
HAL Id: hal-00955113
https://hal.science/hal-00955113

Submitted on 3 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tiled Polymorphic Temporal Media
Paul Hudak, David Janin

To cite this version:
Paul Hudak, David Janin. Tiled Polymorphic Temporal Media. 2nd ACM SIGPLAN international
workshop on Functional art, music, modeling & design (FARM), Sep 2014, Gothenburg, Sweden.
pp.49-60, �10.1145/2633638.2633649�. �hal-00955113�

https://hal.science/hal-00955113
https://hal.archives-ouvertes.fr

LaBRI, CNRS UMR 5800
Laboratoire Bordelais de Recherche en Informatique

Rapport de recherche RR-1479-14

Tiled Polymorphic Temporal Media

– A Functional Pearl –

Mars 2014

Paul Hudak David Janin
Department of Computer Science LaBRI

Yale University IPB, Université de Bordeaux
New Haven, CT 06520-8285 F-33405 Talence

paul.hudak@@yale.edu david.janin@@labri.fr

Contents

1 Introduction 4

2 Tiled PTM 5

3 Specification and Implementation of Tiled PTM 6

3.1 The Tile Data Type . 7
3.2 Tiled Product . 7
3.3 Silent Tile . 8
3.4 Observational Equivalence . 8
3.5 Inverse, Reset and Co-Reset . 10
3.6 Inverse Semigroup . 11
3.7 Tiled product vs sequential or parallel product 12

4 Further Embeddings in Euterpea 13

4.1 Primitive Tiles . 13
4.2 Negative Durations . 13
4.3 Tempo . 14
4.4 Function Lift . 14
4.5 From Tiles to Music . 14
4.6 An Example . 15

5 Other Useful Tile Functions 16

5.1 Resync and Co-Resync . 16
5.2 Tile Resynchronization Examples 18
5.3 Stretch and Co-Stretch . 18
5.4 Tile Stretching Examples . 20
5.5 Another example . 21

6 Infinite Tiles 22

6.1 Renderable infinite PTM . 22
6.2 Renderable infinite tiled PTM . 23
6.3 Recursive definition of tiled PTMs 23
6.4 Equations of the form x = t % re x 24
6.5 Equations of the form x = f x . 26

7 Related Work 29

8 Conclusions 29

2

Tiled Polymorphic Temporal Media

– A Functional Pearl –

Paul Hudak∗ David Janin †

Department of Computer Science LaBRI
Yale University IPB, Université de Bordeaux

New Haven, CT 06520-8285 F-33405 Talence
paul.hudak@yale.edu david.janin@labri.fr

March 3, 2014

Abstract

Tiled Polymorphic Temporal Media (Tiled PTM) is an algebraic ap-
proach to specifying the composition of multimedia values having an inher-
ent temporal quality—for example sound clips, musical scores, computer
animations, and video clips. Mathematically, one can think of a tiled
PTM as a tiling in the one dimension of time. A tiled PTM value has two
synchronization marks that specify, via an effective notion of tiled prod-

uct, how the tiled PTMs are positioned in time relative to one another,
possibly with overlaps.

Together with a pseudo inverse operation, and the related reset and co-
reset projection operators, the tiled product is shown to encompass both
sequential and parallel products over temporal media. Up to observational
equivalence, the resulting algebra of tiled PTM is shown to be an inverse
monoid: the pseudo inverse being a semigroup inverse. These and other
algebraic properties are explored in detail.

In addition, recursively-defined infinite tiles are considered. Ultimately,
in order for a tiled PTM to be renderable, we must know its beginning,
and how to compute its evolving value over time. Though undecidable in
the general case, we define decidable special cases that still permit infinite
tilings.

Finally, we describe an elegant specification, implementation, and proof
of key properties in Haskell, whose lazy evaluation is crucial for assuring
the soundness of recursive tiles. Illustrative examples, within the Euterpea
framework for musical temporal media, are provided throughout.

∗Partially supported by NSF grant CCF-1302327.
†Partially supported by CNRS fellowship grant at INS2I and the project INEDIT, ANR-

12-CORD-009.

3

1 Introduction

It is natural to want to combine multimedia objects such as sound clips, video
clips, musical phrases, and animation sequences, into larger objects. Such a
composition process is also desirable for certain classes of discrete automata,
such as robot motions. We say that such objects, or values, are temporal, since
to render them properly requires “playing” them over some interval of time.
Temporal values might even be infinite, resulting in an infinitely long rendering.

We would like a composition method that is sound, effective, hierarchical,
and efficient. One general approach to this problem is captured in polymorphic
temporal media (PTM) as described in [16, 14]. In its most simplified form,
PTM can be summarized as:

1. A notion of a neutral value, i.e. a zero in the algebra (e.g. transparency
or silence).

2. A set of primitive temporal values (e.g. video clips or musical notes).

3. A binary sequential composition operator (:+:) such that p1:+:p2 represents
the temporal rendering of p1 followed by that of p2.

4. A binary parallel composition operator (:=:) such that p1 :=: p2 represents
the temporal renderings of p1 and p2 in parallel.

PTM has a rich set of algebraic properties, such as the associativity of (:+:) and
(:=:), and the commutativity of (:=:). Indeed, it can be shown that there there
exists a set of axioms that form a sound and complete axiomatization of PTM
[16, 14].

Despite its simplicity, elegance, and practicality (it is the basis, for example,
of the computer music libraries Haskore [17] and Euterpea [15]), there are some
shortcomings. First of all, from a semantical point of view, the interpretation of
p1 :=: p2 is not obvious—one might choose an interpretation in which p1 and p2

begin at the same time, or in which they are centered in time, or even aligned
at their end-points. And one must decide whether the interpretation ends when
the shortest of p1 and p2 ends, or the longest, and so on.

Secondly, from the point of view of convenience and aesthetics, it is often
desirable to separate the “logical” start and end points of a temporal value from
the “actual” start and end points. For example, a video clip might have a brief
“fade in” scene that precedes the point in time that we logically think of as its
starting point, or in the case of music there might be a “pick up” (also called an
anacrusis) that precedes the measure that is the logical beginning of a phrase.
This lack of expressiveness leads to a lack of modularity, in that changes to
the “prefix” or “suffix” of a PTM value can affect the definitions of other PTM
values.

We describe in this paper a new approach called tiled PTM that elegantly
solves both of these problems. A tiled PTM naturally separates logical from
actual start and stop times, and there is a single, unambigous composition
operator that avoids the problems with (:=:). In addition, tiled PTMs enjoy a

4

rich algebraic structure, and lead to an elegant and efficient implementation in
Haskell.

In the remainder of this paper we first formally define the notion of tiled
PTM, along with its salient algebraic properties. We give an encoding of tiled
PTM in terms of PTM, leading to an elegant Haskell implementation. We then
extend tiled PTM with several useful operators, leading to a characterization of
tiled PTM as an inverse semigroup. We also discuss the possibility of defining
recursive, infinite tiles, along with its computational implications. We close with
a comparison to related work.

Although the work described is polymorphic with respect to the media type,
for pedagoical purposes many of our running examples are from the domain of
music. And although these applications have a multimedia flavor, our methods
are also applicable to other domains such a discrete automation. Our focus is on
the methods that we use, and the formal algebraic properties, which we believe
are more broadly applicable. All of the formal properties in the paper can be
proved straightforwardly via equational reasoning in Haskell, although we omit
the details.

