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Computing separable isogenies in quasi-optimal time

David Lubicz and Damien Robert

Abstract

Let A be an abelian variety of dimension g together with a principal polarization ϕ : A → Â
defined over a field k. Let ` be an odd integer prime to the characteristic of k and let K
be a subgroup of A[`] which is maximal isotropic for the Riemann form associated to ϕ. We
suppose that K is defined over k and let B = A/K be the quotient abelian variety together
with a polarization compatible with ϕ. Then B, as a polarized abelian variety, and the isogeny
f : A → B are also defined over k. In this paper, we describe an algorithm that takes as input
a theta null point of A and a polynomial system defining K and outputs a theta null point

of B as well as formulas for the isogeny f . We obtain a complexity of Õ(`(rg)/2) operations
in k where r = 2 (respectively, r = 4) if ` is a sum of two (respectively, four) squares which
constitutes an improvement over the algorithm described in Cosset and Robert (Math. Comput.
(2013) accepted for publication). We note that the algorithm is quasi-optimal if ` is a sum of
two squares since its complexity is quasi-linear in the degree of f .

1. Introduction

Let k be a field and let A be a principally polarized abelian variety of dimension g defined
over k. Let ` be an odd integer prime to the characteristic of k and let K be a subgroup of
exponent ` of A. Let B = A/K be the quotient abelian variety. In this paper, we are interested
in computing the isogeny f : A→ B = A/K. Being able to compute isogenies between abelian
varieties has many applications in algebraic number theory [1, 7, 9, 12, 15, 18, 28, 29, 31].

In order to have a concrete description of A, we consider a projective embedding of A
provided by the global sectionsH0(A,L ) of a symmetric ample line bundle L . In the following,
if X is an ample line bundle on A, we denote by ϕX : A→ Â the polarization corresponding
to X and by eX : A × A → Gm, the associated Riemann form. We suppose that L = L n

0

with L0 a principal line bundle of A and n ∈ N which we call the level of L . If 4|n, we
have a very convenient description of A as the intersection of a set of quadrics, given by the
Riemann equations, in PH0(A,L ), the projective space over the k-vector space H0(A,L ) of
dimension ng. A choice of a basis of H0(A,L ) and as a consequence of a choice of an embedding
of A into the projective space Png−1 is fixed by a choice of a theta structure for (A,L )
(see [26, Definition p. 297]).

We suppose that this embedding is defined over k, which implies that k contains the field of
definition of ϕL . In order to avoid field extensions and have a more compact representation of
A, we want to take n as small as possible. Most of the time, in applications, n = 2 or n = 4.
In the following, we assume that 2|n and that ` is prime to n.

Now let K be a subgroup of A[`] maximal isotropic for the Riemann form eL ` , that is given

as input by a set of homogeneous equations in PH0(A,L ), and let f : A → B = A/K be the
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corresponding isogeny. Then L descends by f to a line bundle M on B which is a n-power of
a principal polarization M0. If K is k-rational, then both B and the polarization M are also
rational. Our goal is to compute an embedding of B in PH0(B,M ) as well as formulas for the
isogeny f : A→ B. We can prove the following theorem.

Theorem 1.1. Let (A,L ,Θn) be a polarized abelian variety of dimension g with a
symmetric theta structure of level n even, defined over a field k. Let ` be an integer prime to
n and assume that `n is prime to the characteristic of k. Let K be a subgroup of A[`] maximal
isotropic for eL ` . Then one can compute the isogeny A → A/K in theta coordinates of level

n by using Õ(`(rg)/2) operations in k where r = 2 (respectively, r = 4) if ` is a sum of two
(respectively, four) squares.

This is the same result as [11, Theorem 1.1] except that in [11] the input kernel K is
given by generators of the group K(k), and the resulting theorem is that the isogeny can be

computed in Õ(`(rg)/2) operations in k′, where k′ is the compositum of the fields of definition

of the geometric points of K. When k is a finite field, this yields a complexity of Õ(`(rg
2)/2)

operations in k for the algorithm of [11], complexity that can be much worse when k is a
number field. In the case r = 2, we remark that the complexity of the algorithm presented in
this paper is quasi-linear in the degree of the kernel of the isogeny which is quasi-optimal for
a very natural setting of the isogeny computation problem.

Our algorithm is very similar to that of [11, Theorem 1.1] which is based, on the one hand,
on the algorithm described in [24] to compute an isogeny f : A → B between A together
with a line bundle of level n and B with a line bundle of level n`, and, on the other hand, on
the Koizumi general addition formula [19] from which a change of level formula is deduced
(see [11, Proposition 4.1]). Our main improvement consists in working with ‘formal points’
rather than with geometric points of the kernel K.

One may ask how to find a description as an algebraic variety for a subgroup K of A[`], i.e.
obtain polynomial equations for it, which is one of the inputs of the algorithm presented in this
paper. In the case where A is a Jacobian of a curve over a finite field the zeta function of which
is known, it is possible to work with the geometric points of `-torsion by taking random points
in an appropriate extension (for more details, see [5]). One can then try to find directly a basis

of a rational kernel K. Generating the equations of K from such a basis takes Õ(`g) operations
in the field k′ (where k′ is defined above as the compositum of the fields of definitions of the
geometric points of K). As we already have the geometric points of the kernel, it might seem
easier to directly use the algorithm from [11], but actually when ` is a sum of four squares this

algorithm takes Õ(`2g) operations in k′, so it is slower than the algorithm presented in this

paper (Õ(`g) operations in k′ to find the equation of the kernel and Õ(`2g) operations in k to
compute the isogeny). In particular, in the worst case where the points of K are in an extension

of k of degree O(`g), we find that Theorem 1.1 gives a complexity of Õ(`2g) operations in k

for all odd prime `, whereas the algorithm from [11] gives a complexity of Õ(`2g) for primes

congruent to 1 mod 4 and Õ(`4g) for primes congruent to 3 mod 4.
Another method would be to use modular polynomials as in the elliptic case to construct

rational kernels. Unfortunately, there is a lack of a database of modular polynomials for higher-
dimension abelian varieties, and there is as yet no known method to recover a kernel associated
to a root of these modular polynomials. What can still be done though is to work with
`-division polynomials directly. An `-division polynomial is a univariate polynomial of degree
`2g parametrizing the variety A[`], and by looking at rational factors of degree `g of this
polynomial we can find rational kernels. This approach is mostly useful in the case where the
base field k is a number field, because it yields an algorithm polynomial (but not quasi-linear)
in ` to construct equations for a rational kernel K.
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In particular, we explain in § 8 that if (A,L ,Θn) is a polarized abelian variety of dimension
g with a symmetric theta structure of even level n defined over a number field k and ` is
an integer prime to n then one can compute all rational isogenies A → A/K where K is a
maximal isotropic subgroup of the `-torsion A[`] in time polynomial in `. More generally we
have a similar result over over any field k where we have an algorithm to construct rational
subvarieties of a given zero-dimensional projective variety V that is polynomial in the degree
of V. For an application of isogenies over a number field, see [6], for instance.

Remark 1.2. Let M be an ample line bundle on B defining an embedding of B into
PH0(B,M ). If we want to express the isogeny f : A → B in term of this embedding, it is
natural to take M such that f∗(M ) is a power Lm of L . Indeed in that case f comes

from a morphism of the projective spaces PH0(A,L m) → PH0(B,M ) which can be computed
without using the equations defining the embedding of A inside PH0(A,L ). Descent theory
tells us (see [26, Proposition 2]) that, for m ∈ N∗, there exists such a line bundle M on B if
and only if K is a subgroup of kerϕL m and is isotropic for eL m . As by [26, Proposition 4],
kerϕL m = {x ∈ A(k) | m · x ∈ kerϕL }, we have that K is a subgroup of kerϕL m if and only
if `|m. For efficiency reasons, it is better to take m = `. It is also more convenient to work
with power of principal polarizations. When ` is prime to n, by [26, Proposition 2], M is a
principal polarization if and only if K is maximal isotropic in the `-torsion. This discussion
motivates the hypothesis made in Theorem 1.1.

This paper relies heavily on the theory of theta functions which provides a convenient
framework to represent and manipulate global sections of ample line bundles of abelian
varieties. In order to avoid technical details, we have chosen to present our results using the
classical theory of theta functions. For this, we assume that k is a number field and we suppose
we are given a fixed embedding of k into C. Nonetheless, it should be understood that, by using
Mumford’s theory of algebraic theta functions, all our algorithms apply without modification to
the case of abelian varieties defined over any field of characteristic not equal to 2. The notations
used have been chosen to make the translation into Mumford’s formalism straightforward.

Our paper is organized as follows. In § 2 we gather some basic definitions about theta
functions. In § 3 we recall the principle of the algorithm of [11]. Then, in § 5, we explain
how to compute with formal points in K. Section 6 is devoted to the proof of the main results
of this paper (in particular, Theorem 1.1), and in § 7 we give some examples. Finally, in § 8 we
explain how to compute kernels over a number field.

