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ABSTRACT

Context. According to the sequential accretion model (or core-nucleated accretion model), giant planet formation is based first on the
formation of a solid core which, when massive enough, can gravitationally bind gas from the nebula to form the envelope. The most
critical part of the model is the formation time of the core: to trigger the accretion of gas, the core has to grow up to several Earth
masses before the gas component of the protoplanetary disc dissipates.
Aims. We calculate planetary formation models including a detailed description of the dynamics of the planetesimal disc, taking into
account both gas drag and excitation of forming planets.
Methods. We computed the formation of planets, considering the oligarchic regime for the growth of the solid core. Embryos growing
in the disc stir their neighbour planetesimals, exciting their relative velocities, which makes accretion more difficult. Here we introduce
a more realistic treatment for the evolution of planetesimals’ relative velocities, which directly impact on the formation timescale. For
this, we computed the excitation state of planetesimals, as a result of stirring by forming planets, and gas-solid interactions.
Results. We find that the formation of giant planets is favoured by the accretion of small planetesimals, as their random velocities are
more easily damped by the gas drag of the nebula. Moreover, the capture radius of a protoplanet with a (tiny) envelope is also larger for
small planetesimals. However, planets migrate as a result of disc-planet angular momentum exchange, with important consequences
for their survival: due to the slow growth of a protoplanet in the oligarchic regime, rapid inward type I migration has important
implications on intermediate-mass planets that have not yet started their runaway accretion phase of gas. Most of these planets are
lost in the central star. Surviving planets have masses either below 10 M⊕ or above several Jupiter masses.
Conclusions. To form giant planets before the dissipation of the disc, small planetesimals (∼0.1 km) have to be the major contributors
of the solid accretion process. However, the combination of oligarchic growth and fast inward migration leads to the absence of
intermediate-mass planets. Other processes must therefore be at work to explain the population of extrasolar planets that are presently
known.

Key words. planets and satellites: formation – planet-disk interactions – methods: numerical

1. Introduction

Since the discovery of the first extrasolar planet around a solar-
type star (Mayor & Queloz 1995) more than 800 extrasolar plan-
ets have been identified. Observations indicate that planets are
abundant in the universe. Planets orbiting stars show a great vari-
ety of semi-major axis (from less than 0.01 AU to more than hun-
dreds of AU) and masses (from less than an Earth mass to sev-
eral Jupiter masses), as can be found in The Extrasolar Planets
Encyclopaedia1. Planet formation models should be able to ex-
plain this observed diversity. The sequential accretion model,
also called core-nucleated accretion model, is currently the most
accepted scenario for planetary formation (e.g. Mizuno 1980;
Pollack et al. 1996; Alibert et al. 2005a,b, among others), be-
cause it can account naturally for the formation of planets in all
mass ranges2. It proposes that planetary growth occurs mainly
in two stages. In the first stage, the formation of planets is domi-
nated by the accretion of solids. If the protoplanet is able to grow
massive enough (∼10 M⊕) while the gas component of the pro-
toplanetary disc is still present, it can gravitationally bind some

1 http://exoplanet.eu/
2 Note, however, that the formation of planets at large distance from
their central star seems to be very difficult to achieve in the core-
nucleated accretion model.

of the surrounding gas, giving birth to a gas giant planet. The ac-
cretion of gas is slow at the beginning: the planet growth is dom-
inated by the accretion of solids and the energy released from
the accreted planetesimals slows down the accretion of the en-
velope. When the accretion of planetesimals declines (generally
because the protoplanet has emptied its feeding zone), the accre-
tion of gas is triggered, and the planet can accrete hundreds of
Earth masses in a very short time. The runaway accretion of gas
characterises the second stage of the sequential accretion model,
where the growth of the planet is dominated by the accretion
of gas.