2 Tiled PTM

Simply said, a tiled PTM is a temporal media value enriched with two synchro-
nization marks pre and post, modeled as positive rationals representing their
distances from the beginning of the temporal media. Such a tiled PTM is de-
picted in Figure 1. In a given tiled PTM, the pre synchronization mark specifies

m

pre

post

Figure 1: A tiled PTM

how a tiled PTM that comes before the given tile will be positioned. The post
synchronization mark specifies how a tiled PTM that comes after the given tile
will be positioned. The synchronization of tiled PTM is handled via a sim-
ple product called tiled product, which does two things: (1) it synchronizes the
underlying PTMs in time, and (2) it merges (or fuses) the two PTM values
positioned in such a way.

Remark. Of course, such a merge operation on temporal media values is depen-
dent on the concrete temporal media type that is used. In the case of graphics,
it might blend the two images; in the case of sound, it might mix the two signals;
and so on.

More formally, synchronization is done by inserting some “neutral” values so
that, when aligned, the post1 synchronization mark on the first temporal media
value matches the pre2 synchronization mark on the second temporal media

5

value, which are then merged. The resulting pre synchronization mark of the
product is set to the pre1 synchronization mark of the first tile, and the resulting
post synchronization mark of the product is set to the post2 synchronization
mark of the second tile. Such a tiled product is depicted in Figure 2.

m1

pre
1

post
1

m2

pre
2

post
2

pre

m1
m2

post

silence
silence

Figure 2: A tiled product instance

A key point about the tiled product is that overlaps may occur. The tiled
product is thus neither a sequential product nor a parallel product—it is both.
This dual feature of the tiled product is especially clear when observing, as done
below, that the sequential and parallel products in PTM can be encoded, when
lifted to tiled PTM, by means of the single tiled product.

Remark. By allowing pre and post synchronization marks to occur in arbitrary
order, that is, also allowing post to occur before pre as we propose in the specifi-
cation below, the tiled PTM type induces a rich algebraic structure, namely an
inverse semigroup. Developed in abstract algebra in the middle of the 20th cen-
tury, the theory of inverse semigroups [25] has been scarcely used in Computer
Science. A notable exception is providing adequate notions for fine grain anal-
ysis of lambda calculus reduction [10, 1]. The notion of tiled PTM developed
here provides evidence that this theory can be further applied even in concrete
applications such as temporal media programming.

3 Specification and Implementation of Tiled PTM

We provide an illustrative implementation of tiled PTM that is based on Eu-
terpea [15], a computer music library written in Haskell, where Music values
play the role of temporal media. But it should be clear that other temporal
media types could be used as well.

In music, silence is a temporal media value that acts as a neutral element
when merged with other values, as mentioned in the previous section. Silence
exists at all points in time falling before or after a Music value. In Euterpea,
silence is represented as a rest: the value rest d is silence of duration d. When
aiming at tiling other media types, one should seek for such a neutral value with
respect to the fusion operation. For example, in the case of video it might be

6

a notion of transparency, and in discrete automation, a notion of a idling (the
absence of a control event), and so on.

3.1 The Tile Data Type

The type Tile of tiled PTM is defined as follows.

data Tile a = Tile {preT :: Dur ,
postT :: Dur ,
musT :: Music a}

with type Dur = Rational.1

A function durT computes the logical duration of a tile; that is, the time
delay between the synchronization mark pre and the synchronization mark post.

durT :: Tile a → Dur
durT (Tile pr po m) = po − pr

A tile t is a positive tile when durT t is positive, it is a negative tile when
durT t is negative, and it is a context tile when it is neither positive nor negative,
that is, when durT t is zero.

Remark. Thanks to lazy evaluation, the temporal media value underlying a tiled
PTM can be infinite. This feature is potentially preserved in tiled PTM, and
means that temporal media values in tiles are implicitly completed by “silence”
so that their duration is as least as large as both the distances defining the pre
and post synchronization points.

3.2 Tiled Product

This is the key binary operator that combines two tiles by means of a synchro-
nization followed by a fusion. For tiled PTM, it is defined as follows:

(%) :: Tile a → Tile a → Tile a
Tile pr1 po1 m1 % Tile pr2 po2 m2 =

let d = po1 − pr2

in Tile (max pr1 (pr1 − d)) (max po2 (po2 + d))
(if d > 0 then m1 :=: mDelay d m2

else mDelay (−d) m1 :=: m2)

where mDelay is defined by:

mDelay d m = case signum d of

1 → rest d :+: m
0 → m
− 1 → m :+: rest (−d)

1We use Haskell’s Rational numeric type to avoid the imprecision of, for example, floating

point numbers, but mathematically the reals would be the most logical choice.

7

In other words, if d is positive, mDelay d m inserts d time units of silence in
front of m, and if d is negative it inserts d units of silence after m. In the
product of musical tiles, delays realize the synchronization of the music values,
and the parallel composition realizes the fusion of the music values.

An example of a tiled product is already depicted in Figure 2, which illus-
trates the case d > 0 in the product definition. Another example is depicted in
Figure 3, which illustrates the case d<0 in the product definition. In this second

m1

pre
1

post
1

m2

pre
2

post
2

pre

m1
m2

post

silence silence

Figure 3: Another tiled product instance

example, we observe that the media value that will occur first in time comes
from the second component of the product. Of course, such a phenomenon may
occur in any configuration of tiles in a product, regardless of whether they are
positive or negative.

3.3 Silent Tile

As mentioned earlier, rest is the neutral, or silent PTM value in Euterpea. We
can lift this concept to tiled PTM by the defining:

r :: Dur → Tile a
r d = if d < 0 then Tile d 0 (rest (−d))

else Tile 0 d (rest d)

Note that a silent tile may have a negative duration. The ramifications of this
are discussed in a later section.

3.4 Observational Equivalence

In PTM, a notion of observational equivalance is defined, which is partially
dependent on the underlying media type. We capture this equivalence here as
the function equiv. Simply said, two PTMs are observationally equivalent when
they have the same duration and are rendered the same way. The details about
equiv can be found in [16, 14], but suffice it to say that it captures axioms such

8

as the following:

(m1 :+: m2) :+: m3 ‘equiv‘ m1 :+: (m2 :+: m3)

(m1 :=: m2) :=: m3 ‘equiv‘ m1 :=: (m2 :=: m3)

m1 :=: m2 ‘equiv‘ m2 :=: m1

rest 0 :+: m ‘equiv‘ m

m :+: rest 0 ‘equiv‘ m

and, if dur m1 = dur m3, then

(m1 :+: m2) :=: (m3 :+: m4)

‘equiv‘ (m1 :=: m3) :+: (m2 :=: m4),

In addition to these axioms, we assume that the following equivalence also
holds:

m ‘equiv‘ (m :=: m)

for every PTM value m. Though a reasonable assumption, this requires ab-
stracting from the intensity increase that, depending on the implementation,
may arise when playing a melody twice at the same time.

