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F. Chapoton
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Abstract

This article considers some affine algebraic varieties attached to finite

trees and closely related to cluster algebras. Their definition involves a

canonical coloring of vertices of trees into three colors. These varieties

are proved to be smooth and to admit sometimes free actions of algebraic

tori. Some results are obtained on their number of points over finite fields

and on their cohomology.
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Introduction

The theory of cluster algebras, introduced by S. Fomin and A. Zelevinsky around
2000 [FZ02, FZ03], was motivated initially by the study of total positivity in
Lie groups and canonical bases in quantum groups. It has since then developed
rapidly in many directions, among which one can cite (for example) triangulated
categories [BMR+06], triangulations of surfaces [FST08] and Poisson geometry
[GSV03, GSV10].

Because cluster algebras are commutative algebras endowed with more struc-
ture, it is natural to study them from the point of view of algebraic geometry.
The geometric study of cluster algebras has nevertheless been mostly concen-
trated on aspects related to Poisson geometry or symplectic geometry. The
appearance of the known cluster structure on coordinate rings of grassmannians
in a physical context [ABC+12] has raised recently the interest in the computa-
tion of integrals on the varieties associated with cluster algebras. The natural
context for this is of course the cohomology ring.

The present article aims to study some varieties closely related to the spec-
trum of cluster algebras, and their cohomology rings. General cluster algebras
are defined using a quiver or a skew-symmetric matrix. For our purposes, one
needs as a starting point a presentation by generators and relations of the cluster
algebras. This is available for cluster algebras with an acyclic quiver [BFZ05]
and in a few other cases (see for example [Mul13]). The choice has been made
here to restrict to a still smaller class, namely cluster algebras with a quiver
which is a tree, in the hope that the answers may be simpler in that case, and
also because all finite Dynkin diagrams are trees.

Cluster algebras come with a subalgebra generated by so-called frozen (or
coefficient) variables, which are invertible elements. This corresponds to a mor-
phism from the spectrum of the cluster algebra to an algebraic torus. At the
start of this work, our intention was to study both the fibers of this map and
the spectrum in full. Later it turned out that it is possible (for cluster algebras
associated with trees) to define more general varieties.

Cohomology and number of points on similar varieties have been considered
in some previous works [GSV05, Mul12, Cha11]. Some results of these articles
will be recalled when necessary.

The article is organized as follows.
In the first section, one recalls a canonical tri-coloring of the vertices of trees,

originally defined in [CB04, Cou05, Zit91] and not so well-known. This coloring
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is closely connected to matchings and independent sets in the trees. It will
be used in an intensive way in the rest of the article, as it enters in the very
definition of the varieties under study. One introduces the notion of red-green
components of a tree, and defines an important integer invariant, the dimension
of a tree.

The second section is devoted to the definition of the varieties. This is rather
involved, and the definition itself only appears after a long preparation. One
first considers a very general family of varieties, depending one many invertible
parameters. By considering these varieties as objects in a groupoid, one can
reduce this family to a much smaller one, with less parameters. One proves
that every variety in the big family is isomorphic to a variety in the small
family. One also introduces an explicit condition of genericity. Then everything
is ready for the definition, which involves making an independent choice for
every red-green component of the tree.

The third section is devoted to some geometric properties of these varieties.
One proves by induction that all these varieties are smooth, by finding explicit
coverings by products of varieties of the same type and algebraic tori. One next
shows that some of these varieties are endowed with a free torus action, which
turns them into principal torus bundles.

The fourth section turns to the study of the number of points over finite
fields. One shows by induction that the number of points is a polynomial in
the cardinality q of the finite field. This is done by finding an appropriate
decomposition into pieces isomorphic to products of varieties of the same type
and algebraic tori. One then gives formulas for some classical trees, including
Dynkin diagrams. One also obtains (Prop. 4.16) a general decomposition as
a disjoint union of products of tori and affine spaces (indexed by independent
sets), which allows to compute the Euler characteristic.

The three next sections (5,6 and 7) deal with some computations regarding
the cohomology rings. Section 5 is a very short reminder about known results
about differential forms on varieties associated with cluster algebras, and about
the general theory of (mixed) Hodge structure on the cohomology ring of alge-
braic varieties. Section 6 deals with some examples of trees, namely linear trees
(the case of which forms a useful building stone) and some trees of shape H with
no parameters. Section 7 is about varieties where parameters have been given
a generic value. Our results about cohomology are rather partial, restricted to
special cases, but there does not seem to be any simple general answer. The
prominent missing case is in type A with an odd number of vertices, where one
proposes a conjecture.

The appendix A presents a simple algorithm for the computation of the
canonical coloring of trees. This algorithm is not needed in the rest of the
article.

Let us finish this introduction by a few side remarks.
Another interesting question which has not been considered here is the study

of the real points of the same varieties, and their cohomology. This is probably
also rather complicated, but certainly worth looking at.

There seems to be some kind of vague analogy between the counting-points
polynomials considered here and the characteristic polynomials of bipartite Cox-
eter elements (cf [McM02] and [Ste08]), namely the general look and feel of these
two families of polynomials are similar in various points (including some rela-
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tions to Pisot and Salem numbers).
At the end of section 1.2 of [CDS80], one can find some speculations about

the idea of “quadratic spectra” for graphs, that would be an analog of the usual
spectrum but related to quadratic equations instead of linear equations. Maybe
one can argue that the cluster varieties considered here and their counting-point
polynomials are a good candidate for such a quadratic spectrum (even if they
involve polynomial relations of arbitrary degree).

This work has been supported by the ANR program CARMA (ANR-12-
BS01-0017-02).

1 Combinatorics of trees

In this article, a tree is a finite connected and simply-connected graph. A leaf

is a vertex with at most one neighbor. A forest is a disjoint union of trees.

1.1 Canonical red-orange-green coloring of trees

In this section, one recalls a canonical coloring of the vertices of all trees, using
the colors red, orange and green. This coloring has first appeared in an article
by J. Zito [Zit91] and has been studied independently later by S. Coulomb and
M. Bauer in [Cou05, CB04].

5 6 71 2

3

4

Figure 1: Canonical coloring: {1,2} are orange, {4,6} green and {3,5,7} red

Let us consider a tree T . A vertex cover of T is a subset S of the vertices
of T such that every edge of T has at least one end in S. A minimum vertex

cover of T is a vertex cover of minimal cardinality among all vertex covers of
T .

Let us use this notion to color the vertices of T according to the following
rule: a vertex v is

• green if v is present in all minimum vertex covers,

• orange if v is present in some but not all minimum vertex covers,

• red if v is present in no minimum vertex covers.

The colors have been chosen to match this definition with traffic lights colors.
For the tree of figure 1, the minimum vertex covers are made of the two

green vertices {4, 6} and one of the two orange vertices {1, 2}.

Remark 1.1 By taking the complementary subset, there is a bijection between
minimum vertex covers, and sets of non-adjacent vertices of maximal cardinality
(maximum independent sets, also called maximum stable sets).
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This coloring is also related to maximum matchings of T . A matching of T
is a set D of edges of T , such that every vertex belongs to at most one element
of D. The elements of D will be called dominoes. A maximum matching is
a matching of maximal cardinality among all matchings of T .

Then, a vertex v is

• green if v is present in all maximum matchings, in several different domi-
noes.

• orange if v is present in all maximum matchings, always in the same
domino.

• red if v is absent in some maximum matchings.

The proof of the equivalence of these two descriptions of the coloring can be
found in [CB04].

For the tree of figure 1, the maximum matchings are made of three dominoes,
one of them being the edge between the two orange vertices {1, 2}.

Proposition 1.2 The orange vertices are matched in pairs by the unique domino
in which they are contained in any maximum matching. In maximum matchings,
green vertices are matched with red vertices in several different ways.

Proof. This is proved in [CB04].

This coloring has a third equivalent description, also given in [CB04].
It is the unique coloring of the vertices such that

• the induced forest on orange vertices has a perfect matching,

• every green vertex has at least two red neighbors,

• every red vertex has only green neighbors.

It follows from this description that the coloring is stable by any of the
following operations:

• taking the induced forest on orange vertices,

• taking the induced forest on the union of red and green vertices,

• removing a matched pair of orange vertices,

• removing a green vertex.

An algorithm to compute the coloring is presented in appendix A.

1.2 Further properties of the coloring

Let us first state a corollary of the third description of the coloring.

Lemma 1.3 A tree admits a perfect matching if and only if all vertices are
orange.
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Figure 2: A typical example

Proof. If all vertices are orange, there is a perfect matching by the first condi-
tion in the third description. If the tree has a perfect matching, letting all the
vertices be orange gives a coloring which satisfies all the required conditions,
and therefore is the correct one by uniqueness.

Note that the maximum matching is unique for these trees. We will call
them orange trees. They are also known as perfect trees or matched trees
[Sim91].

Let T be a tree. The red-green components of T are the connected
components of the graph defined by keeping only the edges of T with one red
end and one green end. Every red-green component is a tree, which is moreover
bipartite with only red leaves. In these trees, every green vertex has valency at
least two.

This kind of trees has been considered under the name of bc-trees in the
study of blocks and cut-vertices of graphs, see for example [Har69, Chap. 4].

Even trees with no orange vertex can have several such components, because
there can be edges with two green ends, and these edges are not kept in the
red-green components.

By the third description of the coloring, the coloring is stable by taking a
red-green component.

A tree which is equal to its only red-green component will be called a red-

green tree.