2. Notation and basic facts

In this section, in order to fix the notation, we recall some well-known facts on analytic theta
functions (see, for instance, [4, 27]). Let Hg be the g-dimensional Siegel upper-half space which
is the set of g×g symmetric matrices Ω with coefficients in C whose imaginary part is positive
definite. For Ω ∈ Hg, we denote by ΛΩ = Zg + ΩZg the lattice of Cg. If A is a complex abelian
variety of dimension g with a principal polarization then A is analytically isomorphic to Cg/ΛΩ

for a certain Ω ∈ Hg. For a, b ∈ Qg, the theta function with rational characteristics (a, b) is
the analytic function on Cg ×Hg:

θ

[
a
b

]
(z,Ω) =

∑
ν∈Zg

exp[πit(ν + a)Ω(ν + a) + 2πit(ν + a)(z + b)]. (2.1)

We say that a function f on Cg is ΛΩ-quasi-periodic of level n ∈ N if, for all z ∈ Cg and
m ∈ Zg, we have f(z+m) = f(z), f(z+ Ωm) = exp(−πintmΩm− 2πintzm)f(z) (where tv is
the transpose of the vector v). For any n ∈ N∗, the set HΩ,n of ΛΩ-quasi-periodic functions of
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level n is a C-vector space of dimension ng a basis of which can be given by the theta functions
with characteristics (θ

[
0
b/n

]
(z, n−1Ω))b∈[0,...,n−1]g . There is a well-known correspondence (see

[4, Appendix B]) between the vector space HΩ,n and H0(A,L n
0 ) where L0 is the principal

line bundle on A canonically defined by a choice of Ω.
Once we have chosen a level n ∈ N∗ and Ω ∈ Hg such that the abelian variety A is analytically

isomorphic to Cg/ΛΩ, for the rest of this paper, we adopt the following conventions. We let
Z(n) = (Z/nZ)g and, for a point z ∈ Cg and ν ∈ Z(n), we put θAν (z) = θ

[
0
ν/n

]
(z,Ω/n). If no

confusion is possible, we will write θν(z) in place of θAν (z).
A theorem of Lefschetz tells us that if n > 3, the functions in HΩ,n give a projective

embedding of A:

ρn : Cg/(Zg + ΩZg) → PZ(n)
C

z 7→ (θν(z))ν∈Z(n).
(2.2)

For n = 2, the functions in HΩ,2 do not give a projective embedding of A. Actually, it is
easy to check that, for all f ∈ HΩ,2, we have f(−z) = f(z). Under some well-known general
conditions [19, Corollary 4.5.2], the image of the morphism defined by HΩ,2 in PZ(2) is the
Kummer variety associated to A, which is the quotient of A by the automorphism −1.

It is natural to look for algebraic relations between theta functions to obtain a description
of the abelian variety as a closed subvariety of a projective space. A lot of them are given by
a result of Riemann (see [23, Theorem 1]).

Theorem 2.1. Let i, j, k, l ∈ Z(2n). We suppose that i+ j, i+ k and i+ l ∈ Z(n). Let Ẑ(2)
be the dual group of Z(2). For all χ ∈ Ẑ(2) and z1, z2 ∈ Cg, we have( ∑

η∈Z(2)

χ(η)θi+j+η(z1 + z2)θi−j+η(z1 − z2)

)( ∑
η∈Z(2)

χ(η)θk+l+η(0)θk−l+η(0)

)

=

( ∑
η∈Z(2)

χ(η)θi+k+η(z1)θi−k+η(z1)

)( ∑
η∈Z(2)

χ(η)θj+l+η(z2)θj−l+η(z2)

)
,

where Z(n) (respectively, Z(2)) are considered as subgroups of Z(2n) via the map x 7→ 2x
(respectively, x 7→ nx).

For n ∈ N∗, we can associate to Ω ∈ Hg its level n theta null point (θν(0))ν∈Z(n). By taking
z2 = 0 in Theorem 2.1, we obtain a set of quadratic equations which are parametrized by the
theta null points of level n. A result of Mumford [26, Theorem 2] tells us that if 4|n this system
of equations is complete in the sense that it gives the embedding of A into PZ(n) defined by n
and Ω following (2.2).

In the context of Mumford’s theory of algebraic theta functions, the data of n and Ω which
determine the theta null point is replaced by a level n theta structure Θn [26, Definition p. 297].

Let κ : AZ(n) − {0} → PZ(n) be the canonical projection. We denote by Ã the affine cone
of A that is the closed subvariety defined as the Zariski closure of κ−1(A) in AZ(n). We adopt

the following convention. If P ∈ PZ(n)(C), we will denote by P̃ an affine lift of P that is an

element of AZ(n)(C) − {0} such that κ(P̃ ) = P . We denote by P̃ν ∈ C for ν ∈ Z(n) the νth

coordinate of the point P̃ and, for λ ∈ C, we let λ ? P̃ ∈ AZ(n)(C) be the point such that

(λ ? P̃ )ν = λP̃ν . In the same way, if P ∈ A(C), we denote by zP ∈ Cg a point such that

ρn(zP ) = P . We remark that zP actually defines the affine lift (θν(zP ))ν∈Z(n) ∈ Ã(C) of P
which we call a good lift (note that such a good lift is not unique since zP is defined by P up

to an element of ΛΩ). We denote by ρ̃n : Cg → Ã, the map given by z 7→ (θν(z))ν∈Z(n). In the

following, we choose 0̃A ∈ Ã(k) an affine lift of κ((θν(0))ν∈Z(n)).
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As the canonical line bundle defined by Ω is not defined over k (not even over an algebraic
extension of k), we have, in general, 0̃A = λ(θν(0))ν∈Z(n) for λ ∈ C not in k. This subtlety
does not change the projective embedding given by Riemann’s equations, nor the computations
presented in this paper for homogeneity reasons (see Proposition 3.3 and [23, Remark 3]), so
that we can safely suppose in the following that λ = 1.

Using Riemann equations, from the data of 0̃A, (θν(z1))ν∈Z(n), (θν(z2))ν∈Z(n), (θν(z1 −
z2))ν∈Z(n) ∈ Ã(C), one can recover (θν(z1 + z2))ν∈Z(n) ∈ Ã(C) provided that, for sufficiently

many χ ∈ Ẑ(2), k, l ∈ Z(n), we have
∑
η∈Z(2) χ(η)θk+l+η(0)θk−l+η(0) 6= 0. This is always the

case if the level n is divisible by 4; and if n = 2, it is true if the projective embedding
of the Kummer variety of A given by level 2 theta functions is projectively normal (see
[23, § 4]). We will always suppose that these conditions are fulfilled in the following. The
operation on affine points that we obtain is called a differential addition (see [23] for more
details). Chaining differential additions in a classical Montgomery ladder [10, Algorithm 9.5

p. 148] yields an algorithm that takes as inputs Q̃ = (Q̃ν)ν∈Z(n), P̃ +Q = ((P̃ +Q)ν)ν∈Z(n),

P̃ = (P̃ν)ν∈Z(n), 0̃A = (0̃ν)ν∈Z(n) and an integer ` and outputs Q̃+ `P . We write Q̃+ `P =

ScalarMult(`, P̃ +Q, P̃ , Q̃, 0̃A).
If 4|n, we can compute the ‘normal’ addition law on the abelian variety: actually, by

computing sums of the form
∑
η∈Z(2) χ(η)θi(z1 + z2)θj0(z1 + z2) with Riemann relations for a

fixed j0 ∈ Z(n), from the knowledge of 0̃A and the projective points (θν(zj))ν∈Z(n) for j = 1, 2,
we can recover the projective point (θν(z1 + z2))ν∈Z(n). We call this operation NormalAdd.

3. Koizumi formula and isogeny computation

In this section, we briefly recall the principle of the isogeny computation algorithm presented
in [11]. Let (A,L0) be a principally polarized abelian variety given by Ω ∈ Hg such that
A is analytically isomorphic to Cg/ΛΩ. Let ` be an odd integer prime to n and let K be a
subgroup of A[`] maximal isotropic for the Riemann form eL0 . As K is isotropic for eL0 , up to
an action of an element of the symplectic group Sp2g(Z) on ΛΩ, we can always suppose that
K = (1/`)Zg/ΛΩ so that our problem comes down to the computation of the isogeny:

f : A ' Cg/ΛΩ → B ' Cg/Λ`Ω
z 7→ `z.

An important ingredient of the isogeny computation algorithm is the following formula
derived from the general Koizumi formula (see [11, Proposition 4.1]).

