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By using ergodic theory of subadditive processes and variational convergence, we study the macroscopic behavior of a thin 3-dimensional composite made up of high conductivity fibers which are randomly distributed according to a stochastic point process in a bounded open set of R 3 . The thickness of the body, the conductivity and the size of the cross sections of the fibers depend on a small parameter ε. The variational limit functional energy obtained when ε tends to 0 is deterministic and depends on two variables: one is the solution of a variational problem posed in a 2-dimensional bounded open set and describes the behavior of the medium, the other captures the limit behavior of suitably rescaled solutions in the fibers when the thickness and the size section become increasingly thin and the conductivity of the fibers becomes increasingly large.

Introduction

By stochastic homogenization together with a reduction dimension variational process, we propose a two dimensional deterministic model of a randomly fibered composite occupying an open cylinder O h(ε) = O × (0, h(ε)) of R 3 , whose basis is a domain O of R 2 and thickness h(ε) goes to zero with ε. The random structure may be described as follows: consider the union of cylinders T ε (ω) := εD(ω) × R where D(ω) := i∈N D(ω i ) and D(ω i ) are disks distributed at random in R 2 following a stochastic point process ω = (ω i ) i∈N of R 2 associated with a suitable probability space (Ω, A, P), then the random fibered structure O h(ε) is the union of the matrix O h(ε) \ T ε (ω) and the fibers O h(ε) ∩ T ε (ω) (Figure 1). For short we sometimes drop ω and for instance, write T ε and D instead of T ε (ω) and D(ω).

Our objective is to provide a simplified model of the slices of a composite made up of thin fibers with large conductivity, randomly distributed into a matrix with conductivity of order one. This model concerns various steady-states situations like heat diffusion or electrostatic problems. A similar situation has been treated in [START_REF] Bellieud | Homogenization of elliptic problems in a fiber reinforced structure[END_REF][START_REF] Bellieud | S Orankitjaroen Nonlinear Capacitary Problems for a General Distribution of Fibers To appear in AMRX[END_REF] for a composite with fixed thickness and in the case of a periodic or more general (but deterministic) distribution of very thin fibers. The limit problem obtained in these papers is non local and involves variational capacity theory. By contrast our limit problem is local with a zero-gradient density. Moreover, under some statistical hypothesis on the distribution of fibers, the density is deterministic. From the mathematical point of view, we consider the random variational problem (P ε (ω))

inf u∈W 1,p ε (O h(ε) ) ˆOh(ε) \Tε f (∇u)dx + 1 ε a ˆOh(ε) ∩Tε g(∇u)dx - ˆOh(ε) L ε .udx - ˆb O∩εD×{h(ε)} l ε .u dH 2
where H 2 denotes the two-dimensional Hausdorff measure, f , g are two convex functions,

W 1,p ε (O h(ε) ) := u ∈ W 1,p (O h(ε) ) : u = 0 on O ∩ εD(ω) × {0} ,
and u in the last integral is written for the trace of u on O ∩ εD × {h(ε)}, and u = 0 on ( O ∩ εD(ω)) × {0} may be understood in the sense of the traces on ( O ∩ εD(ω)) × {0}. The coefficient 1 ε a stands for the high conductivity of the fibers.

We consider the case where h(ε) = ε p and a scaling where the energy per thickness becomes infinite with rate ε -p . It is worth noticing that typically, for dimension reduction problems ones consider a scaling where the energy per thickness is of order one or vanishes. This leads to a problem which is totally different from the one studied in the present paper. More precisely, denoting by ūε (ω, .) : O ε p → R the random minimizer of (P ε (ω)) which is subjected to a body source L ε , is null on the lower sections of the fibers, and subjected to a surface source l ε on the upper sections of the fibers, we intend to study the behavior of u ε (ω, .) and 1 O∩Tε u ε (ω, .) where u ε (ω, .) is defined in O := O × (0, 1) by u ε (ω, x) = ūε ω, x, ε p x 3 . We will see thereafter that the condition u(x) = 0 on ( O ∩ εD(ω)) × {0} can be generalized by u(x) = u 0 on ( O ∩ εD(ω)) × {0} with u 0 ∈ W 1,p ( Ô) (see Corollary 1.3). Moreover all our results hold with these two boundary conditions on the lower and upper sections O × {0} and O × {ε p }.

We assume that he sources L ε and l ε satisfy the following behavior: there exist L in L q (O), l in L q ( O), q = p p-1 , and b in R such that

L ε (x) = ε -p L x, ε -p x 3 for x in O ε p , l ε (x) = ε -b l(x) for x in O ∩ εD. (1.1)
Note that, according to the choice of L ε in (1.1), the surface limit O of the layer O ε p is submitted to a finite source with density ´1 0 L(x, t) dt. In what follows we assume a > 0, p > 1, b ≤ p -1 + a p . For carrying out this analysis, we will determine the variational limit of the rescaled energy E ε defined in L p (O by

E ε (ω, u) = H ε (ω, u) -ˆO L.u dx -ε -b ˆb O∩εD×{1} l.u dH 2 .
where

H ε (ω, u) =    ε p ˆO\Tε f ( ∇u, 1 ε p ∂u ∂x 3 ) dx + ε p-a ˆO∩Tε g( ∇u, 1 ε p ∂u ∂x 3 ) dx if u ∈ W 1,p ε (O)
+∞ otherwise, and

W 1,p ε (O) := u ∈ W 1,p (O) : u = 0 on O ∩ εD(ω) × {0} .
Let us denote by Ŷ the unit cell of R 2 , by f ∞,p the p-recession function of the function f and, for all λ ∈ R 2 , set f ∞,p (λ) := inf ξ∈R f ∞,p (λ, ξ). For all s ∈ R, we define f 0 (s) by

f 0 (s) := lim n→+∞ inf w∈W 1,p 0 (n Ŷ \D(ω)) n Ŷ f ∞,p (∇w) dx : n Ŷ w dx = s .
The existence of this limits holds for P-almost every ω in Ω under certain conditions on the probability space (Ω, A, P ) specified further in Section 3 (see Lemma 1.1 below where the properties of f 0 are summarized). Finally, denoting by g ∞,p the p-recession of g we set (g ∞,p ) ⊥ (s) = g ∞,p (0, s) (the growth conditions fulfilled by f and g and the definition of the p-recession functions are specified in the next section). We define the deterministic functional H 0 defined in L p (O) × L p (O) by

H 0 (u, v) =    ˆÔ f 0 (u) dx + θ 1-p ˆO(g ∞,p ) ⊥ ( ∂v ∂x 3 )dx if (u, v) ∈ L p (O) × V 0 (O) +∞ otherwise, where V 0 (O) := v ∈ L p (O) : ∂v ∂x3 ∈ L p (O), v(x, 0) = 0
, and the coefficient θ, namely the asymptotic volume fraction of the fibers, is introduced in Section 3, Definition 3.1. We consider two cases for which the limit functional E 0 differs following the value of b compared to γ := p -1 + a p :

.

Case (C 1 ): b = γ E 0 (u, v) =        H 0 (u, v) -ˆO L.u dx - ˆb O l.v dx if (u, v) ∈ L p (O) × V 0 (O) +∞ otherwise. . Case (C 2 ): b < γ E 0 (u, v) =        H 0 (u, v) -ˆO L.u dx if (u, v) ∈ L p (O) × V 0 (O) +∞ otherwise.
Let us introduce the following convenient notation for any sequence (u ε ) ε>0 in L p (O) and any

(u, v) in L p (O) × L p (O) u ε ⇀⇀ (u, v) ⇐⇒    u ε ⇀ u ∈ L p (O) ε -γ 1 D(ω)∩ b O u ε ⇀ v in L p (O)
, then our main result is Theorem 1.1. Consider a sequence (u ε ) ε>0 in L p (O) of bounded energy, i.e., satisfying for P a.s. ω ∈ Ω, sup ε>0 E ε (ω, u ε ) < +∞. Then, for P a.s. ω ∈ Ω, there exist a subsequence possibly depending on ω and (u, v) ∈ L p (O) × V 0 (O) possibly depending on ω such that :

u ε ⇀ u in L p (O), and ∂u ∂x 3 = 0; (1.2) ε -γ 1 D(ω)∩ b O ( . ε )u ε ⇀ v in L p (O); (1.3) ε -γ 1 D(ω)∩ b O ( . ε ) ∂u ε ∂x 3 ⇀ ∂v ∂x 3 in L p (O). (1.4)
Furthermore the sequence of functionals E ε almost surely converges to the functional E 0 in the following sense: there exists Ω ′ ∈ A with P(Ω ′ ) = 1 such that for all ω ∈ Ω ′ one has i) for all (u, v) ∈ L p (O) × V 0 and for all sequences

(u ε ) ε>0 in L p (O) such that u ε ⇀⇀ (u, v), then lim inf ε→0 E ε (u ε ) ≥ E 0 (u, v); ii) for all (u, v) ∈ L p (O) × V 0 , there exists a sequence (u ε ) ε>0 in L p (O) such that u ε ⇀⇀ (u, v) and lim sup ε→0 E ε (u ε ) ≤ E 0 (u, v)
Corollary 1.1. Let denote by u ε (ω, .) the function x → ūε ω, x, ε p x 3 , where ūε (ω, .) is the solution of (P ε (ω)).