Lemma 1.4 The set of maximum matchings of a tree is in bijection with the
product of the sets of maximum matchings of its red-green components.

Proof. The dominoes are fixed on the set of orange vertices, and cannot connect
two distinct red-green components by proposition 1.2. Therefore, one can choose
a maximum matching independently on every red-green component.

Let us denote by r(T ), o(T ) and g(T ) the number of red, orange and green
vertices in the coloring of T . Let us call dimension of a tree T the quantity

dim(T ) = r(T )− g(T ). (1)

Remark 1.5 The dimension of T is also the dimension of the kernel of the
adjacency matrix of T , see [CB04].
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Lemma 1.6 The dimension of T is the number of vertices not covered by domi-
noes in any maximum matching.

Proof. By the precise description of maximum matchings given in proposition
1.2, the number of dominoes in a maximum matching is g(T ) + o(T )/2. The
number of covered vertices is therefore 2g(T ) + o(T ). The statement follows.

Lemma 1.7 The dimension of T is the sum of the dimensions of the red-green
components of T . Every red-green component has dimension at least 1.

Proof. The formula (1) for the dimension does not depend on orange vertices,
and is clearly additive on red-green components.

Let T be a red-green tree. The Euler characteristic is given by

χ(T ) = 1 = r(T ) + g(T )− e(T ),

where e(T ) is the number of edges of T . On the other hand,

e(T ) ≥ 2g(T ),

because every green vertex has at least two red neighbors.

Lemma 1.8 Let T be a red-green tree. Let F be the forest obtained by removing
one red vertex of T . Then dim(F ) = dim(T )− 1.

Proof. Removing the vertex makes a big difference in the colorings of F and
T . The coloring of F can be obtained from the restriction of the coloring of T
by some avalanche of orange vertices, as follows.

At start, the restriction of the coloring of T gives a bad coloring of F , where
some green vertices v may have exactly one red neighbor. If not, then the
coloring is the canonical one. Otherwise, one can turn every such vertex v and
its unique red neighbor into an orange domino. Doing that may create a certain
number of green vertices with exactly one red neighbor. For each of them,
replace it and its unique red neighbor by a domino. Repeat this as long as there
is some green vertex with exactly one red neighbor. This must stop at some
point, because we work in a finite union of trees. At the end of this avalanche
of orange dominoes, one has obtained a canonical coloring of F .

This construction implies that the dimension of F is the dimension of T
minus 1, because it only involves turning pairs (green vertex, red vertex) into
orange dominoes.

Lemma 1.9 Let T be a red-green tree and u− v be any edge of T . Let F be the
forest induced from T by removing the vertices u and v. Then the dimension of
T is the sum of the dimensions of the trees in F .

Proof. Assume that u is green and v is red. Let S1, . . . , Sk be the trees in F
attached to u and let T1, . . . , Tℓ be the trees in F attached to v.

Then the coloring of every Si is just obtained by restriction, because it still
satisfies the third description of the canonical coloring.

On the other hand, let us denote by T̂j the tree obtained from Tj by adding

back the red vertex v. Then the coloring of every T̂j is just obtained by restric-
tion, because it still satisfies the third description of the canonical coloring.
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By the definition (1) of the dimension, one therefore finds that

dim(T ) =
∑

i

dim(Si) +
∑

j

(dim(T̂j)− 1).

By lemma 1.8, this is equal to the expected result.

Lemma 1.10 Let T be a tree. Let u− v be a red-green edge of T . There exists
a maximum matching of T containing u− v.

Proof. One can assume that T is a red-green component, as maximum match-
ings of different red-green components are independent.

One can take maximum matchings of the connected components of the forest
F induced from T by removing u and v. From lemma 1.9 and lemma 1.6, the
number of vertices not covered on F is the dimension of T . Therefore, adding
the domino u− v gives a maximum matching of T .

Lemma 1.11 Let T be a red-green tree and let v be a leaf of T . There ex-
ists a maximum matching of T where the vertices which are not covered are
leaves. Moreover, unless T is reduced to the single vertex v, one can find such
a matching where v is in a domino.

Proof. By induction on the size of the tree T . This is true for the tree with 1
vertex.

Let us call u the green neighbor of the red leaf v. The induced forest F
defined as T \ {u, v} is made of red-green trees, whose sum of dimensions is the
dimension of T by lemma 1.9. By induction, one can find a maximum matching
of F such that vertices which are not covered are leaves of F . Moreover, one
can choose this matching such that the vertices which are not covered are in
fact leaves of T .

One then obtains by adding the domino u − v a maximum matching of T
with all the required properties.

Lemma 1.12 Let T be a tree and let v be a red vertex of T . There exists a
maximum matching of T not containing v.

Proof. Otherwise, one would get a contradiction with the characterization of
the canonical coloring.

Lemma 1.13 The trees obtained by removing a leaf in an orange tree are ex-
actly the trees of dimension 1. They have exactly one red-green component.

Proof. Let us pick an orange tree T and a leaf v with adjacent vertex w.
Removing the leaf v gives a tree T \ {v} with a matching covering all vertices
but w. This is clearly a maximum matching, hence T \ {v} has dimension 1 by
lemma 1.6.

Conversely, consider a tree T ′ of dimension 1. It has exactly one red-green
component, as every red-green component contributes at least 1 to the dimen-
sion by lemma 1.7. This red-green component has dimension 1. By lemma 1.11,
one can find a maximum matching of T ′ missing only one leaf w. Adding a
vertex v attached to w gives a tree with a perfect matching, i.e. an orange tree.
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We will call the trees of dimension 1 unimodal trees.

Remark 1.14 The classical Dynkin diagrams are simple examples of trees:

• Type An: orange for even n, unimodal for odd n,

• Type Dn: unimodal for odd n,

• Type En: orange for n = 6, 8, unimodal for n = 7.

The type Dn with n even has dimension 2.

2 Affine algebraic varieties

Using the coloring of the previous section, one can define several affine algebraic
varieties attached to a tree T and some auxiliary choices. These varieties are
closely related to cluster algebras.

First, let us consider the system of equations

xix
′
i = 1 + αi

∏

i−j

xj (2)

for all vertices i of T , where the product runs over vertices j adjacent to i. Here
xi and x′

i are called cluster variables, and αi are called coefficient variables.
By a special case of [BFZ05, Corollary 1.17], this system is a presentation of

the cluster algebra associated with the quiver given by a bipartite orientation
of T , with one frozen vertex attached to every vertex of T (in such a way that
all vertices of T remain sources or sinks). In the context of cluster algebras, the
equations (2) are called exchange relations.

We will be interested here in considering the αi as parameters, and letting
them either vary in some well-chosen families or take fixed generic values (and
even a mix of these two possibilities), so that the resulting space is smooth.

2.1 Jumping around a groupoid

Let us denote by XT (α) the algebraic scheme defined by fixing some invertible
values for all coefficient variables αi.

Recall the following lemma ([Cha11, Lemma 2.2]).

Lemma 2.1 Let u−v be an edge of T . Let β be defined by βw = αw/αu if w is
a neighbor of v (in particular βu = 1) and βw = αw otherwise. Then XT (α) and
XT (β) are isomorphic, by the change of variables xv = αuxv and x′

v = x′
v/αu.

One may say that the coefficient αu has jumped away from u over v and
its inverse has got spread over all other neighbors of v. When v has u as only
neighbor, the coefficient αu just disappears from the equations.

From now on, we will only admit the following kinds of jumps:

• a red vertex over one of its green neighbors,

• a green vertex over one of its red neighbors,

• an orange vertex over its matched orange neighbor.
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Let us now define a groupoid GT with objects the schemes XT (α) indexed
by invertible values of the parameters α, and isomorphisms XT (α) ≃ XT (ᾱ) of
the shape {

x̄i 7→ λixi,

x̄′
i 7→ x′

i/λi,
(3)

where λi are some invertible elements. The parameters are then related by

αi = ᾱi

∏

i−j

λj . (4)

Note that every jump corresponds to an isomorphism in the groupoid GT .

Proposition 2.2 For every maximum matching M and given parameters α,
there exists unique parameters β (given by monic Laurent monomials in α)
such that

• the function β is 1 except on the set of red vertices not covered by M .

• XT (α) is isomorphic to XT (β) by a sequence of jumps.

Moreover,

(a) the function β only depends on the values of α on the red vertices of T ,

(b) the values of β on a red-green component are Laurent monomials in the
values of α on the same red-green component.

Proof. Let us first prove the existence of such parameters β. The main idea is
to iterate lemma 2.1 by jumping over dominoes of M .

Let us define an auxiliary oriented graph G as follows: the vertices of G are
the vertices of T , and there is an edge u → w in G if u − v is a domino in M
and v − w is another edge in T .

With this notation, if there are edges starting from u in G, one can use
lemma 2.1 (by jumping over v) to turn the coefficient βu into 1 and replace the
coefficients βw by βw/βu, for all vertices at the end of an arrow u → w.

One can see that the graph G has no oriented cycle, otherwise there would
be a cycle in T made of concatenated dominoes. Moreover, edges in the graph
G can only go from green to green, from orange to orange or green, or start from
red.

Then one can do these jumps starting from the sources in G and then pro-
ceeding along any linear extension of the partial order defined by G.

At the end of this process, all vertices covered by dominoes have coefficient 1.
There only remains coefficients on the red vertices not covered by the maximum
matching M . This proves the existence of the required parameters β.

The fact that the coefficients βj are products of coefficients αi and their
inverses is immediate from the definition of jumping.