Proposition 3.1. Let M be a matrix of rank r with coefficients in Z such that tMM = `Id.
Let X ∈ (Cg)r and X = YM−1 ∈ (Cg)r. Let i ∈ (Z(n))r and j = iM−1. Then we have

θBi1(Y1) . . . θBir (Yr) =
∑

t1,...,tr∈ 1
` Z

g/Zg

(t1,...,tr)M=(0,...,0)

θAj1(X1 + t1) . . . θAjr (Xr + tr). (3.1)

In particular, the projective coordinates of the theta null point of B are given by the
equations

θBk (0) . . . θB0 (0) =
∑

t1,...,tr∈ 1
` Z

g/Zg

(t1,...,tr)M=(0,...,0)

θAj1(t1) . . . θAjr (tr), (3.2)

where j = (k, 0, . . . , 0)M−1 ∈ Z(n)r.
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Likewise, if P ∈ A(k) we can recover the projective coordinates of f(P ) via the equations

θBk (`zP ) . . . θB0 (0) =
∑

t1,...,tr∈ 1
` Z

g/Zg

(t1,...,tr)M=(0,...,0)

θAj1(X1 + t1) . . . θAjr (Xr + tr), (3.3)

where zP ∈ Cg is such that ρn(zP ) = P , X = YM−1 with Y = (`zP , 0, 0, 0) and j =
(k, 0, . . . , 0)M−1 for k ∈ Z(n). We remark that the Xi are integral multiples αizP of zP , where
(α1, . . . , αr) = (1, . . . , 0)tM and αi ∈ {1, . . . , `− 1}.

The algorithm takes as input the projective theta null point of A, 0A, as well as a basis
(e1, . . . , eg) of K(k). We can suppose that (e1, . . . , eg) is the image by ρn of the canonical basis
of (1/`)Zg/Zg if necessary by acting on ΛΩ by an element of Sp2g(Z). In order to compute
the isogeny, we need to evaluate expressions of the form of the right-hand side of (3.1) which
depends on the knowledge of the good lifts of the form (θν(Xi + ti))ν∈Z(n) where Xi = αizP
is an integral multiple of zP . Moreover, we note that these good lifts have to be coherent,
meaning that they are all derived from the same zP such that ρn(zP ) = P (we cannot change
zP from one term of the sum to another). Of course since everything is homogeneous, we only

need to work up to a common projective factor λ and take coherent lifts over any affine lift P̃
of P . This motivates the following definition:

Definition 3.2. We assume that we have fixed once and for all an affine lift 0̃A of 0A.
Suppose that we have fixed affine lifts Q̃ of every geometric point Q ∈ K(k) (we require

that the lift of 0A is 0̃A). We say that these lifts are compatible (with respect to 0̃A) if they
differ from the good lifts (θν(zQ))ν∈Z(n) for zQ ∈ (1/`)Zg/Zg by the same projective factor λ
(independently of Q).

Let P ∈ A(k) and fix an affine lift P̃ above it. Suppose that, together with the compatible

lifts Q̃ from above, we have chosen affine lifts of every geometric point αP+Q where Q ∈ K(k)

and α ∈ {0, . . . , `−1} (we require that the lift of P is P̃ ). We say that these lifts are compatible
with respect to 0̃A if there exists zP ∈ Cg with ρn(zP ) = P such that they differ from the
good lifts (θν(αzP + zQ))ν∈Z(n) for zQ ∈ (1/`)Zg/Zg by the same projective factor λ.

We extend the definition of compatible lifts by saying that a set of points {Q̃} or {P̃ +Q}
(where the points Q are in K(k) and P is a fixed point in A(k)) are compatible (with 0̃A or P̃ )
when they are part of a family of compatible points.

We would like to have an algebraic way to identify compatible lifts.

Proposition 3.3. Let Q ∈ K(k) and write ` = 2`′+1. Let Q̃ be an affine lift of Q compatible
with 0̃A. Then

ScalarMult(`′ + 1, Q̃, Q̃, 0̃A, 0̃A) = −ScalarMult(`′, Q̃, Q̃, 0̃A, 0̃A). (3.4)

If Q̃ satisfies equation (3.4), we say that it is a potential compatible lift of Q (with respect
to 0̃A).

Likewise, let P ∈ A(k), P̃ be any affine lift of P , and let P̃ +Q be an affine lift of P + Q

compatible with P̃ . Then

ScalarMult(`, P̃ +Q, Q̃, P̃ , 0̃A) = P̃ . (3.5)

If P̃ +Q satisfies equation (3.5), we say that it is a potential compatible lift of P + Q (with

respect to P̃ ).
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Proof. We begin with the first claim. By [24, Lemma 3.10], if we let χ(α, β,m) =

ScalarMult(m,α ? Q̃, α ? Q̃, β ? 0̃A, β ? 0̃A) for α, β ∈ C and m ∈ N, we have
χ(α, β, `′ + 1)/χ(α, β, `′) = (α`/β`)(χ(1, 1, `′ + 1)/χ(1, 1, `′)). Thus, by virtue of homogeneity,

we can suppose that 0̃A = (θν(0))ν∈Z(n). Let zQ ∈ (1/`)Zg be such that ρ̃n(zQ) = Q̃; we have

`′zQ = −(`′+ 1)zQ mod Zg. As ScalarMult(`′+ 1, Q̃, Q̃, 0̃A, 0̃A) = (θν((`′+ 1)zQ))ν∈Z(n) and

ScalarMult(`′, Q̃, Q̃, 0̃A, 0̃A) = (θν(`′zQ))ν∈Z(n), we obtain (3.4) because of the periodicity of
θν with respect to Zg.

Still using [24, Lemma 3.10], we have ScalarMult(`, α ? (P̃ +Q), β ? Q̃, α ? P̃ , β ? 0̃A) =

α ? ScalarMult(`, P̃ +Q, Q̃, P̃ , 0̃A) for α, β ∈ C. Thus we can assume that 0̃A = (θν(0))ν∈Z(n)

and P̃ = ρ̃n(zP ) for zP ∈ Cg. It is then easy to check, using the ΛΩ-quasi-periodicity property
of θν for ν ∈ Z(n), that θν(zP + `zQ) = θν(zP ).

If Q ∈ K(k), let Q̃ be any lift, and let λ ∈ C be such that λ ? Q̃ is a compatible lift ρ̃n(zQ)
for zQ ∈ Cg. We remark that because of the symmetry relations [27, Proposition 3.14], for

all ν ∈ Z(n), we have θν((`′ + 1)zQ) = θ−ν((`′zQ)). Thus, if δ = (˜̀′Q)ν/( ˜(`′ + 1)Q)−ν for
any ν ∈ Z(n), by [23, Remark 3], we have λ` = δ. Thus we can obtain λ up to an `th root

of unity. In the same way, let P̃ +Q be any affine lift of P + Q and µ ∈ C be such that

µ ? (P̃ +Q) is a compatible lift. Then from equation (3.5) and [24, Lemma 3.10], if we set

P̃ + `Q = ScalarMult(`, P̃ +Q, Q̃, P̃ , 0̃A), we obtain a relation of the form µ`λ`(`−1) = β where

β = P̃ν/(P̃ + `Q)ν , ν ∈ Z(n). As we know λ` from above, we can recover µ`.
We can summarize [14, Proposition 18] and [24, § 3] in the following theorem.

Theorem 3.4. Let (e1, . . . , eg) be a basis of a maximal isotropic subgroup K of A[`]. Assume

that we have chosen potential compatible lifts ẽi, ẽi + ej with respect to 0̃A. Then:

– we can use the ScalarMult algorithm to compute potential compatible lifts Q̃ for every

point of K(k) from the data of ẽi, ẽi + ej ;
– up to an action of Sp2g(Z) on ΛΩ which leaves Zg ⊂ Cg invariant (and also (θν(0))ν∈Z(n)),

these lifts Q̃ are compatible with 0̃A;
– if P̃ is an affine lift of a point P ∈ A(k) and we are given potential compatible lifts

P̃ + ei with respect to P̃ , then they are actually compatible with P̃ and we can use the
ScalarMult algorithm to obtain compatible lifts (with respect to P̃ ) of all points of the
form αP +Q for α ∈ {0, . . . , `− 1}.

Sketch of proof. We prove the first two claims. Let λi, λij ∈ C be such that λi ? ẽi, λij ?

(ẽi + ej) are compatible lifts. We know by the discussion following Proposition 3.3 that the
λi, λij are `th roots of unity. Using the transformation formula for theta functions [27, p. 189],
we can find a symplectic matrix M in Sp2g(Z) that leaves K (globally) invariant and acts by

? on the compatible lifts of ei and ei + ej exactly by λ−1
i and λ−1

ij . Since ` is prime to 2n
we can even ask for M to be congruent to the identity modulo 2n so that it leaves the theta
null point 0̃A invariant [17]. By definition of differential addition and Riemann equations (see

Theorem 2.1), starting from compatible points ẽi and ẽi + ej , we can generate compatible lifts
of all geometric points in the kernel with the ScalarMult algorithm.