Then almost surely there exists a subsequence of (u ε (ω, .)) ε>0 such that u ε (ω, .) ⇀ u in L p (O) with for a.e.

x ∈ Ô, u(x) ∈ ∂f * 0 L where L(x) = ˆ1 0 L 1 (x, t) dt, and f * 0 is the Fenchel transform of the convex function f 0 . Consequently if ∂f * 0 is single valued then almost surely all the sequence (u ε (ω, .)) ε>0 weakly converges in L p (O) to u defined for a.e.

x ∈ O by u

(x) = ∂f * 0 L . (1.5) Assume that (g ∞,p ) ⊥ is differentiable, then almost surely ε -γ 1 Tε∩O u ε (ω, .) and ε -γ 1 Tε∩O ∂uε(ω,.) ∂x3 weakly converge to v and ∂ v ∂x3 in L p (O) respectively, where v is the unique solution to                - ∂ ∂x 3 d(g ∞,p ) ⊥ ds ( ∂v ∂x 3 ) = 0 in O, v(x, 0) = 0 on O × {0}, D(g ∞,p ) ⊥ ( ∂v ∂x3 ) = θ p-1l on O × {1}.
where l = l when b = γ 0 if b < γ.

By eliminating the function v regarded as an internal variable, from Theorem 1.1 we easily deduce an almost sure Γ-convergence process when L p (O) is equipped with its weak convergence (for the main properties of the Γ-convergence, we refer the reader to [START_REF] Attouch | Variational Convergence for Functions and Operators[END_REF][START_REF] Maso | An introduction to Γ-convergence[END_REF]). Precisely we have Corollary 1.2. The sequence of energies E ε (ω, .) almost surely Γ-converges to the zero-gradient energy functional Ẽ0 (u

) := inf {E 0 (u, v) : v ∈ V 0 } which is explicitly given in L p ( O) by Ẽ0 (u) =      ˆb O f 0 (u) dx - ˆb O u. L dx + G 0 (v) - ˆb O l.v dx if b = γ, ˆb O f 0 (u) dx - ˆb O u. L dx if b < γ.
More generally, if the conductivity of the fibers is not too high (a < p) and if b < 0 or l = 0 we obtain a deterministic energy in the case when u(x) = u 0 on ( O ∩ εD) × {0} where u 0 is a given function in W 1,p ( Ô) (we can also extend this boundary condition to the base O × {0}). Indeed let ũ := uu 0 , then the energy

E ε becomes Ẽε (ω, ũ) := ε p ˆO\Tε f ( ∇ũ + ∇u 0 , 1 ε p ∂ ũ ∂x 3 ) dx + ε p-a ˆO∩Tε g( ∇ũ + ∇u 0 , 1 ε p ∂ ũ ∂x 3 ) dx -ˆO L.ũ dx -ˆO L.u 0 dx -ε -b ˆ( b O∩εD)×{1} l.ũ dH 2 -ε -b ˆ( b O∩εD)×{1} l.u 0 dH 2 .
Moreover from (2.2) and since a < p we have

Ẽε (ω, ũ) ≈ ε p ˆO\Tε f ( ∇ũ, 1 ε p ∂ ũ ∂x 3 ) dx + ε p-a ˆO∩Tε g( ∇ũ, 1 ε p ∂ ũ ∂x 3 ) dx -ˆO L.ũ dx -ˆO L.u 0 dx -ε -b ˆ( b O∩εD)×{1} l.ũ dH 2 -ε -b ˆ( b O∩εD)×{1} l.u 0 dH 2 ,
where ũ = 0 on O ∩ εD(ω) × {0}. Then we have Corollary 1.3. Assume that a < p and b ≤ 0 or l = 0. The sequence of energy Ẽε converges almost surely to Ẽ0 in the sense of Theorem 1.1 where Ẽ0 is defined in

L p (O) × V 0 (O) by Ẽ0 (u, v) = E 0 (u, v) - ˆÔ L.u 0 dx
, and E 0 is the limit energy described previously. In this case, the admissible functions are given by u + u 0 .

Let us clarify the limit density energy f 0 by considering a suitable discrete subadditive process on the probabilistic space (Ω, A, P). (see Section 3 for the definition of (Ω, A, P) and the group (τ z ) z∈Z 2 acting on (Ω, A, P)). 

Let denote by

S Â(ω, s) := inf ˆÂ\D(ω) f ∞,p (∇w(x)) dx : w ∈ Adm Â(ω, s) , Adm Â(ω, s) := {w ∈ W 1,p 0  \ D(ω)) :  w dx = s}.
The following lemma which summarizes the properties of the subadditive process by which we define f 0 , is crucial for establishing the proof of Theorem 1.1. Its proof and various definitions and results related to subadditive processes are postponed in appendix.

Lemma 1.1. For all fixed s in R the map S(., s) :

• I-→ L 1 (Ω, A, P) Â -→ S Â(., s)
is a subadditive process with respect to the group (τ z ) z∈Z 2 . For δ > 0 small enough, It satisfies for all s ∈ R, all

 ∈ • I and all ω ∈ Ω S Â(ω, s) ≤ C(p) |s| p δ p ( Ŷ \ D(ω)) 2δ p | Â| (1.6)
where C(p) is a positive constant that depends on p, and ω is the family of centers of the hexagonal close-packing distribution of disks with radius d 2 in R 2 (cf Remark 3.1). Therefore for any regular family (I n ) n∈N of sets in 

|I n | = inf m∈N * E S [0,m[ 2 (., s) m 2 = lim n→+∞ E S [0,n[ 2 (., s) n 2 .
The so defined function s → f 0 (s) is convex, positively homogeneous of degree p, satisfies the growth conditions (2.4) with the same constant α, with a constant β possibly different, and the Lipschitz condition (2.5) with a constant ℓ possibly different.

In the periodic case, one can show that f 0 reduces to a simple expression. The proof of the proposition below is postponed in Section 4.

Proposition 1.1. When the fibers are periodically distributed, for all s ∈ R we have

f 0 (s) = inf ˆŶ f ∞,p (∇w) dŷ : w ∈ W 1,p # ( Ŷ ), ˆŶ w dŷ = s, w = 0 on D where W 1,p # ( Ŷ ) is the set of Ŷ -periodic functions of W 1,p loc (R 2 ). Taking f = g = 1 2 |.| 2
, the problem (P ε (ω)) may be formulated in terms of partial differential equations by the following random Dirichlet-Neumann problem which derives from the standard computation of the Euler equation of (P ε,h(ε) (ω)):

                         -div a ε (ω, x)∇ū ε ) = L ε in O h(ε) , ūε = 0 on O h(ε) ∩ D ε (ω) × {0} ε -a ∂ ∂x 3 g(∇ū ε ) = l ε on O h(ε) ∩ (D ε (ω) × {h(ε)}), ∂ ūε ∂ν = 0 on ∂O \ O h(ε) ∩ D ε (ω) × {0} ∪ O h(ε) ∩ D ε (ω) × {h(ε)} .
where

a ε (ω, x) = 1 if x ∈ O h(ε) \ T ε , a ε (ω, x) = 1 ε a if O h(ε) ∩ T ε
and ν is the unit outer normal vector to the boundary ∂O of O. By an elementary computation one can show that (1.5) reduces to

u(x) = Λ ˆ1 0 L(x, t) dt
where Λ is defined as follows: consider U n (ω, .) solution to the random Dirichlet problem

-∆U = 1 in n Ŷ \ D(ω), U ∈ W 1,2 0 (n Ŷ \ D(ω))
and set Λ n (ω) := ffl n Ŷ U n (ω, .) dx, then one can show that Λ n (ω) almost surely converges when n tends to +∞ to a deterministic limit that we denote by Λ. The proof is established in Section 5.2, Proposition 5.1. It is interesting to note that ū is also the weak limit in

L 2 (O) of 1 ε u ε where u ε is the solution of the random Dirichlet problem -ε 2 ∆u ε = ´1 0 L(x, t) dt in O \ εD(ω), u ε ∈ W 1,2 0 ( O \ εD(ω)) i.e.
, ū follows a scalar Darcy's law (see [START_REF] Chabi | Random Dirichlet problem: scalar Darcy's law[END_REF]). Some numerical experiments are carried out in Section 5.2.