Let us now prove uniqueness. Assume there are two such sets of parameters
β and β̄. Let x and x̄ be the coordinates on the isomorphic XT (β) and XT (β̄).

Let us first prove that any isomorphism in the groupoid GT from XT (β)
to XT (β̄) maps x̄j to xj for every green vertex j. This is done by induction
using the auxiliary graph G, starting with the green vertices that do not have
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any outgoing edge in G. For every green vertex, one just has to consider the
equation (2) for the unique red vertex that is in the same domino in M .

Using then the equation (2) for all red vertices i not covered by M , one
obtains that βi = β̄i. This proves uniqueness.

For the statement (a), consider what happens to the coefficient attached to
an orange or a green vertex u. By proposition 1.2, the domino containing u
must be orange or green-red. The coefficient can therefore only jump to green
or orange vertices. So they must disappear at some point, because only red
vertices bear coefficients at the end of the process.

Similarly for the statement (b), consider the coefficient attached to a red
vertex u. Again by proposition 1.2, the domino containing u must be red-green.
The coefficient can only jump to red vertices in the same red-green component,
or to orange and green vertices. As the coefficients on orange or green vertices
will disappear by the previous point, coefficients can only stay within a given
red-green component.

Recall that the dimension dim(T ) of T is (by lemma 1.6) the number of red
vertices that are not covered in any maximum matching of T . Proposition 2.2
justifies this terminology, as this gives the number of independent parameters
for the varieties XT (α) (inside the groupoid GT ).

Remark 2.3 In the particular case when the tree T is orange, all XT (α) are
isomorphic.

By proposition 2.2, in order to study all isomorphism classes of such varieties,
one can restrict oneself to attach parameters only to red vertices not covered by
a maximum matching M .

For a maximum matching M of T , let us define a scheme XM
T (α) by the

set of equations (2), where αi are invertible fixed parameters, equal to 1 if i is
covered by M .

Given two matchings M and M ′, one can always find by Proposition 2.2 a
sequence of jumps that provides an isomorphism in GT between XM

T (α) and

XM ′

T (β), where the parameters β are uniquely determined Laurent monomials
in α.

Let us consider now the automorphism group Aut(XM
T (α)) of the object

XM
T (α) in the groupoid GT .

Proposition 2.4 The automorphism group Aut(XM
T (α)) is an algebraic torus

isomorphic to G
dim(T )
m . If (λi)i∈T is an element of Aut(XM

T (α)), then λi = 1
on green and orange vertices of T .

Proof. Let us consider an automorphism in GT given by invertible elements
λi.

The condition that the equation (2) for the vertex i is preserved is

∏

j−i

λj = 1. (5)

This just means that the λi belongs to the kernel of the adjacency matrix of
T (seen as an endomorphism of GT

m). Looking at the induced linear equations
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on the tangent space at one, one can deduce from remark 1.5 that the dimension
of Aut(XM

T (α)) is dim(T ).
By the same argument (using induction on the auxiliary graph G) as in the

uniqueness step of the proof of Prop. 2.2, every automorphism fixes xj for every
green vertex j.

By a similar argument (starting with orange vertices attached to green ver-
tices in the auxiliary graph G), one can then prove that every automorphism
fixes xj for every orange vertex j.

There remains to show that Aut(XM
T (α)) is connected. Let us prove that,

given any choice for the values of λi for i 6∈ M , there is a unique element of
Aut(XM

T (α)) extending this choice.
This is once again done by induction using the auxiliary graph G. Let us

consider a red vertex j that is pointing in G only toward vertices with known λ.
Then there is a unique way to fix the value λj such that (5) holds for the green
vertex i in the domino of j.

This proves that the kernel is isomorphic to G
dim(T )
m .

Note that the torus Aut(XM
T (α)) and its action on XM

T (α) do not depend
on α. This action therefore extends to varieties defined as the union of XM

T (α)
over some family of parameters α.

The torus Aut(XM
T (α)) can be written as a product of several tori, indexed

by the red-green components. Every factor acts only on the red vertices inside
a fixed red-green component. This factorization will be useful later to describe
free actions on some varieties.

2.2 Genericity

A non-empty set S of red vertices in a red-green component C is called an
admissible set if every green vertex in C has either 0 or 2 neighbors in S.

Lemma 2.5 Given a red vertex u in C, there is an admissible set containing
u.

Proof. One can build an admissible set S starting from {u} by repeated addi-
tion of red vertices. If there is a green vertex v with exactly one red neighbor
in S, then add to S one of the other red neighbors of v. Repeat until the set S
is admissible.

Let us now introduce an explicit genericity condition on the parameters
attached to a given red-green component C.

For every admissible set S of red vertices of C, the alternating product

∏

i∈S

α±
i 6= (−1)#S , (6)

where any two red vertices sharing a common green neighbor have opposite
powers in the left hand side.
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Lemma 2.6 The genericity condition is preserved under jumping moves.

Proof. Indeed, consider the jumping move from a red vertex u over a green
vertex v. The coefficients of all red neighbors of v are divided by αu. Let S be
an admissible set. If the vertex v has no neighbor in S, nothing is changed in
the genericity condition for S. Otherwise, the vertex v has two neighbors in S.
Then two terms are changed in the left-hand side of (6), both being divided by
αu. But they appear with opposite powers, hence the product is not changed.

The two other kinds of jumping moves (green over red and orange over
orange) do not change the parameters of red vertices.

2.3 Definition of the varieties

Let us now carefully define the varieties that will be studied in the rest of the
article.

Let us fix a tree T , a choice function ϕ from the set of red-green components
of T to the set {generic, versal} and a maximum matching M of T .

For every red-green component C such that ϕ(C) is generic, let us fix for
every vertex u of C not covered by the maximum matching M , an invertible
value αu.

To this data, one associates a scheme Xϕ,M
T,α as follows.

The variables are

• xi and x′
i for all vertices of T ,

• αi for all vertices not covered by the matching M in the red-green com-
ponents C of T such that ϕ(C) is versal.

The equations are

• the system of equations (2),

• all variables αi are invertible.

In fact, there is no true dependency on the matching M . Let us consider
two maximum matchings M and M ′. Using proposition 2.2, one can find an

isomorphism between Xϕ,M
T,α for arbitrary invertible parameters α and Xϕ,M ′

T,β

for parameters β depending on the parameters α.
One will therefore forget the matching and use the notation Xϕ

T from now
on, keeping the parameters α implicit as well.

Moreover, by lemma 2.6, if the genericity condition (6) holds for the parame-
ters α with respect to one matching M , they will also hold for the corresponding
parameters β for another matching M ′.

One can therefore impose that the genericity condition (6) holds for all
generic red-green components of T . This will always be assumed from now
on.

Let us summarize this lengthy definition. Once the tree T is chosen, one picks
a maximum matching M of T . Any choice of matching will lead to isomorphic
varieties. One then decides for every red-green component of T either to take
the union over all invertible parameters or to fix some generic parameters.

One will use the simplified notation XT for orange trees, as there is then no
choice to be made for the function ϕ. One will also use the notations Xgeneric

T

and Xversal
T when the function ϕ is constant.
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Remark 2.7 One can as well consider forests instead of trees in the defini-
tion of the varieties Xϕ

T , but then everything factors according to the connected
components. This possibility will be used implicitly in the rest of the article.

Let us introduce the notation U(x) for the open set defined by x 6= 0.

Lemma 2.8 If a− b is an edge in a tree T , then the two open sets U(xa) and
U(xb) cover the variety Xϕ

T .

Proof. This follows from the exchange relation

xax
′
a = 1 + αaxby,

where y is some product of other cluster variables.

Remark 2.9 When removing red vertices or green vertices in a tree T , some
red-green components may split into several red-green components. One can then
define a function ϕ̂ on the new set of red-green components, whose value on a
red green component C is the value of ϕ in the unique red-green component of T
containing C. Abusing notation, one will denote this induced function ϕ̂ simply
by ϕ.

3 Smoothness and free actions

Theorem 3.1 For every choice of ϕ, the variety Xϕ
T is smooth.

Proof. The proof is by induction on the size of the tree T .
For the tree with only one vertex, the only equation is

xx′ = 1 + α. (7)

In the generic case when α is considered to have a fixed value, different from
−1 by the genericity condition (6), the variety is isomorphic to the punctured
affine line Gm and is therefore smooth.

In the versal case when α is considered to be a variable and assumed to be
invertible, the variety is an open set in the variety defined by (7) where α is not
assumed to be invertible. This last variety is isomorphic to the affine plane A2,
hence smooth.

The rest of the proof by induction is organized as follows. One first considers
the case when the tree has at least one red-green component, and treat sepa-
rately the case when there is a red-green component which is generic and the
case when there is one which is versal. Otherwise, the tree is orange. These
three cases are done in the next three subsections.

Let us first state a few useful lemmas.

Lemma 3.2 If one variable xi is assumed to be non-zero, then one can get rid
of the associated variable x′

i and of the equation (2) of index i.

Proof. Indeed, one can just use the equation to eliminate x′
i.
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Lemma 3.3 If one variable xi is assumed to be zero, then x′
i becomes a free

variable and the equation (2) of index i reduces to

−1 = αi

∏

i−j

xj .

Let us now introduce a useful variant of the varieties Xϕ
T . Let v be a vertex

of T . Let Xϕ
T [v] be defined just as Xϕ

T , but with one more invertible variable
γv attached to the vertex v as a coefficient (playing the same role as αv in the
equations). This variable defines a morphism γv from Xϕ

T [v] to Gm.