Since it was first proposed (Mizuno 1980), the sequential
accretion model has been extensively studied and improved,
trying to include the many fundamental processes that occur si-
multaneously with the growth of the planet, and that impact di-
rectly on it. Constructing a complete model that accounts for
all these processes in a reasonable way is a hard task. Among
its main ingredients, it has to include a realistic model for an
evolving protoplanetary disc, a model for the accretion of solids
and gas to form the planets (which itself requires knowledge
of the internal structure of the planet), a model for the inter-
actions between the planets and the disc, and a model for the
interactions between the forming planets. Each of these top-
ics itself represents an independent, ongoing area of research.
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Alibert et al. (2005, A05 from now on) included some of these
processes in a single-planet formation model. Given the com-
plexity of the problem or the unknowns related to some of these
processes, many simplifications have to be assumed to keep the
problem tractable from the physical and computational point of
view. This is particularly important because we aim to compute
thousands of simulations to account for the wide range of pos-
sible initial conditions (see Mordasini et al. 2009, M09 from
now on, for more details). Therefore, our models represent a
compromise between accuracy and simplicity in their physical
description.

The first stage of planetary formation corresponds to the
growth of the solid embryo, which is dominated by the accre-
tion of planetesimals. The growth of an embryo proceeds in two
different regimes (Ida & Makino 1993; Ormel et al. 2010). At the
beginning, big planetesimals, which have larger cross-sections,
are favoured to grow even bigger by accreting planetesimals that
they encounter on their way. Being more massive, in turn, en-
larges the gravitational focusing, which leads to accretion in a
runaway fashion. However, at some point, these runaway em-
bryos become massive enough to stir the planetesimals around
them. This results in an increase of the relative velocities and the
corresponding reduction of the gravitational focusing. Growth
among small planetesimals is stalled and only big embryos have
the possibility to continue accreting, although at a slower pace.
This second regime in the growth of solid embryos is known as
oligarchic growth, as only the larger planetesimals or embryos
(the oligarchs) are able to keep on growing. One important as-
pect is that the transition between runaway and oligarchic growth
occurs for very small embryos. As shown in Ormel et al. (2010),
the actual mass for this transition depends upon many factors:
the size of the accreted planetesimals, the location in the disc,
and the surface density of solids, among others. In most of the
cases, an embryo of ∼0.01 M⊕, or even smaller, is already grow-
ing in the oligarchic regime.

Our model builds up on the model of A05 and M09. Our pri-
mary aim is to study the formation of planets of different sizes,
and in particular the cases for which the accretion of gas is im-
portant. Therefore, in the computations presented here, we focus
on the first phase of planetary formation, when the gas compo-
nent of the disc is still present (in the case of small rocky plan-
ets, collisions between embryos after the dissipation of the disc
should be included to calculate their final masses). For the for-
mation of giant planets, the growth of the solid core is domi-
nated by the oligarchic growth. One of the weak points of the
majority of previous giant planet formation models (e.g. Pollack
et al. 1996; Hubickyj et al. 2005; A05; M09; Lissauer 2009;
Mordasini et al. 2012a, hereafter M12) is the description of the
solid disc, in particular of the interactions between forming plan-
ets and planetesimals. These simplified models lead to an over-
estimation of the solid accretion rate which, in turn, results in an
underestimation of the formation time of the whole planet.

Indeed, in those works, the model for the accretion rate of
solids is oversimplified: the whole formation of giant planet
cores is assumed to proceed very fast, underestimating the ex-
citation that planetesimals suffer due to the presence of the
embryos. When oligarchic growth is adopted as the dominant
growth model, giant planet formation turns out to be more diffi-
cult. Formation times become much longer than the typical life-
time of the protoplanetary disc. Fortier et al. (2007, 2009) and
Benvenuto et al. (2009) studied the formation of giant planets
adopting the oligarchic growth for the core. Assuming in situ for-
mation for the planets and a simple, unevolving protoplanetary
disc, these authors showed that the formation of giant planets

is unlikely if the planetesimals that populate the disc are big
(more than a few kilometres in size). However, formation could
be accelerated if most of the accreted mass is bound in small
planetesimals (less than 0.1 km). Guilera et al. (2010, 2011),
also considering in situ models, studied the simultaneous forma-
tion of several planets where planetesimal drifting is included.
These authors considered different density profiles for the disc
and found that only for massive discs the formation of the gi-
ant planets as in the solar system is possible only if planetesi-
mal radii are smaller than 1 km. These models, however, do not
take into account that planets would likely migrate during their
formation.