Functional analysis setting

We are given two strictly convex functions f and g defined on R 3 satisfying the standard growth condition of order p > 1: there exist two positive constants α, β, such that ∀ζ in R 3

α|ζ| p ≤ f (ζ) ≤ β(1 + |ζ| p ), (2.1) 
idem for g. It is well known that f satisfies automatically the Lipschitz property

|f (ζ) -f (ζ ′ )| ≤ ℓ|ζ -ζ ′ |(1 + |ζ| p-1 + |ζ ′ | p-1 ) (2.2) for all (ζ, ζ ′ ) ∈ R 3 × R 3
where ℓ is a positive constant; idem for g. Furthermore, we assume that there exist

β ′ > 0, 0 < r < p and a p-positively homogeneous function f ∞,p (the p-recession function of f ) such that for all ζ ∈ R 3 |f (ζ) -f ∞,p (ζ)| ≤ β ′ (1 + |ζ| p-r ). (2.3) From (2.3) we infer lim t→+∞ f (tζ) t p = f ∞,p (ζ) so that from (2.1), f ∞,p satisfies for all ζ ∈ R 3 α|ζ| p ≤ f ∞,p (ζ) ≤ β|ζ| p (2.4) and |f ∞,p (ζ) -f ∞,p (ζ ′ )| ≤ ℓ|ζ -ζ ′ |(|ζ| p-1 + |ζ ′ | p-1 ) (2.5) for all (ζ, ζ ′ ) ∈ R 3 × R 3 . Finally for all λ ∈ R 2 we set f ∞,p (λ) := inf ξ∈R f ∞,p (λ, ξ) which clearly defines a convex function f ∞,p in R 2 .
We define the p-recession function g ∞,p of g as in (2.3) and, for all s in R, we assume that

(g ∞,p ) ⊥ (s) := inf λ∈R 2 g ∞,p (λ, s) = g ∞,p (0, s).
Note that (g ∞,p ) ⊥ is a convex function.

In the proof of Theorem 1.1 we sometimes consider separately the following functionals

F ε (ω, u) =    ε p ˆO\Tε f ( ∇u, 1 ε p ∂u ∂x 3 ) dx if u ∈ W 1,p ε (O) +∞ otherwise,
and

G ε (ω, u) =    ε p-a ˆO∩Tε g( ∇u, 1 ε p ∂u ∂x 3 ) dx if u ∈ W 1,p ε (O) +∞ otherwise, so that H ε (ω, .) = F ε (ω, .) + G ε (ω, .) in L p (O).
Similarly we will consider the two functionals defined in L p (O) by

F 0 (u) = ˆÔ f 0 (u) dx and G 0 (u) =    θ 1-p ˆO(g ∞,p ) ⊥ ( ∂v ∂x 3 )dx if v ∈ V 0 (O) +∞ otherwise, so that H 0 (u, v) = F 0 (u) + G 0 (v) in L p (O) × V 0 (O).

Probabilistic setting

For all x = (x 1 , x 2 , x 3 ) of R 3 , x stands for (x 1 , x 2 ) and we denote by Ŷ the unit cell (0, 1) 2 of R 2 . For any bounded Borel set A of R 2 or R 3 , |A| denotes its Lebesgue measure. We go back to the probabilistic model suggested in [START_REF] Michaille | Macroscopic behavior of a randomly fibered medium[END_REF]. Let d be a given number satisfying 0 < d ≤ 1 and consider the set

Ω = (ω i ) i∈N : ω i ∈ R 2 , |ω i -ω j | ≥ d for i = j
equipped with the trace σ-algebra A of the standard product σ-algebra on Ω. Let Bd/2 (0) denote the open ball of R 2 centered at 0 with radius d/2, then for every ω = (ω i ) i∈N we form the disk D(ω i ) := ω i + Bd/2 (0) and consider

D(ω) := i∈N D(ω i ). Therefore ω → T (ω) = D(ω) × R is a random set in R 3 , union of random cylinders, whose basis is the union of the pairwise disjoint disks D(ω i ) of R 2 centered at ω i . We set T ε (ω) := εD(ω) × R. For every z ∈ Z 2 we define the operator τ z : Ω → Ω by (τ z ω) i = ω i -z. Note that D(τ z ω) = D(ω) -z.
We assume that there exists a probability measure on (Ω, A) which satisfies the system of three following axioms:

(A 1 ) The sections are non sparsely distributed:

P ω ∈ Ω : | Ŷ ∩ D(ω)| > 0 = 1;
(A 2 ) Stationarity condition: ∀z ∈ Z 2 , τ z #P = P where τ z #P denotes image measure of P by τ z ;

(A 3 ) Asymptotic mixing property: for all sets E and F of A,

lim |z|→+∞ P(τ z E ∩ F ) = P(E)P(F ).
We emphazise the following remarks extracted from [12, Remark 2.1]:

Remark 3.1.
i) It would be more natural to consider stationarity condition (A 2 ) with respect to the continuous group (τ t ) t∈R 2 defined in the same way by (τ t ω) i = ω it. Actually the discrete group (τ z ) z∈Z 2 suffices for the mathematical analysis. The size of the cell Ŷ is chosen in such a way to fix the generator of the group (τ z ) z∈Z 2 . Condition (A 2 ) then says that every random function X defined on Ω is statistically homogeneous. Roughly speaking, moving a window  in R 2 following translations in R 2 , the distributions of cross sections in the window are statistically the same.

ii) Consider ω = (ω i ) i∈N made up of the centers ωi of the disks of radius d/2 arranged in an hexagonal lattice, where each disk is surrounded by 8 disks with the same radius d/2. This configuration is called the hexagonal close-packing of disks in R 2 . It is known to provide the highest density of disks among all other distributions of centers in Ω of disks with the same radius, so that, for all ω in Ω,

| Ŷ ∩D(ω)| ≤ | Ŷ ∩D(ω)|.
We end this section by the following convergence result on some random oscillating sequences, which is a consequence of the multidimensional Birkoff ergodic theorem and whose proof is a straightforward consequence of Theorem 4.2 and Proposition 5.3 in [START_REF] Chabi | Ergodic Theory and Application to Nonconvex Homogenization[END_REF].

Proposition 3.1. Let n be fixed in N * , and ψ : Ω × R 2 -→ R be a A ⊗ B(R 2 )-measurable function satisfying the three conditions: i) for P-almost every ω ∈ Ω, ŷ → ψ(ω, ŷ) belongs to L 1 loc (R 2 ); ii) for all bounded Borel set  of R 2 the map  → ´Â ψ(ω, ŷ) dŷ belongs to L 1 (Ω, A, P); iii) for all z ∈ nZ 2 , for all ŷ ∈ R 2 , ψ(ω, ŷ + z) = ψ(τ z ω, ŷ) for P-almost every ω ∈ Ω. Then almost surely ψ(ω, . ε ) * ⇀ E (0,n) 2 ψ(., ŷ) dŷ for the σ(L 1 (O), L ∞ (O)) topology.
Note that the characteristic function of the random set T ε ∩ O may be written

1 D(ω)∩ b O ( . ε ) and that (ω, .) → 1 D(ω)∩ b O (.) satisfies the condition 1 D(ω)∩ b O (x + z) = 1 D(τzω)∩ b O (x)
. Therefore, applying Proposition 3.1 we infer that for P a.e. ω in Ω, 

1 D∩ b O ( . ε ) * ⇀ E| Ŷ ∩ D(.)|. ( 3 

Proofs of the results

In what follows C will denote various constants which may depend on ω and p and may vary from line to line.

4.1 Proof of compactness properties (1.2), (1.3) and (1.4) of Theorem 1.1

For proving (1.2), (1.3) and (1.4) we will need the following Lemma deduced from the Poincaré-Wirtinger inequality.

Lemma 4.1. For all w ∈ W 1,p ε (O), we have almost surely

ˆO |w| p dx ≤ C h | Ŷ ∩ D(ω)| ˆO∩Tε | ∂w ∂x 3 | p dx + ˆO |ε ∇w| p dx , (4.1) 
where the constant C > 0 depends on ω and p.

Proof. We fix ω in the subset of Ω of full probability for which (A 1 ) holds and consider w ∈ W 1,p (R 2 ). According to Poincaré-Wirtinger's inequality, there exists a constant C pw (ω) such that

ˆŶ w - Ŷ ∩D(ω) w dŷ p dx ≤ C pw (ω) ˆŶ |∇w| p dx from which we deduce ˆε Ŷ w - ε Ŷ ∩εD(ω) w dŷ p dx ≤ C pw (ω) ˆε Ŷ |ε∇w| p dx
and finally ˆε

Ŷ |w| p dx ≤ C ε 2 ε Ŷ ∩εD(ω) |w| p dx + ˆε Ŷ |ε∇w| p dx . (4.2)
From (4.2) and the operator τ εz w defined by τ εz w(x) := w(x + εz) with z ∈ Z 2 , we have

ˆε( Ŷ +z) |w| p dx = ˆε Ŷ |τ εz w| p dx ≤ C ε 2 ε Ŷ ∩εD(ω) |τ εz w| p dx + ˆε Ŷ |ε∇τ εz w| p dx = C 1 | Ŷ ∩ D(ω)| ˆε( Ŷ +z)∩εD(τ-zω) |w| p dx + ˆε( Ŷ +z) |ε∇w| p dx . (4.3) Fix now w in W 1,p ε (O). Noticing that O \ z∈Iε ε( Ŷ + z) = 0 where I ε is a finite subset of Z 2 and the cells ( Ŷ + z) z∈Z 2 are pairwise disjoint, from (4.3) we deduce ˆO |w| p dx ≤ C z∈Iε 1 | Ŷ ∩ D(ω)| ˆh 0 ˆε( Ŷ +z)∩εD(τ-zω) |w| p dx + ˆO ε ∇w p dx ≤ C 1 | Ŷ ∩ D(ω)| ˆO∩Tε |w| p dx + ˆO ε ∇w p dx ≤ C h | Ŷ ∩ D(ω)| ˆO∩Tε ∂w ∂x 3 p dx + ˆO ε ∇w p dx , (4.4) 
the last inequality is deduced from a Poincaré inequality. Indeed, since w = 0 on Ô ∩ (εD(ω) × {0}),

ˆO∩Tε |w| p dx ≤ h ˆO∩Tε ∂w ∂x 3 p dx,
which completes the proof.