Lemma 3.4 If v is an orange or green vertex, then Xϕ
T [v] is isomorphic as a

variety over Gm to Xϕ
T ×Gm endowed with the projection to the second factor.

Proof. By proposition 2.2 and its proof, one can find an isomorphism in the
groupoid GT between Xϕ

T and Xϕ
T [v] that only changes the coordinates xi for

orange and green vertices. More precisely, using the auxiliary oriented graph
G, one can find a sequence of jumps (corresponding to edges in G starting with
a green or orange vertex) that makes the coefficient γv disappear from the
equations.

The isomorphism associated with this sequence of jumps is multiplying the
variables xi by monic Laurent monomials in the parameter γv, hence defines an
isomorphism over Gm.

Lemma 3.5 If v is a red vertex in a versal red-green component C, then Xϕ
T [v]

is isomorphic as a variety over Gm to Xϕ
T ×Gm endowed with the projection to

the second factor.

Proof. If the red vertex v is not covered by the matching M chosen to define
Xϕ

T , then one has two coefficient variables αv and γv attached to the vertex v.
By the simple change of coordinates αv := αvγv and γv := γv, one gets the
expected isomorphism.

Assume now that that red vertex v is covered by the matching M .
By proposition 2.2 and its proof, one can find an isomorphism in the groupoid

GT between Xϕ
T [v] and a variety Xϕ,M

T,β that only changes the coordinates xi for
orange and green vertices and for red vertices in the red-green component C.
More precisely, using the auxiliary oriented graph G, one can find a sequence of
jumps that moves the coefficient γv towards the red vertices in C not covered
by the matching. At the end, every new coefficient βi is the product of αi by a
Laurent monomial in γv.

The isomorphism associated with this sequence of jumps is multiplying the
variables xi by monic Laurent monomials in the parameter γv, hence defines
an isomorphism over Gm. One can then compose this isomorphism with a
relabeling of the coefficients αi := βi in order to get the expected isomorphism,
still defined over Gm, between Xϕ

T [v] and Xϕ
T ×Gm.

One could say that the coefficient γv can be detached from T in these cases.
This will be used frequently in the rest of the article.
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3.1 Trees with a generic component

One assumes now that T has at least two vertices and a generic component C.
Let us pick an admissible set S of red vertices in C, as defined in §2.2.

Lemma 3.6 The open sets U(xi) for i ∈ S form a covering of Xϕ
T .

Proof. Indeed, the complement of their union is the set where all variables xi

for i ∈ S vanish. This implies that

αi

∏

j−i

xj = −1 (8)

for every i in S. Taking the alternating product of these equalities gives

∏

i∈S

α±
i = (−1)#S , (9)

because for every green vertex j attached by an edge to some element of S, the
cluster variable xj appears exactly twice by definition of admissible sets, hence
disappears in the alternating product.

But the equation (9) is incompatible with the genericity condition (6).

Let us now show that the open sets U(xi) are smooth.
Let F be the forest T \ {i}. In the forest F , the coloring is changed only on

the red-green component containing i, where an avalanche of orange dominoes
can take place when removing i. The red-green component C is therefore split
into a number of red-green components. Let us moreover introduce a function
ϕ on F , which is generic on every red-green component coming from C, and
unchanged on all other red-green components.

Lemma 3.7 The open set U(xi) is isomorphic to Gm ×Xϕ
F .

Proof. The condition that xi is not zero allows one to get rid of the variable
x′
i by using the equation (2) of index i. What remains are the equations for

the forest F = T \ {i}, where now xi is treated as a parameter attached to all
neighbors of i in T .

Because all neighbors of i in T are green, they become either green or orange
in F . It follows from lemma 3.4 that one can, without changing the variety,
consider instead that the parameter xi is not attached to any vertex of F .

Let us check that the genericity condition still holds on all generic red-green
components. If the componentD does not come from the splitting of C, then the
genericity conditions are unchanged on this red-green component. Otherwise,
let us choose an admissible set in D. It was then already an admissible set in
C, by inspection of what happens during the avalanche of orange dominoes.
Therefore the genericity condition for D is inherited from that for C.

One has therefore obtained an isomorphism

U(xi) ≃ Gm ×Xϕ
F , (10)

which is smooth by induction. Therefore Xϕ
T is also smooth.
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3.2 Trees with a versal component

One assumes now that T has at least two vertices, and has a versal component
C. Let us choose a red leaf v in this component. By proposition 1.12, one can
find a maximum matching M not containing v. Therefore there is a coefficient
variable αv.

Let u be the green vertex adjacent to v. By lemma 2.8, the two open sets
U(xu) and U(xv) cover X

ϕ
T .

Let us first prove that U(xv) is smooth.
Let T ′ be the tree T \ {v}. The coloring of T ′ is obtained from T by an

avalanche of orange dominoes. The dimension of T ′ is dim(T )− 1.
The avalanche may split the red-green component of T containing v into

several components. Let ϕ be the function which maps all these new components
to the versal condition, and unchanged condition on all the other red-green
components.

Lemma 3.8 The open set U(xv) is isomorphic to G2
m ×Xϕ

T ′ .

Proof. Assuming that xv is not zero allows one to get rid of the variable x′
v

by using (2) with index v. The coefficient variable αv also disappears from the
equations: this gives one factor Gm.

Then the variable xv is seen as a coefficient attached to the vertex u in T ′,
which is either green or orange. The coefficient can therefore be detached by
lemma 3.4, and one obtains a factor isomorphic to Gm ×Xϕ

T ′ .

Therefore U(xv) is smooth by induction.

Let us now prove that U(xu) is smooth. Let us choose instead a matching M
containing the domino u−v, thanks to lemma 1.11. This amounts to go through
an isomorphism in the groupoid GT , hence preserves the open set U(xu).

Let F be the forest T \ {u}. Because u is green, the coloring of F is ob-
tained from that of T by restriction and the dimension of F is dim(T ) + 1. Let
v, T1, . . . , Tk be the connected components of the forest F . By removing the
domino u− v, one can restrict the matching M to a matching of the forest F .

The red-green component of T containing u splits into several red-green com-
ponents in F , one of them being the vertex v. One takes the versal condition
on all of these red-green components of F , and unchanged condition on all the
other red-green components.

Lemma 3.9 The open set U(xu) is isomorphic to

Xversal
{v} ×

k∏

j=1

Xϕ
Tj
, (11)

where the first component is the vertex v with coefficient variable xu.

Proof. Setting xu 6= 0 in the equations allows to get rid of the variable x′
u. The

result can be described as a fiber product over Gm, where the same coefficient
variable xu is attached to every connected component of F at a red vertex in
a versal red-green component. By repeated use of lemma 3.5 on all connected
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components (but not on the isolated vertex v), one finds that the open set U(xu)
is isomorphic to the product

Xversal
v ×

k∏

j=1

Xϕ
Tj
, (12)

where the first component is the vertex v with coefficient xu.

Therefore U(Xu) is smooth by induction, and hence Xϕ
T is also smooth.

3.3 Orange trees

Let us now assume that T is an orange tree and let us choose one domino u− v
in the perfect matching of T . By lemma 2.8, the two open sets U(xu) and U(xv)
cover the variety XT .

By symmetry between u and v, it is enough to prove that U(xu) is smooth.
Let T1, . . . , Tk be the trees attached to u in T \{v}. The Ti are clearly orange

trees.
Let R be the connected component of v in T \{u}. The tree R is obtained by

removing a leaf in an orange tree, hence (by lemma 1.13) has dimension 1 and a
unique red-green component. Moreover, R has a maximum matching avoiding
only v and the vertex v is red in the coloring of R.

Lemma 3.10 The open set U(xu) is isomorphic to the product of the varieties
XTi

and the variety Xversal
R .

Proof. Assuming that xu is not zero allows to eliminate the variable x′
u and

the equation (2) of index u.
There remains the equations for the union of R and the Ti, with xu consid-

ered as a parameter attached to all of them at the former neighbors of u.
Because the trees Ti are orange, one can consider instead (by lemma 3.4)

that the parameter xu is only attached to the vertex v of R.
This proves that the open set U(xu) is isomorphic to the product of the

varieties XTi
and the variety Xversal

R .

By induction, this proves that U(xu) is smooth. Therefore XT is smooth
too.

3.4 Torus actions

Let T be a tree and let ϕ be a choice in {generic, versal} for every red-green
component of T . Let us also choose a maximum matching M of T .

One can deduce from proposition 2.4 and the remarks following it that there
is an action of an algebraic torus of dimension dim(T ) on Xϕ

T , and that this
torus (and its action) can be written as a product over red-green components
C of tori ΛC

T .
Let us define a smaller torus Λϕ

T acting on Xϕ
T as the product of ΛC

T over all
generic red-green components of T . Let us call the rank of (T, ϕ) and denote
by rk(T, ϕ) the sum of the dimensions of the generic red-green components of
T . This is the dimension of Λϕ

T .
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Proposition 3.11 If ϕ(C) is generic, the action of ΛC
T on Xϕ

T is free.

Proof. Let us assume that there is a non-trivial element λ = (λi)i of Λ
C
T that

fixes a point (xi)i in Xϕ
T .

Let i be a red vertex in C such that λi 6= 1. For every green neighbor j of
i, one can find another red vertex k incident to j such that λk 6= 1, because
of (5). Iterating this process, one can build an admissible set S (as defined in
§2.2), such that λs 6= 1 for every s ∈ S.