We include in our planet formation model a more realistic
description of the accretion of solids. In Sect. 2, we review the
basics of the A05 formation model, presenting some improve-
ments in the computation of the disc structure, the internal struc-
ture, and migration. In Sect. 3 we describe the new treatment
of the planetesimal accretion. In Sect. 4 we present the results
obtained for the formation of isolated planets (the formation of
planetary systems is described in Alibert et al. 2012; and Carron
et al. 2012). In Sect. 5 we discuss our results and put them in
context. Finally, in Sect. 6 we summarise our results and under-
line the main conclusions.

2. Formation model

The model and the numerical code used to calculate the forma-
tion of planets is in essence the same as in A05. In what fol-
lows, we summarise the most relevant aspects of the model and
the improvements that have been introduced since that work.
In the next section, we focus on the accretion rate of solids
and describe in detail the adopted model for the protoplanet-
planetesimal interactions.

2.1. Protoplanetary disc: gas phase

The structure and evolution of the protoplanetary disc is com-
puted by first determining the vertical structure of the disc for
each distance to the central star, and second, computing the ra-
dial evolution due to viscosity, photoevaporation, and mass ac-
cretion by forming planets.

2.1.1. Vertical structure

The vertical disc structure is computed by solving the following
equations:

1
ρgas

∂P
∂z
= −Ω2z, (1)

∂F
∂z
=

9
4
ρgasνΩ

2, (2)

and

F =
−16πσSBT 3

3κρgas

∂T
∂z
· (3)

They reflect the hydrostatic equilibrium, the energy conserva-
tion, and the diffusion for the radiative flux. In these equations,
z is the vertical coordinate, ρgas the gas density, P the pressure,
T the temperature, ν the macroscopic viscosity, F the radiative
flux, κ is the opacity (Bell & Lin 1994), and σSB is the Stefan-
Boltzmann constant. The Keplerian frequency,Ω, is given by

Ω2 = GM�/a
3, (4)
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G being the gravitational constant, M� the mass of the central
star and a the distance to the star3.

Equations (1)−(3) are solved with four boundary conditions.
The first three are the temperature, the pressure, and the energy
flux at the surface. The surface of the disc is defined as the place
where the vertical optical depth (between the surface and in-
finity) is equal to 0.01. The fourth boundary condition is that
the energy flux equals 0 in the midplane (see A05 for details).
The three differential equations, together with the four bound-
ary conditions, have a solution only for one value of the disc
thickness H, which gives the location of the disc surface. The
macroscopic viscosity ν is calculated using the standard Shakura
& Sunyaev (1973) α-parametrization, ν = αc2

s/Ω. The speed of
sound cs is determined from the equation of state (Saumon et al.
1995). The temperature at the surface Tsurf is computed as in
A05. In the models presented in this paper, α is set to 7 × 10−3.
This value of the alpha parameter has to be taken as an example.

In the calculations of this work we neglected irradiation and
the possible presence of a dead zone. These effects will be in-
cluded in future works.

2.1.2. Evolution

The evolution of the gas disc surface density (Σ =
∫ H

−H
ρgasdz) is

computed by solving the diffusion equation:

dΣ
dt
=

3
a
∂

∂a

[
a1/2 ∂

∂a
ν̃Σa1/2

]
+ Σ̇w(a) + Q̇planet(a), (5)

where ν̃ is the effective viscosity, ν̃ ≡ 1
Σ

∫ H

−H
νρgasdz.

Photoevaporation is included using the model of Veras &
Armitage (2004),{
Σ̇w = 0 for a < Rg,
Σ̇w ∝ a−1 for a > Rg,

(6)

where Rg = 5 AU. The total mass loss due to photoevaporation
is a free parameter. The sink term Q̇planet is equal to the gas mass
accreted by the forming planets. For every forming planet, mass
is removed from the protoplanetary disc in an annulus centred
on the planet, with a width equal to the planet’s Hill radius

RH = aM

(
M

3 M�

)1/3

, (7)

where M is the total mass of the planet and aM is the location of
the planet.