We can lift this notion of observational equivalence to finite tiled PTM by
defining:

Tile pr1 po1 m1 ≡ Tile pr2 po2 m2 =
pr1 − po1 == pr2 − po2 ∧
let d = dur m1 − dur m2

p = pr1 − pr2

n1 = if d < 0 then mDelay d m1 else m1

n2 = if d > 0 then mDelay (−d) m2 else m2

in if p > 0 then n1 ‘equiv‘ mDelay p n2

else mDelay (−p) n1 ‘equiv‘ n2

In other words, two finite tiled PTM are observationally equivalent when the
distance between their synchronization marks are equal and their temporal me-
dia values are observationally equivalent when aligned on these synchronization
marks, regardless of the duration of the silence that may occur before or after
the temporal media.

With this notion of observational equivalence of tiled PTM, several proper-
ties become immediate. First of all, the tiled product (%) is associative; that
is, for all tiled PTM values t1, t2, and t3:

t1 % (t2 % t3) ≡ (t1 % t2) % t3

In addition, the ‘silent’ tiled PTM (r 0) of duration 0 is a neutral element for
the tiled product; that is, for all tiled PTM values t:

t % r 0 ≡ t

r 0 % t ≡ t

9

Therefore, up to observational equivalence, tiled PTMs equipped with tiled
product form a monoid.

We also note that idempotent tiles coincide with context tiles. That is, for
every tile t, we have:

t % t ≡ t if and only if durT t = 0,

Moreover, these idempotent tiles commute. That is, for all tiled PTM t1 and
t2, if both durT t1 = 0 and durT t2 = 0 then we have

t1 % t2 ≡ t2 % t1

3.5 Inverse, Reset and Co-Reset

Three functions that perform basic transformations on tile synchronization
marks are the inverse (inv), the reset (re) and the co-reset (co) functions. They
are defined as follows:

re, co, inv :: Tile a → Tile a
re (Tile pre post m) = Tile pre pre m
co (Tile pre post m) = Tile post post m
inv (Tile pre post m) = Tile post pre m

These functions are depicted in Figure 4. The functions re and co, restricted to

(t)

m

pre

post (inv t)

m

pre

post

(re t)

m

pre

post(co t)

m

pre

post

Figure 4: Reset, co-reset and inverse of a tile.

context tiles, are identities. It follows that these functions are projections from
tiles to context tiles, and are idempotent; that is, for every tile t we have:

re (re t) = re t

co (co t) = co t

As a consequence, inv acts as a duality operator since:

re (inv t) = co t

co (inv t) = re t

10

The functions re and co could also be defined in terms of the function inv and
the tiled product (%) since:

re t ≡ t % inv t

co t ≡ inv t % t

In addition, we note that a tile that has been reset, but whose original
duration is known, can be restored to its prior state. The same can be said for
a tile that has been co-reset. More formally:

t = re t % r (durT t)

t = r (durT t) % co t

(Recall that (r d) is the ‘silent’ tile of duration d.)

3.6 Inverse Semigroup

In inverse semigroup theory (see [25]), the semigroup inverse of an element x is
an element y such that:

x · y · x = x, and

y · x · y = y

In tiled PTM, the inv function does just that. Specifically, the following obser-
vational equivalences are satisfied:

t % inv t % t ≡ t

inv t % t % inv y ≡ inv t

for all tiles t. The tiles depicted in Figure 4 are positioned in such a way that
the above equations can easily be checked.

In general, an element may have several semigroup inverses. A semigroup
with at least one inverse per element is called a regular semigroup. A semigroup
where every element has exactly one inverse is called an inverse semigroup.
As is well known in inverse semigroup theory [25], these semigroups exactly
correspond to regular semigroups with commuting idempotence.

We have already seen in Section 3.4 that idempotent tiled PTMs commute.
It follows that, up to observational equivalence, tiled PTMs form an inverse
semigroup, and moreover form an inverse monoid since there is also a neutral
element.

As in any inverse semigroup, the inverse operation is an anti-morphism.
That is, for every tile t1 and t2 we have:

inv (t1 % t2) ≡ inv t2 % inv t1

However, this does not mean that the underlying PTMs are reversed as clearly
shown by the product and inverse definitions.

11

3.7 Tiled product vs sequential or parallel product

We have announced above that the tiled product shares characteristics of both
the sequential and the parallel product. This clearly appears in the figures above
depicting the tiled product behavior. Such a statement can even be stated more
precisely.

For the sequential product case, let mToT be the function defined by

mToT :: Music a → Tile a
mToT m = Tile 0 (dur m) m

that simply embeds any finite temporal media into a tiled temporal media with
the same duration.

Then, for all finite PTMs m1 and m2, we have:

mToT (m1 :+: m2) ≡ mToT m1 % mToT m2

Since the function mToT is clearly one-to-one up to behavioral equivalence, this
property states that the monoid of finite PTMs equipped with the sequential
product can be embedded into the monoid of tiled PTMs equipped with tiled
product.

For the parallel product case, let iMToT be the function defined by

iMToT :: Music a → Tile a
iMToT m = Tile 0 0 m

that simply maps any finite or infinite temporal media into an idempotent tiled
temporal media.

Then, for all finite or infinite PTM m1 and m2, we have

iMToT (m1 :=: m2) ≡ iMToT m1 % iMToT m2

This property states that there is a monoid homomorphism from the monoid
of finite and infinite PTMs equipped with the parallel product and the monoid
of tiled PTMs equipped with tiled product. It is worth noting that, up to
observational equivalence and contrary to the mapping mToT , the mapping
iMTOT is not a one-to-one mapping.

Indeed, the two PTMs of the form m and m:+:rest d for some strictly positive
duration d are properly not observationally equivalent, while their images by
the functions iMToT are. Still, such a fact is already well known in inverse
semigroup theory and is related with the notion of R-equivalence in semigroup
theory.2

More precisely, we observe that when m1 and m2 are both finite, then we
have:

iMToT m1 == re (mToT m1) and iMToT m2 == re (mToT m2)

2Two elements x and y are R equivalent in a semigroup S when there exists z1, z2 ∈ S

such that x = yz1 and y = xz2.

12

It follows that, as is well known in (inverse) semigroup theory, the PTMs m1

and m2 have equivalent images under the function iMToT if and only if their
images under mToT are R-equivalent in the inverse monoid of tiled PTM.

Remark. Additionally, let us mention that the above embeddings of finite and in-
finite PTM into tiled PTM have been studied and generalized quite in depth [12]
in the setting of finite and infinite word language theory.

4 Further Embeddings in Euterpea

Since our tiled PTM is implemented in Euterpea, we can experiment with “mu-
sical tiles.”

4.1 Primitive Tiles

Every note function in Euterpea, such as c, d, e, cs, ef , etc. (corresponding
to the notes C, D, E, C♯ and E♭, respectively), can be turned into a tile. For
example, instead of writing

c 4 en :: Music Pitch

in Euterpea, which represents the note C in the fourth octave with duration of
an eighth note, we can write

t c 4 en :: Tile Pitch

using the following definition of the function t:

t :: (Octave → Dur → Music Pitch)
→ Octave → Dur → Tile Pitch

t n o d = if d < 0 then Tile d 0 (n o (−d))
else Tile 0 d (n o d)

4.2 Negative Durations

The definition of musical tiles with negative duration can be explained by the
following equation that holds for every rational d:

t n o (−d) ≡ inv (t n o d)

In other words, negative durations allow one to invert the synchronization
marks, but the music flow remains in the same direction.

