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Journal de Théorie des Nombres

de Bordeaux 00 (XXXX), 000–000

A combinatorial approach to rarefaction in

b-multiplicative sequences.

par Alexandre AKSENOV

Résumé. Pour une suite b-multiplicative donnée et un nombre
premier p fixé, l’étude de la p-raréfaction consiste à caractériser
le comportement asymptotique des sommes de premiers termes
d’indices multiples de p. Sous une hypothèse (dite de ≪finitude≫)
sur la suite, les valeurs entières du polynôme homogène ≪norme≫ à
3 variables, Np,i1,i2(Y0, Y1, Y2) :=

∏p−1

j=1

(

Y0+ζi1jp Y1+ζi2jp Y2

)

, où

i1, i2∈{1, 2, . . . , p−1}, ζp est une racine p-ième primitive de l’unité,
déterminent ce comportement asymptotique. On montre qu’une
méthode combinatoire s’applique à Np,i1,i2(Y0, Y1, Y2) qui permet
d’établir de nouvelles relations fonctionnelles entre les coefficients
de ce polynôme ≪norme≫, diverses propriétés des coefficients de
Np,i1,i2(Y0, Y1, Y2), notamment pour i1=1, i2=2, 3; cette méthode
fournit des relations entre coefficients binomiaux, de nouvelles
preuves des deux identités

∏p−1

j=1

(

1+ζjp−ζ
2j
p

)

=Lp (le p-ième nom-

bre de Lucas) et
∏p−1

j=1

(

1−ζjp
)

=p, le signe et le résidu modulo p

des polynômes symétriques des 1+ζ−ζ2p . Une méthode algorith-
mique de recherche des coefficients de Np,i1,i2 est développée.

Abstract. Given a b-multiplicative sequence and a prime p, stu-
dying the p-rarefaction consists in characterizing the asymptotic
behaviour of the sums of the first terms indexed by the multi-
ples of p. Under the ”finiteness” assumption for the sequence,
the integer values of the homogeneous ”norm” 3-variate poly-
nomial Np,i1,i2(Y0, Y1, Y2) :=

∏p−1

j=1

(

Y0+ζi1jp Y1+ζi2jp Y2

)

, where

i1, i2∈{1, 2, . . . , p−1}, and ζp is a primitive p-th root of unity, de-
termine this asymptotic behaviour. It will be shown that a combi-
natorial method can be applied to Np,i1,i2(Y0, Y1, Y2). The method
enables deducing functional relations between the coefficients as
well as various properties of the coefficients of Np,i1,i2(Y0, Y1, Y2),
in particular for i1=1, i2=2, 3. This method provides relations be-
tween binomial coefficients. It gives new proofs of the two identi-
ties

∏p−1

j=1

(

1−ζjp
)

=p and
∏p−1

j=1

(

1+ζjp−ζ
2j
p

)

=Lp (the p-th Lucas

number). The sign and the residue modulo p of the symmetric
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polynomials of 1+ζ−ζ2p can also be obtained. An algorithm for
computation of coefficients of Np,i1,i2(Y0, Y1, Y2) is developed.

1. Introduction

This article deals with a combinatorial method adapted to the coeffi-
cients of homogeneous 3-variate ”norm” polynomials which determine the
asymptotic behaviour of rarified sums of a sub-class of b-multiplicative se-
quences. The general definition of a b-multiplicative sequence of complex
numbers can be written as:

tn+mbi = tntmbi for each n,m, i ∈ N such that n < bi.

We will be interested in the case where tmbi = tm (this condition will
be called the finiteness condition). If a b-multiplicative sequence satisfies
the finiteness condition and its values are either 0 or roots of unity, it is
b-automatic. An example of such sequence is the Thue-Morse sequence
defined by b = 2, t1 = −1. A survey on the b-multiplicative sequences with
values in an arbitrary compact group can be found in [4].

Rarified sums (the term is due to [5]) of a sequence (tn) are the sums of
initial terms of the subsequence (tpn)n (the rarefaction step p is supposed
to be a prime number in this paper). It is proved in [6] that if (tn) is the
Thue-Morse sequence and b = 2 is a generator of the multiplicative group
F×
p , then

(1.1)
∑

n<N,p|n

tn = O

(

N
log p

(p−1) log 2

)

and this exponent cannot be decreased. For some prime numbers p the
rarified sums are always positive, this phenomenon is discussed in [5].

The equation (1.1) can be generalized as:

(1.2)
∑

n<N,p|n

tn = O

(

N
logNQ(ζp)/Q

(
∑b−1

j=0
tjζ

j
p)

(p−1) log b

)

for any b-multiplicative sequence (tn) satisfying the finiteness condition,
with values only in {−1, 0, 1}, such that

∣

∣

∣

∣

∣

∣

NQ(ζp)/Q





b−1
∑

j=0

tjζ
j
p





∣

∣

∣

∣

∣

∣

> max



(

b−1
∑

j=0

tn)
p−1, 1





and such that b < p is a generator of the multiplicative group F×
p . The

equation (1.2) uses the notation ζp for a primitive p-th root of unity and
NL/K for the norm. This result is proved in the Ph.D. thesis [1].
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Indeed, the equation (1.2) generalizes (1.1) as the Thue-Morse sequence
satisfies the conditions of validity of (1.2) and we get the following:

NQ(ζp)/Q





b−1
∑

j=0

tjζ
j
p



 = NQ(ζp)/Q(1− ζp) = p.

The norms

(1.3) NQ(ζp)/Q





b−1
∑

j=0

tjζ
j
p





can also be calculated in a straightforward way if b = 3, t0=t1=1, t2=−1.
Using the resultant of the two polynomials S(X) = Xp−1 + . . . + 1 and
R(X)=X2−X−1, one obtains

(1.4) NQ(ζp)/Q(1 + ζp − ζ2p) = Lp

the p-th term of the Lucas sequence (referred as A000032 by OEIS, cf [11])
defined recursively by L0=2, L1=1, Ln+2 = Ln+Ln+1.