Because λ fixes the given point, one then has xs = 0 for every s ∈ S. But
this is impossible by Lemma 3.6.

Corollary 3.12 There is on Xϕ
T a free action by a torus Λϕ

T of dimension the
rank rk(T, ϕ).

This gives Xϕ
T the structure of a principal bundle with structure group Λϕ

T .
As one will see later, this bundle is not trivial in general (i.e. not a product),
as can be seen from our results for the cohomology already in type A3.

4 Number of points over finite fields and Euler

characteristic

Let us denote by Nϕ
T (q) the number of points on Xϕ

T over the finite field Fq.
When the tree is orange, one will use the shorthand notation NT . When the

function ϕ is constant, one will use the notations Nversal
T and Ngeneric

T .

Proposition 4.1 The numbers Nϕ
T (q) are monic polynomials in q of degree

dimXϕ
T .

Proof. The proof is by induction on the size of the tree.
For the tree with one vertex, the number of points is q − 1 in the generic

case and q2−q+1 in the versal case, by the description given at the beginning
of the proof of theorem 3.1.

Then either the tree has a red-green component, which can be generic or
versal, or it is an orange tree. The proof is decomposed into the three following
geometric decomposition lemmas, or rather into their obvious corollaries on the
number of points over finite fields.

Let T be a tree and v be a red leaf in a red-green component C of T . Let
u be the neighbor of v. Removing the vertex v creates an orange avalanche
and may separate the red-green component C into several ones. Let ϕ be the
induced genericity condition (as defined in Remark 2.9). Let F be the forest
T \ {u, v}. The component C may also split into several red-green components
in F . Let ϕ be the induced genericity condition.

Let us consider now the case of a generic red-green component C.

Lemma 4.2 In this situation, the variety Xϕ
T can be decomposed as

Xϕ
T = GmXϕ

T\{v} ⊔A1X
ϕ
F . (13)
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Proof. Either xv is not zero or xv is zero. This will give the required disjoint
union. In the case where xv 6= 0, one uses lemma 3.7. This gives the first term
of the right hand side.

Let us pick a maximum matching M of T containing v. This is possible by
lemma 1.11. This does not change the open set U(xv) and its complement, up
to isomorphism.

Assume now that xv is zero. Then x′
v is a free variable, and xu is equal to

−1, because there are no coefficients on v. One then gets rid of x′
u. The coloring

of the forest F is by restriction of the coloring of T . Therefore the parameter
xu = −1 is attached to some red vertices of F , as a coefficient.

One has to check that the genericity condition still holds on every connected
component of F . Let S be an admissible set in one of these components. Either
S was already an admissible set in T , and then the genericity condition still
holds, or it contains exactly one of the neighbors of u in T . In this case, one can
extend S by adding v to form an admissible set in T . The genericity condition
for S ⊔ {v} in T implies the condition for S, because of the additional −1
coefficient attached to S in F .

Keeping the same notations, let us consider now the case of a versal red-green
component C.

Lemma 4.3 In this situation, the variety Xϕ
T can be decomposed as

Xϕ
T = G2

mXϕ
T\{v} ⊔A1X

ϕ
F . (14)

Proof. Either xv is not zero or xv is zero. This will give the required disjoint
union. If xv 6= 0, using lemma 3.8 gives the first term of the right hand side.

Let us pick a maximum matching M of T containing v. This is possible by
lemma 1.11. This does not change the open set U(xv) and its complement, up
to isomorphism.

Assume now that xv is zero. Then x′
v is a free variable, and xu is equal to

−1, because there are no coefficients on v. One then gets rid of x′
u. The coloring

of the forest F is by restriction of the coloring of T . Therefore the parameter
xu = −1 is attached to red vertices of F . By lemma 3.5, it can be detached,
and this just gives the expected second term.

Let T be an orange tree and u − v be a domino in T . Let (Tu,i)i (resp.
(Tv,j)j) be the connected components of T \ {u, v} that were attached to u
(resp. to v). All these trees are orange. Let us denote by Su,i and Sv,j the
forests obtained from them by removing the vertex that was linked to u or v.
These forests are unimodal, in the sense that they have one unimodal connected
component, all the other connected components being orange.

Lemma 4.4 In this situation, one has

XT = G2
m

∏

i

XTu,i

∏

j

XTv,j
⊔A1

∏

i

Xversal
Su,i

∏

j

XTv,j
⊔A1

∏

i

XTu,i

∏

j

Xversal
Sv,j

.

Proof. Because the open sets U(xu) and U(xv) are a covering by lemma 2.8,
one can cut the variety XT into three pieces: either both xu and xv are not
zero, or exactly one of them is zero.
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If both are not zero, then one obtains the product of G2
m (with coordinates

xu and xv) with the product of the varieties attached to the Tu,i and the Tv,j .
Indeed, one first get that xu becomes a parameter attached to all trees Tu,i and
xv becomes a parameter attached to all trees Tv,j . But these trees are orange,
so xu and xv can be detached by lemma 3.4. This gives the first term.

If xu is zero and xv is not zero, then there is a free variable x′
u and the variable

xv is determined by the variables attached to the vertices of the trees Tu,i linked
to u, which must be non-zero. One obtains therefore a versal condition on each
forest Su,i. For the trees Tv,j , the coefficient xv is attached to all of them, but
because they are orange it can be detached. This gives the second term.

The third term is the same after exchanging u and v.

4.1 Reciprocal property

Recall from §3.4 that the rank rk(T, ϕ) of the pair (T, ϕ) formed by a tree T
and a choice function ϕ is the sum of the dimensions of the generic red-green
components of T .

Proposition 4.5 The polynomial Nϕ
T (q) is divisible par (q − 1)rk(T,ϕ).

Proof. This follows from the existence of the free action obtained in corollary
3.12.

Let us refine this slightly.

Proposition 4.6 The polynomial Nϕ
T can be written as (q − 1)rk(T,ϕ) times a

reciprocal polynomial.

Proof. By induction. This is true for the tree with one vertex.
One just has to look carefully at the decompositions given in the three lem-

mas that were used to prove polynomiality by induction.
For lemma 4.2, let D be the rank for T . Then the rank is D − 1 for T \ {v}

and D for F . Using the additional factor q − 1 coming from Gm, there is a
common factor (q−1)D to all terms involved. The factor A1 in the codimension
1 piece ensures that the reciprocal property holds.

For lemma 4.3, the rank D is the same in all terms involved. One uses that
(q−1)2 is reciprocal. The factor A1 in the codimension 1 piece ensures that the
reciprocal property holds.

For lemma 4.4, the rank D is 0 in all terms involved, as there is no generic
red-green component. One uses again that (q− 1)2 is reciprocal. The factor A1

in the codimension 1 pieces ensures that the reciprocal property holds.

4.2 Enumeration and coincidences

In the following remarks, one will describe trees by their numbers in the tables
at the end of [CDS80] and by their graph6 string (which is a standard format
for graphs).

Remark 4.7 One can find distinct orange trees with the same enumerating
polynomial. This happens first for trees with 8 vertices. The trees 2.188 (graph6
’IhGGOC@?G’) and 2.189 (graph6 ’IhC_GCA?G’) have the same polynomial, as
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well as the trees 2.172 (graph6 ’IhGGOCA?G’) and 2.174 (graph6 ’IhGH?C@?G’).
The number of different polynomials for orange trees with 2n vertices is the
sequence

1, 1, 2, 5, 13, 41, 138, . . .

whereas the number of orange trees is

1, 1, 2, 5, 15, 49, 180, . . .

Remark 4.8 For unimodal trees with versal condition, one can also find pairs
with the same enumerating polynomials. The smallest one is made of trees with
9 vertices, numbered 2.83 (graph6 ’HhCGOCA’) and 2.85 (graph6 ’HhGGGG@’).
The number of different polynomials for unimodal trees with 2n + 1 vertices is
the sequence

1, 1, 2, 6, 19, 65, . . .

whereas the number of unimodal trees is

1, 1, 2, 6, 20, 76, 313, 1361, . . .

Remark 4.9 For unimodal trees with generic condition, one can also find
pairs with the same enumerating polynomials. The smallest one is made of the
Dynkin diagrams A7 and E7. The number of different polynomials for unimodal
trees with 2n+ 1 vertices is the sequence

1, 1, 2, 5, 13, 46, 168, . . .

4.3 Linear trees

Let us denote by An the linear tree with n vertices.

1 2 3 4 ... n 1 2 3 4 ... ... n

One can check that An is orange if n is even and unimodal if n is odd.

Proposition 4.10 The number of points on varieties attached to An is given
by

NAn
=

qn+2 − 1

q2 − 1
(15)

if n is even and by

Nversal
An

=
qn+2 + 1

q + 1
and Ngeneric

An
=

(q(n+1)/2 − 1)(q(n+3)/2 − 1)

q2 − 1
(16)

if n is odd.

Proof. This follows easily by induction from lemmas 4.2, 4.3 and 4.4.
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4.4 Trees of type D

Let us denote by Dn the tree with n vertices associated with the Dynkin diagram
of type D.

1

4 5 ... n

2

3

1

4 5 ... ... n

2

3

One can check that Dn is unimodal if n is odd and has dimension 2 if n is
even.

Proposition 4.11 The number of points on varieties attached to Dn is given
by

Nversal
Dn

=
qn+3 − qn+2 + qn + q3 − q + 1

q + 1
and Ngeneric

Dn
= (qn/2 − 1)2 (17)

if n is even and by

Nversal
Dn

=
qn+3 − qn+2 + qn − q3 + q − 1

q2 − 1
and N

generic

Dn
= qn − 1 (18)

if n is odd.