The case of silent tiles is even a bit deeper since, for every rational d, d1 and
d2:

r (−d) ≡ inv (r d)

r d1 % r d2 ≡ r (d1 + d2)

In other words, the silent tiles equipped with the tiled product form a group
isomorphic to the group (Q, +, 0) of rationals Q with sum.

13

4.3 Tempo

To change the tempo of a tile, we need to change the synchronization time and
duration, as well as the tempo of the underlying Music value. This is performed
by the function tempoT defined by:

tempoT :: Dur → Tile a → Tile a
tempoT r (Tile pr po m) =

assert (r > 0) (Tile (pr /r) (po/r) (tempo r m))

Here we use Haskell’s Control.Exception.assert function to establish that the
tempo scaling value r is positive.

4.4 Function Lift

Any Euterpea function on Music values can be lifted to a function on Tiles:

liftT :: (Music a → Music b) → (Tile a → Tile b)
liftT f (Tile pr po m) = Tile pr po (f m)

Remark. liftT (tempo r) is not quite the same as tempoT r !

4.5 From Tiles to Music

Of course, our goal in defining a tiled musical PTM is to eventually play it.
Playing a tiled PTM amounts to converting the tile into a Music value, which can
then be played in Euterpea. This transformation is captured by the following
function.

tToM :: Tile a → Music a
tToM (Tile pr po m) = takeM (po − pr) (dropM pr m)

where Euterpea’s takeM and dropM on Music values are like take and drop on
lists, except that they take duration arguments instead of list lengths.

Then, playing a tile is simply defined by the following composition.

playT = play ◦ tToM

where play is Euterpea’s function for playing a Music value.

Remark. In this definition, playing a tile amounts to extracting the part of the
music value that goes from its pre synchronization mark to its post synchroniza-
tion mark. This means in particular that negative tiles produce no sound at all.
We note also that playing a tile will terminate even if, as it will be the case in
Section 6, the underlying music value is infinite.

The parts of the underlying music value that lie outside of the pre and post
synchronization marks can still be played by a suitable composition, via a tiled

14

product, with another tile, say simply rests. This allows one, for example, to
define background music that is played until the lead music is over.

The function tToM further allows us to relate the PTM semantics with the
tiled PTM semantics as captured by the following observational equivalences.
For all tiled PTM t1 and t2, we have

t1 ≡ t2

if, and only if,

tToM (c1 % t1 % c2) ‘equiv‘ tToM (c1 % t2 % c2)

for every other tiled PTM c1 and c2.

Remark. In the above statement, one can even restrict to silent tiles of the form
c1 = r d1 and c2 = r d2 with durations d1 > 0 and d2 > 0.

4.6 An Example

We provide here a toy musical example, based on the jazz standard There is no
Greater Love, by Isham Jones. Even if the reader is not familiar with the tune,
certain advantages of the tiled PTM approach will be apparent, in particular
the value of distinguishing between logical and actual start and stop times.

Indeed, in a tiled music piece, the actual start and stop times are modeled by
the start and stop times of the music itself. The synchronization marks pre and
post model instead the logical start and stop times of the music. Distinguishing
these two notions in tiled PTM allows for a more abstract description of PTM
structures, be they musical PTM or of any other kind.

In our example, the melody of the first eight bars of There is no Greater
Love can be described in three logical phrases: the first four bars (bar1 ′4), the
next two bars (bar5 ′6), and last two bars (bar7 ′8). But each of these phrases
has a “pick up,” or anacrusis, i.e. a short (in each case, three note) melody that
precedes the start of the phrase. This distinction is captured below by aligning
the pick-ups (pu1, pu2, and pu3) with the logical phrases, using a co-reset:

pu1 = t a 5 en % t bf 5 en % t c 6 en
bar1 ′4 = co pu1

% t bf 5 qn % t a 5 qn % t g 5 qn % t d 5 qn
% t f 5 qn % t ff 5 qn % t ef 5 qn % t bf 4 qn
% t d 5 (wn + qn) % r dhn

pu2 = t d 5 qn % t a 5 qn % t af 5 qn
bar5 ′6 = co pu2

% t g 5 (wn + qn) % r dhn

pu3 = t g 5 qn % t d 6 qn % t df 6 qn
bar7 ′8 = co pu3

% t c 6 wn % r wn

15

These three phrases can then be combined to define the first eight bars of the
tune:

tingl = bar1 ′4 % bar5 ′6 % bar7 ′8

A key point of this approach is that changes to the rhythm of the pick-ups can
be made without changing any other code. For example, pu2 can be changed to:

pu2 = t d 5 en % t a 5 en % t af 5 en

which reduces the duration of the pick-up to three eight notes instead of three
quarter notes. But because the pick-up is “outside” of the logical duration of
bar5 ′6 , no other changes are necessary. From a programming language perspec-
tive, this is simply an example of modularity in the design.

Of course, once a composition is complete, in order to render the result, one
must ensure that any desired pick-ups at the very beginning (or suffixes at the
very end) are heard. In the case above, this is easily accomplished as follows:

main = playT (r dhn % tingl)

where dhn is a dotted half note (i.e. three quarter notes, the duration of pu1).
This concludes our modeling example. A more detailed discussion of the

relevance of tiled modeling for music is out of the scope of the present paper,
but is adressed more fully in [19] and [23].

5 Other Useful Tile Functions

We provide here other useful functions that, either modifying synchronization
marks while preserving the underlying music (like resync and co-resync), or
modifying the underlying music while preserving the synchronization marks
(like stretch and co-stretch), allow for experimenting with the structure of time
in a tiled PTM.

5.1 Resync and Co-Resync

We consider here functions that move the synchronization marks with an invari-
ant underlying temporal media. These functions come in a pair, the function
resync preserving the relative position of the pre mark, the function coresync
preserving the relative position of the post mark.

The functions resync and coresynch are defined as follows:

resync :: Dur → Tile a → Tile a
resync s (Tile pre post m) =

let npost = post + s
in if npost < 0

then Tile (pre − npost) 0 (mDelay (−npost) m)

16

else Tile pre npost m

coresync :: Dur → Tile a → Tile a
coresync s (Tile pre post m) =

let npre = pre + s
in if npre < 0

then Tile 0 (post − npre) (mDelay (−npre) m)
else Tile npre post m

These functions generalize the functions re and co in the sense that:

re (Tile pr po m) = resync (pr − po) (Tile pr po m)

co (Tile pr po m) = coresync (po − pr) (Tile pr po m)

Their behaviors is depicted Figure 5 with s > 0.

pre

post

(t) m

(coresync (−s) t) m

pre − s

post

(coresync s t) m

pre + s

post

(resync (−s) t) m

pre

post − s

(resync s t) m

pre

post + s

Figure 5: Resynchronization and co-resynchronization

Remark. The functions resync and coresync define group actions (in the alge-
braic sense) over the group (Q, +, 0) of rationals Q with sum. That is, for every
tile t and every rational a and b, we have:

resync 0 t = t

resync a (resync b t) = resync (a + b) t

coresync 0 t = t

coresync a (coresync b t) = coresync (a + b) t

As a consequence, we observe that, for every tile t and every duration offset s,
we have:

resync s t ≡ t % r s

coresync s t ≡ r s % t

17

5.2 Tile Resynchronization Examples

An example of resynchronization is tile insertion of two kinds. First, a parallel
fork of a tile t2 in a tile t1 at a position d from its pre synchronization mark.

insertT :: Dur → Tile a → Tile a → Tile a
insertT d t1 t2 = coresync (−d) (re t2 % coresync d t1)

Similarly, we can define tile co-insertion that is quite similar, but amounts to a
parallel join instead.

coinsertT :: Dur → Tile a → Tile a → Tile a
coinsertT d t1 t2 = resync (−d) (resync d t1 % co t2)

The behavior of these functions is depicted Figure 6. The function insertT

d

m1

(t1)
m2

(t2)
m1

m2

(insertT d t1 t2)

d

m1

(t1)
m2

(t2)
m1
m2

(coinsertT (−d) t1 t2)

Figure 6: Fork and join tile insertions

behaves as a parallel fork in the sense that the inserted tile is synchronized
on its pre synchronization mark. In contrast, the function coinsertT behaves
as a parallel join in the sense that the inserted tile is synchronized on its post
synchronization mark.