The objective of this article is to study a ”norm” expression similar to
(1.3) in the case of some b-multiplicative sequences, which is constructed
by introducing a finite number of new formal variables Y0, Y1, . . . , Yd with
d 6 p − 1. The integer d can be defined as the number of nonzero terms
in t1, t2, . . . , tb−1. The combinatorial method developed here concerns the
case d = 2; in general, if d > 3, it leads to too difficult computations1.
Then, we are interested in the homogeneous polynomial of degree p− 1 in
3 variables with integer coefficients

(1.5) Np,i1,i2(Y0, Y1, Y2) =

p−1
∏

j=1

(

Y0 + ζ i1jp Y1 + ζ i2jp Y2

)

,

where i1, i2 are two distinct elements of F×
p . If all numbers tc for c ∈

{1, . . . , b − 1} \ {i1, i2} are zeroes, then the norm (1.3) is recovered as
Np,i1,i2(1, ti1 , ti2). By definition, Np,i1,i2(Y0, Y1, Y2) is the norm of (Y0 +
ζ i1p Y1+ζ i2p Y2) as a polynomial in the 4 variables Y0, Y1, Y2, ζp relative to the
extension of fields Q(ζp)/Q in the sense of the extended definition of norm
introduced in [13].

The form (1.5) of ”norm” polynomial reveals to be common for a large
class of b-multiplicative sequences, either by setting the formal variables
Y0, Y1, Y2 to special values and/or fixing the two residue classes i1, i2. Since
the form (1.5) inherits the properties of its coefficients, any functional re-
lation between these coefficients can be considered as a key result.

1In [1] it is proved that the functional equation (Theorems 3.2 and 3.3) generalizes to the
case d>3
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In this context, Sections 2 and 3 enunciate a combinatorial interpretation
of the coefficients of Np,i1,i2 and the proof of a functional relation between
them, which looks like the recurrence equation of the Pascal’s triangle. This
relation can be used to find closed formulas for some classes of coefficients
(for all of them in the case i1 = 1, i2 = 2) and to find the remaining
coefficients in a fast algorithmic way. A closed formula for these coefficients
is a final goal.

In Section 4 we describe an algorithm in O(p2) additions that calculates
the coefficients of (1.5) using this relation. We also re-prove the result (1.4)
about the case i1 = 1, i2 = 2 and formulate two corollaries of the new proof.
We also state some results about the case i1 = 1, i2 = 3.

Throughout the paper, |X| and #X will both refer to the size of a finite
set X, the symbol # followed by a system of equations, congruences or
inequalities will denote the number of solutions; and

∑

X, standing for
∑

x∈X x, will refer to the sum of a finite subset X of a commutative group
with additive notation.

2. Combinatorics of partitions of a set.

In this section we are going to give an alternative proof of the formula

(2.1)

j=p−1
∏

j=1

(

X − ζj
)

= 1 +X + . . .+Xp−1,

and the methods of this proof will be re-used in the proof of the functional
equation in Section 3. The new proof uses the properties of the partially
ordered sets Πn of partitions of a set of size n (a good reference about the
properties of those is the Chapter 3.10.4 of [12]). We are going to prove
the following statement, which is equivalent to (2.1).

Lemma 2.1. Let p be a prime number and 0 6 n < p an integer. Define
A0(n, p) as the number of subsets of F×

p of n elements that sum up to 0
modulo p and A1(n, p) the number of those subsets that sum up to 1. Then

A0(n, p)−A1(n, p) = (−1)n.

Let us begin the proof with an obvious observation: if we define similarly
the numbers A2(n, p), A3(n, p), . . . , Ap−1(n, p) , they will all be equal to
A1(n, p), since multiplying a set that sums to 1 by a constant residue c ∈ F×

p

gives a set that sums to c, and this correspondence is one-to-one.
Let us deal with a simpler version of the Lemma that allows repetitions

and counts sequences instead of subsets, which is formalized in the following
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Definition 1. Denote Ek1,k2,...,kn
x (n, p) (where x ∈ Fp and k1, k2, . . . , kn ∈

F×
p ) the number of sequences (x1, x2, . . . , xn) of elements of F×

p such that

n
∑

i=1

kixi = x.

Then we get the following

Lemma 2.2. If n is even,

Ek1,k2,...,kn
0 (n, p) =

(p−1)n+p−1

p
and Ek1,k2,...,kn

1 (n, p) =
(p−1)n − 1

p
;

if n is odd,

Ek1,k2,...,kn
0 (n, p) =

(p−1)n−p+1

p
and Ek1,k2,...,kn

1 (n, p) =
(p−1)n + 1

p
.

In both cases,

Ek1,k2,...,kn
0 (n, p)− Ek1,k2,...,kn

1 (n, p) = (−1)n.

Proof. By induction on n. For n = 0 or n = 1 the result is trivial. For
bigger n we always get:

Ek1,k2,...,kn
0 (n, p) = (n− 1)E

k1,k2,...,kn−1

1 (n− 1, p)

and

Ek1,k2,...,kn
1 (n, p) = E

k1,k2,...,kn−1

0 (n − 1, p) + (p− 2)E
k1,k2,...,kn−1

1 (n− 1, p),

since the sequences of length n of linear combination (with coefficients ki)
equal to x are exactly expansions of sequences of length n−1 of linear com-
bination different from x, and this correspondence is one-to-one. Injecting
formulas for n− 1 concludes the induction. �

Now we are going to prove Lemma 2.1 for small n. If n = 0 or n = 1,
Lemma is clear. For n = 2, there is one more sequence (x, y) ∈ F×

p
2

that sums up to 0, but that counts the sequences of the form (x, x) which
should be removed. Since p is prime, these sequences contribute once for
every nonzero residue modulo p, and removing them increases the zero’s
”advantage” to 2. Now, we have to identify (x, y) and (y, x) to be the same,
so we get the difference 1 back, establishing Lemma 1 for n = 2.

For n = 3, counting all the sequences (x, y, z) ∈ F×
p gives a difference

E0−E1 = −1. The sequences (x, x, z) contribute one time more often to the
sum equal to 0, so removing them adds −1 to the total difference. The same
thing applies to sequences of the form (x, y, y) and (x, y, x). After removing
them, we get an intermediate difference of −4, but the triples of the form
(x, x, x) have been removed 3 times, which is equivalent to saying they count
−2 times. Therefore, they should be ”reinjected” with coefficient 2. As p
is prime and bigger than 3, the redundant triples contribute once for each
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nonzero residue; therefore we accumulate the difference of −4 − 2 = −6.
We have then to identify permutations, that is to divide the score by 6
which gives the final result −1.