Equation (5) is solved on a grid that extends from the in-
nermost radius of the disc to 1000 AU. At these two points, the
surface density is constantly equal to 0. The innermost radius of
the disc is of the order of 0.1 AU.

Figure 1 presents a typical evolution of a disc, whose param-
eters correspond to the first row of Table 1, where the curves are
plotted every 105 years. In this model, the photoevaporation term
is adjusted to obtain a disc lifetime equal to 3 Myr.

The characteristics of the protoplanetary disc are chosen to
match the observations as closely as possible. The initial disc
density profiles we consider are given by,

Σ = (2 − γ) Mdisc

2πa2−γ
C aγ0

(
a
a0

)−γ
exp

⎡⎢⎢⎢⎢⎢⎣−
(

a
aC

)2−γ⎤⎥⎥⎥⎥⎥⎦ , (8)

3 We assume that the disc is thin, and the distance to the central star
does not vary on a vertical slide of the disc.
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Fig. 1. Disc model. Gas surface density as a function of radius at differ-
ent times. For the initial model (red line) the parameters are those of the
first row of Table 1, the disc lifetime being 3 Myr. Each line corresponds
to a different time (from top to bottom 0 to 3 Myr, every 0.1 Myr).

Table 1. Characteristics of disc models.

Disc Mdisc (M�) aC (AU) ainner (AU) γ
1 0.029 46 0.14 0.9
2 0.117 127 0.16 0.9
3 0.143 198 0.10 0.7
4 0.028 126 0.10 0.4
5 0.136 80 0.10 0.9
6 0.077 153 0.12 1.0
7 0.029 33 0.10 0.8
8 0.004 20 0.10 0.8
9 0.012 26 0.10 1.0
10 0.007 26 0.10 1.1
11 0.007 38 0.10 1.1
12 0.011 14 0.10 0.8

where a0 is equal to 5.2 AU. The mass of the disc (Mdisc), the
characteristic scaling radius (aC) and the power index (γ) are de-
rived from the observations of Andrews et al. (2010). Adopting
this kind of initial density profile is a difference from previous
works (A05 and M09). For numerical reasons, the innermost
disc radius, ainner, is always greater than or equal to 0.1 AU,
and differs in some cases from the one cited in Andrews et al.
(2010). The parameters used to generate the initial disc’s profile
are listed in table 1. Andrews et al. (2010) also derived a value
for the viscosity parameter α. In contrast, and for simplicity, we
assume here that the viscosity parameter is the same for all pro-
toplanetary discs we consider (α = 7 × 10−3). Using a different
α parameter will be the subject of future work. In the obser-
vations of Andrews et al. (2010), the mass of the central star
ranges from 0.3 to 1.3 M�. However, we assume here that these
disc profiles are all suitable for protoplanetary discs around so-
lar mass stars. Future disc observations will help to improve this
part of our models.

As in A05, the planetesimal-to-gas ratio is assumed to scale
with the metallicity of the central star. For every protoplanetary
disc we consider, we select the metallicity of a star at random
from a list of ∼1000 CORALIE targets (Santos, priv. comm.).

Finally, following Mamajek (2009), we assume that the cu-
mulative distribution of disc lifetimes decays exponentially with
a characteristic time of 2.5 Myr. When a lifetime Tdisc is selected,
we adjust the photoevaporation rate so that the protoplanetary
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disc mass reaches 10−5 M� at the time t = Tdisc, when we stop
the calculation.

2.2. Protoplanetary disc: solid phase

We consider that the planetesimal disc is composed of rocky and
icy planetesimals. Here we assume a mean density of 3.2 g/cm3

for the rocky and 1 g/cm3 for the icy planetesimals. The rocky
planetesimals are located between the innermost point of the disc
(given by the fourth column of Table 1), and the initial location
of the ice line, whereas the disc of icy planetesimals extends
from the ice line to the outermost point in the simulation disc.