These functions illustrate especially well how context tiles, obtained by re-
sets or co-resets of arbitrary tiles, can be used as adequately synchronized back-
ground media (say music) values.

Remark. Though we present here a direct encoding, we observe that these two
functions can be derived from the tiled product % and the reset and co-reset
functions in the sense that the following observational equivalences hold. For
every tiled PTM t1 and t2, and for every duration offset d, we have:

insertT d t1 t2 ≡ r d % re t2 % r (−d) % t1

coinsertT d t1 t2 ≡ t1 % r d % co t2 % r (−d)

5.3 Stretch and Co-Stretch

We consider now functions that stretch the underlying temporal media value
while preserving the distance between the synchronization marks. These func-

18

tions also come in a pair, the function stretch preserving the relative position
of the pre mark on the tiled PTM, and the function costretch preserving the
relative position of the post mark.

The functions stretch and costretch are defined by:

stretch :: Dur → Tile a → Tile a
stretch r (Tile pre post m) =

assert (r > 0)
(Tile (pre ∗ r) (pre ∗ (r − 1) + post)

(tempo (1/r) m))

costretch :: Dur → Tile a → Tile a
costretch r (Tile pre post m) =

assert (r > 0)
(Tile (post ∗ (r − 1) + pre) (post ∗ r)

(tempo (1/r) m))

Remark. As with resync and coresync, the functions stretch and costretch define
group actions (in the algebraic sense), but now over the group (Q+, ∗, 1) of
positive rationals Q+ with product. That is, for every tile t and every positive
rational a and b, we have:

stretch 1 t = t

stretch a (stretch b t) = stretch (a ∗ b) t

costretch 1 t = t

costretch a (costretch b t) = costretch (a ∗ b) t

The behavior of the stretch and costretch functions is depicted Figure 7 with
a ratio r > 1 and denoting by m ∗ r the Music value (tempo (1/r) m) and by
m/r the Music value (tempo r m).

pre

post

(t) m

(costretch (1/r) t) m/r

post/r

(costretch r t) m ∗ r

post ∗ r

(stretch (1/r) t) m/r

pre/r

(stretch r t) m ∗ r

pre ∗ r

Figure 7: Stretch and co-stretch

19

5.4 Tile Stretching Examples

Since the stretch and costretch functions act on the tempo of the underlying
PTM values while preserving the interval between synchronization marks, the
example we propose comes from rhythm modeling. More precisely, the examples
show how to generate basic waltz or salsa rhythms from a binary march rhythm.

march = t c 4 qn % r qn % t g 4 qn % r qn
waltz = costretch (2/3) march
tumb = costretch (5/4) march

These three tiles are depicted in Figure 8 below. We observe that, in an implicit
3/4 metric, the waltz tile plays a note on the 2nd and 3rd beats; the two notes
from the march tile have been “pushed” by 1/3 towards the post synchronization
mark. In contrast, in an implicit 4/4 metrics, the tumb tile plays a note on the

(march)
c g

(waltz)
c g

(tumb)
c g

Figure 8: Rhythmical cells generated by stretching

4th beat of the preceding bar and on the 2nd after beat; the two notes from the
march tile have been “pulled” by 1/4 before the pre synchronization mark. The
resulting tile is a typical salsa bass riff: the tumbao.

The rhythms induced by these transformations can be heard when repeatedly
playing these tiles in parallel with a basic percussion rhythm. For example:

bass = liftT (instrument Percussion)
(Tile 0 wn (perc AcousticBassDrum wn))

hiHat = liftT (instrument Percussion)
(Tile 0 (1/8) (perc ClosedHiHat (1/8)))

bassL = bass %\ re bassL

hiHatL = repeatT 4 hiHat %\ re hiHatL

percL = re bassL % hiHatL

testW = playT (re bassL % tempoT (3/4) (re hiHatL)
% repeatT 4 waltz)

testS = playT (re bassL % re hiHatL % repeatT 4 tumb)

Remark. In these examples, we make use of a special operator %\ that allows

20

defining infinite tiles as bassL and hiHatL above. These music tiles are used as
unbounded background music. However, thanks to the definition of the player
function playT , the execution of the resulting tiles is still finite. Various issues
raised by the definition of infinite tiles are described in Section 6 below.

5.5 Another example

The canon song frère Jacques is defined first by describing its four basic verses.

fj1 = t c 4 en % t d 4 en % t e 4 en % t c 4 en
fj2 = t e 4 en % t f 4 en % t g 4 qn
fj3 = t g 4 sn % t a 4 sn % t g 4 sn % t f 4 sn

% t e 4 en % t c 4 en
fj4 = t c 4 en % t g 3 en % t c 4 qn

As a first example, playing the first verse together with the second verse in
parallel can be done as follows.

test1 = playT (re fj1 % fj2)

It is encoded by the “parallel fork” of the verse fj1 with the verse fj2. We observe
that the same example can also be written as follows.

test2 = playT (fj1 % co fj2)

It is now encoded by the “join” of the verse fj2 with the verse fj1.
In these examples “fork” and “join” coincide over basic verses because the

verses have the same length. Of course, this may not be true in general.
In frère Jacques, each verse is sung twice, so for convenience we define the

function repeatT as follows.

repeatT :: Integer → Tile a → Tile a
repeatT n t = if n 6 0 then (r 0)

else t % repeatT (n − 1) t

Then, the complete canon can be prepared as follows:

fj = repeatT 2 fj1

% re (repeatT 2 fj2 % repeatT 2 fj3 % repeatT 2 fj4)

Worth noting is that the following example only plays twice the first verse:

test3 = playT fj

Indeed, all other verses occur after the post synchronization mark of the tile fj.
Still, playing the entire melody can be done as follows.

21

test4 = playT (fj % r 6)

This just amounts to adding a rest of the duration of the six missing basic verses.
Last, the canon itself, that is, the basic melody that is launched in parallel

over itself every two basic verses, can be performed as follows.

test5 = playT (repeatT 4 fj % r 6)

Repeating the melody four times at least allows for hearing at least once all four
distinct verses played in parallel. The rest added at the end of this last example
allows for hearing the fade out inherent to the ending of every repetition.