As for the third claim, by homogeneity, we can assume that P̃ is a good lift coming from a

point zP ∈ Cg. Let µj ∈ C be such that µj?(P̃ + ej) is a compatible lift with respect to P̃ . Then,
Proposition 3.3 shows that the µj are `th roots of unity. For j = 1, . . . , g, let εj ∈ (1/`)Zg/Zg
be such that ρn(εj) = ej . The functional equation for theta functions [27, p. 123] gives that

for a, b ∈ Zg and j = 1, . . . , g, we have θν(zP + εj + Ωa+ b) = e−πi(n
2taΩa+2nta(zP +εj))θν(zP ).
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So up to the common constant e−πi(n
taΩa+2ntazP ), if necessary by changing zP to zP + Ωa for

a well-chosen a ∈ Zg, we can suppose that the P̃ + ei are compatible lifts with respect to P̃ .
By using differential additions one can then generate any compatible lift of the form αzP +zQ,
zQ ∈ (1/`)Zg/Zg.

For i = 1, . . . , g, we choose any affine lifts ẽi of ei. By using normal additions, we can compute

ei + ej and choose affine lifts ẽi + ej . Let λi, λij ∈ C be such that λi ? ẽi, λij ? (ẽi + ej) are
potential compatible lifts. Note that, by the discussion after Proposition 3.3, we know λ`i
and λ`ij . Then Theorem 3.4 tells us that by choosing any root for the λi and λij we can

generate compatible lifts and evaluate equation (3.2) to get the theta null point (θBν (0))ν∈Z(n)

of B = A/K. Actually, if we work formally with the λi, λij , then the right-hand side of (3.2)
is a rational function of λi, λij . But by [11, Lemma 4.2], this rational function actually lies in
C(λ`i , λ

`
ij) so that we can evaluate it directly.

In the same way, we can compute the image f(P ) of P ∈ A(k) given by its projective theta
coordinates. Indeed, from the knowledge of P and ei, we can compute the projective points

P + ei with normal additions. We choose affine lifts P̃ + ei of P + ei, and let µi ∈ C be such

that µi ? (P̃ + ei) are potential compatible lifts. By Proposition 3.3 we know the value of µ`i ,
and Theorem 3.4 tells us that by choosing any set of roots we get compatible lifts for the points
appearing in the right-hand side of (3.3). We can as such find the projective coordinates of
f(P ). Actually, if we work formally with the µi, λij , λi we can evaluate the right-hand side of
(3.3) as a rational function in C(µi, λi, λij). But by [11, Lemma 4.4] this rational function is
an element of C(µ`i , λ

`
i , λ

`
ij) so that we can evaluate that directly too.

4. Equations for the kernel

We retain the notation of the preceding section. Recall that A together with a projective
embedding inside PZ(n) is given by the data of its theta null point 0̃A. As K is defined over
k, we can suppose that K is represented, as a zero-dimensional subvariety of PZ(n), by a
triangular system of homogeneous polynomial equations with coefficients in k:

Qi1(Ui0 , Ui1) = 0

Qi2(Ui0 , Ui1 , Ui2) = 0
...

Qing−1
(Ui0 , Ui1 , . . . , Uing−1

) = 0,

(4.1)

for ij ∈ Z(n). Indeed, from the knowledge of a set of generators of a homogeneous ideal defining
K as a closed subvariety of PZ(n), such a triangular system may be obtained by computing
the reduced Groebner basis for the lexicographic order on the variables Ui0 , . . . , Uing−1

.
If necessary, by carrying out a linear change of variables, we can always suppose that i0 =

0 ∈ Z(n) and V(U0)(k) ∩ K(k) = ∅ (where V(U0) is the closed subvariety of PZ(n) defined
as the zeros of U0) and we contend that this linear change of variables is defined over a small
extension of k. Indeed, we just have to find a hyperplane of PZ(n) passing through the origin and
avoiding all the points of K. We remark that the set of hyperplanes passing through the origin
and a point x ∈ K(k) is represented by an hyperplane through the origin in the Grassmannian
Gr(n − 1, Z(n)). As a consequence, the set of hyperplanes passing through the origin and a
point of K is a hypersurface H of degree bounded by `g = #K(k) in Gr(n − 1, Z(n)). If
the field k is infinite there exists a point of Gr(n − 1, Z(n))(k) which is not in H(k) and
we are done. If k = Fq is finite, by a result of Serre [30], an upper bound for #H(k) is
`gqn

g−2 +Πng−3 where Πm = (qm+1 − 1)/(q − 1) is the cardinality of Pm(Fq). Thus, a random
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point in Gr(n−1, Z(n))(k) will not be in H(k) with high probability as soon as q is sufficiently
large compared to `g. We deduce that we can find (probabilistically) a hyperplane in PZ(n) that
avoids K by working over an extension of k of degree O(ln(`g)). Let k′ be such an extension, as
the arithmetic in k′ has the same complexity as the arithmetic in k up to a factor in O(ln(`g))
which we have chosen to neglect in the statement of Theorem 1.1, we can safely suppose in
the following that k = k′.

From our hypothesis, the variable U0 plays the role of the normalizing factor of a projective
point. We consider the algebra

K0 = k[Ui | i ∈ Z(n)]/(Qi1(1, Ui1), . . . , Qing−1
(1, Ui1 , . . . , Uing−1

)).

We note that the system (4.1) is generically such that degUi1
(Qi1) = `g and degUi

Qi = 1

for i ∈ Z(n) − {0, i1}. Actually, it can be seen exactly as before, by considering the set of
hyperplanes in the Gr(n − 1, Z(n)) that intersect the vector defined by a pair of elements of
K(k), that this property is always true if we carry out a linear change of coordinates. This
is known as the ‘shape lemma’, which holds in our situation because the kernel is reduced;
we refer to [3] for more details. This linear change of coordinates may involve an extension
of k of degree O(ln(`g)) when k is finite with negligible consequences for the asymptotic
complexity of the arithmetic of the base field. From now on, we suppose that degUi

Qi = 1 for
i ∈ Z(n)− {0, i1} and we let Q(U) = Qi1(1, U) ∈ k[U ]. The algebra K0 is then isomorphic to
the algebra K = k[U ]/(Q).

The transformation from equation (4.1) to a polynomial system defined by one polynomial
Q will not be necessary for the algorithms presented in the next section, but it helps for
computations in the algebra associated to K .

5. Computation with formal points

We retain the notation of the previous section. We thus have an isomorphism K
∼→ Spec K

associated to the isomorphism K
∼→ K0 on coordinate functions. We recall that a point

η ∈ A(K ) is by definition a morphism η : Spec K → A. We call such a point a formal point,
in opposition to the geometric points in A(k). Since K is étale, a formal point η ∈ A(K )
is given by the data of a Gal(k/k)-equivariant morphism (of sets) K(k) → A(k). We denote
by IK ∈ A(K ) the point coming from the closed immersion K → A defined by (4.1) which
can be seen as a point in K(K ). For instance, if K \ {0A} is irreducible then IK restricts
to its generic point. Since A is an abelian variety, A(K ) is an abelian group. Let P ∈ K(k)
be a geometric point P : Spec(k) → Spec(K ). For a formal point η ∈ A(K ), we denote by
η(P ) ∈ A(k) the geometric point η ◦ P : Spec(k) → Spec(A) obtained by ‘specialization’. In
the same way, if x ∈ K and P ∈ K(k), we denote by x(P ) the value of x in P .

Let Q =
∏
i∈I Ri, for Ri ∈ k[U ], be a decomposition of Q in irreducible elements.

Via the projective embedding A → PZ(n) a formal point η ∈ A(K ) can be seen as a
projective point η ∈ PZ(n)(K ). Since K is an étale algebra such a projective point is
given by the data of a (ην)ν∈Z(n) ∈ K Z(n) such that, for all i ∈ I, at least one of the

ην is invertible modulo Ri, modulo the action of invertible elements of K on K Z(n). The
isomorphism K

∼→ Spec K shows that the projective coordinates of η ∈ A(K ) are given by
(1, ηi1 , Qi2(ηi1), . . . , Qing−1

(ηi1)) where the Qij ∈ k[U ] are defined in § 4. The formal point

IK ∈ A(K ) is such that (IK )i1 = U . As for geometric points, we denote by η̃ ∈ Ã(K ) an
affine lift of η ∈ A(K ) and let (η̃)i ∈ K for i ∈ Z(n) be its corresponding affine coordinates.
A point P ∈ A(k) corresponds to a formal point ηP ∈ A(K ) via the constant morphism
Q ∈ K (k) 7→ P . We will often make this identification in the following.

The arithmetic of geometric points recalled in § 2 translates mutatis mutandis into arithmetic

with formal points. For instance, from the knowledge of η̃1, η̃2 ∈ Ã(K ), and η̃1 − η2 ∈ Ã(K ),
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one can compute the differential addition η̃1 + η2 ∈ Ã(K ). This can be proved exactly in
the same way as with geometric points using Riemann’s equations and we obtain the same
formulas. The case g = 1 is given, for instance, in [23]. We remark that in order to be able

to compute the differential addition, we have to find an invertible coordinate (η̃1 − η2)ν0 ∈ K
for ν0 ∈ Z(n). But in fact, there is always at least one such coordinate modulo Ri for every
i ∈ I. So we can always compute the differential addition, provided that we work modulo Ri,
which is the case if we know the factorization of Q, the polynomial defining K . Actually we
do not even need to compute the factorization beforehand because when we try to invert a
non-zero element, if it is non-invertible the Euclidean algorithm will give a factor of Q. We
remark that when the difference is a formal point with value in K, then, by the hypothesis
made in § 4 on the equations, the coordinate i = 0 is always invertible, which helps in the
computations. In the same way, if 4|n, one can compute normal addition of generic points.