The location of the ice line is computed from the initial gas
disc model, using the central temperature and pressure. The ice
sublimation temperature we use depends upon the pressure. In
our model the location of the ice line does not evolve with time.
In particular, no condensation of moist gas or sublimation of icy
planetesimals is taken into account. Moreover, the location of
the ice line is based on the central pressure and temperature,
meaning that the ice line is taken to be independent of the height
in the disc. In reality the ice line is likely to be an ice surface
whose location depends upon the height inside the disc (see Min
et al. 2011).

For the models presented here, we assume that all planetes-
imals have the same radius. The planetesimal mass is calcu-
lated assuming that they are spherical and have constant den-
sity (which depends on their location in the disc), and it does not
evolve with time. The extension of our calculations towards non-
uniform and time-evolving planetesimal mass function is some-
thing we are working on and will be included in the next paper.

The surface density of planetesimals, Σm, is assumed to be
proportional to the initial surface density of gas Σ0. This means
that

Σm(a) = fD/G fR/I(a)Σ0(a), (9)

where fD/G is the dust-to-gas ratio of the disc, and it scales with
the metallicity of the central star (the lowest value being 0.003
and the highest value 0.125), and fR/I takes into account the de-
gree of condensation of heavy elements. As in M09, we consider
fR/I = 1/4 inside the ice line, and fR/I = 1 beyond it, for rocky
and icy planetesimals.

The surface density of planetesimals evolves as a result of
accretion and ejection by the forming planets. The same proce-
dure as in A05 is adopted. Planetesimals that can be accreted by
a growing planet are those within the planet’s feeding zone, here
assumed to be an annulus of 5 RH at each side of the orbit. The
solids surface density inside the feeding zone is considered to be
constant, i.e. the protoplanet instantaneously homogenises it as a
result of the scattering it produces among planetesimals. Ejected
planetesimals are considered to be lost.

We stress that this work is the first one of a series of papers.
Here, effects such as planetesimal drifting due to gas drag, frag-
mentation, and planetesimal size distribution are neglected, but
will be included in future works.

2.3. Gas accretion: attached phase

Equations

Planetary growth proceeds through solids and gas accre-
tion. Gas accretion is the result of a planet’s contraction

and is computed by solving the standard internal structure
equations

dr3

dMr
=

3
4πρ
, (10)

dP
dMr

=
−G(Mr + Mcore)

4πr4
, (11)

dT
dP
= ∇ad or ∇rad, (12)

where r, P, T are the radius, the pressure and the temperature in-
side the envelope. These three quantities depend upon the gas
mass, Mr , included in a sphere of radius r. The temperature
gradient is given by the adiabatic (∇ad) or by the radiative gra-
dient (∇rad), depending upon the stability of the zone against
convection, which we check using the Schwarzschild criterion.
These equations are solved using the equation of state (EOS) of
Saumon et al. (1995). The opacity, which enters in the radia-
tive gradient ∇rad, is computed according to Bell & Lin (1994).
In this work we assume that the grain opacity is the full in-
terstellar opacity. However, Podolak (2003) and Movshovitz &
Podolak (2008) showed that the grain opacity in the envelope of
forming planets should be much lower than the interstellar one.
Reducing the grain opacity accelerates the formation of giant
planets (Pollack at al. 1996; Hubickyj et al. 2005) because it al-
lows the runaway of gas to start at smaller core masses. Since the
objective of the present paper is to explore the consequences of
the planet-planetesimal interactions, we only consider a single
opacity, corresponding to the full interstellar opacity.

We omitted the energy equation that yields the luminosity,
which in turn is part of the radiative gradient (in the parts of the
planet that are stable against convection), and of the determina-
tion of the planet stability to convective motions. Including the
energy equation in its standard form dL

dMr
= εm − T dS

dt (the first
term results from the accretion of planetesimals, the second from
the contraction of the planet) usually entails numerical difficul-
ties. Here we follow Mordasini et al. (2012b) to calculate the
luminosity in an easier way. Note, however, that we improved
the approach of these authors to take the energy of the core ana-
lytically into account.