Here is the explicit calculation for the case n = 4:

1 (corresponds to E0(4, p)− E1(4, p))

+6 (for removing
(x, x, y, z), (x, y, x, z), (x, y, z, x),
(x, y, y, z), (x, y, z, y), (x, y, z, z)

)

+2× 4 (for re-injecting
(x, x, x, y), (x, x, y, x),
(x, y, x, x) and (x, y, y, y)

)

+1× 3 (for re-injecting (x, x, y, y), (x, y, x, y) and (x, y, y, x))

+6× 1 (for removing (x, x, x, x))

= 24

which is 4!, therefore Lemma 2.1 is proved for n = 4.
For a general n we can calculate the difference between the number of

sequences that sum up to 0 and the number of those that sum up to 1 by
assigning to all sequences in F×

p
n an intermediate coefficient equal to one,

then by reducing it by one for each couple of equal terms, then increasing
by 2 for each triple of equal terms, and so on, proceeding by successive
adjustments of coefficients, each step corresponding to a ”poker combina-
tion” of n cards. If after adding the contributions of all the steps and the
initial (−1)n, we get (−1)nn!, Lemma 2.1 is valid for n independently from
p provided that p > n is prime.

Let us introduce a formalization of these concepts using the notions
exposed in [7]. Call a partition of the set {1, 2, . . . , n} a choice of pairwise
disjoint nonempty subsets B1, B2, . . . , Bc of {1, 2, . . . , n} of non-increasing
sizes |Bi|, and such that B1 ∪ B2 ∪ . . . ∪Bc = {1, 2, . . . , n}. The set Πn of
all partitions of {1, 2, . . . , n} is partially ordered by reverse refinement: for
each two partitions τ and π, we say that τ > π if each block of π is included
in a block of τ . We define the Möbius function µ(0̂, x) on Πn recursively
by:
if x = {{1}, {2}, . . . , {n}} = 0̂, then µ(0̂, x) = 1;

if x is bigger than 0̂, then

µ(0̂, x) = −
∑

y ∈ Πn

y < x

µ(0̂, y).

By the Corollary to the Proposition 3 section 7 of [10] and the first Theo-
rem from the section 5.2.1 of [7], if x is a subdivision of type (λ1, λ2, . . . , λn),
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then

(2.2) µ(0̂, x) =
n
∏

i=1

(−1)λi−1(λi − 1)!

This formula will be useful in Section 3.
We are also going to use the following definition: let x = (x1, x2, . . . , xn)

be a sequence of n nonzero residues modulo p seen as a function

x : {1, 2, . . . , n} → F×
p .

Then the coimage of x is the partition of {1, 2, . . . , n}, whose blocks are the
nonempty preimages of elements of F×

p . Now we can prove the following
proposition that puts together all the previous study.

Lemma 2.3. The difference

A0(n, p)−A1(n, p)

does not depend on p provided that p is a prime number bigger than n.

Proof. We are going to describe an algorithm that computes this differ-
ence (which is the one applied earlier for small values of the argument).
For each subdivision x ∈ Πn, denote by r0(x, p) the number of sequences
(x1, x2, . . . , xn) of elements of F×

p of coimage x that sum up to 0, and denote
by r1(x, p) the number of those sequences of coimage x that sum up to 1
and denote r(x, p) = r0(x, p)− r1(x, p). Then,

n!(A0(n, p)−A1(n, p)) = r(0̂, p).

Denote, for each subdivision y of {1, 2, . . . , n},

s(y, p) =
∑

x>y

r(x, p).

Then, by Proposition 2.2,

(2.3) s(y, p) = (−1)c(y)

where c(y) is the number of blocks in the subdivision y. By the Möbius
inversion formula (see [7]),

(2.4) r(0̂, p) =
∑

y∈Πn

µ(0̂, y)s(y, p) =
∑

y∈Πn

(−1)c(y)µ(0̂, y).

If we compute this sum, we get the value of A0(n, p)−A1(n, p) in a way
that does not depend on p. �

The last move consists in proving that

(2.5)
∑

y∈Πn

(−1)c(y)µ(0̂, y) = (−1)nn!
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in a way that uses the equivalence with Lemma 2.1. This proof may seem to
be artificial because it is no longer used in the Section 3, and a purely com-
binatorial and more general proof exists: see the final formula of Chapter
3.10.4 of [12].

Remark that A0(n, p) = A0(n, p−1−n) since saying that the sum of some
subset of F×

p is 0 is equivalent to saying that the sum of its complement is 0.
For the same kind of reason, A1(n, p) = A−1(n, p−1−n) = A1(n, p−1−n).

Now we can prove Lemma 2.1 by induction on n. It has already been
proved for small values of n. If n > 4, by Bertrand’s postulate, there is a
prime number p′ such that n < p′ < 2n. Replace p by p′ (by the proposition
2.3 this leads to an equivalent statement), then n by p′ − 1− n (using the
above remark). As p′ − 1− n < n, the step of induction is done.

This proof can be analysed from the following point of view: how fast
does the number of steps of induction grow as function of n? Suppose
that one step of induction reduces Lemma 2.1 for n to Lemma 2.1 for the
number f(n) and denote by R(n) the number of steps of induction needed
to reach one of the numbers 0 or 1 (the formal definitions will follow). We
can prove then the following upper bound on R(n).

Theorem 2.1. Let

nextprime(n) := min{p > n, p prime}

and

f(n) := nextprime(n)− n− 1

for each n ∈ N. Further, denote

R(n) := min{k, fk(n) ∈ {0, 1}}.

This definition makes sense, for f(n) < n for each n > 1 by the Bertrand’s
postulate.

The function R(n) satisfies the estimation

(2.6) R(n) = O(log log n).

Proof. Denote θ = 0.525. By Theorem 1 of [2], there is a constant N0 such
that for all n > N0, the interval [n − nθ, n] contains a prime number. We
are going to deduce from this the following result: for each θ̄ ∈]0.525, 1[

there exists a constant N1 such that n > N1 implies f(n) < nθ̄.
Indeed, suppose n > N0 and denote p̄ = nextprime(n)− 1. Then, by the

result cited above,

(2.7) n > p̄− p̄θ.