Addition and multiplication operations in K take Õ(`g) operations in k. Computing the inverse

of an element of K can be done in Õ(`g) operations in k via the extended Euclidean algorithm.

Thus, differential and normal additions of elements of Ã(K ) take Õ(`g) operations in k.

For P ∈ K(k), η ∈ A(K ) and η̃ ∈ Ã(K ) any affine lift of η, we denote by η̃(P ) ∈ Ã(k) the

point with affine coordinates (η̃)i(P ). As two formal points η̃, η̃′ ∈ Ã(K ) are equal if and only
if, for all P ∈ K(k), η̃(P ) = η̃(P ), this allows us to verify certain properties by specializing
a formal point to geometric points. For instance, the result of a chain of differential addition
that one can compute from a set η̃1, . . . , η̃m ∈ Ã(K ) of affine lifts of η1, . . . , ηm ∈ A(K ) does
not depend on the order of the operations because, as proved in [24, Corollary 3.13], it is true
for geometric points. Also if η ∈ K(K ) then `η = 0A.

Let η = P + ηK ∈ A(K ) with ηK ∈ K(K ) and let η̃ ∈ Ã(K ) be an affine lift. We say that

η̃ is a compatible lift of η (relative to P̃ ) if, for all Q ∈ K(k), η̃(Q) ∈ Ã(k) is a compatible lift

of P + ηK(Q) relative to P̃ . It is easy to extend Proposition 3.3 to compute compatible lifts
of formal points.

Proposition 5.1. Let ηK ∈ K(K ), and let η̃K ∈ Ã(K ) be any affine lift. Write ` =
2`′ + 1, and compute `′η̃K = ScalarMult(`′, η̃K , η̃K , 0̃A, 0̃A), (`′ + 1)η̃K = ScalarMult(`′ + 1,
η̃K , η̃K , 0̃A, 0̃A). Let λ ∈ KC (where KC = K ⊗k C) be an invertible element. Then λ ? η̃K is
a potential compatible lift if and only if

((`′ + 1)η̃K)νλ
` − (`′η̃K)−ν = 0, (5.1)

for ν ∈ Z(n).
Likewise, let η = ηK + P ∈ A(K ) where ηK ∈ K(K ) and P ∈ A(k). Fix affine lifts

P̃ ∈ Ã(k) of P and η̃K ∈ Ã(K ) of ηK and denote by η̃ ∈ Ã(K ) a compatible lift of η. Let

η̃0 = ScalarMult(`, η̃, λ ? η̃K , P̃ , 0̃A) ∈ Ã(K (λ)). Then modulo the equations from (5.1), η̃ 0 is

in Ã(K ) and µ ∈ KC is such that µ ? η̃ is a potential compatible lift (relative to P̃ ) if and
only if

µ`η̃0
ν − P̃ν = 0 (5.2)

for ν ∈ Z(n).

Proof. By equation (3.4) and [23, Remark 3], we have that λ ? η̃ is a potential compatible

lift if and only if λ(`′+1)2 ? ((`′+ 1)η̃) = −λ`′
2

? (`′η̃). We thus obtain that if λ is an element of
an étale extension of K which satisfies equation (5.1) then λ ? η̃ is a potential compatible lift.

By [23, Remark 3], the coordinates of η̃0 only have factors of the form cλ`(`−1) where
c ∈ K . By looking at equation (5.1), it is thus clear that η̃0 does not depend on the choice
of a compatible lift for ηK . By equation (3.5) and [23, Remark 3] again, we have that µ ? η̃ is
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a potential compatible lift if and only if µ` ? η̃0 = P̃ . Thus, if µ is a root of the polynomials
from equation (5.2) in an étale extension of K then µ ? η̃ is a potential compatible lift.

We denote by Normalize(η̃, P̃ ) the algorithm which outputs equation (5.2) defining µ such

that µ ? η̃ is a compatible lift (relative to P̃ ). It is clear from its description that Normalize

applied to a formal point takes Õ(`g) operations in k. In practice, given the hypothesis about
the kernel made in § 4, it suffices to use equation (5.1) with coordinate ν = 0 to determine λ`,
and it suffices to use equation (5.2) with a coordinate ν such that Pν 6= 0 to determine µ`.
The corresponding algorithm (with ν = 0) for Normalize is given in Algorithm 1.

Algorithm 1: Algorithm Normalize

input:
– η = ηK + P where ηK ∈ K(K ) and P ∈ A(k);

– P̃ an affine lift of P and η̃ an affine lift of η.
output: An equation µ` = c for c ∈ K so that µ ? η̃ is a compatible lift with P̃ when µ

satisfy this equation.

1 µ
[1]
K ← ScalarMult(`′ + 1, λ ? η̃K , λ ? η̃K , 0̃A, 0̃A) and

µ
[0]
K ← ScalarMult(`′, λ ? η̃K , λ ? η̃K , 0̃A, 0̃A) where ` = 2`′ + 1;

2 µ[0] ← ScalarMult(`, µ ? η̃, λ ? η̃K , P̃ , 0̃A);

3 return µ` = P̃0

µ
[0]
0

(
µ
[0]
K,0

µ
[1]
K,0

)`−1

;

Remark 5.2. Compared to Proposition 5.1, Theorem 3.4 starts with a basis of potential
compatible lifts ẽi and derives compatible lifts for the set of all geometric points of the kernel.
By contrast, if η̃ is a compatible lift of a formal point η ∈ A(K ) and P̃ an affine lift of

P = η(0) ∈ A(k), then by definition all the η̃(Q), Q ∈ K(k) are compatible with P̃ , but, in
general, they will not be globally compatible with each other.

One can think of the formal point approach that we have presented as doing formal
computations with geometric points. We conclude this section by explaining that it is actually
possible to follow exactly the same procedure as that of the algorithm of [11] to compute
isogenies with formal points. Let k′ be the compositum of the fields of definition of elements
of K(k). The Galois group Gal(k′/k) acts on K(k). As the group law of A is defined over
k, this action is linear and Gal(k′/k) acts on the elements of A(K ). Suppose that K \ {0A}
is irreducible and that Gal(k′/k) is cyclic generated by g. Let η1 = IdK ∈ A(K ) and let
ηi = giη1 for i = 2, . . . , g. Then, as by hypothesis g generates Gal(k′/k), η1, . . . , ηg are linearly
independent formal points of K. One can compute ηi+ηj with normal additions, then compute
potential compatible lifts of all the ηi and ηi + ηj and use chains of differential additions to
obtain potential compatible lifts of all the points of the kernel. Thus, it is possible to evaluate
the right-hand side of (3.2) with formal points: the result of the computations in K will actually
lie in k. We remark that the algorithm that we have just sketched is just a fancy way to compute
with the splitting field defined by Q. This naive approach does not improve the complexity of
the algorithm of [11] even in the favorable case that we have considered in this paragraph.

6. An algorithmic improvement

Returning to the context of § 3, let (A,L0) be a principally polarized abelian variety given by
Ω ∈ Hg. We have seen that the general isogeny computation problem boils down to the case
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where K = (1/`)Zg/ΛΩ and

f : A ' Cg/ΛΩ → B ' Cg/Λ`Ω
z 7→ `z.

(6.1)

We explain how to evaluate the expression of Proposition 3.1 with formal points and derive
an efficient algorithm. Actually, by looking at the right-hand side term of equation (3.2), we
need to deal in a ‘formal’ way with r-tuples of the form Xi + ti. This motivates the following
definition.

Definition 6.1. For t a positive integer, let B = K ⊗t so that Kt ∼→ Spec B. We define a
formal tuple as a point η ∈ A(B).

For i = 1, . . . , t, let µi : Kt → K be the ith projection. Note that µi induces the natural
injection of coordinate algebras given by x 7→ 1⊗ . . .⊗x⊗ . . .⊗1 where x is in the ith position.

For i = 1, . . . , t, we denote I
(i)
K = IK ◦ µi ∈ A(B) so that

∑t
i=1 I

(i)
K (the sum is the group

law of A(B)) is the point coming from the canonical morphism associated to the addition:
At → A.

Since B is also an étale algebra, everything said in § 5 about the arithmetic of formal points
(differential additions, Normalize, . . .) also applies to formal tuples. In particular, η ∈ A(B) is
represented by its coordinates ην ∈ B for ν ∈ Z(n), addition and multiplication operations in

the algebra B take Õ(`tg) operations in k and computing the inverse of an element of B can

be done in Õ(`tg) operations in k via a recursive use of the extended Euclidean algorithm.