The total luminosity is given by L = Lcont + Lm, Lcont being
the contraction luminosity and Lm the accretion luminosity. We
assume Lcont to be constant in the whole planetary envelope. Lcont
is computed as the result of the change in total energy of the
planet between two time steps t and t + dt,

Lcont = −Etot(t + dt) − Etot(t) − Egas,acc

dt
, (13)

where Etot is the total planetary energy and Egas,acc = dtṀgasuint
is the energy advected during gas accretion (uint being the inter-
nal specific energy). Egas,acc is negligible compared to the other
terms. The luminosity due to accretion of planetesimals is

Lm = G
Ṁcore Mcore

Rcore
· (14)

However, the energy at the time t + dt is not known before com-
puting the internal structure at this given time. To circumvent
this problem, we use the following approach: the energy is split
into two parts, one related to the core, one to the envelope.

The core energy is given by Ecore = −(3/5) GM2
core/Rcore,

the core density is assumed to be uniform. The envelope
energy is assumed to follow a similar functional form:
Eenv = −kenvMenvg, where g is a mean gravity, taken to be
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G(Mcore/Rcore + Mtot/Rplanet). This last formula defines kenv, in
which all our ignorance of the internal structure is hidden. To
calculate the envelope energy at time t + dt, the value of kenv is
first taken to be the value resulting from the structure at time t.
Then, iteration on kenv is performed until convergence is reached.
In general, a first order correction is sufficient to reach a satis-
factory solution.

Boundary conditions
The internal structure equations are solved for Mr varying

between the core mass Mcore and the total planetary mass. Four
boundary conditions are given, namely the core radius, the total
planetary radius, and Tsurf,planet and Psurf,planet, the temperature
and pressure at this point. Given the boundary conditions, the
differential equations have only one solution for a given total
planetary mass.

The core radius is given as a function of the core luminosity
and the pressure at the core surface by the following formula,
which constitute a fit to the results of Valencia et al. (2010),

Rcore

9800 km
=

(
Mcore

5 M⊕

)0.28+0.02
√

Mcore
5M⊕

×10
−
[
log10

(
1+Pcore/

√
Mcore
5 M⊕ )

)
/7

]3

, (15)

where Pcore is the pressure at the core-envelope interface, ex-
pressed in GPa.

The radius of the planet, RM, is given by (Lissauer et al.
2009),

RM =
GM

c2
s

k1
+ GM

k2RH

, (16)

where c2
s is the square of the sound velocity in the disc midplane

at the planet’s location, k1 = 1 and k2 = 1/4. At the planet’s
surface, the temperature and pressure are given by,

Tsurf,planet =

⎛⎜⎜⎜⎜⎝T 4
disc +

3τL

16πσPR2
M

⎞⎟⎟⎟⎟⎠
1/4

, (17)

and

Psurf,planet = Pdisc, (18)

with τ = κ(Tdisc, ρdisc)ρdiscRM , L is the planet luminosity, and
Tdisc, ρdisc, Pdisc are the temperature, density and pressure in the
disc midplane at the location of the planet.

2.3.1. Gas accretion: detached phase

By solving the differential Eqs. (10) to (12) with the boundary
conditions mentioned above, one can derive the planetary en-
velope mass as a function of time, and therefore the gas accre-
tion rate Ṁgas. However, the rate of gas accretion that can be
sustained by the protoplanetary disc is not arbitrary, and is in
particular limited by the viscosity. When the gas accretion rate
required by the forming planet is higher than the one that can be
delivered by the disc, Ṁgas,max, the planet goes into the detached
phase.

In the detached phase, the planetary growth rate by gas
accretion does not depend upon its internal structure, but is
rather given by the structure and evolution of the disc. During
this phase, the internal structure is given by solving the same
Eqs. (10) to (12), this time for a mass Mr ranging from Mcore

to Mplanet (which is known). The boundary conditions are the
same, except for two:

– The pressure, which includes the dynamical pressure from
gas free-falling from the disc to the planet,

Psurf,planet = Pdisc +
Ṁgas

4πR2
M

vff . (19)

In this equation, vff is the free-falling velocity
from the Hill radius to the planetary radius, vff =
−√2GM × (1/RM − 1/RH). The planetary radius is not
known a priori, but computed as a result of integrating
Eqs. (10) to (12).