We now turn to the proofs of (1.2), (1.3) and (1.4). Fix ω in the subset of Ω of full probability for which (A 1 ) holds and consider (u ε ) ε>0 ∈ L p (O) such that sup ε>0 E ε (ω, u ε ) < +∞. From 4.1 established in the previous lemma, the growth conditions satisfied by f and g, and since γ > 0 and a > 0, we have

ˆO |u ε | p dx ≤ C ˆO∩Tε ∂u ε ∂x 3 p dx + Cε p ˆO\Tε ∇u ε p dx + Cε p-a ˆO∩Tε ∇u ε p dx ≤ C ε pγ α H ε (u ε ) + CH ε (u ε ) ≤ CH ε (u ε ). (4.5)
On the other hand, from st ≤ ν p p s p + 1 qν q t q with s ≥ 0, t > 0, and ν > 0 suitably chosen later, noticing that

ˆb O∩εD |u ε (x, 1)| p dx ≤ ˆO∩Tε ∂u ε ∂x 3 p dx,
and since b ≥ γ, we deduce

H ε (ω, u ε ) ≤ C + ˆO L.u ε dx + ˆb O∩εD ε -b l.u ε dx ≤ C + 1 qν q ˆO |L| q dx + ν p p ˆO |u ε | p dx + 1 qν q ˆb O∩εD |l| q dx + ν p p ε -pb ˆO∩Tε ∂u ε ∂x 3 p dx ≤ C + ν p p ˆO |u ε | p dx + ν p αp H ε (ω, u ε ). (4.6) Thus 1 - ν p αp H ε (ω, u ε ) ≤ C + ν p p ˆO |u ε | p dx. (4.7) 
Combining (4.7) with (4.5) we infer

ˆO |u ε | p dx ≤ C + C ν p δ(ν) ˆO\Tε |u ε | p dx where δ(ν) := 1 1 -ν p αp . Choosing ν small enough in such a way that C ν p δ(ν) < 1 2 we obtain ˆO |u ε | p dx ≤ C (4.8)
so that u ε weakly converges to some u in L p (O). Moreover (4.7), (4.8) yield H ε (ω, u ε ) ≤ C. Therefore, according to the coercivity assumption on f and g, we infer

ε -p ˆO\Tε ∂u ε ∂x 3 p dx + ε -pγ ˆO∩Tε ∂u ε ∂x 3 p dx ≤ C; (4.9) ε -pγ ˆO∩Tε ∂u ε ∂x 3 p dx ≤ C; ε -pγ ˆO∩Tε |u ε | p dx ≤ C,
from which we easily deduce (1.2), (1.3) and (1.4).

Proof of the upper bound ii) of Theorem 1.1

This section is devoted to the establishing of the upper bound (ii) in Theorem 1.1.

Proposition 4.1. There exists a set Ω ′ ∈ A of full probability such that for all (u, v) ∈ L p (O) × V 0 (O) and all ω ∈ Ω ′ there exists a sequence (u ε (ω)) ε>0 in L p (O) satisfying

u ε (ω) ⇀⇀ (u, v) E 0 (u, v) ≥ lim sup ε→0 E ε (ω, u ε (ω)).
Proof. For any sequence (u ε (ω)) ε>0 satsifying u ε (ω) ⇀⇀ (u, v), the limit

lim ε→0 ˆO L.u ε (ω) dx + ε -b ˆb O×{1} l.u ε (ω) dH 2 =      ˆO L.u dx + ˆb O lv dx when b = γ, ˆO L.u dx when b < γ.
is easy to establish and left to the reader. Therefore we are reduced to prove

u ε (ω) ⇀⇀ (u, v) H 0 (u, v) ≥ lim sup ε→0 H ε (ω, u ε (ω)),
for a suitable sequence (u ε (ω)) ε>0 . We proceed into three steps.

Step 1. We assume (u, v) ∈ C 1 c ( Ô)× C 1 (O)∩V 0 (O) and we show that there exists a set Ω ′ of full probability and, for all

ω ∈ Ω ′ , a sequence (u ε (ω)) ε>0 in L p (O) such that u ε (ω) ⇀⇀ (u, v) and lim ε→0 F ε (ω, u ε (ω)) = ˆÔ f 0 (u) dx lim ε→0 G ε (ω, u ε (ω)) = G 0 (v).
Let η ∈ Q + intended to go to 0 and let ( Qi,η ) i∈Iη be a finite family of pairwise disjoint cubes of size η included in Ô, such that Ô \ i∈Iη Qi,η = 0.

Let z η := i∈Iη u(x i,η )1 Qi,η where x i,η is arbitrarily chosen in Qi,η . Since u is a Lipschitz function on Ô, clearly

z η → u in L p (O) when η → 0.
For every i ∈ I η , and for fixed n ∈ N * , consider w i,n (ω, .)

∈ Adm n Ŷ (ω, u(x i,η )) and ξ i,n (ω, .) ∈ C ∞ c (n Ŷ \D(ω)) such that ˆn Ŷ \D(ω) f ∞,p (∇w i,n (ω, x), ξ i,n (ω, x)) dx = inf ˆn Ŷ f ∞,p (∇w) dy : w ∈ Adm n Ŷ (ω, u(x i,η ))
and extend it on R 2 as follows:

wi,n (ω, x) = w i,n (τ z ω, x -z) if x ∈ n Ŷ + z, z ∈ nZ 2 ; ξi,n (ω, x) = ξ i,n (τ z ω, x -z) if x ∈ n Ŷ + z, z ∈ nZ 2 .
It is easy to check that wi,n and ξi,n satisfies: wi,n (ω, x + z) = wi,n (τ z ω, x) and ξi,n (ω, x + z) = ξi,n (τ z ω, x) for all z ∈ nZ. To shorten notation we drop the dependance on η and we still denote by w i,n and ξ i,n these two functions. According to Proposition 3.1, we have, almost surely when ε → 0

f ∞,p (∇w i,n (ω, x ε ), ξ i,n (ω, x ε )) * ⇀ E n Ŷ f ∞,p (∇w i,n (ω, x), ξ i,n (ω, x)) dx = E S (0,n) 2 (ω, u(x i,η )) n 2 , ( 4.10) 
and

w i,n (ω, . ε ) ⇀ E n Ŷ w i,n (ω, y) dy = u(x i,η ). (4.11)
Let (θ i,δ ) i∈Iη be a partition of unity associated with ( Qi,η ) i∈Iη with θ i,δ → 1 Qi,η when δ → 0 (we omit the dependance on η), and consider the following function in W 1,p (O):

u δ,n,ε (ω, x) = 1 θ ε γ v + i∈Iη θ i,δ (x) w i,n (ω, x ε ) + ε p-1 x 3 ξ i,n (ω, x ε ) . Clearly u δ,n,ε = 1 θ ε γ v on O ∩ T ε (ω), and 
lim δ→0 lim ε→0 u δ,n,ε (ω, .) = z η weakly in L p (O) lim ε→0 ε -γ a(ω, . ε )u δ,n,ε (ω, .) = v weakly in L p (O).
(4.12)

Let Ω 0 be the set of full probability made up of all ω ∈ Ω for which a(ω, . ε ) ⇀ θ for the σ( L ∞ (O), L 1 (O)) topology and denote by Ω i,η,n the set of full probability made up of all ω ∈ Ω for which (4.10) and (4.11) hold.

