometric fil-
tration : one can show in the same way that there is an isomorphism of Ho€& between
(F™)8,C*(X) @ (F)8,C*(Y) and (F™)8,C*(X xY'). Since the dual canonical filtration and
the cohomological canonical filtration are filtered quasi-isomorphic (see the proof of theorem
4.3), we deduce an isomorphism of Ho € between Fs, C*(X)® F2,,C*(Y) and F2, C*(X xY).

can can can
Restricting this isomorphism to projective nonsingular varieties, we extend it to all real alge-
braic varieties in the same way as in proof of theorem 5.15 (see also remark 5.18) to obtain an

isomorphism between WC*(X) @ WC*(Y') and WC*(X x Y).

5.4 Cup product

Let X be a real algebraic variety.

We show below that the cup product on the cohomology with compact supports H*(X)
of the set of real points of X is filtered with respect to the cohomological weight filtration.
Precisely, we define a cup product on the cochain level in the derived category Ho €, on the co-
homological geometric filtration, using the filtered quasi-isomorphisms w and v defined above
in the proof of 5.19, that induces a cup product on the cohomological weight spectral sequence
of X and the usual cup product on the cohomology of X.

Let A denote the diagonal map

X — XxX

A x — (x,7)
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Now consider the cohomological geometric filtration G*C*(X) of X as an object of the derived
category Ho@. We can apply the composition A*o(u")~!ow to the tensor product G*C*(X)®
G*C*(X) (uV is an isomorphism of Ho €, see the proof of proposition 5.19) :

(u¥)~"tow

Ao (u) L ow: GCHX) @G C*(X) L GO (X x X) 25 G°C*(X)
We denote this morphism of Ho € by —.

Proposition 5.22.
The cup product
— G C"(X)® G C*(X) — G°C*(X)

in Ho € induces a morphism of spectral sequences

— P EX) @z BYN(X) — EXN(X)
p+s=a, qg+t=b

and the usual cup product

H*(X) ®z, H(X) — H*(X)
YR e — = [A%p xY)]

In particular, the cup product in cohomology is a filtered map with respect to the cohomological
weight filtration.

Proof. The first fact follows from the cohomological version of lemma 5.13, and the cup product
in cohomology is the composition of A* and the Kiinneth isomorphism in cohomology, which
is itself induced by (u")~! o w (see proposition 5.19 and corollary 5.20). O

5.5 Cap product

In this section, we define a cap product on the homological and cohomological geometric fil-
trations considered in the corresponding derived categories HoC and Ho €. This cap product
on chain level induces a cap product on the homological and cohomological weight spectral
sequences, showing that the cap product on homology and cohomology is a filtered morphism
with respect to the homological and cohomological weight filtrations.

First, we give a filtered chain complex structure to the tensor product of a filtered cochain
complex and a filtered chain complex :

Definition 5.23. Let (K*, F') and (M., J) be respectively a filtered cochain complex of € and
a filtered chain complex of C. We define ((K* ® M,)., FF ® J) to be the chain complex given
by
(K® M), := P K' oz, M,
Jj—i=n

equipped with the differential

z®y) =dr®y+z®dy
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and the bounded increasing filtration given by

(FINEeM),= @ Y FK oM,

j—i=nb—a=p

Considering the semialgebraic chain and cochain complexes Cy(X) and C*(X) of X, im-
plicitely equipped with the homological and cohomological geometric filtrations (for sake of
readability), as objects of the respective derived categories HoC and Ho €, we are going to
define a cap product C*(X) ® Ci(X) — C(X) in HoC.

First, let w denote the morphism C*(X) = (Cy(X))Y — (C*(X) ® Ci«(X))" of Ho€ given
by
(Crm (X)) — (C™(X) ® Ci(X))"
Y — [p®@cr— (¥~ p)(c)]
The cap product that we define below will be obtained from the dual of this filtered mor-
phism, in order to have a formula

P ~c)= (¥ —9)(c) (5.4)

on the chain level. We make precise what we mean by the dual filtered chain complex of a
filtered cochain complex :

Definition 5.24. If F*K™ is a filtered cochain complex of €, we define its dual filtered chain
complex F,/K) of C by

FIYK;/ = {n € K;/ | =0 on Fp+1Kq}.

Notice that, as in remark 4.1, we have the natural isomorphism of spectral sequences given
v
by B (FVKY) = <Eﬂ’b(FK)) .

Consider the dual filtered chain complexes (Cy(X))"Y and (C*(X) @ Cy(X))VY of (Ci(X))V
and (C*(X) ® C.(X))Y respectively. We have natural filtered morphisms v : Cy(X) —
(CL(X))YY and p: C*(X) ® Cu(X) — (C*(X) ® Cu(X))Y, inducing the natural morphims
EL, — <Eg,b) o on the spectral sequence level, which are isomorphisms from r > 1 (the terms
of the spectral sequence are finite-dimensional from level one).