– The maximum accretion rate, Ṁgas,max, which is equal to

Ṁgas,max = max [F (aM + RH) , 0] +min [F (aM − RH) , 0] ,

(20)

where F = 3πνΣ + 6πr ∂νΣ
∂a is the mass flux in the disc.

Geometrically, the maximum accretion rate that can be pro-
vided by the disc is equal to the mass flux entering the
planet’s gas feeding zone. The gas can enter either from the
outer parts of the disc (which is the general case), or from
the inner part of the disc (which can be the case in the outer
part of the disc).

Therefore, during a time step, a planet has access to the mass
delivered at its location by the disc (Ṁgas,max × dt), and a mass
reservoir made of the gas mass already present in the planet’s gas
feeding zone (see also Ida & Lin 2004). This reservoir of gas is
assumed to be empty when the planet is massive enough to open
a gap (which coincides with the transition to type II migration,
see next section). However, the feeding zone continues to receive
gas due to viscosity at the local accretion rate (Eq. (20)).

2.4. Orbital evolution: disc-planet interaction

Disc-planet interaction leads to planet migration, which can
occur in different regimes. For low-mass planets, which are
not massive enough to open a gap in the protoplanetary disc,
migration occurs in type I (Ward 1997; Tanaka et al. 2002;
Paardekooper et al. 2010, 2011). For higher mass planets, migra-
tion is again subdivided into two modes: disc-dominated type II
migration, when the local disc mass is larger than the planetary
mass (the migration rate is then simply given by the viscous evo-
lution of the protoplanetary disc), and planet-dominated type II
migration in the opposite case (see M09). The transition between
type I and type II migration occurs when

3
4

Hdisc

RH
+

50 M�
MRe

= 1, (21)

(Crida et al. 2006), where Hdisc is the disc scale-height at the lo-

cation of the planet, and Re =
a2

MΩ

ν
is the macroscopic Reynolds

number at the location of the planet (ν is the same as the one
used for the disc evolution).

First models of type I migration (Ward 1997; Tanaka et al.
2002) predicted such rapid migration rates that it was neces-
sary to arbitrarily reduce the migration rate by a constant fac-
tor, named fI in A05 and M09, to reproduce observations. Since
these first calculations, type I migration has been studied in great
detail, and new formulations for type I migration rates are now
available (Paardekooper et al. 2010, 2011). We use in our model
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an analytic description of type I migration that reproduces the re-
sults of Paardekooper et al. (2011). A detailed description of this
model is presented in Dittkrist et al. (in prep.), and preliminary
results have been presented in Mordasini et al. (2010).

3. The accretion rate of solids

The growth of the solid component of a protoplanet, Mcore,
is assumed to be caused by to the accretion of planetesimals.
Adopting the particle-in-a-box approximation, its growth rate
can be calculated with

dMcore

dt
=

⎛⎜⎜⎜⎜⎝2πΣmR2
H

Porbital

⎞⎟⎟⎟⎟⎠ Pcoll, (22)

(Chambers 2006), where Σm is the solids surface density at the
location of the protoplanet and Porbital is its orbital period. The
collision rate, Pcoll, is the probability that a planetesimal is ac-
creted by the protoplanet. This probability depends upon the rel-
ative velocity between planetesimals and the protoplanet which,
in turn, depends upon the planetesimal’s eccentricities and incli-
nations. We represent by e (i) the root mean square of the eccen-
tricity (inclination) of planetesimals. Planetesimals are found to
be in different velocity regimes depending on their random ve-
locities. These regimes are known as high-, medium-, and low-
velocity regime. Each regime is characterised by a range of val-
ues of the planetesimal’s reduced eccentricities (ẽ = ae/RH) and
inclinations (ĩ = ai/RH): the high-velocity regime is defined by
ẽ, ĩ � 2, the medium-velocity regime by 2 � ẽ, ĩ � 0.2 and the
low-velocity regime by ẽ, ĩ � 2. This leads to different collision
rates

Phigh =
(R + rm)2

2πR2
H

(
IF(β) +

6RHIG(β)
(R + rm)ẽ2

)
, (23)