In what follows we denote the set of full probability n∈N * η∈Q + i∈Iη Ω i,η,n ∩ Ω 0 by Ω ′ and we fix ω ∈ Ω ′ . Now we are going to estimate F ε (ω, u δ,n,ε (ω, .)) and G ε (ω, u n,δ,ε (ω, .)). To simplify the notation we do not indicate the dependance on ω. On O \ T ε we have

ε ∇u δ,n,ε (x) = 1 θ ε γ+1 ∇v(x) + i∈Iη θ i,δ (x) ∇w i,n (ω, x ε ) + ε p-1 x 3 ∇ξ i,n (ω, x ε ) + i∈Iη ε ∇θ i,δ (x) w i,n (ω, x ε ) + ε p-1 x 3 ξ i,n (ω, x ε ) = O(ε) + i∈Iη θ i,δ (x) ∇w i,n (ω, x ε )
and

ε 1-p ∂u δ,n,ε ∂x 3 (x) = 1 θ ε γ+1-p ∂v ∂x 3 (x) + i∈Iη θ i,δ (x)ξ i,n (ω, x ε ) = O(ε) + i∈Iη θ i,δ (x)ξ i,n (ω, x ε )
where O(ε) may depend on η, n, and δ. Consequently from (2.3), (2.5), (4.10)

lim ε→0 F ε (ω, u δ,n,ε ) = lim ε→0 ε p ˆO\Tε(ω) f ( ∇u δ,n,ε , ε -p ∂u δ,n,ε ∂x 3 ) dx = lim ε→0 ˆO\Tε(ω) f ∞,p (ε ∇u δ,n,ε , ε 1-p ∂u δ,n,ε ∂x 3 ) dx = lim ε→0 i∈Iη ˆQi,η θ p i,δ f ∞,p ( ∇w i,n (ω, x ε ), ξ i,n ( x ε )) dx = i∈Iη ˆQi,η θ p i,δ E S (0,n) 2 (ω, u(x i,η )) n 2 dx.
Thus, according to Lemma 1.1

lim δ→0 lim n→∞ lim ε→0 F ε (ω, u δ,n,ε ) = i∈Iη | Qi,η |f 0 (u(x i,η )) = ˆO f 0 (z η ) dx.
Finally, letting η → 0, we infer

lim η→0 lim δ→0 lim n→∞ lim ε→0 F ε (ω, u δ,n,ε ) = ˆO f 0 (u) dx. (4.13)
The same kind of computation gives (recall that γ = p -1 + a p and that g ∞,p is positively homogeneous of degree p)

lim ε→0 G ε (ω, u δ,n,ε ) = lim ε→0 ε p-a ˆO∩Tε g(ε γ 1 θ ∇v, ε γ-p 1 θ ∂v ∂x 3 ) dx = lim ε→0 ˆO∩Tε g ∞,p (ε p 1 θ ∇v, 1 θ ∂v ∂x 3 ) dx = θ ˆO g ∞,p (0, 1 θ ∂v ∂x 3 ) dx = G 0 (v). (4.14)
Combining (4.12), (4.13), (4.14) and a standard diagonalization argument

1 furnishes a map ε → (η(ε), δ(ε), n(ε)) such that u ε (ω, .) := u η(ε),δ(ε),n(ε),ε (ω, .) ⇀⇀ (u, v) lim ε→0 H ε (ω, u ε (ω, .)) = ˆÔ f 0 (u(x)) dx + G 0 (v).
which completes the proof of step 1.

Step 2. We fix (u, v) ∈ L p (O)×V 0 (O) with v ∈ C1 (O) and we show that for all ω ∈ Ω ′ there exists (u

ε (ω)) ε>0 in L p (O) such that u ε (ω) ⇀⇀ (u, v) and lim ε→0 H ε (ω, u ε (ω)) = H 0 (u, v). Consider u n ∈ C 1 c ( Ô) weakly converging toward u in L p ( O) such that lim n→+∞ ˆb O f 0 (u n ) dx = ˆb O f 0 (u) dx.
Thus according to step 1, there exists u ε,n (ω, .) weakly converging to u n when ε → 0 and

lim n→+∞ lim ε→0 H ε (ω, u ε,n (ω, .)) = ˆÔ f 0 (u(x)) dx + G 0 (v).
We conclude by a diagonalization argument.

Step 3. For any (u, v) ∈ L p (O) × V 0 (O) we show that for all ω ∈ Ω ′ there exists (u

ε (ω)) ε>0 in L p (O) such that u ε (ω) ⇀⇀ (u, v) and lim ε→0 H ε (ω, u ε (ω)) = H 0 (u, v). Fix v ∈ V 0 (O). According to standard relaxation results, there exists a sequence (ζ n ) n∈N in C 1 c (O) weakly converging to ∂v ∂x 3 in L p (O) such that lim n→+∞ ˆO(g ∞,p ) ⊥ ( 1 θ ζ n ) = ˆO(g ∞,p ) ⊥ ( 1 θ ∂v ∂x 3 )dx. (4.15) For all x ∈ O set v n (x) := ˆx3 0 ζ n (x, s) ds. Then v n ∈ V 0 (O) ∩ C 1 (O), v n ⇀ u in L p (O) and lim n→+∞ θ ˆO(g ∞,p ) ⊥ ( 1 θ ∂v n ∂x 3 ) = G 0 (v).
We end the proof by using Step 2 and a diagonalization argument.

Proof of the lower bound i) of Theorem 1.1

This section is devoted to the establishing of the lower bound (i) of Theorem 1.1.

Proposition 4.2. For all sequence (u ε ) ε>0 such that u ε ⇀⇀ (u, v) one has

E 0 (u, v) ≤ lim inf ε→0 E ε (ω, u ε ) (4.16)
for P a. s. ω ∈ Ω.

Proof. One may assume lim inf ε→0 E ε (ω, u ε ) < +∞ otherwise there is nothing to prove. With the notation of Section 2 It suffices to show that for P a.s. ω in Ω,

F 0 (v) ≤ lim inf ε→0 F ε (ω, u ε ) (4.17) G 0 (u) ≤ lim inf ε→0 G ε (ω, u ε ). (4.18)
Indeed, according to Lemma ??, we easily infer

lim ε→0 ˆO L.u ε (ω) dx + ˆb O×{1} l.u ε dH 2 =      ˆO L.u dx + ˆb O l.v dx when b = γ, ˆO L.u dx when b < γ.
Proof of (4.17). Note that since sup ε>0 E ε (ω, u ε ) < +∞, from (4.9), we infer that there exists a constant C such that On the other hand, according to the compactness lemma, Lemma ??, one has for any subsequence 1 O∩Tε u ε → 0 in L p (O) so that,

1 O\Tε u ε = u ε -1 O∩Tε u ε ⇀ u in L p (O). (4.21)
We will make use of (4.21) in the last step of the proof.

From (2.3), the coercivity condition satisfied by f and g, and from (4.19), (4.19), it is easily seen that lim inf

ε→0 ε p ˆO\Tε f ( ∇u ε , 1 ε p ∂u ε ∂x 3 )dx = lim inf ε→0 ˆO ε p f ( ∇u ε , 1 ε p ∂u ε ∂x 3 )dx ≥ lim inf ε→0 ˆO f ∞,p (ε ∇u ε )dx Fix x 0 in O and set Q ρ (x 0 ) := S ρ (x 0 ) × I ρ (x 0,3
) (to shorten notation we sometimes do not indicate the fixed argument x 0 ). By using a blow up argument, for proving (4.17), it is enough to establish that for a.e. x 0 in O, ffl Iρ z(x, x 3 ) dx 3 belongs to Adm Cε,ρ (ω, u(x 0 ), δ) and whose gradient asymptotically decreases the left hand side of (4.22). In the four steps below, to simplify the notation, we do not indicate the dependance on ρ for the various Sobolev functions.

lim ρ→0 lim inf ε→0 Qρ(x0) f ∞,p (ε∇u ε ) dx ≥ f 0 (u(x 0 )). ( 4 
First change. By using a standard truncation argument, we modify u ε into a Sobolev function satisfying

u ε,δ = 0 in (T ε ) δ and Qρ 1 Qρ\Tε f ∞,p (ε ∇u ε ) dx ≥ Qρ f ∞,p (ε ∇u ε,δ ) dx -β ε pγ (1 -δ) p + ε a (4.23) Indeed, consider ϕ in C 1 c (S ρ ) satisfying ϕ = 0 on εD δ , ϕ = 1 in S ρ \ εD and |∇ϕ| ∞ ≤ 1 ε(1-δ) and set u ε,δ = ϕu ε .
According to the growth conditions satisfied by f ∞,p we infer

ˆQρ f ∞,p (ε ∇u ε,δ ) dx = ˆQρ\Tε f ∞,p (ε ∇u ε ) dx + ˆ(Tε\(Tε) δ )∩Qρ f ∞,p (ε ∇u ε,δ ) dx ≤ ˆQρ f ∞,p (ε ∇u ε ) dx + β ˆ(Tε\(Tε) δ )∩Qρ ε p ∇u ε p dx +β 1 (1 -δ) p ˆ(Tε\(Tε) δ )∩Qρ |u ε | p dx
so that, from the Poincaré inequality and (4.19), (4.20), we infer

ˆQρ ε p f ∞,p ( ∇u ε,δ ) dx ≤ ˆQρ ε p f ∞,p ( ∇u ε ) dx + β ε pγ (1 -δ) p + ε a
which proves (4.23).