Remark 6.2. A point η ∈ A(B) that is also an algebraic group morphism is necessarily of
the form η(1) ◦ µ1 + . . . + η(t) ◦ µt for a tuple (η(1), . . . , η(t)) of points in A(K ). The formal
point η(i) can be recovered from the formal tuple η via η(i) = µ′i ◦ η where the µ′i correspond
to the canonical inclusions of K into Kt. In practice we will be working with formal tuples

coming from linear combinations P +
∑
λiI

(i)
K where P ∈ A(k).

Let M be an r × r matrix with integer coefficients such that tMM = `Id. Write ` = `1`2
where `1 is the biggest square factor of `. If ` = `1, we can take M = (

√
`1) and fix r = 1. If

`2 6= 1 and all prime factors of `2 are congruent to 1 mod 4, then there exists a, b ∈ N∗ such
that `2 = a2 + b2. thus we can take M =

√
`1M0, with M0 =

(
a b
−b a

)
and fix r = 2. Finally,

if there is a prime factor of `2 congruent to 3 mod 4, we can write `2 = a2 + b2 + c2 + d2

for a, b, c, d ∈ N such that a2 + b2 6≡ 0 mod `2, take for M0 the matrix of multiplication by
a+ ib+ cj+ dk in the quaternion algebra over R, M =

√
`1M0, and fix r = 4. We consider the

isogeny of algebraic groups F : Kr → Kr acting componentwise by the matrix M . Denote by
kerF the kernel subvariety of F . If ` = `1, kerF is isomorphic to

√
`1K, an isomorphism being

given on geometric points by the identity. If `2 6= 1 is a sum of two (respectively, four) squares,
kerF is isomorphic to L =

√
`1K (respectively, L =

√
`1K

2), an isomorphism L→ kerF being
given on geometric points by x 7→ (x, β0x) with β0 = −b/a mod ` (respectively, (x1, x2) 7→
(x1, x2, αx1 +βx2, γx1 +δx2) with

(
α β
γ δ

)
=
(
a b
−b a

)−1 ( c d
d −c

)
= (1/(a2 + b2))

(
ac−db ad+bc
ad+bc bd−ac

)
; note

that
(
a b
−b a

)
is invertible modulo ` since a2 + b2 6≡ 0 mod `). With this notation, we have the

following proposition.

Proposition 6.3. Let P ∈ A(k) and let zP ∈ Cg be such that ρn(zP ) = P . Fix k ∈ Z(n)
and let j = (k, . . . , 0)M−1 ∈ Z(n)r. Let N be the cardinality of the kernel of the group
morphism Kt(k)→

√
`1K

t(k), x 7→
√
`1x. If `2 = 1 then set t = 1; otherwise, set t = r/2 and
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let B = K ⊗t. Moreover:
– If `2 = 1, let η(1) =

√
`1IK + ζP for ζ ∈ Z. Let η̃(1) be any affine lift of η(1). Let

η̃(µ) = µ ? η̃(1) where µ is a formal parameter. Let X = ζzP ∈ Cg and Y = XM . Set

R? = η̃
(µ)
j1
∈ K (µ), and let R be the reduction of R? modulo the equations in K coming

from Normalize(η̃(1), ζP̃ ).
– If `2 6= 1 is a sum of two squares, let η(1) =

√
`1IK + ζP for ζ ∈ Z. Let η̃(1) be any

affine lift of η(1). Let η̃(µ) = µ ? η̃(1) where µ is a formal parameter, η̃[1] = β0η̃
(µ). Let

X = (ζzP , β0ζzP ) ∈ (Cg)2 and Y = XM . Set R? = η̃
(µ)
j1
η̃

[1]
j2
∈ K (µ), and let R be the

reduction of R? modulo the equations in K coming from Normalize(η̃(1), ζP̃ ).

– If `2 is a sum of four squares, let η(i) =
√
`1I

(i)
K + ζiP with ζi ∈ Z for i = 1, 2 and fix

corresponding affine lifts η̃(i). Fix also an affine lift η̃(12) of η(1)+η(2). Let η̃(µ1) = µ1?η̃
(1),

η̃(µ2) = µ2 ? η̃
(2) and η̃(µ12) = µ12 ? η̃

(12) where µ1, µ2, µ12 are formal parameters. Let
η̃[1] = αη̃(µ1) +βη̃(µ2) and η̃[2] = γη̃(µ1) +δη̃(µ2) in Ã(B(µ1, µ2, µ12)) (bootstrapping from
η̃(12) using differential additions). Let X = (ζ1zP , ζ2zP , (αζ1 + βζ2)zP , (γζ1 + δζ2)zP ) ∈
(Cg)4 and Y = XM . Set

R? = η̃
(µ1)
j1

η̃
(µ2)
j2

η̃
[1]
j3
η̃

[2]
j4
∈ B(µ1, µ2, µ12).

Let R be the reduction of R? modulo the equations in B coming from Normalize(η̃(1),

ζ1P̃ ), Normalize(η̃(2), ζ2P̃ ) and Normalize(η̃(12), (ζ1 + ζ2)P̃ ).
We have that R ∈ B and

θBk (Y1) . . . θB0 (Yr) =
1

N

∑
T∈Kt(k)

R(T ). (6.2)

Proof. First, we prove the case where `2 6= 1 is a sum of two squares. In order to prove that
R is indeed in K , because of Proposition 5.1, it suffices to show that the rational function
R? does not change when we act on η̃(1) by µ in an étale extension of K that satisfies the
equations coming from Normalize(η̃(1), P̃ ).

For this let η̃θ in Ã(KC(µ)) be such that η̃(µ) = µ′ ? η̃θ where µ′ ∈ KC is a `th root of

unity because of equation (5.2). Let η̃
[1]
θ = ScalarMult(β0, η̃θ, η̃θ, 0̃A, 0̃A). By [23, Remark 3],

we have η̃[1] = µ′
β2
0 ? η̃

[1]
θ . Thus, we have R∗ = η̃

(µ)
j1
η̃

[1]
j2

= µ′η̃θ(T )µ′
β2
0 η̃

[1]
θ with β2

0 ≡ −1 mod `.
We deduce that R ∈ K since it is left invariant by the action of µ′.

Now let η̃θ in Ã(KC) be such that {η̃θ(Q) | Q ∈ K(k)} is a system of compatible lifts relative

to P̃ . Using Theorem 3.4, we can suppose that η̃(µ) = η̃θ modulo the equations coming from
Normalize(η̃(1), ζP̃ ). Then we have R(T ) = η̃θ(T )η̃θ(β0T ) = θAj1(X1 + zT )θAj2(X2 + β0zT ) for
zT ∈ Cg such that ρn(zT ) = T . Thus the relation (6.2) is just a consequence of Proposition 3.1.
The 1/N in front of the right-hand side of (6.2) comes from the fact that the parametrization
of (kerF )(k) by K(k) we have used is an epimorphism the kernel of which has cardinality N .

Now suppose that `2 is a sum of four squares. Fix a system of global compatible lifts {αP +

Q|α ∈ {0, . . . , ` − 1}, Q ∈ K(k)} relative to P̃ . For i = 1, 2, let η̃
(i)
θ be the formal point such

that η̃
(i)
θ (Q1, Q2) is the corresponding compatible lift above ζiP +Qi, and define θ

(12)
θ so that

η̃
(12)
θ (Q1, Q2) is the corresponding compatible lift above (ζ1 + ζ2)P +Q1 +Q2.
We proceed along the same lines as for the case above. Let µ′1, µ′2 and µ′12 be roots

in KC of the equations (E) given by Normalize(η̃(1), ζ1P̃ ), Normalize(η̃(2), ζ2P̃ ) and

Normalize(η̃(12), (ζ1 + ζ2)P̃ ). By Proposition 5.1, µ′1 ? η̃
(1), µ′2 ? η̃

(2) and µ′12 ? η̃
(12) differ

from η̃
(1)
θ , η̃

(2)
θ and η̃

(12)
θ by `th roots of unity µ1, µ2 and µ12 respectively.

Let η̃
[1]
θ = αη̃

(1)
θ + βη̃

(2)
θ and η̃

[2]
θ = γη̃

(1)
θ + δη̃

(2)
θ . We can use [23, Remark 3] repeatedly to

obtain that αη̃(µ1) + η̃(µ2) = ((µα12µ
α(α−1)
1 )/(µα−1

2 ))(αη̃
(1)
θ + η̃

(2)
θ ), αη̃(µ1) = µα

2

1 (αη̃
(1)
θ ) and,
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finally, η̃[1] = µαβ12 µ
α2−αβ
1 µβ

2−αβ
2 η̃

[1]
θ . We have in the same way η̃[2] = µγδ12µ

γ2−γδ
1 µδ

2−γδ
2 η̃

[2]
θ .

Thus, for T = (T1, T1) ∈ K2(k), we have R(T ) = η̃
(1)
j1

(T )η̃
(2)
j2

(T )η̃0
j3

(T )η̃1
j4

(T ) = ∆η̃
(1)
θ,j1

(T )

η̃
(2)
θ,j2

(T )η̃0
θ,j3

(T )η̃1
θ,j4

(T ) where

∆ = µαβ+γδ
12 µ1+α2+γ2−αβ−γδ

1 µ1+β2+δ2−αβ−γδ
2 .