Proof. This is easily deduced from the type A case, using 4.2, 4.3 applied to a
red leaf on a short branch.

4.5 Trees of type E

Let us consider now a family of trees containing the Dynkin diagrams of type
E. The tree En is the tree with one triple point and branches of size 1, 2 and
n− 4.

1 2 5 6

3

4 1 2 5 6 7

3

4

One can check that En is orange if n is even and unimodal if n is odd.

Proposition 4.12 The number of points on varieties attached to En is given
by

NEn
= (q2 − q + 1)

qn−1 − 1

q − 1
(19)

if n is even and by Nversal
En

= (q2 − q + 1)(1 + qn−1) and

Ngeneric

En
=

qn+1 − qn + qn−1 − q(n+3)/2 − q(n−1)/2 + q2 − q + 1

q − 1
(20)

if n is odd.

Proof. In the even case, one uses lemma 4.4 applied to the domino on the short
branch, and the known type A cases. In the odd case, one uses lemmas 4.3 and
4.2 applied to the red leaf on the short branch, and the known type A cases.
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4.6 Orange trees and unimodal trees

Let us now describe a recursion involving only the polynomials for orange trees
and versal unimodal trees.

Let T be an orange tree and v be a leaf of T . Let T ′ be the unimodal tree
T \{v} and let F be the orange forest obtained from T by removing the domino
u− v containing v.

Lemma 4.13 There is a decomposition

XT = Xversal
T ′ ⊔A1XF . (21)

Proof. This decomposition is made according to the value of xv.
If xv = 0, then one has a free parameter x′

v, which gives the factor A1. One
also has xu = −1 and one can get rid of x′

u. The value −1 is attached as a
coefficient to some orange vertices of F , but one can detach this coefficient by
lemma 3.4. There remains the equations for XF .

If xv 6= 0, one can use lemma 3.10. In the special case of a leaf, this gives
an isomorphism with Xversal

T ′ .

One can use lemma 4.13 to compute the enumerating polynomials for orange
trees and versal unimodal trees only, by the following algorithm.

Step 0: if the tree T is of type An with n even, use the known value from
(15) in proposition 4.10.

Step 1: if the tree T is orange, find a leaf v whose branch has minimal
length. Here the branch is the longest sequence of vertices of valency 2 starting
at the unique neighbor of the leaf (it could be empty). Then use lemma 4.13
applied to the leaf v to compute NT .

Step 2: if the tree T is unimodal, find a red leaf w whose branch has
maximal length. Adding a vertex v at the end of this branch gives an orange
tree T ′. Then use lemma 4.13 (backwards) applied to the tree T ′ and its leaf v
to compute NT .

This will work because each step either shorten the shortest branch or add
some vertex to the longest branch. This makes sure that the tree become more
and more linear, and that at some point one is reduced to the initial step. This
is a decreasing induction on the number of points of valency at least 3 and the
length of the longest branch.

Remark 4.14 For orange trees, one can use instead in this algorithm the lemma
4.4, maybe choosing a domino close to the center of the tree for a better com-
plexity.

4.7 Euler characteristic and independent sets

Let us denote by vc(T ) the number of minimum vertex covers of T . This is also
the number of maximum independent sets.

Let us now describe a decomposition of the versal varieties according to
independent sets (not necessarily maximal).

If S is a subset of the vertices of T , one can define WT (S) as the set of points
in Xversal

T where

xu = 0 if u ∈ S, (22)

xu 6= 0 if u 6∈ S. (23)
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The sets WT (S) are obviously disjoint in Xversal
T .

Lemma 4.15 If the set WT (S) is not empty, then S is an independent set in
T .

Proof. This follows from lemma 2.8.

Proposition 4.16 Let S be an independent set in T . There is an isomorphism

WT (S) ≃ (Gm)t+dim(T )−2s × (A1)
s,

where t is the size of T and s the size of S.

Proof. Let us fix a maximum matching M of T .
For every u not in S, one can use the hypothesis xu 6= 0 to get rid of x′

u

and of the equation of index u. There remains only the equations of index v for
v ∈ S. Because xv = 0 when v ∈ S, the variables x′

v for v ∈ S do no longer
appear in the equations, hence they are free. This gives the factor (A1)

s.
Then there remains s equations of the general shape

− 1 = αi

∏

j−i

xj , (Ei)

involving the t − s invertible variables xu and the dim(T ) coefficient variables
αi. The factor αi is present in this equation only if the vertex i is not covered
by the chosen maximum matching M .

One will use the following auxiliary graph T̂ . The vertices are the vertices of
T and new vertices Zi indexed by coefficient variables αi for i 6∈ M . The edges
of T̂ are edges of T and new edges between the vertex Zi and the vertex i for
every i 6∈ M . Clearly, this graph is still a tree and admits a perfect matching
M̂ , by adding dominoes i− Zi to the matching M .

Because S is an independent set in T , there is at most one element of S in
every edge of T̂ . Let us orient every edge containing an element of S towards
this element if the edge is a domino and in the other way otherwise. This defines
a partial order on the vertices of T̂ , decreasing along the chosen orientation of
edges.

Consider now the equation Ei associated with a vertex i ∈ S. There is a
unique domino i−j in T̂ containing i. The equation can then be used to express
the variable xj in terms of variables of lower index in the partial order.

One can therefore eliminate one variable for every equation. At the end,
one obtains an algebraic torus whose dimension is the difference between the
number t− s+ dim(T ) of initial variables and the number s of equations.

Corollary 4.17 The Euler characteristic of Xversal
T is vc(T ).

Proof. Every set WT (S) contributes either 0 or 1 to the Euler characteristic.
It contributes by 1 if and only if the exponent t+ dim(T )− 2s is zero.

This exponent can be expressed as

(r(T ) + o(T ) + g(T )) + (r(T )− g(T ))− 2s.

It is therefore zero if and only if s = r(T ) + o(T )/2, which is the size of the
maximum independent sets in T .
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Of course, one can also use Proposition 4.16 to give a formula for the number
of points Nversal

T as a sum over independent sets.

Corollary 4.18 The value at q = 1 of the polynomial Nversal
T is the number

vc(T ) of maximum independent sets of T .

5 Cohomology: general setting and results

This section first describes some differential forms that are always present in
the varieties under study, and then very briefly recalls the results one needs
about (mixed) Hodge structures. For a general reference about mixed Hodge
structures, see for example [PS08].

5.1 Weil-Petersson two-form

Let T be a tree and let S be a subset of T . Consider the augmented tree T + S
obtained by adding a new edge out of every vertex in S, and endow this tree
with a bipartite orientation, where every vertex is either a sink or a source.

As a variant of the definition of the variety Xϕ
T , one can define a variety

X(T + S) attached to this data, with invertible variables associated to the new
vertices, playing the role of coefficients in the equations (as the α do).

Let ωi denote d log(xi). The following lemma has been proved by Greg
Muller in [Mul12] in a more general context.

Lemma 5.1 The differential form

WP =
∑

i→j

ωiωj , (24)

where the sum is running over edges of T + S, is an algebraic differential form
on the variety X(T + S).

Proof. Let us prove that it has no pole.
Let us fix i. To study the possible pole along xi = 0, it is enough to look at

the sum
∑

j↔i ωiωj restricted to edges containing i.
By the relation xix

′
i = 1 +

∏
j↔i xj , one has

xidx
′
i + x′

idxi =
∑

j↔i


∏

k 6=j

k↔i

xk


 dxj , (25)

and therefore

xidx
′
idxi =

∑

j↔i


∏

k 6=j

k↔i

xk


 dxjdxi. (26)

This implies

dx′
idxi/

∏

k↔i

xk =
∑

j↔i

ωjωi, (27)

where the left-hand side has clearly no pole at xi.
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Note that WP stands here for Weil-Petersson.
Abusing notations, one will use the same symbol WP to denote these dif-

ferential forms on different varieties. The ambient variety should be clear from
the context.

5.2 Hodge structures

We will use the notation Q(−i) to denote a one dimensional vector space over Q
endowed with a pure Hodge structure of Tate type, of weight 2i and type (i, i).
The tensor product of Q(−i) and Q(−j) is Q(−i− j).

Recall that the cohomology of Gm has an Hodge structure described by

H
k(Gm) = Q(−k) (28)

for 0 ≤ k ≤ 1.
There is no morphism between pure Hodge structures of distinct weights.

The Künneth isomorphism is compatible with the Hodge structures. The Mayer-
Vietoris long exact sequence is an exact sequence of Hodge structures.

6 Cohomology: orange and versal cases

This section deals with the cohomology, in several cases where either varieties do
not depend on parameters, or versal conditions are assumed on all parameters.
The first part is devoted to linear trees; the results there can then be used as
building blocks.

6.1 Linear trees A

Let An be the linear tree with n vertices numbered from 1 to n. As seen in
§4.3, this is an orange tree if n is even, and an unimodal tree otherwise. Some
of the results of this section were already obtained in [Cha11] using instead the
cohomology with compact supports.

6.1.1 Cohomology of some auxiliary varieties for A

Let us introduce three varieties Xn, Yn and Zn with dimensions n, n + 1 and
n+ 1.