Second change. By using a standard De Giorgi slicing argument (see for instance [3, proof of Proposition 11.2.3]), there exists η(ε

) → 0 + , η(ε) > ε, a η(ε)-neighborhood V η(ε) ⊂ Q ρ of ∂Q ρ ,

and a Sobolev function ũε,δ vanishing on ∂S

ρ × I ρ , equal to u ε,δ in a Q ρ \ V η(ε), satisfying Qρ f ∞,p (ε ∇u ε,δ ) dx ≥ Qρ f ∞,p (ε ∇ũ ε,δ ) dx - C(ρ) ν -r ε (ρ) (4.24)
where C(ρ) is a positive constant depending only on ρ, lim ε→0 r ε (ρ) = 0 and ν ∈ N is the number of bands slicing V η(ε) and intended to go to +∞. It is worth noticing that ũε,δ remains equal to 0 in (T ε ) δ since it is of the form ϕ η(ε) u ε,δ for a suitable truncation function ϕ η(ε) .

Third change. We modify ũε,δ into a Sobolev function w ε,δ satisfying

w ε,δ = 0 in (T ε ) δ , w ε,δ = 0 on ∂Q ρ , Qρ w ε,δ = u(x 0 ) and Qρ f ∞,p (ε ∇ũ ε,δ ) dx ≥ Qρ f ∞,p (ε ∇w ε,δ ) dx -C u(x 0 ) - Qρ 1 Qρ\(Tε) δ ũε,δ dy p . (4.25)
Indeed, set

w ε,δ = ũε,δ + ψ ffl Qρ ψ dx u(x 0 ) - Qρ 1 Qρ\(Tε) δ ũε,δ dy where ψ ∈ C 1 c (Q ρ ) satisfies ψ = 0 in T ε , ψ = 0 on ∂Q ρ , |∇ψ| ∞ ≤ C ε and |ψ| ∞ ≤ C .
Last step. Collecting (4.23), (4.24) and (4.25) we finally obtain

Qρ f ∞,p (ε ∇u ε ) dx ≥ Qρ f ∞,p (ε ∇w ε,δ ) dx -β ε pγ (1 -δ) p + ε a - C(ρ) ν -r ε (ρ) -C u(x 0 ) - Qρ 1 Qρ\(Tε) δ ũε,δ dy p .
Rescaling w ε,δ into z ε,δ (y) := w ε,δ (εy) then yields

Qρ f ∞,p (ε ∇u ε ) dx ≥ 1 ε Qρ f ∞,p ( ∇z ε,δ ) dx -β ε pγ (1 -δ) p + ε a - C(ρ) ν -r ε (ρ) -C u(x 0 ) - Qρ 1 Qρ\(Tε) δ ũε,δ dy p . Now we extend z ε,δ by 0 in R 3 \ 1 ε S ρ . Then the function zε,δ defined by zε,δ (x) := |C ε,ρ | 1 ε S ρ Iρ z ε,δ (x, x 3 ) dx 3
clearly belongs to Adm Cε,ρ (ω, u(x 0 ), δ). Therefore, according to Jensen's inequality and from the p-homogeneity | 1 ε Sρ| = 1. On the other hand, according to Lemma 1.1, Theorem 5.2 and Section 6.2 of [START_REF] Licht | Global-local subadditive ergodic theorems and application to homogenization in elasticity[END_REF], for P-almost every ω ∈ Ω and for every ρ > 0 one has

of f ∞,p Qρ f ∞,p (ε ∇u ε ) dx ≥ |C ε,ρ | 1 ε S ρ p S Cε,ρ (ω, u(x 0 ), δ) |C ε,ρ | -β ε pγ (1 -δ) p + ε a - C(ρ) ν -r ε (ρ) -C u(x 0 ) - Qρ 1 
lim δ→1 lim ε→0 S Cε,ρ (ω, u(x 0 ), δ) |C ε,ρ | = lim ε→0 S Cε,ρ (ω, u(x 0 )) |C ε,ρ | = f 0 (u(x 0 )). (4.27) 
Then, letting successively ε → 0, δ → 1, ν → ∞ and ρ → 0 in (4.26), we obtain for P-almost every ω ∈ Ω and for almost every

x 0 ∈ O, lim inf ε→0 Qρ f ∞,p (ε∇u ε ) dx ≥ f 0 (u(x 0 ))
which ends the proof.

Proof of (4.18). Fix ω in the set Ω" of full probability given in Proposition 3.1 and assume that lim inf ε→0 G ε (u ε ) < +∞. According to the Moreau-Rockafellar duality principle we infer that for all φ in L q (O):

lim inf ε→0 G ε (u ε ) = lim inf ε→0 ε p-a ˆO 1 D(ω)∩ b O ( x ε )g ∞,p ( ∇u ε , 1 ε p ∂u ε ∂x )dx ≥ lim inf ε→0 ˆO 1 D(ω)∩ b O ( x ε )(g ∞,p ) ⊥ (ε -γ ∂u ε ∂x 3 )dx ≥ lim inf ε→0 ˆO 1 D(ω)∩ b O ( x ε )φ.ε -γ ∂u ε ∂x 3 dx -ˆO 1 D(ω)∩ b O ( x ε )(g ∞,p ) ⊥, * (φ)dx = ˆO φ. ∂v ∂x 3 dx -θ ˆO(g ∞,p ) ⊥, * (φ)dx = θ ˆO 1 θ φ ∂v ∂x 3 dx -ˆO(g ∞,p ) ⊥, * (φ)dx .
By taking the supremum over all functions φ in φ ∈ L q (O) we finally obtain

lim inf ε→0 G ε (u ε ) ≥ θ sup φ∈L q (O) ˆO 1 θ φ ∂v ∂x 3 dx -ˆO(g ∞,p ) ⊥, * (φ)dx = θ ˆO(g ∞,p ) ⊥ ( 1 θ ∂v ∂x 3 )dx = θ 1-p ˆO(g ∞,p ) ⊥ ( ∂v ∂x 3 )dx
which completes the proof.

Proof of Corollary 1.1

By applying the variational property of the convergence established in Theorem 1.1, and computing the Euler equation associated with the minimization problem min

{E 0 (u, v) : (u, v) ∈ L p (O) × V 0 (O)} to obtain:                            ∂f 0 (u(x)) ∋ ˆ1 0 L(x, s) ds, - ∂ ∂x 3 dg ∞,p ) ⊥ ds ( ∂v ∂x 3 ) = 0 in O, v(x, 0) = 0 on O, D(g ∞,p ) ⊥ ( ∂v ∂x3 ) = θ p-1l on O + {1}.
To end the proof it suffices to apply the subdifferential rule:

a * ∈ ∂f 0 (a) ⇐⇒ a ∈ ∂f * 0 (a * ).

Proof of Proposition 1.1

Proof. Clearly  → S  is a deterministic subadditive process and the covariance property becomes S Â+z = S  for all z ∈ Z 2 . Therefore, for all s ∈ R,

f 0 (s) = inf n∈N * S (0,n) 2 (s) n 2 . ( 4.28) 
Fix s ∈ R. We first establish the inequality

f 0 (s) ≥ inf ˆŶ f ∞,p (∇w) dŷ : w ∈ W 1,p # ( Ŷ ), ˆŶ w dŷ = s, w = 0 on D . (4.29) 
Let n be fixed in N * , ψ any element in Adm n Ŷ (s) and w # be a solution of the minimization problem min

ˆŶ f ∞,p (∇w) dŷ : w ∈ W 1,p # ( Ŷ ), ˆŶ w dŷ = s, w = 0 on D .
Let denote by λ the Lagrange multiplier associated with the constraint ´Ŷ w dŷ = s. The Euler equation of the problem (4.29) is

           -div ∂ f ∞,p (∇w # ) = λw # on Ŷ , w # ∈ W 1,p # ( Ŷ ), ´Ŷ w # dŷ = s. (4.30) 
The periodic expansion of w # , still denoted by

w # then satisfies 2            -div (∂ f ∞,p )(∇w # )) = λw # in n Ŷ , w # ∈ W 1,p # (n Ŷ ), ffl n Ŷ w # dŷ = s. (4.31) 
According to the subdifferential inequality, we have

n Ŷ f ∞,p (∇ψ(x))dx ≥ n Ŷ f ∞,p (∇w # (x))dx + n Ŷ ∂ f ∞,p (∇w # (x)).(∇ψ(x) -∇w # (x))dx = ˆŶ f ∞,p (∇w # (x))dx + n Ŷ ∂ f ∞,p (∇w # (x)).(∇ψ(x) -∇w # (x))dx.
In order to establish inequality (4.29), it suffices to show that the second term in the right hand side is equal to zero. Integrating by part we obtain

n Ŷ ∂ f ∞,p (∇w # (x)).(∇ψ(x) -∇w # (x))dx = - n Ŷ div(∂ f ∞,p (∇w # (x))).(ψ(x) -w # (x))dx + ∂(n Ŷ ) ∂ f ∞,p (∇w # (x))ν.(ψ(x) -w # (x))dx
where ν is the unit outer normal to n Ŷ . Since ∂ f ∞,p (∇w # (x)).ν is antiperiodic, we have