But an easy computation shows that αβ+ γδ = 0 and α2 + γ2 = β2 + δ2 = (b2 + c2)/(a2 + b2)
so that ∆ = 1. Finally, we obtain that R(T ) = θj1(X1 + zT1)θj2(X2 + zT2)θj3(X3 + αzT1 +
βzT1

)θj4(X4 + γzT1
+ δzT2

) for zTi
∈ Cg such that ρn(zTi

) = Ti for i = 1, 2 and relation (6.2)
is again a consequence of Proposition 3.1.

The simpler case `2 = 1 can be treated in a similar manner as the other cases. We leave it
as an exercise for the reader.

Remark 6.4. The fact that the `th roots of unity appearing in the evaluation of the right-
hand side of formula (3.1) of Proposition 3.1 cancel out is no miracle. It can be explained
with a more conceptual point of view: these `th roots of unity correspond to choices of a level
`n-theta structure for B compatible with the level n-theta structure of A via the contragredient
isogeny of f : A → B and we can interpret the change of level formula (3.2) as ‘forgetting’
the `-torsion part of these theta structures to recover a level n theta structure for B (see, for
instance, [24]).

The stronger fact that they also cancel out when only considering the terms in the sum comes
from the fact that these terms already forget the part of the `-structure whose automorphisms
act by the ? operator [14, Proposition 18].

In order to turn Proposition 6.3 into an algorithm, it remains to explain how to compute
efficiently the right-hand side of (6.2). This is done by the following lemma.

Lemma 6.5. Let W ∈ K = k[U ]/(Q), let (T, S) ∈ k[U ] be respectively the quotient and
remainder of the Euclidean division of UWQ′ by Q (where Q′ is the first derivative of Q). We
have ∑

P∈K(k)

W (P ) = T (0). (6.3)

Proof. Let R be the set of roots of Q in k. We want to prove that
∑
a∈R W (a) = T (0). We

have
UWQ′

Q
=
∑
a∈R

UW

U − a
. (6.4)

For a ∈ R let Ta be the quotient of the Euclidean division of UW by (U − a) so that
we have UW = Ta(U − a) + aW (a). Putting this in (6.4), we obtain that UWQ′/Q =∑
a∈R(Ta + aW (a)/(U − a)). As Q

∑
a∈R aW (a)/(U − a) is an element of k[U ] of degree less

than deg(Q), we deduce that S = Q
∑
a∈R aW (a)/(U − a) and T =

∑
a∈R Ta. Moreover,

T (0) =
∑
a∈R Ta(0) but −aTa(0) + aW (a) = 0 so that Ta(0) = W (a) (it is easy to check that

this also holds if a = 0) and we are done. (Over C, this lemma is just an easy application of
the residue theorem.)

As R defined in Proposition 6.3 is an element of K ⊗r/2 if `2 6= 1 and an element of K
otherwise, Lemma 6.5 shows that, in the case where ` is a sum of two squares, the evaluation
of the right-hand side of (6.2) can be done with an Euclidean division of an element of k[U ]

of degree bounded by `g at the expense of Õ(`g) operations in k. If ` is a sum of four squares,
R is an element of K ⊗2 and we can resort twice to Lemma 6.5, to carry out the evaluation
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of (6.2). The dominant step is an Euclidean division of an element of K [U ] of degree bounded

by `g which can be done in Õ(`2g) operations in k. We call Evaluate an algorithm which takes
as input R ∈ K ⊗r/2 and returns

∑
T∈Kr/2(k)R(T ).

If we apply Proposition 6.3, with P = 0, we obtain an algorithm to compute θBk (0) . . . θB0 (0)
for any k ∈ Z(n) that gives the projective theta null point of B associated to `Ω. Let P ∈ A(k)
and let zP ∈ Cg be such that ρn(zP ) = P :

– if ` is a square, Proposition 6.3 with ζ =
√
` gives an expression for θBk (`zP )θB0 (0) for

k ∈ Z(n);
– if `2 = a2 + b2, Proposition 6.3 with ζ =

√
`1a gives an expression for θBk (`zP )θB0 (0) for

k ∈ Z(n);
– if `2 = a2+b2+c2+d2, Proposition 6.3 with ζ1 =

√
`1a and ζ2 =

√
`1b gives an expression

for θBk (`zP )θB0 (0)3 for k ∈ Z(n).
In all cases, we obtain the projective coordinates for f(P ) and we have proved Theorem 1.1.

Algorithms 2 and 3 recapitulate the isogeny computation algorithms we have described (we
leave to the reader the easy adaption in the case where ` is a square). To give more details,
in Algorithm 2 the line η̃[1] ← β0η̃

(µ) is simply computed as ScalarMult(β0, η̃
(µ), η̃(µ), 0̃A, 0̃A).

Likewise, in Algorithm 3, the line η̃[1] ← αη̃(µ1) + βη̃(µ2) is computed as αη̃(µ1) + η̃(µ2) ←
ScalarMult(α, η̃(12), η̃(µ1), η̃(µ2), 0̃A), η̃[1] ← ScalarMult(β, αη̃(µ1) + η̃(µ2), η̃(µ2), αη̃(µ1), 0̃A) and
similarly for η̃[2].

Algorithm 2: Algorithm GenericIsogeny for ` a sum of two squares

input:
– 0̃A the level n theta null point of (A,L0) associated to Ω ∈ H;
– ` ∈ N such that ` = `1`2 where `1 is the biggest square factor of ` and a

decomposition `2 = a2 + b2 6= 1;
– Q ∈ k[U ] such that deg(Q) = `g describing K (see § 5);

– P ∈ A(k) given its projective coordinates;
– k ∈ Z(n).

output: (f(P ))k the kth projective coordinates associated to the level n projective
embedding of B provided by `Ω.

1 η ← NormalAdd(
√
`1IK ,

√
`1aP ) where

√
`1IK and

√
`1aP are computed with

ScalarMult;

2 η̃(µ) ← µ ? η̃ where µ is a formal parameter;

3 η̃[1] ← β0η̃
(µ) where β0 = −b/a mod `;

4 R← η̃
(µ)
j1
η̃

[1]
j2

mod Normalize(η̃,
√
`1aP̃ ) where j = (k, . . . , 0)M−1 ∈ Z(n)r;

5 return Evaluate(R);

We note that in Algorithm 3 we need three calls to Normalize, each costing two scalar

multiplications by `. We can improve this as follows. First, compute η
(1)
0 = I

(1)
K + P and use

Normalize to normalize an affine lift η̃
(1)
0 up to a factor µ1. From this data it is easy to recover

a compatible affine lift η̃
(2)
0 of I

(2)
K + P up to a factor µ2. Using differential additions, one

can then recover the compatible lifts η̃(1), η̃(2) of Proposition 6.3. Likewise, one can normalize

I
(1)
K + I

(2)
K up to a factor λ12 by using only equation (5.1). One can compute η̃(12) using

differential additions from a compatible affine lift of P + I
(1)
K + I

(2)
K . But the latter point

can be computed as a three-way addition [25, § 3.6] between the corresponding lifts above of

P +I
(1)
K , P +I

(2)
K , I

(1)
K +I

(2)
K . This method requires only three scalar multiplications by ` rather

than six to normalize the points.
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Algorithm 3: Algorithm GenericIsogeny for ` a sum of four squares

input:
– Same as in Algorithm 3 except that we have a decomposition `2 = a2 + b2 + c2 + d2;

output: (f(P ))k the kth projective coordinates associated to the level n projective
embedding of B provided by `Ω.

1 η(i) ← NormalAdd(
√
`1I

(i)
K , ζiP )) where ζ1 =

√
`1a, ζ2 =

√
`1b for i = 1, 2 and

√
`1I

(i)
K and

ζiP are computed with ScalarMult;

2 η(12) ← NormalAdd(η(1) + η(2));

3 η̃(µ1) ← µ1 ? η̃
(1), η̃(µ2) ← µ2 ? η̃

(2), η̃(µ12) ← µ12 ? η̃
(12) where µ1, µ2, µ12 are formal

parameters;

4 (E)← Normalize(η̃1, ζ1P̃ ) ∪Normalize(η̃2, ζ2P̃ ) ∪Normalize(η̃12, (ζ1 + ζ2)P̃ );

5 η̃[1] ← αη̃(µ1) + βη̃(µ2), η̃[2] ← γη̃(µ1) + δη̃(µ2) where
(
α β
γ δ

)
=
(
a b
−b a

)−1 (c d
d −c

)
;

6 R← η̃
(µ1)
j1

η̃
(µ2)
j2

η̃
[1]
j3
η̃

[2]
j4

modulo (E) where j = (k, . . . , 0)M−1 ∈ Z(n)r;

7 return Evaluate(R);

Throughout this paper we have supposed that 4|n so that we can compute normal additions.
But actually one can work with level n = 2 exactly as in [11, § 4.4]. The only difficulty is the
case where ` is a sum of four squares where we need to compute a point of the form η(1)+η(2) in
Proposition 6.3. Here, we replace the normal addition of the two formal points η(1) and η(2) by
any formal point η such that η(Q) ∈ {η(1)(Q)+η(2)(Q), η(1)(Q)−η(2)(Q)}. Computing such an
η requires taking a certain square root in K as in [25, § 3.3] (this square root may have more
than two solutions since K may not be a field). Also K is no longer an étale algebra because
we identify P with −P so the points in K \ {0A} have multiplicity 2, but we can instead work
directly on (K \ {0A})/± 1) and gain a factor of 2 in time complexity. See § 7 for an example.