6 Infinite Tiles

As briefly sketched in the exemples above, even though no rendering of a tiled
PTM will actually take infinite time, there is still an interest in defining infinite
tiled PTM, just as we might define infinite lists in other applications. In music,
for instance, this means having the ability to handle unbounded background
music that can be played in parallel with a finite tile. Our purpose in this
section is to define these infinite tiles in the abstract and to see how the lazy
evaluation mechanism of Haskell can be used to encode them.

6.1 Renderable infinite PTM

In Section 4.5, we refer to the rendering of a PTM (or tiled PTM) value m as
the incremental elaboration of m’s value over time, in such a way that the result
can be presented to the user. That is, we want the result to be played (in the
case of sound or music), displayed (in the case of video or animation), executed
(in the case of discrete automation), and so on, depending on the underlying
media type.

For something like m1:+:m2 in conventional PTM, one can start rendering m1

before knowing anything about m2, since all of m1 precedes m2. This works even
for infinite (in time) PTM values and allows for defining infinite PTM values by
means of lazy evaluation. For example, the recursively defined, infinite PTM
value:

m = c 4 en :+: m

is well defined and renderable.
Even for something like m1 :=: m2, one can start rendering the result if one

knows the first “renderable value” in m1 and the first renderable value in m2.
So even if one or both of m1 and m2 is/are infinite, one can start rendering the
result. Lazy evaluation in Haskell allows for defining renderable infinite PTMs
in a simple and elegant way.

22

6.2 Renderable infinite tiled PTM

A renderable infinite tiled PTM is defined as renderable infinite PTM values
equipped with two finite synchronization marks pre and post.

Then, following Section 4.5, observational equivalence is extended to infinite
tiles as follows. We say that two finite or infinite tiles t1 and t2 are observation-
ally equivalent when the two finite PTMs defined by

tToM (r d1 % t1 % tToM r d2) and tToM (r d1 % t2 % tToM r d2)

are equivalent for all positive durations d1 and d2.
Despite such a simple definition, in the case of tiled PTMs, the direct recur-

sive definition of a tiled PTM is not as simply done as for PTMs. For example,
a recursive tiled PTM definition that is analogous to the one given above for
ordinary PTM can be written:

x = t c 4 en % x

However, such an equation has no solution since the value of post will necessarily
be infinite.

A subtler way to lift the above equation to tiled PTM would consists instead
in defining the recursion on the reset of the variable tile as follows:

x = t c 4 en % re x

Such an equation clearly has a unique solution up to observational equivalence.
However, its evaluation in Haskell does not terminate since it loops on the com-
putation of the synchronization marks. This is because, in contrast to PTMs,
in a tiled product such as t1 % t2, the tile t2 may have an “anacrusis” that starts
before all of t1 is rendered. This might even occur before the pre synchroniza-
tion mark for t1. But in order to determine that, we must know all of t2, and
therefore, if t2 is infinite, this result is undecidable.

In other words, while infinite tiled PTMs can be defined via the “tiling” of
infinite PTMs, we still lack of an effective and direct way to define infinite tiled
PTMS from basic finite tiled PTMs. In the remainder of this section we analyze
this problem in more detail and provide some effective solutions.

6.3 Recursive definition of tiled PTMs

In general we wish to provide a semantics and an implementation to tiled equa-
tions of the form:

x = f x

for some function f :: Tile a → Tile a.
In general, such an equation may have no solution, or a unique solution, or

even infinitely many solutions, and, clearly, such a problem is undecidable.
Indeed, the pre and post synchronization marks of the left occurrence of x

may depend on the pre and post synchronization marks of the right occurrence

23

of x, hence creating an endless evaluation loop as illustrated by the equation
x = t c 4 en % re x above. So, it is likely that, as a Haskell program, the
evaluation of the equation x = f x will loop.

In the T-calculus approach [23] (see also [12] for an analysis of finite and in-
finite tiles in a language theoretical setting), the problem of solving an equation
of the form x = f x is handled by means of two successive phases.

We first provide sufficient conditions for the existence of a solution x with:

preT (x) = s and postT (x) = s + d.

for some computable s > 0 and d>0. That is, we provide sufficient conditions for
the computability of the synchronization marks of a strictly positive solution.

Then, a canonical solution (i.e. the least fixed point, if it exists) with such
synchronization marks is defined in the usual way, by an iteration that computes
the limit:

x = limfn(r d)

The T-calculus is restricted enough in order to guarantee that such an iteration
process is finite and converges. Every definable function f is in fact monotonic
with respect to some adequate ordering over finite and infinite tiles: namely,
the point-wise ordering over tiles obtained from defining the silent media value
as the least possible media value, that is, the value ⊥ in the domain-theoretic
sense.

In the more general setting provided by our implementation in Haskell, such
a solution is no longer available. The problem we aim at solving is thus split
into two sub-problems.

The first one amounts to identifying a large class of functions over tiles such
that, up to equivalence, the above equation has a unique abstract solution.

The second amounts to providing an Haskell encoding of this equation so
that, in the adequate cases, its lazy evaluation computes a concrete renderable
tiled PTM that represents this abstract solution.

We can do this as follows, first in the simplest case of equations solved by
iteration of a single product, then in the more general case of fixpoint of so-called
very nice functions.

6.4 Equations of the form x = t % re x

The simplest recursive problems we wish to solve are equations of the form:

x = t % re x

with a finite tile t. As already mentioned, such an equation has a unique solution
in the case t is a positive tile. This means that we aim at defining a function
iterateT that takes any finite positive tile t as input and produces a renderable
infinite tile iterateT t such that the equivalence:

iterateT t ≡ t % re (iterateT t)

24

is satisfied.
The production of a renderable infinite tile iterateT t is in fact solvable by

first defining the following alternate version of (%), called the left restricted
product, or simply restricted product (%\):

(%\) :: Tile a → Tile a → Tile a
Tile pr1 po1 m1 %\ ∼(Tile pr2 po2 m2) =

Tile pr1 po1

(m1 :=: mDelay po1 (dropM pr2 m2))

Remark. In the restricted product (%\), the reset of the second argument is
implicitly taken, and all the music that occurs before the synchronization marks
is dropped.

It follows that, thanks to the “lazy pattern” (i.e. the use of tilde on the
second argument), the computation of the pre and post synchronization marks of
a product of the form t1 %\ t2 only depends on t1 and is done without evaluating
the pre and post synchronization marks of the second component t2.

This implies in particular that an equation of the form

x = y %\ re x

with a positive tile y is now solvable over tiled PTMs by the lazy evaluation
mechanisms in Haskell much in the same way an equation of the form x = y :+:x
is solvable over PTMs.

How such a product can be used to solve arbitrary equations of the form
x = y % re x is described in the remainder of this section.

We show that the restricted product may replace the tiled product when
used together with the shiftT function defined by:

shiftT :: Dur → Tile a → Tile a
shiftT s t = resync s (coresync s t)

Indeed, we can show that for all finite or infinite renderable tiles t1 and t2, for
all duration offsets s, if s > preT t2 and durT (t2) == 0, that is, the tile t2 is
idempotent, then we have:

shiftT s (t1 % t2) = shiftT s t1 %\ shiftT s t2

In other words, when the above conditions are satisfied, the tiled product (%)
can be replaced by the restricted product (%\).