∂(n Ŷ ) ∂ f ∞,p (∇w # (x))ν.(ψ(x) -w # (x))dx = 0.
On the other hand from (4.31), the fact that ψ ∈ Adm n Ŷ (s), and from the periodicity of w # , we have

n Ŷ div(∂ f ∞,p (∇w # (x))).(ψ(x) -w # (x))dx = n Ŷ λ.(ψ(x) -w # (x))dx = n Ŷ λ.ψ(x)dx - n Ŷ λ.w # (x)dx = λ.s -λ.s then (4.29) is established.
We establish the inequality

f 0 (s) ≤ inf ˆŶ f ∞,p (∇w) dŷ : w ∈ W 1,p # ( Ŷ ), ˆŶ w dŷ = s, w = 0 on D . (4.32) 
Let w # be a solution of the problem min

ˆŶ f ∞,p (∇w) dŷ : w ∈ W 1,p # ( Ŷ ), ˆŶ w dŷ = s, w = 0 on D . (4.33) 
Let us expand as previously the function w # by Ŷ -periodicity in R 2 . We then obtain a function still denoted by w # in W 1,p loc (R 2 ). For all n ∈ N, and all x ∈ R 2 , set w n (x) := w # (nx). We use now the following result of Proposition 4.2: for all u ∈ L p (O), and all sequence (u ε ) ε>0 such that u ε ⇀ u dans L p (O), we have

ˆÔ f 0 (u)dx ≤ lim inf ε→0 ˆO\Tε(ω) f ∞,p (ε∇u ε )dx.
We apply this estimate with

ε = 1 n , O = Ŷ × (0, 1), w n = u ε and u = s.
Clearly the periodicity of w n yields the weak convergence w n ⇀ ffl Ŷ w # = s in L p ( Ŷ × (0, 1)). Since w n = 0 in D, we then obtain,

ˆŶ f 0 (u)dx = f 0 (s) ≤ lim inf ε→0 ˆ1 0 ˆŶ f ∞,p ( 1 n ∇w n (x))dx dx 3 = lim inf ε→0 ˆŶ f ∞,p (∇w # (nx))dx.
The change of variable nx = y then gives

f 0 (s) ≤ lim inf ε→0 1 n 2 ˆn Ŷ f ∞,p (∇w # (y))dy = lim inf ε→0 ˆŶ f ∞,p (∇w # (y))dy = ˆŶ f ∞,p (∇w # (y))dy
which completes the proof since w # is a minimizer of (4.33).

5 Numerical results when f = g = 1 2 |.| 2

Computation of u

In this section we establish the expression of u when f = 

P 1    -∆U = 1 in n Ŷ \ D(ω), U ∈ W 1,2 0 (n Ŷ \ D(ω)), (5.1) 
and set Λ n (ω) := ffl n Ŷ U n (ω, x) dx. Then for P a.e. ω ∈ Ω, Λ n (ω) converges to a deterministic value Λ > 0 and u is uniquely determined by the formula

u(x) = Λ ˆ1 0 L(x, t) dt. (5.2)
Proof. Consider the Lagrange multiplier λ s,n (ω) ∈ R of the optimization problem

f n (ω, s) := inf 1 2 n Ŷ |∇w| 2 dx : w ∈ W 1,2 0 (n Ŷ \ D(ω)), n Ŷ w dx = s , whose (random) minimizer w s satisfies                -∆w s,n = λ s,n (ω) in n Ŷ \ D(ω), w s,n ∈ W 1,2 0 (n Ŷ \ D(ω)), n Ŷ w s,n dx = s.
(5.3) Applying (5.3) for s = 1 we deduce f n (ω, 1) = 1 2 λ 1,n (ω). This proves that f n (ω, .) is a quadratic form (note that f n (ω, .) is homogeneous of degree 2), and that f n (ω, s) = 1 2 λ 1,n (ω)s 2 . Let us compute λ 1,n (ω). Since λ 1,n (ω) = 2f n (ω, 1), one has λ 1,n (ω) ≥ 2α > 0 and from (5.3), we infer that

w 1,n (ω) λ 1,n (ω) solves the scalar Dirichlet problem    -∆U n = 1 in n Ŷ \ D(ω), U n ∈ W 1,2 0 (n Ŷ \ D(ω)).
(5.4)

Let us denote by U n (ω) its unique solution, then

n Ŷ w 1,n (ω) λ 1,n (ω) dx = n Ŷ U n dx yields λ 1,n (ω) = n Ŷ w 1,n (ω) dx n Ŷ U n dx . But from (5.3) n Ŷ w 1,n (ω) dx = 1, so that λ 1,n (ω) = 1 n Ŷ U n dx .
According to the Akcoglu-Krengel subadditive ergodic theorem we are going to establish that Λ n (ω) := ffl n Ŷ U n (ω) dx(ω) almost surely converges towards a constant Λ > 0: indeed from (5.4) the function U n satisfies ˆn

Ŷ |∇U n | 2 dx = ˆn Ŷ U n dx thus, since 1 2 ˆn Ŷ |∇U n | 2 dx - ˆn Ŷ U n dx = inf 1 2 ˆn Ŷ |∇U | 2 dx - ˆn Ŷ U dx : U ∈ W 1,2 0 (n Ŷ \ D(ω)) , Λ n (ω) = -2 S n Ŷ n 2
where, for all interval  generated by Ŷ ,

S  := inf 1 2 ˆÂ |∇U | 2 dx - ˆÂ U dx : U ∈ W 1,2 0 (  \ D(ω)) .
Therefore it suffices to notice that  → S  is a subadditive process and to apply the Akcoglu-Krengel subadditive theorem [START_REF] Akcoglu | Ergodic theorem for superadditive processes[END_REF] to infer the almost sure convergence of Λ n (ω). For a detailed proof we refer to [START_REF] Chabi | Random Dirichlet problem: scalar Darcy's law[END_REF]. Consequently, for P-a.e. ω ∈ Ω and for all s ∈ R,

lim n→+∞ f n (ω, s) = f 0 (s) = 1 2Λ s 2
and ∂f 0 (s) = 1 Λ s. The conclusion follows from ∂f * 0 (s) = Λs.

Numerical computations of Λ

We compute a numerical approximation Λ n (ω) of the constant Λ determined in the preceding section which provides an approximation of u thanks to (5.2). We take a = 4, p = 2 and b = 3 (i.e b = p -1 + a p ) and we make use of the cast3M program [START_REF]CAST3M[END_REF] to solve the scalar random Dirichlet problem (5.1) in three geometrical situations: in the periodic case, in the situation of the random checkerboard-like with Ω = Ω Z 2 0 , Ω 0 made up of 9 points, and a general ergodic situation. More precisely, in the random checkerboard-like case, the sections of the fibers are randomly placed following 9 places in each cell (in the 4 corners, the 4 sides and in the center), and we consider a configuration which is neither periodic nor a checkerboard-like's case but satisfies the axioms described in in section 3.

The first step of the computation consists in constructing the triangulation mesh of the random set n Ŷ \D(ω) (Figure 2, Figure 3, Figure 4). The second step concerns the evolution of n → Λ n (ω). Figure 5 represents the evolution of n → Λ n (ω) for various realizations ω with equi-probability presence (for the checkerboard-like's case that corresponds to α k = 1 9 , k = 1, ..., 9) when n increases. For each ω we can see that the sequence (Λ n (ω)) n∈N converges to the same constant Λ (cf Figures 5 and6). This illustrates the ergodic hypothesis. 

Estimate of the error between the solutions of P ε,h(ε) (ω) and P in the scalar case

In order to validate our theoretical results in a scalar situation, we simulate the evolution of a suitable error between x → ūε (ω, x, 0) and ū on the one hand, and vε := 1 Tε(ω) ε -γ ūε and v on the other hand when ε decreases to 0. Recall that ūε , v and ū are solutions to the problems

INITIAL PROBLEM                      -div a ε (ω, x)∇ū ε = L ε in O h(ε) , ūε ∈ W 1,2 (O h(ε) \ T ε (ω)), ūε = 0 on O h(ε) ∩ (D ε (ω) × {0}) 1 ε 4 ∂ ūε ∂x 3 = l ε on O h(ε) ∩ (D ε (ω) × {h(ε)}) LIMIT PROBLEM                            ū = Λ L p.p in O, - ∂ 2 v ∂x 2 3 = 0 p.p in O, v = 0 p.p in O × {0}, ∂v ∂x 3 = θ l p.p on O × {1}.
A numerical approximation of θ is obtained by averaging | Ŷ ∩ D(ω)| over 10000 drawings. We perform the calculations with f

= g = 1 2 |.| 2 , p = 2, a = 4, b = γ = p -1 + a p , L ε = ε -p
, and ℓ ε = ε -b . For any function w in L 2 (O) we denote by w its numerical approximation in R N , where N is the number of nodes given by the software Cast3M [START_REF]CAST3M[END_REF]. Furthermore . 2 denotes the euclidian norm in R N . Precisely, we compute the relative error ũε(x,0)-ũ(x) 2 ũ(x) 2 and ṽε(x)-ṽ(x) 2 ṽ(x) 2 . We illustrate these two convergences in Figures 7 et 8 respectively by taking h(ε) = ε 2 = 1 n 2 where n is the size of the cell n Ŷ , and with an arbitrary realization of ω. At the end of the process, the error in the matrix is < 8% and in the fibers is < 4%. . Given a dynamical system (Ω, A, P, (T z ) z∈Z N ), i.e., a probability space (Ω, A, P) equipped with a group (T z ) z∈Z N of P-preserving transformation on Ω, we call discrete subadditive process covariant with respect to (T z ) z∈Z N , a set function S : I -→ L 1 P (Ω) satisfying (i) for every I ∈ I such that there exists a finite family (I j ) j∈J of disjoint intervals in I with I = j∈J I j ,

S I (•) ≤ j∈J S Ij (•), (ii) ∀I ∈ I, ∀z ∈ Z N , S I • τ z = S z+I (iii) γ(S) := inf{ ˆΣ S I |I| dP : I ∈ I } > -∞.
A sequence (I n ) n∈N , I n ∈ I is said to be regular if there exists a nondecreasing sequence (I ′ n ) n∈N of sets in I and a constant C reg > 0 such that

I n ⊂ I ′ n and sup n∈N |I ′ n |/|I n | ≤ C reg .
Let us denote by F the σ-algebra of invariant sets of A by the group (T z ) z∈Z N , i.e., E ∈ F iff T z E = E for all z ∈ Z N , the dynamical system (Ω, A, P, (T z ) z∈Z N ) is said to be ergodic if F is made up of sets E satisfying P(E) ∈ {0, 1}.