The function
u : [N0,+∞[ → [u(N0),+∞[

x 7→ x− xθ
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is strictly increasing, continuous and equivalent to x. Therefore, the same
is valid for its inverse u−1. By (2.7), p̄ 6 u−1(n), therefore

(2.8) ∀n > N1 f(n) = p̄− n 6 p̄θ 6 (u−1(n))θ < nθ̄

for each θ̄ ∈]θ, 1[ and for a bound N1 > N0 that may depend on θ̄.
The end of the proof is analogous to that of Theorem 1.1 of [8]. Denote

by l the integer such that f l+1(n) < N1 6 f l(n). Then:

nθ̄l > N0

therefore

l log θ̄ + log log n > log logN1

which implies

l 6 −
log log n

log θ̄
.

Put b = max16m6N0 R(m), it is a constant. We get:

R(n) 6 l + 1 + b 6 −
log log n

log θ̄
+ 1 + b

which proves our claim. �

3. Pascal’s equation.

We are going to prove the functional equation verified by the coefficients
of the polynomial Pi1,i2(Y0, Y1, Y2) (introduced in (1.5)). To do this, we are
going to describe a combinatorial interpretation of these numbers.

Definition 2. Let p, i1, i2 be fixed as in Introduction and n1, n2 be non-
negative integers such that n1 + n2 6 p− 1. Define

Ci1,i2
i (n1, n2, p) =

(3.1)

#











(x1, . . . , xn1+n2) ∈ F×
p
n1+n2

∣

∣

∣

∣

∣

∣

∣

xk 6= xl if k 6= l,

i1

n1
∑

k=1

xk + i2

n1+n2
∑

k=n1+1

xk = i











and

Ai1,i2
i (n1, n2, p) = #







(X1,X2) ∈ P(F
×
p )

2

∣

∣

∣

∣

∣

∣

|X1| = n1, |X2| = n2,
X1 ∩X2 = ∅,

i1
∑

X1 + i2
∑

X2 = i







.

(3.2)
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Definition 2 matches with the notations from the previous section be-

cause of the identity Ai1,i2
i (n, 0, p) = Ai1,i2

i (0, n, p) = Ai(n, p) (indepen-
dently from i1, i2).

From this definition one can see that

Ci1,i2
1 (n1, n2, p) = . . . = Ci1,i2

p−1 (n1, n2, p),

p−1
∑

i=0

Ci1,i2
i (n1, n2, p) = (p− 1) . . . (p− n1 − n2),

and for any i, Ai1,i2
i (n1, n2, p) =

C
i1,i2
i (n1,n2,p)

n1!n2!
.

Only one linear equation should be added to these in order to be able
to determine all the numbers defined by (3.1) and (3.2). Proposition 3.1
below suggests to research the value of

△i1,i2(n1, n2, p) = Ai1,i2
0 (n1, n2, p)−Ai1,i2

1 (n1, n2, p)

=
∑

X1,X2 ⊂ F×
p

|X1| = n1, |X2| = n2,
X1 ∩X2 = ∅

ζ i1
∑

X1+i2
∑

X2
p .

We can express the symmetric polynomials of the quantities (Y0+ζ i1jp Y1+

ζ i2jp Y2) in terms of the previously defined numbers via the following

Proposition 3.1. Let i1, i2 be two different elements of F×
p and denote by

σv,(j=1,...,p−1) the elementary symmetric polynomial of degree v in quantities
that depend on an index j varying from 1 to p − 1. Then we have the
following formal expansion:

(3.3) σp−1−δ,(j=1,...,p−1)

(

Y0 + ζ i1jp Y1 + ζ i2jp Y2

)

=

∑

0 6 n0, n1, n2 6 p− 1
n0 + n1 + n2 = p− 1

n0 > δ

(

n0

δ

)

△i1,i2(n1, n2, p)Y
n0−δ
0 Y n1

1 Y n2
2 .

In particular,

(3.4) Np,i1,i2(Y0, Y1, Y2) =
∑

0 6 n0, n1, n2 6 p− 1
n0 + n1 + n2 = p− 1

△i1,i2(n1, n2, p)Y
n0
0 Y n1

1 Y n2
2 .
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Proof. The symmetric polynomial develops as:

σp−1−δ,(j=1,...,p−1)

(

Y0 + ζ i1jp Y1 + ζ i2jp Y2

)

=
∑

X ⊂ F×
p ,

|X| = p−1−δ

∏

j∈X

(

Y0 + ζ i1jp Y1 + ζ i2jp Y2

)

=
∑

X ⊂ F×
p ,

|X| = p−1−δ

∑

X0,X1,X2,
X0 ∪X1 ∪X2 = X,
X0,X1,X2 disjoint

ζ i1
∑

X1+i2
∑

X2
p Y

|X0|
0 Y

|X1|
1 Y

|X2|
2

=
∑

X ′
0,X1,X2,

X ′
0 ∪X1 ∪X2 = F×

p

X ′
0,X1,X2 disjoint

(

|X ′
0|

δ

)

ζ i1
∑

X1+i2
∑

X2
p Y

|X′

0|−δ
0 Y X1

1 Y X2
2 .

When we group the terms of this sum by sizes n0 = |X ′
0|, n1 = |X1|, n2 =

|X2| we obtain (3.3). �

The following closed formula for the coefficients △i1,i2(n1, n2, p) is valid
under a condition: the multiset consisting of i1 with multiplicity n1 and of
i2 with multiplicity n2 should have no nonempty subset of sum multiple of
p (this holds, for example, if the smallest positive representatives of i1 and
i2 verify n1i1+n2i2 < p). The proof of Lemma 2.1 can then be generalized
to get:

(3.5) △i1,i2(n1, n2, p) = (−1)n1+n2

(

n1 + n2

n1

)

.

The complete proof of this statement can be established as a corollary of
the Theorem 3.3 below.