Moreover, we observe that the function shiftT satisfies the following addi-
tional properties. For every tile t, t1 and t2 and duration offset s, we have:

shiftT s (t1 % t2) = shiftT s t1 % shiftT s t2

shiftT s (re t) = re (shiftT s t)

shiftT s (co t) = co (shiftT s t)

25

In other words, the function shiftT s is functorial with respect to the tile prod-
uct, reset and co-reset. Note that this also implies that it commutes with respect
to sync and resync.

The desired function iterateT can then be defined by:

iterateT :: Tile a → Tile a
iterateT y =

let s = preT y
x = shiftT s (shiftT (−s) y %\ shiftT (−s) (re x))

in x

The properties of the restricted product and the shift function given above
ensure that if t is a positive finite tile then the tiled PTM iterateT t is renderable
and, moreover, it is a solution of the semantic equation x ≡ t % re x.

Such a solution can be tested with our music examples as follows:

recT1 = iterateT tumb
testS1 = playT (re percL % recT1 % r 4)

with tumb and percL defined in Section 5.4.

Remark. The fact the function shiftT commutes with tiled product, reset, co-
reset and even resync and co-resync, allows for generalizing such an approach to
arbitrary equations of the form x = g (re x) provided that functions g are only
defined from basic finite tiled PTMs combined with these functions. However,
this would require a preprocessing treatment of tiled PTM programs in order
to rewrite such equations into the desired form. In the next section, we provide
instead a fixpoint operator that allows for solving even broader class of fixpoint
equations.

6.5 Equations of the form x = f x

Out goal is to provide a simple way to solve equations of the more general form
x = f x for some larger class of functions f on tiles. That is, we look for a
fixpoint operator

fixT :: (Tile a → Tile a) → Tile a

such that, for all functions f :: Tile a → Tile a in the adequate class, if fixT f
terminates, then we have:

fixT f ≡ f (fixT f)

As already mentioned, the first problem we have to solve is that the evalu-
ation of a recursive definition of the form:

x = f x

is very likely to loop when computing the synchronization marks of the expected
solution. One way to cope with such a loop is to restrict it to a class of functions

26

for which these synchronization marks can be computed before running into such
a loop.

Generalizing the approach proposed in [23] leads us to the following defini-
tion. A function

f :: Tile a → Tile a

is nice when it admits a fixpoint t such that

durT t > 0

preT t = preT (r 0)

postT t = postT (r 0)

Remark. Restricting to strictly positive solutions will disallow a fixpoint equa-

tion such as x = re x for which every idempotent tiled PTM is a solution.
Then the computation of such a fixpoint can be attempted as follows. We

first define the function forceSync that forces the synchronization marks of a
tile.

forceSync :: Dur → Dur → Tile a → Tile a
forceSync npr npo∼(Tile pr po m) =

if npr < npo
then (inv (forceSync npo npr (Tile po pr m)))
else Tile npr npo

(if npr < pr then dropM (pr − npr) m
else rest (npr − pr) :+: m)

Then, assuming the function f is nice, computing a fixpoint amounts to solving
the equation:

x = f (forceSync (preT (f (r 0))) (postT (f (r 0))) x)

provided the solution x that is computed that way is strictly positive with syn-
chronization marks that are compatible with such an approximation in the sense
that:

preT (f (r 0)) − preT x > 0 and durT (f (r 0)) == durT x.

The first condition ensures that only silent values are dropped when applying
the function forceSync. Together with the second condition that ensures the
durations are equal, this guarantees that we have

x ≡ forceSync (preT (f (r 0))) (postT (f (r 0))) x

therefore x is indeed a solution of the equation x ≡ f x.
A fixpoint operator that performs such a computation is then simply defined

as follows.

27

fixT :: (Tile a → Tile a) → Tile a
fixT f = let pr = preT (f (r 0))

po = postT (f (r 0))
y = f (forceSync pr po y)

in assert (durT y > 0
∧ pr − preT y > 0
∧ po − pr == durT y)

y

The arguments developed above ensure that, for every nice function f over tiles,
if fixT f terminates, raising no assertion violation, then we indeed have:

fixT f ≡ f (fixT f)

Remark. In the definition of forceSync, the use of the lazy pattern ensures an

“evaluation upon need” of the pre and post synchronization marks of the tile
argument. This prevents forceSync in the definition of fixT from entering an
endless loop while computing the pre and post synchronization marks of y in the
recursive definition y = f (forceSync pr po y) in fixT . In other words, whenever
it terminates, the tile fixT f is a renderable tile.

The solution proposed here can be tested with our music examples as follows:

tileReProd :: Tile a → Tile a → Tile a
tileReProd t1 t2 = t1 % re t2

recT2 = fixT (tileReProd tumb)

testS2 = playT (re percL % recT2 % r 4)

This illustrates the fact that the solution proposed here generalizes the solution
proposed in the previous section.

Remark. We refer to the class of nice functions that admit a fixpoint that
can be computed as above as very nice. Of course, being very nice is clearly
undecidable. Nevertheless, all simple examples we can think of that have a
fixpoint with strictly positive duration are very nice. More precisely, we make
the following conjectures:

Let Simple be the class of unary functions over tiles that can be built from
constant functions x 7→ t and the function reset x 7→ re x with all basic op-
erators and functions defined in the previous sections, that is, the (point wise
extension of) the tiled product, reset, co-reset and inverse operators, as well as
all stretching and resynchronization functions with constant rational parame-
ters. Then every function f ∈ Simple such that preT (f(r0)) < posT (f(r0)) is
very nice.

28

7 Related Work

There has been considerable work on embedding semantic descriptions in mul-
timedia (XML, UML, the Semantic Web, etc.), but not on formalizing the se-
mantics of concrete media. There are also many authoring tools and scripting
languages for designing multimedia applications. The one closest to a program-
ming language is probably SMIL [5]. There are also dozens of computer music
languages that have been proposed over the years, including [27, 26, 8, 29, 7, 2,
9, 13, 6, 30]. None of these languages, however, have a notion of tiling.

The idea of tiling temporal media rendering by means of pre and post syn-
chronization marks first appeared in the abstract several decades ago in the
language LOCO [11]. We have borrowed from this proposal the name of the
synchronization marks. However, no systematic study of the induced algebra
seems to have been done since then.

The notion of tiled temporal media itself has slowly been formalized in a
serie of papers, starting from the modeling of rhythmic features in music repre-
sentation [19], through an algebraic approach to audio or music pattern synchro-
nization [3], an experimental audio implementation [24], and then a toy abstract
calculus proposal: the T-calculus [23]. However, in such proposals, no real pro-
grammatic features such as control flow are available: the T-calculus essentially
has the expressive power of finite sequential synchronous transducers [28].

Together with the notion of polymorphic temporal media [16, 14], the notion
of tiled temporal media has reached maturity as described in this paper. Besides
the conceptual elegance of PTM that can simply be lifted into tiled PTM, the
concrete implementation of tiled PTM in Haskell/Euterpea [15] that is proposed
in this paper allows for experimenting and applying the underlying concepts on
a much broader scale.

8 Conclusions

In this paper, we have shown that embedding PTMs into tiled PTMs, which
essentially amounts to internalizing synchronization features into PTMs, can
be done in a simple and elegant way. The underlying algebraic semantics in-
herits many properties from the algebraic theory of inverse semigroups [25]. In
particular, the sequential and parallel products that are needed in the temporal
media are then merged into the single tiled product.