The variety Zn is defined by variables x1, . . . , xn, x
′
1, . . . , x

′
n and α such that

x1x
′
1 = 1 + αx2, (29)

xix
′
i = 1 + xi−1xi+1, (30)

xnx
′
n = 1 + xn−1. (31)

The variety Yn is the open set in Zn where α is invertible.
The variety Xn is the closed set in Yn where α is fixed to a generic invertible

value (where generic means distinct from (−1)(n+1)/2 if n is odd).
In our general notations, Yn is Xversal

An
and Xn is Xgeneric

An
.

Let us first describe the variety Zn.

Proposition 6.1 There exists an isomorphism between Zn and the affine space
An+1.
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Proof. This has been proved in [Cha11, Prop. 3.6].

Therefore, the cohomology of Zn is known for all n:

H
k(Zn) =

{
Q1 if k = 0,

0 if k > 0.
(32)

The Hodge structure on H
0(Zn) is Q(0).

Let us now compute the cohomology of Yn by induction. This uses the
Mayer-Vietoris long exact sequence for the covering of Zn by the two open sets
U(x1) and U(α).

First, let us note that U(α) ≃ Yn by definition. Next, one finds that U(x1) ≃
A1Yn−1. Indeed one can eliminate x′

1 using the first equation. Then α becomes
a free variable, and there remains the equations for Yn−1, with x1 now playing
the role of α. Last, the intersection U(α)∩U(x1) is isomorphic to GmYn−1, by
the same argument.

Let us write ωα for d log(α).

Proposition 6.2 The cohomology ring of Yn has the following description:

H
k(Yn) = Q(−k) (33)

for 0 ≤ k ≤ n + 1. It has a basis given by powers of WP in even degrees and
by powers of WP times ωα in odd degrees. It is generated by the 1-form ωα and
the 2-form WP.

Proof. Because of the vanishing of Hk(Zn) for k > 0, the Mayer-Vietoris long
exact sequence gives short exact sequences

0 → H
0(Zn) → H

0(Yn)⊕ H
0(U(x1)) → H

0(U(α) ∩ U(x1)) → 0,

and
0 → H

k(Yn)⊕ H
k(U(x1)) → H

k(U(α) ∩ U(x1)) → 0,

for every k > 0. This determines by induction the Hodge structure of the
cohomology of Yn.

Let us now proceed to the expected basis. One already knows that WP and
ωα are indeed algebraic differential forms on Yn.

By the short exact sequences above, one can check that for k > 0 the union
of the expected basis of Hk(Yn) with the known basis of Hk(U(x1)) is mapped
to a basis of Hk(U(α) ∩ U(x1)). This implies the statement.

6.1.2 Cohomology for An with even n

Let us now consider the linear tree An for even n, and compute the cohomology
of Xn.

Proposition 6.3 The Hodge structure of the cohomology of Xn is

H
k(Xn) = Q(−k) (34)

for all even k between 0 and n, and 0 otherwise. A basis is given by powers of
WP. The cohomology ring is generated by WP.
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Proof. This follows from the known cohomology of Yn and the Künneth theo-
rem applied to the isomorphism Yn ≃ XnGm given by lemma 3.4. The Künneth
theorem gives immediately the Hodge structure.

For the basis, it is enough to recall that the Gm factor is given by the value
of α, and to check that fixing the value α = 1 maps WP (for Yn) to WP (for
Xn).

6.2 Cohomology for orange trees of shape H

... ... ... ...

... ... ... ...a

b

m

k

n

ℓ

Let us denote by Hk,ℓ,m,n the tree described as two chains joined by an edge,
such that by removing the joining edge and its extremities a and b, one gets two
chains of lengths k and ℓ on the a side (top) and two chains of lengths m and
n on the b side (bottom).

We assume now that Hk,ℓ,m,n is an orange tree. It implies that either k, ℓ,m
and n are even if the middle edge is an orange domino, or that (without loss of
generality) k and m are odd and l and n are even otherwise.

Then one can compute the cohomology of Hk,ℓ,m,n using the Mayer-Vietoris
long exact sequence for the open covering by U(xa) and U(xb).

When the middle edge is an orange domino, one has

U(xa) ≃ XkXℓYm+n+1,

U(xb) ≃ Yk+ℓ+1XmXn,

U(xa) ∩ U(xb) ≃ (Gm)2XkXℓXmXn.

(35)

When the middle edge is not an orange domino, one finds instead

U(xa) ≃ YkXℓXm+n+1,

U(xb) ≃ Xk+ℓ+1YmXn,

U(xa) ∩ U(xb) ≃ YkXℓYmXn.

(36)

Let us introduce some notations: call K,L,M,N the subsets of vertices corre-
sponding to the four branches ofH (i.e. the connected components ofH\{a, b}).

Let us denote by WS the Weil-Petersson 2-form associated with a subset S
of the vertices of H. For conciseness, one will use shortcuts such as WKaL or
WMabN . Note that there holds

ωaWaL = ωaWL

and other similar simplifications, by the definition (24) of these forms.
Let us now describe generators and bases of the cohomology of the open sets

U(xa), U(xb) and U(xb)∩U(xb). This can be computed using the isomorphisms
(35), (36) and the known cohomology of varieties X and Y . It turns out that
the result does not depend on whether or not the middle edge a− b is an orange
domino.
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The cohomology of U(xa) is generated by ωa, WKa, WaL and WMabN . A
basis is given by

Wκ
KaW

λ
aLW

B
MabN and ωaW

κ
KWλ

LW
B
MbN , (37)

where 0 ≤ κ ≤ k/2, 0 ≤ λ ≤ l/2 and 0 ≤ B ≤ (m + n + 2)/2 (left) or
0 ≤ B ≤ (m+ n)/2 (right).

Similarly, the cohomology of U(xb) is generated by ωb, WMb, WbN and
WKabL. A basis is given by

Wµ
MbW

ν
bNWA

KabL and ωbW
µ
MW ν

NWA
KaL, (38)

where 0 ≤ µ ≤ m/2, 0 ≤ ν ≤ n/2 and 0 ≤ A ≤ (k + l + 2)/2 (left) or
0 ≤ A ≤ (k + l)/2 (right).

The cohomology of U(xb) ∩ U(xb) is generated by ωa, ωb, WMb, WbN , WKa

and WaL. A basis is given by

Wκ
KaW

λ
aLW

µ
MbW

ν
bN , ωaW

κ
KWλ

LW
µ
MbW

ν
bN ,

ωaωbW
κ
KWλ

LW
µ
MW ν

N and ωbW
κ
KaW

λ
aLW

µ
MW ν

N ,
(39)

with the same conditions as above on κ, λ, µ and ν.
There is a bigrading corresponding to the top and bottom parts of the H

shape. Every differential form involved in the bases just described is a sum of
products of ωi. The bidegree of a monomial in the ωi is the pair (number of ωi

where i is in the top row, number of ωi where i is in the bottom row). Among
the various Weil-Petersson forms involved, only the differential forms WKabL

and WMabN are not homogeneous for the bidegree, but have terms in bidegrees
(2, 0) and (1, 1) (resp. (0, 2) and (1, 1)).

One needs now to compute explicitly the following maps in the Mayer-
Vietoris long exact sequence:

H
i(U(xa))⊕ H

i(U(xb))
fi
−→ H

i(U(xa) ∩ U(xb)).

Because one has bases of all these spaces, this is a matter of matrices.

For odd degree i, let us show that the differential is injective. Because in
this case all basis elements (given by right columns of (37), (38) and (39)) are
homogeneous for the bigrading, one can separate the cases of bidegree con-
gruent to (0, 1) and to (1, 0) modulo (2, 2). Let us give details only for the
first possibility, the other case being similar after exchanging top and bottom
of H. The basis of the corresponding bihomogeneous subspace of Hi(U(xb))
is given by ωbW

A
KaLW

µ
MW ν

N with i = 1 + 2A + 2µ + 2ν. The corresponding
bihomogeneous subspace of Hi(U(xa)) is zero. The basis of the corresponding
bihomogeneous subspace of Hi(U(xa) ∩ U(xb)) is given by ωbW

κ
KaW

λ
aLW

µ
MW ν

N

with i = 1+2κ+2λ+2µ+2ν. But WA
KaL can be written as a linear combination

of Wκ
KaW

λ
aL with κ+λ = A. Therefore the basis elements are mapped to linear

combinations with disjoint supports. It follows that the map fi is injective.

Let us now turn to even degrees.

Proposition 6.4 For even degree 2i, the kernel of the differential f2i has di-
mension 1, spanned by the ith power of the form WP.
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Proof. First note that one can define an injective map ∆ from the space
H

2i(U(xa) ∩U(xb)) to the space Di spanned by all products of i 2-forms of the
shape ωsωt for s− t an edge of the tree (always written in the order given by a
fixed alternating orientation of the tree). Indeed, both terms in the left column
of (39) can be written as linear combinations of such products. The injectivity
holds because distinct elements in this part of the basis are mapped to linear
combinations with disjoint supports. To recover a basis element B from any
monomial in its image by ∆, first count in ∆(B) if the number of ωk in the
top row is odd or even. This tells if the basis elements B contains ωaωb or not.
Then it is easy to recover the exponents (κ, λ, µ, ν) defining B by counting in
∆(B) how many ωk there are in the different parts of the tree.

To prove the statement of the proposition, it is therefore enough to compute
the kernel of the composite map ∆ ◦ f2i.

It turns out that the matrix of this composite map has a nice description.
First, every monomial d made of i 2-forms ωsωt as above appears in exactly
two images, the image of a form Wκ

KaW
λ
aLW

B
MabN and the image of a form

Wµ
MbW

ν
bNWA

KabL (with opposite signs). Let us denote these two forms by Fa(d)
and Fb(d). On the other hand, the image of every basis element is the sum of
several monomials (at least one), with constant sign.