We conclude this section by comparing the algorithm presented in this paper, with the
algorithm of [11]. In the latter algorithm, all the affine lifts of points of K(k) are globally
compatible in the sense that they are deduced by the way of differential additions from the
knowledge of a minimal set of compatible good lifts as in Theorem 3.4. This property is not
true if we specialize the lifts of the formal points of Proposition 6.3 to geometric points of K.
For instance, in the case ` ≡ 1 mod 4, ` prime, for a fixed Q ∈ K(k) the lifts η̃(µ)(Q), η̃[1](Q) ∈
K̃(k) (modulo the equations coming from Normalize) of ζP + Q and β0(ζP + Q) are locally

compatible with P̃ , but they may not be globally compatible over all Q ∈ K(k). But as seen
in the proof of Proposition 6.3, in the evaluation of the right-hand side of (3.2) this local
compatibility between the elements appearing in the sum is enough. The authors of [11] did
not use the local compatibility, because it is actually faster to compute potential compatible
lifts for a basis of K(k) and use differential addition to get the other compatible points than
it is to normalize locally for each term in the sum. This shows the usefulness of working with
formal points since we can normalize everything once and for all.

7. Example

We give a simple example to illustrate the algorithm in the case where the dimension g = 1,
the base field k = F1009 and the level n = 2. Let 0̃A ∈ AZ(2) be the level 2 (affine) theta
null point with coordinates (971, 94). This theta null point corresponds to the elliptic curve A
with Weierstrass equation y2 = x3 + 762x2 + 246x. This elliptic curve has a unique subgroup
K defined over k in its 5-torsion. If (U0, U1) are the theta coordinates of level 2, a system of
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equations for this kernel is given by U0 = 1 and R(U1) = 0 where R(U1) = U5
1 + 751U4

1 +
546U3

1 + 447U2
1 + 660U1 + 339. We explain how to compute the level 2 theta null point of

B = A/K.
The polynomial R factorizes as R(U1) = (U1 +268)Q(U1)2 where Q(U1) = U2

1 +746U1 +353.
The linear term corresponds to the U1 coordinate of the theta null point of A, while the fact
that Q has multiplicity 2 comes from the fact that we are working on the Kummer variety
here associated to A (see § 2).

We consider the algebra K = k[U ]/(Q), and we look at the formal point η = (1 : U). Let
η̃ = (λ, λU) be a potential compatible lift. An easy computation shows that 2η̃ = λ4(980U +
906, 103U + 7) and 3η̃ = λ9(861U + 437, 572U + 129). We thus find that λ5 = 126U + 129 =
(980U + 906)/(861U + 437) = (103U + 7)/(572U + 129).

Now from equation (3.2), we have (up to a common factor) that

θBi1(0)θBi2(0) =
∑

t1,t2∈K
t1+2t2=0
−2t1+t2=0

θAi1(t1)θAi2(t2) =
∑
t∈K

θAi1(t)θAi2(2t)

= θAi1(0)θAi2(0) +
∑

t∈K\{0}

θAi1(t)θAi2(2t).

If we let W = θi1(η̃)θi2(2η̃), we have that θBi1(0)θBi2(0) = θAi1(0)θAi2(0) + 2T (0) where T is the
polynomial defined in Lemma 6.5.

If i1 = i2 = 0 then W = λ5(980u + 906), T = 380 and θBi1(0)θBi2(0) = 186. If i1 = 0, i2 = 1

then W = λ5(103u+ 7), T = 629U + 529 and θBi1(0)θBi2(0) = 513.
The level 2 theta null point (186 : 513) corresponds to the elliptic B given by the Weierstrass

equation y2 = x3 + 133x2 + 875x. In this case we could have computed the isogeny by an
application of Vélu’s formulas, yielding a curve isomorphic to B. (The conversion between
theta and Weierstrass coordinates was done using [5].)

8. Constructing kernels over a number field

In this section we show how higher-dimensional analogs of the `-division polynomials can be
used to find equations of rational isotropic kernels over a number field. Let (A,L ,Θn) be
a polarized abelian variety of dimension g with a symmetric theta structure of level n even,
defined over a number field k. For simplicity we assume that n > 4 so the theta structure
yields an embedding of A into the projective space PZ(n). Let ` be an integer prime to n. Let
η be the generic point of A in theta coordinates.

By using the same method as in § 5 we can formally compute `η (in time polynomial in
log(`)) and deduce equations for A[`] in the projective space PZ(n). As in § 4 we can compute a
Groebner basis for a lexicographic order; up to a random change of basis the ‘shape lemma’ [3]
says that this Groebner basis contains a univariate polynomial Φ` of degree `2g the zeros of
which parametrize the points of A[`].

The Groebner basis step is polynomial in the degree `2g of the variety and the size of the
generators of the ideal describing it (in our setting we have O(ng) equations of degree O(`2)),
so this step is also polynomial in ` (for more details see, for instance, [2, 20–22]). One way
to compute the Groebner basis for the GrevLex order is to compute the Macaulay matrix
up to the degree of regularity of the ideal and put it in row echelon form. Then one can use
the change of order algorithm from [13] to obtain the lexicographical Groebner basis. Over
a number field, the system describing the `-torsion will have coefficients of height O(log `),
and during the Groebner basis computation the size of the coefficients will go up to a height
polynomial in `.
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For practical computations, it is better to use the involution [−1] and work over the Kummer
variety, and to construct equations for A[`] by writing them as (`′+ 1)η = −`′η for the generic
point η. Also, rather than constructing the Groebner basis directly over the number field, it
is more convenient to compute the reduced Groebner basis for the lexicographic ordering over
small primes p of good reduction and lift them through a CRT algorithm. As noted, over
each small field Fp, computing a Groebner basis for the lexicographic ordering will take a time
polynomial in `, and since the points of `-torsion have small heights (because their canonical
heights is zero), the coefficients of the `-division polynomial have a height polynomial in `, so
we only need to work over a polynomial number of finite fields.

We note, however, that computing a Groebner basis can be exponential in the number of
variables (for a dimension-zero homogeneous system). Since we have a number of variables
that are already exponential in the dimension, we see that we can only hope to carry out
such a computation for low-dimensional abelian varieties as in [14]. For an example of the
computation of a `-division polynomial in dimension 2, see also [16].

Now we can factorize the polynomial Φ` (over a number field this is polynomial in its degree)
and look at rational factors of degree `g. These factors correspond to a rational subvariety
K ⊂ A[`] of degree `g. Now we need to check that K is a subgroup and is isotropic.

For this we will work with the formal couple (µ1, µ2) from Definition 6.1. We can compute
µ1 + µ2 and −µ1 as in § 5 and check that they satisfy the equations of K. To check that K
is isotropic, we need to formally compute the pairing between µ1 and µ2. For this we use the
results of [23]: the Weil pairing can be computed by taking affine lifts of µ1, µ2 and µ1 +µ2 and
using ScalarMult to compute the points `µ̃1, µ̃2 + `µ̃1, `µ̃2 and µ̃1 + `µ̃2. We get an element of
K ⊗2 which is equal to 1 when K is isotropic. This computation requires O(log `) operations
in K ⊗2 so it is polynomial in `, which concludes the proof.

9. Conclusion

In this paper we have presented an algorithm to compute isogenies between abelian varieties in
the arguably most general setting which takes advantage of the field of definition of the kernel
in order to improve the complexity. We note that the quasi-optimality announced in the title
is only for the case where ` is a sum of two squares. It would be very interesting to extend it
to encompass all cases. Another question is to handle the case where ` is not prime to 2n. The
problem here is that there may be several ways to descend a symmetric theta structure of L `

along the isogeny defined by K, and it is not clear how to specify the choice of a symmetric
theta structure of level n on B = A/K via a set of equations.

A related question is how to improve the method of § 8 to generate a rational maximal
isotropic kernel. An obvious way would be to use modular polynomials instead of the `-division
polynomials. Even given a modular polynomial, and a root of it giving an abelian variety B
that is `-isogenous to A, it is not clear how to recover equations for the kernel K of the isogeny
A→ B. In the case of elliptic curves, one way is to look at the equation of the isogeny provided
by Vélu’s formula and to solve a differential additions [8]. We hope that Theorem 1.1 will help
to generalize this method to abelian varieties.
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2. M. Bardet, ‘Étude des systèmes algébriques surdéterminés. Applications aux codes correcteurs et à la
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