As illustrated by the anacrusis example, such an embedding allows for defin-
ing complex combinations of PTMs with a more abstract and modular point of
view over the concrete synchronization mechanisms that such complex combi-
nations may involve.

The capacity that is offered to define and handle renderable infinite tiled
PTMs by means of the fixT operator provides an effective way for defining
unbounded temporal media. The semantics of rendering infinite tiles by auto-
matically extracting finite portions avoids the somewhat fragile necessity that
might consist, in some other approaches, of explicitly killing infinite tiles when

29

no longer needed.
For future work, we observe that our tiled product places no constraints on its

arguments. For example, two tiles that are incoherent, say with “harmonically
incompatible” musical content, can still be combined. Though this makes no
difference at a programatic level, such a lack of compatibility constraints could
be a weakness in application with creative end-users. But it is known that the
model of tiles can be extended with compatibility constraints, either in a linear
time setting [21] or in a branching time setting [20]. This suggests that tiled
PTM could be annotated or tagged by abstract description of their PTM values.
For instance, Music values can be annotated by harmonic tags such as chord
symbols. Then, compatibility constrains could be encoded in the tiled product
of such enriched tiled PTM via tag-matching constraints.

Extending accordingly our implementation in Haskell would even allow us
to handle higher-order tags with compatibility contraints solved by unification.
This could lead to the development of some notion of higher-order tiled PTM
with tiled product acting not only as a synchronization product but, also as
a communication product. The availability of an underlying robust language
theory [18, 22, 20, 4] could also allow handling higher-order tiled PTMs whose
semantics would be define by means of (manageable) sets of concrete tiled PTMs

References

[1] S. Abramsky. A structural approach to reversible computation. Theoretical
Comp. Science, 347(3):441–464, 2005.

[2] D.P. Anderson and R. Kuivila. Formula: A programming language for
expressive computer music. In Denis Baggi, editor, Computer Generated
Music. IEEE Computer Society Press, 1992.

[3] F. Berthaut, D. Janin, and B. Martin. Advanced synchronization of audio
or symbolic musical patterns: an algebraic approach. International Journal
of Semantic Computing, 6(4):409–427, 2012.

[4] A. Blumensath and D. Janin. A syntactic congruence for languages of
birooted trees. Technical Report RR-1478-14, LaBRI, Université de Bor-
deaux, 2014.

[5] Dick C.A. Bulterman and Lloyd Rutledge. SMIL 3.0 – Interactive
Multimedia for the Web, Mobile Devices and Daisy Talking Books.
X.media.publishing, 2008.

[6] P. Cointe and X. Rodet. Formes: an object and time oriented system
for music composition and synthesis. In Proceedings of the 1984 ACM
Symposium on Lisp and Functional Programmming, pages 85–95. ACM,
1984.

30

[7] D. Collinge. Moxie: A languge for computer music performance. In Proc.
Int’l Computer Music Conference, pages 217–220. Computer Music Asso-
ciation, 1984.

[8] R.B. Dannenberg. The Canon score language. Computer Music Journal,
13(1):47–56, 1989.

[9] R.B. Dannenberg, C.L. Fraley, and P. Velikonja. A functional language for
sound synthesis with behavioral abstraction and lazy evaluation. In Denis
Baggi, editor, Computer Generated Music. IEEE Computer Society Press,
1992.

[10] V. Danos and L. Regnier. Reversible, irreversible and optimal lambda-
machines. Theoretical Comp. Science, 227(1-2):79–97, 1999.

[11] P. Desain and H. Honing. LOCO: a composition microworld in Logo. Com-
puter Music Journal, 12(3):30–42, 1988.

[12] A. Dicky and D. Janin. Embedding finite and infinite words into overlap-
ping tiles. Technical Report RR-1475-13, LaBRI, Université de Bordeaux,
2013.

[13] G. Haus and A. Sametti. Scoresynth: A system for the synthesis of music
scores based on petri nets and a music algebra. In Denis Baggi, editor,
Computer Generated Music. IEEE Computer Society Press, 1992.

[14] P. Hudak. A sound and complete axiomatization of polymorphic temporal
media. Technical Report RR-1259, Department of Computer Science, Yale
University, 2008.

[15] P. Hudak. The Haskell School of Music : From signals to Symphonies. Yale
University, Department of Computer Science, 2013.

[16] Paul Hudak. An algebraic theory of polymorphic temporal media. In
Proceedings of PADL’04: 6th International Workshop on Practical Aspects
of Declarative Languages, pages 1–15. Springer Verlag LNCS 3057, June
2004.

[17] Paul Hudak, Tom Makucevich, Syam Gadde, and Bo Whong. Haskore
music notation – an algebra of music. Journal of Functional Programming,
6(3):465–483, May 1996.

[18] D. Janin. Quasi-recognizable vs MSO definable languages of one-
dimensional overlapping tiles. In Mathematical Found. of Comp. Science
(MFCS), volume 7464 of LNCS, pages 516–528, Bratislava, Slovakia, 2012.

[19] D. Janin. Vers une modélisation combinatoire des structures rythmiques
simples de la musique. Revue Francophone d’Informatique Musicale
(RFIM), 2, 2012.

31

[20] D. Janin. Algebras, automata and logic for languages of labeled birooted
trees. In Int. Col. on Aut., Lang. and Programming (ICALP), volume 7966
of LNCS, pages 318–329, Riga, Latvia, 2013. Springer.

[21] D. Janin. On languages of one-dimensional overlapping tiles. In Int. Conf.
on Current Thrends in Theo. and Prac. of Comp. Science (SOFSEM),
volume 7741 of LNCS, pages 244–256, Spindlerûv Mlýn, Czech Republic,
2013. Springer.

[22] D. Janin. Overlaping tile automata. In 8th International Computer Sci-
ence Symposium in Russia (CSR), volume 7913 of LNCS, pages 431–443,
Ekaterinburg, Russia, 2013. Springer.

[23] D. Janin, F. Berthaut, M. DeSainte-Catherine, Y. Orlarey, and S. Salvati.
The T-calculus : towards a structured programming of (musical) time and
space. In ACM Workshop on Functional Art, Music, Modeling and Design
(FARM), Boston, USA, 2013. ACM Press.

[24] D. Janin, F. Berthaut, and M. DeSainteCatherine. Multi-scale design of
interactive music systems : the libTuiles experiment. In 10th Conference
on Sound and Music Computing (SMC), 2013.

[25] M. V. Lawson. Inverse Semigroups : The theory of partial symmetries.
World Scientific, 1998.

[26] O. Orlarey, D. Fober, S. Letz, and M. Bilton. Lambda calculus and music
calculi. In Proceedings of International Computer Music Conference. Int’l
Computer Music Association, 1994.

[27] Yann Orlarey, Dominique Fober, and Stéphane Letz. Faust: an effi-
cient functional approach to DSP programming. In New Computationals
Paradigms for Computer Music. Editions Delatour France, 2009.

[28] J. Sakarovitch. Elements of Automata Theory. Cambridge University Press,
2009.

[29] B. Schottstaedt. Pla: A composer’s idea of a language. Computer Music
Journal, 7(1):11–20, 1983.

[30] G. Wang, R. Fiebrink, and P. Cook. Combining analysis and synthesis
in the ChucK programming language. In Proceedings of the International
Computer Music Conference, 2007.

32