Let us pick an element z of the kernel of f2i. Then for every monomial d in
Di, the coefficients of Fa(d) and Fb(d) in z must be the same. One can make a
graph with vertices given by all forms in the basis, and edges corresponding to
the relations Fa(d)− Fb(d) for all monomials d.

By a combinatorial argument, one can check that this graph is connected.
For this, one just has to show that one can go from any monomial d to any
monomial d′, using two kinds of moves: replace d by another monomial appear-
ing in the same Fa(d), or replace d by another monomial appearing in the same
Fb(d). This is not difficult once translated in terms of dominoes, and details are
left to the reader.

From the connectedness of this graph, one deduces that the kernel is spanned
by the sum of all basis elements of H

2i(U(xa)) ⊕ H
2i(U(xb)), which is just

(WPi,WPi).

This proposition and the injectivity in the case of odd degree allow to give a
description of the weights of the Hodge structure on the cohomology. This can
easily be made explicit, but one will not do that here.

There would remain to find explicit expressions for the cohomology classes
coming from the co-image of the differentials fi.

In the case of the Dynkin diagrams E6 and E8, one can go further and
compute explicit representatives of the cohomology classes.

By the general proof, the cohomology for E6 is described by

Q(0) | 0 | Q(−2) | 0 | Q(−3)⊕Q(−4) | 0 | Q(−6),

where the Q(−i) with i even correspond to the powers of WP.
Using the connection homomorphism in the long exact sequence, one finds

that the form
dx2dx3dx5ω4 (40)

corresponds to Q(−3).
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Similarly, the cohomology for E8 is described by

Q(0) | 0 | Q(−2) | 0 | Q(−3)⊕Q(−4) | 0 | Q(−5)⊕Q(−6) | 0 | Q(−8),

where the even Q(−i) are the powers of WP.
One finds that the form

dx2dx3dx5ω4 (41)

corresponds to Q(−3), and its product by WP corresponds to Q(−5).

1 2 5 6 7 8

3

4

7 Cohomology: generic cases

This section contains one conjecture and one result in some specific cases about
the cohomology of generic fibers.

7.1 Cohomology for A odd and generic

Let us now consider the linear tree An for odd n, which is unimodal. In this
section, one proposes a conjectural description for the cohomology of the variety
Xgeneric

An
(which is also denoted Xn in §6.1.1).

Conjecture 7.1 The Hodge structure on the cohomology of Xn is given by

H
k(Xn) = Q(−k) (42)

for even k in 0 ≤ k ≤ (n− 1), and

H
n(Xn) = ⊕n

i=(n+1)/2Q(−i). (43)

The cohomology ring has a basis given by all powers WPi for 0 ≤ i ≤ (n− 1)/2
and by a basis of Hn(Xn). The cohomology ring is generated by WP in degree
2 and by the elements of Hn(Xn) in degree n.

One approach for this computation would be using the covering of Xn by the
(n+ 1)/2 open sets U(xi) (i odd) given by Lemma 3.6. One can then consider
the spectral sequence for this covering (where d1 is the deRham differential and
d2 is the Cech differential).

The intersection of open sets in this covering have a simple description: they
are products Gm times two varieties of the type Xk with k even, times some
varieties of type Yk with k odd.

Lemma 7.2 This spectral sequence degenerates at E2.

Proof. This follows from the purity of the Hodge structure on the cohomology
of the open sets in the covering.

It would therefore be enough to understand the behavior of the Cech differ-
ential acting on the cohomology groups of the open sets. This is still a rather
intricate question. The conjecture has been checked by computer for n ≤ 11.
Maybe one should look for a better approach.

Remark 7.3 To give an explicit description of the generators of the top coho-
mology group seems to be an interesting problem.
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7.2 Cohomology for D odd and generic

Let us now consider the tree Dn for odd n, which is unimodal. Our aim is to
compute the cohomology of the variety X

generic

Dn
.

One will assume that the generic parameter α is attached to the vertex 1,
where 1 and 2 are the two red vertices on the short branches. By Lemma 3.6,
one has a covering by U(x1) and U(x2). One will use the Mayer-Vietoris long
exact sequence for this covering. One has

U(x1) ≃ GmXn−1,

U(x2) ≃ GmXn−1,

U(x1) ∩ U(x2) ≃ GmYn−2.

Given the known explicit description of the cohomology rings of Xn−1 and
Yn−2, one can write very explicitly the long exact sequence.

First note that the Hodge structure of Hk(U(x1)) ⊕ H
k(U(x2)) is 2Q(−k)

for 0 ≤ k ≤ n. Similarly, the Hodge structure of Hk(U(x1)∩U(x2)) is 2Q(−k),
unless k = 0 or n where it is Q(−k).

Using the known basis of the cohomology, one can describe the map ρk from
H

k(U(x1)) ⊕ H
k(U(x2)) to H

k(U(x1) ∩ U(x2)). One can see that this map has
rank 1 if k is even. One can also check that it is an isomorphism if k is odd,
unless k = n where it has rank 1.

It follows that the Hodge structure on H
k(Xgeneric

Dn
) is given by





Q(−k) if k ≡ 0 (mod 2),

Q(−k + 1) if k ≡ 1 (mod 2), k 6∈ {1, n}

Q(−n+ 1)⊕Q(−n) if k = n.

(44)

Moreover, it also follows from the explicit knowledge of the long exact se-
quence that the classes in even cohomological degree are just the powers of the
2-form WP.

One can also see that the Hodge structure Q(−n) in cohomological degree
n is given by the differential form Λn

i=1ωi.
There remains to understand the even Hodge structures present in odd co-

homological degrees.
By a small diagram chase, and using the formula

1− α

x1x2
=

x′
1

x2
− α

x′
2

x1
, (45)

one finds that a basis of the Q(−2) part of H3(Xgeneric

Dn
) is given by the differ-

ential form
dx3ω1ω2. (46)

Moreover, a similar computation shows that products of this form by powers of
WP give a basis for the even Hodge structures in odd cohomological degrees.

The cohomology ring is therefore generated by one generator in each degree
2, 3 and n (of Hodge type Q(−2), Q(−2) and Q(−n)).
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A Algorithm for the canonical coloring of trees

Let us now describe an algorithm to find the red-orange-green coloring. Let T
be a tree.

1. At start, all vertices are considered to be red.

2. Then, one changes the colors according to the following rule:

If a vertex v has exactly one red neighbor w, this red neighbor becomes
green.

If moreover v is green, then one puts a domino on the edge v − w.

3. One repeats the previous step until no color can change.

4. Then one colors in orange the green vertices that do not have a red neigh-
bor.

One gets in that way a coloring of the tree with green, orange and red
vertices, together with a collection of dominoes.

Proposition A.1 This algorithm defines the same coloring as in section 1.
Moreover the dominoes obtained are those that are present in all maximum
matchings.

Proof. At the end of step 3, one has obtained a tree with red and green vertices,
with the property that every vertex has either no red neighbor or at least two
red neighbors.

Let us prove that a red vertex can not have at least two red neighbors.
Assume that there is such a vertex v1. Let v2 be one of its red neighbors. Then
v2 must also have at least two red neighbors. Hence one can find another red
neighbor v3 of v2. Going on in this way, and because T is a tree, one can build
an infinite sequence of red vertices, which is absurd.

So, after step 3, one has three kinds of vertices: red vertices (they have only
green neighbors), green vertices with no red neighbors and green vertices with
at least two red neighbors.

It follows that after step 4, one has the following situation: red vertices with
only green neighbors, green vertices with at least two red neighbors, and orange
vertices with no red neighbors.

Using the third characterization of the coloring, it just remains to prove that
the induced forest on orange vertices has a perfect matching. This matching is
provided by the set of dominoes computed by the algorithm. When a domino
is introduced, both its vertices are green. We need a lemma.

Lemma A.2 During the algorithm, the configuration

u − v − w

where u is red and v − w is a domino, does not appear.

Proof. Let us assume the contrary, and let u− v − w be such a configuration.
Because v still has a red neighbor, the domino v−w must have been created

by turning green the vertex v as the last red neighbor of the green vertex w.
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Let us go back to this previous step of this algorithm, where u and v are
red, w is green with v as only red neighbor.

u − v − w

So w must have another neighbor z, such that w has turned green as the
last red neighbor of z.

u − v − w − z

One can assume, by changing maybe the order in which the algorithm has
been performed, that z has turned green before w. This is because trees are
bipartite, and the algorithm can be run independently on the two parts of the
bipartition.

Therefore, w has turned green as the last red neighbor of the green vertex
z, and hence belongs to a domino w − z. Hence one has found a configuration
v − w − z similar to the initial one:

v − w − z .

This can be iterated to provide an infinite sequence of vertices. This is
absurd.

It follows from the lemma that once a domino is created, its vertices do not
have any red neighbors. Therefore they will be orange at the end.

This also implies that the dominoes are disjoint, because the creation of a
domino takes a red vertex with only green neighbors and a green vertex with
exactly one red neighbor, and produces a pair of green vertices with only green
neighbors. Therefore a vertex can only enter once in a domino.

Moreover, every orange vertex v is in a domino. This is because green
vertices surrounded only by green vertices can only be introduced during the
creation of a domino.

Remark A.3 From the previous proof, one can see that one can modify the al-
gorithm as follows: when creating a new domino, color in orange its two vertices,
and forget step 4.
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