Without this condition (3.5) becomes false: for example, △2,3(1, 1, 5) =
−3. For the general case, we are going to replace the closed formula by
a recursive equation in which the parameters i1, i2, p are fixed, and the
recursion is on different values of n1, n2. The equation is similar to the
equation of the Pascal’s triangle, and can be formulated as follows:

Theorem 3.2 (”Colored” Pascal’s equation). Let p be an odd prime, and
i1, i2 ∈ F×

p , n1, n2 ∈ {1, . . . , p − 2} such that i1 6= i2 and n1 + n2 < p.
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Then,

(3.6) Ci1,i2
0 (n1, n2, p)− Ci1,i2

1 (n1, n2, p) ≡

n1C
i1,i2
1 (n1 − 1, n2, p) + n2C

i1,i2
1 (n1, n2 − 1, p)−

− n1C
i1,i2
0 (n1 − 1, n2, p)− n2C

i1,i2
0 (n1, n2 − 1, p) mod p

and if p ∤ n1i1 + n2i2, the equality

(3.7) Ci1,i2
0 (n1, n2, p)− Ci1,i2

1 (n1, n2, p) =

n1C
i1,i2
1 (n1 − 1, n2, p) + n2C

i1,i2
1 (n1, n2 − 1, p)−

− n1C
i1,i2
0 (n1 − 1, n2, p)− n2C

i1,i2
0 (n1, n2 − 1, p)

holds.

Proof. Define

(3.8) fk =

{

i1 if k ∈ {1, . . . , n1}
i2 if k ∈ {n1 + 1, . . . , n1 + n2}

We are going to call a hindrance a subset X of {1, . . . , n1+n2} such that
∑

m∈X fm ≡ 0 mod p. If there are no hindrances, then, by following the
proof of Lemma 2.1, we get

Ci1,i2
0 (n1, n2, p)− Ci1,i2

1 (n1, n2, p) = (−1)n1+n2(n1 + n2)!

and this number is the opposite of n times (−1)n−1(n − 1)! .
In general, the formula (2.4) should be replaced by:

(3.9) s(y, p) = (1− p)d(y)(−1)c(y)

if the partition y of {1, . . . , n1+n2} contains d(y) blocks that are hindrances.
Indeed, suppose that the blocks of y are B1, . . . , Bc, and for each bloc Bj

we denote fBj =
∑

m∈Bj
fm ∈ Fp. Then, the solutions (x1, . . . , xn1+n2) of

n1+n2
∑

k=1

fkxk = i,

such that the coimages x of (x1, . . . , xn1+n2) satisfy x > y (as partitions),
are in one-to-one correspondence to solutions (xB1 , . . . , xBc) of

c
∑

j=1

fBjxBj = i

where xBj ∈ F×
p are no longer required to be distinct. Proposition 2.2 states

that if we pay no attention to the indices j that correspond to hindrances
(i.e. such that fBj = 0), the difference between numbers of solutions of
∑

j fBjxBj = 0 and
∑

j fBjxBj = 1 is (−1)c−d(y). Moreover, the values of
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xBj where Bj are hindrances can be chosen arbitrarily (from p− 1 options
each). The product of these contributions leads to (3.9).

The formula (3.9) can be rewritten as

s(y, p) =

d(y)
∑

l=0

∑

X1,X2, . . . ,Xl

hindrances contained in y

(−1)c(y)−lpl

where the order of X1,X2, . . . ,Xl is irrelevant in the sum. Then we get:

Ci1,i2
0 (n1, n2, p)− Ci1,i2

1 (n1, n2, p) =
∑

y∈Πn

µ(0̂, y)s(y, p)

(3.10)

=
∑

X1,X2, . . . ,Xl

disjoint hindrances

∑

y ∈ Πn

y contains X1, . . . ,Xl

as blocks

(−1)c(y)−lµ(0̂, y)pl
(3.11)

=
∑

X1,...,Xl

(−1)|X1|+|X2|+...+|Xl|−l(|X1| − 1)!(|X2| − 1)! . . . (|Xl| − 1)!pl
(3.12)

×
∑

y ∈ Πn

y contains X1, . . . ,Xl

µ(0̂, y−X1−X2− . . .−Xl)(−1)
c(y−X1−X2−...−Xl)

by factoring µ(0̂, y) according to the formula (2.2). In the last sum, (y −
X1−X2− . . .−Xl) denotes the partition y, where the blocs X1, . . . ,Xl are
removed (which is a partition of (n1+n2− |X1| − . . .− |Xl|) elements). By
applying (2.5) to the last sum of (3.12), we get

(3.13) Ci1,i2
0 (n1, n2, p)− Ci1,i2

1 (n1, n2, p) =
∑

X1,...,Xl

(|X1|−1)!(|X2|−1)! . . . (|Xl|−1)!(−1)
n1+n2−l

pl(n1+n2−|X1|− . . .−|Xl|)!.

From (3.13),

(3.14) Ci1,i2
0 (n1, n2, p) − Ci1,i2

1 (n1, n2, p) ≡ (−1)n1+n2(n1 + n2)! mod p,

which implies (3.6).
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Suppose that {1, . . . , n1+n2} is not a hindrance. In order to prove (3.7),
remark that the sum (3.13) can be split as

∑

X1,...,Xl

(|X1|−1)!(|X2|−1)! . . . (|Xl|−1)!(−1)
n1+n2−l

pl(n1+n2−|X1|− . . .−|Xl|)! =

−
n1+n2
∑

m=1

∑

X1,X2, . . . ,Xl

disjoint hindrances
not containing m

(|X1|−1)!(|X2|−1)! . . . (|Xl|−1)!

(−1)n1+n2−l−1pl(n1+n2−|X1|− . . .−|Xl|−1)!

then gathered into two parts according to the values of fm:

Ci1,i2
0 (n1, n2, p)− Ci1,i2

1 (n1, n2, p) =

− n1

∑

X1,X2, . . . ,Xl

disjoint hindrances
not containing 1

(|X1|−1)!(|X2|−1)! . . . (|Xl|−1)!

(−1)n1+n2−l−1pl(n1+n2−|X1|− . . .−|Xl|−1)!

− n2

∑

X1,X2, . . . ,Xl

disjoint hindrances
not containing n1 + 1

(|X1|−1)!(|X2|−1)! . . . (|Xl|−1)!

(−1)n1+n2−l−1pl(n1+n2−|X1|− . . .−|Xl|−1)!

By identifying each sum in the last formula to the right-hand side of (3.13)
with one of the arguments n1 or n2 decreased by 1, we get (3.7). �

The numbers △i1,i2(n1, n2, p) satisfy a similar equation.