The ergodic theoerem below is a crucial tool in stochastic homogenization. For a proof, we refer the reader to [START_REF] Akcoglu | Ergodic theorem for superadditive processes[END_REF][START_REF] Licht | Global-local subadditive ergodic theorems and application to homogenization in elasticity[END_REF]. One can also consider the restriction of S to the family

• I of open intervals (a, b) with a and b in Z N . In that case, subadditivity condition (i) can be weakened in the following sense (see [START_REF] Akcoglu | Ergodic theorem for superadditive processes[END_REF][START_REF] Licht | Global-local subadditive ergodic theorems and application to homogenization in elasticity[END_REF]):

(i)' for every I ∈ I such that there exists a finite family (I j ) j∈J of disjoint intervals in The conclusion of Theoerem 5.1 remains valid under these conditions.

Proof of Lemma 1.1

We reproduce with minor change the proofs of Theorem 2.2 and Proposition 2.1 in [START_REF] Michaille | Macroscopic behavior of a randomly fibered medium[END_REF]. For any δ > 0 and any set  of R 2 , we make use of the following notation: Âδ := x ∈  : d(x, R 2 \ Â) > δ . For any bounded Borel set A of R 2 , #(A) denotes its cardinal when it is finite. For each fixed s in R, it is easily seen that S(., s) satisfies the subadditivity condition (i)' in L 1 P (Ω). Moreover S(., s) is clearly covariant with respect to the group (τ z ) z∈Z 2 , i.e., for all  ∈

• I and all z ∈ Z 2 , S Â+z (., s) = S Â(., s) • τ z .

We are going to show that Adm Â(ω, s) = ∅ and that S  ∈ L 1 (Ω, A, P) by establishing (1.6), then to apply the Akcoglu-Krengel subadditive ergodic theorem (see [START_REF] Akcoglu | Ergodic theorem for superadditive processes[END_REF] and Annex). Fix  in It is easily seen that f 0 is a positively p-homogeneous convex function. The upper bound in (2.4) is a straightforward consequence of (1.6), and (2.5) is deduced from (2.4) by a standard argument of convex analysis. It remains to establish that f 0 (s) ≥ α |s| p for all s ∈ R. Let w ∈ Adm n Ŷ (ω, s). By using Jensen's inequality for the convex function s → |s| p and Poincaré-Wirtinger's inequality with optimal constant 1, we have

α |s| p = α n Ŷ w dx p ≤ α n Ŷ |w| p dx ≤ α n Ŷ | ∇w| p dx ≤ n Ŷ f ∞,p ( ∇w) dx.
We end the proof by taking the infimum over all the functions w in Adm n Ŷ (ω, s).

6 References

Figure 1 :

 1 Figure 1: A slice of randomly fibered body of thickness h(ε)

•I

  the set of all open intervals (a, b) with a and b in Z 2 . For all  ∈ • I and all s in R set

. 1 ) 3 . 1 .

 131 Definition The limit θ := E| Ŷ ∩ D(.)| in (3.1) is called the asymptotic volume fraction of the fibers.

2 ( 0 )

 20 .22) Let 0 < δ < 1 intended to go to 1 and set (T ε ) δ = εD δ (ω) × (0, 1) where D δ (ω) = i∈N (ω i + Bδ d 2 (0)). Let denote by  → S Â(ω, s, δ) the subadditive process introduced in Section 5.4 where D(ω i ) is replaced by the disk D δ (ω i ) := ω i + Bδ d and denote by Adm Â(ω, s, δ) the associated admissible set. Denoting by C ε,ρ the smallest cube in • I containing 1 ε S ρ , our strategy consists in suitably changing the function u ε in order to obtain a function z ε whose mean

Qρ 1

 1 Qρ\(Tε) δ ũε,δ dy p . (4.26) It is easily seen that from (4.21) and the Lebesgue point Theorem, for a.e. x 0 in O one has lim Qρ\(Tε) δ ũε,δ dy p

Figure 2 :

 2 Figure 2: A periodic triangle mesh (n=6).

Figure 3 :

 3 Figure 3: A "checkerboard-like" random triangle mesh (n=6).

Figure 4 :

 4 Figure 4: A general ergodic triangle mesh (n=6).

Figure 5 :Figure 6 :

 56 Figure 5: The curves n → Λ n (ω) for various realizations ω with equi-probability presence in our three random situations.
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  with |I \ j∈J I j | = 0, S I (., s) ≤ j∈J S Ij (., s).

From now on •I

 on denotes the set of all open intervals (a, b) with a and b in Z 2 . We recall the following notation in Section 1: for all  ∈ • I and all s in R S Â(ω, s) := infˆÂ\D(ω) f ∞,p (∇w(x)) dx : w ∈ Adm Â(ω, s) , Adm Â(ω, s) := {w ∈ W 1,p 0  \ D(ω)) :  w dx = s}.Note that the random set D(ω) is not necessarily included in Â. It is standard to see that the random functionals defined in the introduction are measurable when Ω × L p (O) is equipped with the product σ-algebra A ⊗ B where B is the Borel σ-algebra associated with the normed space L p (O). Consequently, for all fixed  in • I and all fixed s in R, the map ω → S Â(ω, s) is measurable.

•I, 0

 0 < δ small enough, and set φ δ (ω, .) = ρ δ * 1 ( Â\D(ω)) δ where ρ δ = 1 δ 2 ρ( . δ ) is a mollifier kernel defined from the standard mollifier ρ with support the unit ball of R 2 . Clearly we haveφ δ (ω, x) = 1 if x ∈ (  \ D(ω)) 2δ , 0 if x ∈ R 2 \ (  \ D(ω))and φ δ dx ≥ (  \ D(ω)) 2δ| Â| .(In order to shorten the notation we omit the variable ω for the function φ δ ). Therefore, involving the family ω and using Remark 3.1, ii)), we infer that for all ω ∈ Ω φ δ dx ≥ z∈ Â∩Z 2 ( Ŷ + z \ D(ω)) 2δ | Â| = z∈ Â∩Z 2 ( Ŷ \ D(τ z ω)) 2δ | Â| ≥ #( Â) | Â| ( Ŷ \ D(ω)) 2δ = ( Ŷ \ D(ω)) 2δ .(5.5)The random function defined byw δ (x, x 3 ) = s φ δ (x) ffl  φ δ dx belongs to Adm Â(ω, s).From the definition of ρ δ * 1 ( Â\D(ω)) δ we have |∇φ δ | ∞ ≤ C δ for some positive constant C depending on ρ. Thus, from (5.5) and the growth condition (2.4) satisfied by f ∞,p , we obtain S Â(ω, s) ≤ ˆÂ\D(ω) f ∞,p (∇w δ ) dx ≤ C(p) δ p ( Ŷ \ D(ω)) 2δ p |s| p | Â|.where C(p) = βC p .

  Proposition 5.1. Let denote by U n (ω, .) the unique solution of the scalar random Dirichlet problem

	1 2 |.| 2 . With the notation of Corollary 1.1 we have:

n Periodic case checkerboard-like case Ergodic case

  

	Λ n														
	6,00E-02														
	5,50E-02														
	5,00E-02														
	4,50E-02														
	4,00E-02														
	3,50E-02														
	3,00E-02														
	2,50E-02														
	2,00E-02														
	1,50E-02														
	1,00E-02														
	1	3	5	7	9	11	13	15	17	19	21	23	25	27	29

One can easily check that u η,δ,n,ε (ω, .) and ε -γ a(ω, . ε )u η,δ,n,ε belongs to a fixed ball B(0, r) of L p (O). Since the weak topology of L p (O) induces a metric on bounded sets, the diagonalization argument holds.

To simplify the notation, we denote abusively ∂ f ∞,p (∇w # (x)) to denote any element of the set ∂ f ∞,p (∇w # (x))