Therefore, the morphims v and p are quasi-isomorphisms of C and we can define the mor-
phism

vlowou: C*X)®Cu(X) = Cu(X)

of HoC given by

C™X)@ Ol (X) — Cpm(X)

p&R®c —— gpmc:zy_l

ow'opu(p®ec)

We denote it also by —~ and we have :
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Proposition 5.25. The cap product on the geometric filtrations of X induces a cap product

EPI(X) @ Egy(X) — By ¢ g(X)

on the weight spectral sequences of X, and the usual cap product
H*(X) ® Ho(X) — H.(X)

on the homology and cohomology of X. In particular, the latter is a filtered morphism with
respect to the weight filtrations (the filtration on the tensor product of cohomology and homology
is defined in a way similar to definition 5.23).

Proof. Similarly to lemma 5.13, the term of level r and indices a, b of the spectral sequence
induced by C*(X) ® Ci(X) is given by @ E(X) ® Eg(X). Then the cap product

s—p=a, t—q=b
on chains and cochains induces morphisms

~: P EMX) @ EL(X) — EPN(X).
s—p=a, t—q=b
Now, notice that the formula 5.4 on the chain level induce that, if ¢ € EPY(X), ¢ € Ef(X)

and 1) € EF~*97"(X) (then ¢ — ¢ € EPY(X), which is isomorphic to (E;,"q(X))v), we have
P(p ~r 0) = (¥ =, 9)(0).

Since the cup product on the cohomological weight spectral sequence induces the cup prod-
uct on cohomology and because the cap product on cohomology and homology

H™(X) % Hi(X) = Hy_p(X)
is characterized by the formula

Pl ~c) = (P —p)(0)
(if p € H™(X) and ¢ € Hi(X), ¢ — cis the unique element of H;_,,(X) verifying this formula
for all ¢» € H'=™(X)), the cap product on the cohomological and homological weight spectral
sequences induce the cap product on cohomology and homology. ]

Remark 5.26. 1. If ¢ € EPY(X) and ¢ € E[,(X) then ¢ ~/ ¢ is the unique element of
By, 1 o(X) verifying
Y(p ~0) =¥ =1 ¢)(c)

for all ¢ € EX~577(X).
2. Another possible definition for the cap product on the chain level is the following one

(see [16]). Consider the morphism
C*(X) @ (Cu(X) @ C(X)) — Ci(X)

p®(a@®b) — pa)- b’
Then we can also define the cap product on the cohomological and homological geometric
filtrations of X (regarded as objects of Ho€ and HoC) by setting
o~ = hlp@u (D).

Notice that this definition would be valid with integer coefficients as well.

h:
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5.6 Weight filtrations and Poincaré duality map

Let X be a compact real algebraic variety of dimension n.
The semialgebraic chain [X] is pure, that is [X] € G_,,C,,(X). For r > 1, it induces homol-
ogy classes in the weight spectral sequence terms E”, 5, (X).

By taking the cap product with [X], we obtain a map D on the cohomological weight
spectral sequence of X, given by :

EXYX) — ET

—n—s,2n—t

@ — o~ [X]

D= ~[X] : (X)

(5.5)

Recall that the non-zero terms of the weight spectral sequences lie in the triangle given by
the inequalities t > —2s, s < 0 and ¢t < —s 4 n, the terms induced by the pure chains lying in
the line t = —2s. Then if, for any r > 1, we consider the cap product of non-pure classes by
[X], it is identically zero. Indeed, for ¢ > —2s, the term E” (X), where lie the values of

D is zero since 2n — t < —2(—n — s).

n—s,2n—t

The map D on the cohomological weight spectral sequence induces, on the £F* and F
level, the classical Poincaré duality map on the cohomology of X (that we denote again by D)
given by

HMX) — H, x(X)
e — e~ [X]

([X] corresponds here to the fundamental homology class of X) and :

Proposition 5.27. For all p and k in Z, the image of WPH*(X) by Poincaré duality map is
in W_p_nHp_k(X) :
DOWPHM(X)) C W_p_nH, 1 (X).

In particular, for allk € Z, D(H*(X)) C Wi_nH,_(X) and, ifp > —k, DOV?PH*(X)) = 0.
In other words, all the non-pure cohomology classes are in the kernel of Poincaré duality map
and the pure cohomology classes are the only classes which may be sent to a nonzero pure ho-
mology class by Poincaré duality map. Therefore, if its weight filtrations are not pure, a real
algebraic variety does not satisfy Poincaré duality.

Remark 5.28. On the other hand, there exist varieties having pure weight filtration but not
satisfying Poincaré duality.

For example, let X denote the pinched torus, obtained from a torus 7" by identifying a
circle which generates it as a revolution surface to a point zy. To compute its weight spectral
sequence, we consider the cubical hyperresolution of X given by the blowing-up at xg :

St — T
{ {
e — X
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We obtain a pure weight filtration given by the term E? = E>

_ | 21X
E*=| Zy-[a] ©
Zy 0 0

(if H1(T) = Zsa] ® Zs[b] with b = S! the exceptional divisor of the blowing-up). However, the

variety X does not satisfy Poincaré duality since [a]v ~[X]=0.
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