Theorem 3.3 (”Uncolored” Pascal’s equation). Let p be an odd prime,
and i1, i2 ∈ F×

p , n1, n2 ∈ {1, . . . , p − 2} such that i1 6= i2 and n1 + n2 < p.
Then,

(3.15)

△i1,i2(n1, n2, p) ≡ −△
i1,i2(n1 − 1, n2, p) − △

i1,i2(n1, n2 − 1, p) mod p

and if p ∤ n1i1 + n2i2, the equality

(3.16) △i1,i2(n1, n2, p) = −△i1,i2(n1 − 1, n2, p) − △
i1,i2(n1, n2 − 1, p)



Rarified b-multiplicative sequences 15

holds.

Proof. Division of both sides of (3.6) by n1!n2! (which is not multiple of p)
gives (3.15) and division by the same number of (3.7) gives (3.16). �

4. Some properties of finite Pascal’s triangles.

4.1. Algorithm. Let us define formally △i1,i2(n1, n2) = 0 when one of
n1, n2 is negative or n1 + n2 > p. Then (3.16) is valid for any n1, n2 ∈ N2

such that p ∤ n1i1 + n2i2. Indeed: if n1 = 0 or n2 = 0, the identification
Ai1,i2(n1, n2, p) = A(max(n1, n2), p) implies (3.16) via Lemma 2.1. When
n1+n2 = p− 1, one can use the hypothesis X1 ∪X2 = F×

p and the identity
∑

F×
p = 0 to prove

i1
∑

X1 + i2
∑

X2 = (i1 − i2)
∑

X1,

which implies Ai1,i2
i (n1, n2, p) = Ai1−i2,i2

i (n1, 0, p), therefore△
i1,i2(n1, n2) =

(−1)n1 . The equation (3.16) is valid, therefore, when n1 + n2 = p.
We can now prove that the functional relation (3.16), together with these

border values, characterizes the function △i1,i2(·, ·, p) as a function defined
on Z2

>−1, with values in Z.

Theorem 4.1. Let p be an odd prime, let i1, i2 be two distinct elements of
{1, . . . , p− 1}, and let d : Z2

>−1 → Z be a function such that

d(0, 0) = 1,(4.1)

d(n1, n2) = 0 if n1 < 0, n2 < 0 or n1 + n2 > p,(4.2)

d(n1, n2) + d(n1 − 1, n2) + d(n1, n2 − 1) = 0 if p ∤ n1i1 + n2i2.(4.3)

Then, d(n1, n2) = △
i1,i2(n1, n2, p).

Proof. Define δ(n1, n2) = d(n1, n2) − △
i1,i2(n1, n2, p). Then the function

δ satisfies (4.2), (4.3) and δ(0, 0) = 0. In order to prove the theorem we
should prove that δ = 0.

By applying (4.3) successively to n2 = 0 and n1 = 1, . . . , p−1 one proves
that δ(0, 0) = −δ(1, 0) = δ(2, 0) = . . . = δ(p−1, 0). By applying it to n1 = 0
and n2 = 1, . . . , p− 1 one proves that δ(0, 0) = −δ(0, 1) = . . . = δ(0, p− 1).

Let us prove the identity δ(n1, n2) = 0 by induction on ñ := p−n1−n2 ∈
{0, . . . , p−2}. If ñ = 0, then δ(n1, n2) = 0 as a part of the hypothesis (4.2).

Suppose that the Theorem is proved for ñ ∈ {0, . . . , p − 3}, let us prove
it for ñ+ 1. Denote (nS

1 , n
S
2 ) the solution of







i1n
S
1 + i2n

S
2 ≡ 0 mod p

nS
1 + nS

2 = p− ñ
(nS

1 , n
S
2 ) ∈ {1, . . . , p}

2.
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If one applies the functional relation (4.3) to a point where n2 = p− ñ−n1

(with the restriction n1 6= nS
1 ), and uses the induction hypothesis, one gets

(4.4) δ(n1 − 1, p − ñ− n1) + δ(n1, p− ñ− n1 − 1) = 0.

By applying (4.4) successively to n1 = 1, . . . , nS
1 −1, we prove δ(n1, p− ñ−

n1 − 1) = 0 for n1 in the same range 1, . . . , nS
1 − 1. If nS

1 > p− ñ− 1, this
concludes the step of induction. Otherwise, by applying (4.4) successively
to n1 = p − ñ− 1, . . . , nS

1 + 1 (in the decreasing order of values of n1), we
prove δ(n1, p− ñ− n1 − 1) = 0 for n1 in the range p− ñ, . . . , nS

1 .
This concludes the induction and proves δ(n1, n2) = 0 for all (n1, n2). �

The previous proof corresponds to the Algorithm 1, which computes the
values of the function △a,b(x, y, p) line by line. It executes one addition per
number to compute, therefore its execution time is proportional to the size
of the answer.

Given an odd prime p and two distinct elements i1, i2 of F
×
p , we are going

to call the array of all values of △i1,i2(n1, n2, p) for n1, n2 > 0, n1 + n2 < p
a finite Pascal’s triangle, and we will use geometrical terminology when it
seems to make exposition simpler.

We are going to call sources the points (n1, n2) such that p|i1n1 + i2n2.
Define
(4.5)
f i1,i2(n1, n2, p) = △

i1,i2(n1, n2, p)+△
i1,i2(n1−1, n2, p)+△

i1,i2(n1, n2−1, p).

The value of f i1,i2(n1, n2, p) (which we will call force) is nonzero only at
sources, where it can be computed using (3.13) combined with the end of
the proof of Theorem 3.2:

(4.6) n1!n2!f
i1,i2(n1, n2, p) =

∑

X1,X2, . . . ,Xl

partition of {1, . . . , n1 + n2},
∀j p|

∑

m∈Xj
fm

(|X1|−1)!(|X2|−1)! . . . (|Xl|−1)!(−1)
n1+n2−lpl(n1+n2−|X1|−. . .−|Xl|)!.

This formula uses the notation (3.8) in order to describe the fact that
summation goes through all partitions of {1, . . . , n1 + n2} into hindrances.

The definition (4.5) implies, by linearity of the Pascal’s equation:
(4.7)

△i1,i2(n1, n2, p) =
∑

06k6n1

06l6n2

p|i1k+i2l

f i1,i2(k, l, p)(−1)n1+n2−k−l

(

n1+n2−k−l

n1 − k

)

.
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Algorithm 1 Calculate a finite Pascal’s triangle. Arguments p, a, b: p
prime, 0 < a < b < p

Allocate the integer array data[0..p− 1][0..p− 1] (values of △a,b(x, y, p)),
the boolean array reg[0..p−1][0..p−1] (information about sources)
for x = 0, .., p − 1, y = 0, .., p − 1 do

reg[x][y] = (a · x+ b · y 6≡ 0 mod p)
end for

data[0][0] =data[p − 1][0] =data[0][p − 1] = 1
resolution at the edges

for x = 1, . . . , p−2 do data[x][p−1−x] = −data[x−1][p−x] end for

for x = 1, . . . , p−2 do data[x][0] = −data[x−1][0] end for

for y = 1, . . . , p−2 do data[0][y] = −data[0][y−1] end for

resolution inside
for n = p− 2, .., 1 do

for x = 1, .., n − 1 do

y ← n− x
if reg[x][y + 1] then

data[x][y] = −data[x− 1][y + 1]− data[x][y + 1]
else

Stop the inner loop
end if

end for

for y = 1, .., n − 1 do

x← n− y
if reg[x+ 1][y] then

data[x][y] = −data[x+ 1][y − 1]− data[x+ 1][y]
else

Stop the inner loop
end if

end for

end for

Print the result
for n = 0, .., p − 1 do

for y = 0, .., n do

Print data[n − y][y], reg[n − y][y]
end for

Print newline
end for
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+1
−1 −1

+1 +2 +1
−1 −3 −3 −1

+1 +4 +6 +4 +1
−1 −5 −10 −10 −5 −1

+1 +6 +15 +20 +15 −5� +1
−1 −7 −21 −35 +20� −10 +4 −1

+1 +8 +28 −21� +15 −10 +6 −3 +1
−1 −9 +8� −7 +6 −5 +4 −3 +2 −1

+1 −1� +1 −1 +1 −1 +1 −1 +1 −1 +1

Figure 1. Coefficients of
∏10

j=1

(

X + ζj11Y + ζ2j11Z
)

4.2. The case i1 = 1, i2 = 2. We can find a closed formula for the numbers
△1,2(n1, n2, p) using the identity

(4.8) △1,2(n1, n2, p) = △
1,2(n1, p− 1− n1 − n2, p).

It follows indeed from the fact that for each disjoint couple X1,X2 ⊂ F×
p ,

as in the definition (3.2),

∑

X1 + 2
∑

X2 = −
(

∑

X1 + 2
∑

(F×
p \X1 \X2)

)

.

Formula (3.5) applies to at least one side of (4.8) for each (n1, n2) (and to
both sides of (4.8) if n1 + 2n2 = p− 1), leading to

(4.9) △1,2(n1, n2, p) =

{

(−1)n1+n2
(n1+n2

n1

)

if n1 + 2n2 6 p− 1

(−1)n2
(p−1−n2

n1

)

if n1 + 2n2 > p− 1.

Therefore, this Pascal’s triangle is symmetric with respect to the axis n1+
2n2 = p− 1.
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One can deduce (1.4) from (4.9) in the following way: by (3.4),

(4.10)

j=p−1
∏

j=1

(

1 + ζp − ζ2p
)

=
∑

n1,n2∈N

(−1)n2△1,2(n1, n2, p)

=
∑

n1,n2∈N

(−1)n2−1(△1,2(n1−1, n2, p) +△
1,2(n1, n2−1, p)− f1,2(n1, n2, p))

=
∑

n1,n2∈N

((−1)n2−1△1,2(n1, n2 − 1, p)− (−1)n2△1,2(n1 − 1, n2, p)

+ (−1)n2f1,2(n1, n2, p))

=
∑

n1,n2∈N

(−1)n2f1,2(n1, n2, p)

because massive cancellation occurs in the sum of differences of values of
the function (−1)y△1,2(x, y, p).

Suppose n1, n2 > 0 and n1 + 2n2 = p (therefore n1 is odd). Then

(4.11)

f1,2(n1, n2, p) = △
1,2(n1 − 1, n2, p) +△

1,2(n1, n2 − 1, p) +△1,2(n1, n2, p)

= (−1)n2

(

n1 + n2 − 1

n1 − 1

)

+ 2(−1)n2

(

n1 + n2 − 1

n1

)

= (−1)n2

((

n1 + n2

n1

)

+

(

n1 + n2 − 1

n1

))

= (−1)n2

((

p− n2

n2

)

+

(

p− n2 − 1

n2 − 1

))

.

The absolute value of (4.11) can be interpreted as the number of ways to
put n2 identical disjoint dominoes on a discrete circle of length p. Indeed
(see also [3]), for any k 6

p−1
2

(4.12) #{k disjoint dominoes on a circle of length p}

= #{k disjoint dominoes on a line segment of length p}

+#{k − 1 disjoint dominoes on a line segment of length p− 2}

=

(

p− k

k

)

+

(

p− k − 1

k − 1

)

.

The sum (4.10) contains three terms not covered by the hypotheses of
(4.11): these correspond to n1=n2=0, n1=p, n2=0, n1=0, n2=p and they
equal respectively 1, 1 and −1. The overall contribution of these terms can
be identified to the number of ways to put 0 dominoes on a discrete circle
of length p. Therefore, the norm (4.10) equals to the number of ways to
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put any number of identical disjoint dominoes on a discrete circle of length
p, which is proved in [3] to be Lp.

For example, if p = 11, the numbers are those of Figure 1 (� denotes a
source).

4.3. Application: an identity for binomial coefficients. The formu-

las (3.4) and (4.10) have another application. As 1 − ζp + ζ2p =
1+ζ3p
1+ζp

, we

get in a similar way to (4.10):

(4.13) 1 =

j=p−1
∏

j=1

(

1− ζp + ζ2p
)

=
∑

n1,n2∈N

(−1)n1△1,2(n1, n2, p)

=
∑

n1,n2∈N

(−1)n1f1,2(n1, n2, p).

We further get:

(4.14) 1 = 1+
∑

n1,n2∈N∗

(−1)n1f1,2(n1, n2, p) = 1−
∑

n1,n2∈N∗

f1,2(n1, n2, p).

The formula (4.11) leads to the following combinatorial identity2:

(4.15)

p−1
2
∑

k=1

(−1)k
((

p− k

k

)

+

(

p− k − 1

k − 1

))

= 0.

4.4. Second application: expression for a symmetric polynomial.

We can formulate an expression for an arbitrary symmetric polynomial of

the numbers (1 + ζjp − ζ2jp ) which is:

Theorem 4.2. Let p > 5 be prime and δ ∈ {0, . . . , p−2} an integer. Then

σp−1−δ,(j=1,...,p−1)(1 + ζjp − ζ2jp ) (see the notation of Proposition 3.1) equals
(p−1

δ

)

plus the sum of ”weights” of ways of putting a number n>0 of disjoint

dominoes on a discrete circle of length p, the weights being
(n−1

δ

)

.

As a consequence, σp−1−δ(1 + ζ − ζ2) > 0 and σp−1−δ(1 + ζ − ζ2) ≡
(p−1

δ

)

mod p.

2The previous proof implies (4.15) in the case of prime p>5. The Zeilberger’s algoritm
(implemented in Maple 17, see also Chapter 6 of the book [9]) generalizes it for any p>5 congruent
to 1 or 5 modulo 6
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Proof. By Proposition 3.1, we get a similar expression to (4.10)

(4.16) σp−1−δ,(j=1,...,p−1)

(

1 + ζjp + ζ2jp
)

=
∑

n1,n2∈N

(−1)n2

(

p− 1− n1 − n2

δ

)

△1,2(n1, n2, p)

=

p
∑

ñ=1

∑

n1, n2

n1 + n2 = p− ñ

(−1)n2

(

ñ− 1

δ

)

(−△1,2(n1 − 1, n2, p)−△
1,2(n1, n2 − 1, p) + f1,2(n1, n2, p))

=

p
∑

ñ=1

∑

n1, n2

n1 + n2 = p− ñ

(−1)n2

(

ñ− 1

δ

)

f1,2(n1, n2, p).

The identity (4.11) leads to

(4.17) σp−1−δ,(j=1,...,p−1)

(

1 + ζjp + ζ2jp
)

=

(

p− 1

δ

)

+

p−1
2
∑

n2=1

(

n2 − 1

δ

)((

p− n2

n2

)

+

(

p− n2 − 1

n2 − 1

))

and the discussion that follows the formula (4.11) identifies each number
(−1)n2f1,2(n1, n2, p) as the number of ways to put n2 disjoint dominoes on
a discrete circle of length p. �
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+1
−1 −1

+1 +2 +1
−1 −3 −3 −1

+1 +4 +6 +4 +1
−1 −5 −10 +12� −5 −1

+1 +6 +15 −2 −7 +6 +1
−1 −7 +12� −13 +9 +1 −7 −1

+1 +8 −5 +1 +4 −10 +6 −3� +1
−1 +2� −3 +4 −5 +6 +4 −3 +2 −1

+1 −1 +1 −1 +1 −1 +1� −1 +1 −1 +1

Figure 2. Coefficients of
∏10

j=1

(

X + ζj11Y + ζ3j11Z
)

4.5. The case i1 = 1, i2 = 3. In this case the formula

(4.18) △1,3(n1, n2, p) = △
2,3(n1, p− 1− n1 − n2, p)

is analogous to (4.8) and implies

(4.19) △1,3(n1, n2, p) =







(−1)n1+n2
(

n1+n2
n1

)

if n1 + 3n2 6 p− 1

(−1)n2
(p−1−n2

n1

)

if n1 + 3n2 > 2p − 2 or

n1 + 3n2 = 2p − 4,

therefore, in two regions, the coefficients of the triangle are identical to the
previous case.

The coefficients in the middle region can be calculated using the general
formula (4.7). Let us specify different quantities used there, namely the
position of sources and the associated forces. The sources are the integer
points situated on two lines: the upper line with equation n1+3n2 = p and
the lower line with equation n1 + 3n2 = 2p. One can see that the number
of integer points on the upper line of sources is

(4.20) #







0 < n1 < p
0 < n2 < p
n1 + 3n2 = p







= [
p

3
]

and the number of integer points on the lower line is

(4.21) #







0 < n1 < p
0 < n2 < p

n1 + 3n2 = 2p







= rnd(
p

6
),

the closest integer to p
6 .
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If (n1, n2) is a point on the upper line of sources, the value of
f1,3(n1, n2, p) has a simple expression given by (4.6):

(4.22) f1,3(n1, n2, p) =
(n1 + n2 − 1)!p

n1!n2!

because the sum consists of the single term associated to
X={1, . . . , n1+n2}. Under the same hypotheses, (4.7) implies

(4.23) △1,3(n1, n2, p) =
(n1 + n2 − 1)!p

n1!n2!
−

(

n1 + n2

n1

)

= 2

(

n1+n2−1

n1

)

.

In any point (n1, n2) such that p 6 n1 + 3n2 < 2p, the formula (4.7)
takes the following form:

(4.24) △1,3(n1, n2, p) = (−1)n1+n2

(

n1 + n2

n1

)

+
∑

0<k6n1

0<l6n2

p = i1k+i2l

f1,3(k, l, p)(−1)n1+n2−k−l

(

n1+n2−k−l

n1 − k

)

.

We can also compute a simple expression for the forces of sources on the
lower line. Suppose that n1, n2 > 0 and n1 +3n2 = 2p. Then, by (4.5) and
(4.18),

(4.25)

f1,3(n1, n2, p) = △
1,3(n1, n2, p) +△

1,3(n1 − 1, n2, p) +△
1,3(n1, n2 − 1, p)

= f2,3(n1, p− n1 − n2, p).

By (4.6) (the sum, once again, consists of a single term because
2n1 + 3(p−n1−n2)=p),

(4.26) f2,3(n1, p− n1 − n2, p) =
(−1)n2(p − n2 − 1)!p

n1!(p − n1 − n2)!
.

For example, if p = 11, the numbers are those of Figure 2 (� denotes a
source).
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