Pmed =
(R + rm)2

4πR2
Hĩ

(
17.3 +

232RH

R + rm

)
, (24)

Plow = 11.3

(
R + rm

RH

)1/2

(25)

(see Inaba et al. 2001, and references therein), where R is the
radius of the protoplanet (in the case of a solid body without a
gaseous envelope R is its geometrical radius), rm is the radius
of the planetesimals, β = ĩ/ẽ, and the functions IF and IG are
well-approximated by

IF(β) 
 1 + 0.95925β+ 0.77251β2

β(0.13142+ 0.12295β)
, (26)

IG(β) 
 1 + 0.3996β
β(0.0369 + 0.048333β+ 0.006874β2)

, (27)

for 0 < β ≤ 1, which is the range of interest for this work
(Chambers 2006).

According to Inaba et al. (2001), the mean collision rate can
be approximated by

Pcoll = min
(
Pmed, (P−2

high + P−2
low)−1/2

)
. (28)

When an embryo is able to gravitationally bind gas from its sur-
roundings, it becomes more difficult to define its radius, which is
not just the core radius. For the purpose of the collision rate, the
capture radius of the protoplanet should depend upon the mass
of the protoplanet, upon the planetesimals’ velocity with respect
to the protoplanet, upon the density profile of the envelope, ρ(r),

and upon the size of the accreted planetesimals (smaller plan-
etesimals are more affected by the gas drag of the envelope
and therefore are easier to capture). As in Guilera et al. (2010),
here we adopt the prescription of Inaba & Ikoma (2003) where
the capture radius R can be obtained by solving the following
equation

rm =
3
2
ρ(R)R
ρm

⎛⎜⎜⎜⎜⎝ v
2
rel + 2GM(R)/R

v2rel + 2GM(R)/RH

⎞⎟⎟⎟⎟⎠ , (29)

where ρm is the planetesimals’ bulk density, G is the gravitational
constant, and the relative velocity vrel is given by

vrel = vk
√

5/8 e2 + 1/2 i2, (30)

with vk the Keplerian velocity (vk = Ωa). This simple formula
for the capture radius approximates more complex models well
(as the one described in A05) with the advantage that it reduces
the computational time.

It is clear from these equations that the accretion rate of
solids depends upon the eccentricities and inclinations of plan-
etesimals, which define their relative velocities with respect to
the embryo: the higher the relative velocity, the less likely it is
that planetesimals are captured by the embryo. The eccentrici-
ties and inclinations of planetesimals are affected by the damp-
ing produced by the nebular gas drag, by the gravitational stir-
ring of the protoplanet (protoplanet-planetesimal interactions)
and, to a lesser extent, by their mutual gravitational interactions
(planetesimal-planetesimal interactions):

de2

dt
=

de2

dt

∣∣∣∣∣
drag
+

de2

dt

∣∣∣∣∣
VS,M
+

de2

dt

∣∣∣∣∣
VS,m
, (31)

di2

dt
=

di2

dt

∣∣∣∣∣
drag
+

di2

dt

∣∣∣∣∣
VS,M
+

di2

dt

∣∣∣∣∣
VS,m
. (32)

The first term represents the effect of the nebular gas drag,
the second term the viscous stirring produced by an embryo
of mass M, and the third term represents the planetesimal-
planetesimal viscous stirring.

The drag force experienced by a spherical body depends
upon its relative velocity with respect to the gas. If we con-
sider that the protoplanetary nebula is mainly composed of
H2 molecules, the mean free path of a molecule of gas is

λ = (nH2σH2 )−1, (33)

where nH2 is the number density of H2 molecules and σH2 is the
collision cross-section of an H2 molecule. Depending upon the
ratio between the planetesimal’s radius and the mean free path
of the molecules, three drag regimes can be defined (Rafikov
2004, and references therein). The first two drag regimes are
for planetesimals whose radii are larger than the mean free
path, rm � λ. These are the quadratic and the Stokes regime.
To distinguish these regimes we adopt the criterion proposed
by Rafikov (2004) in terms of the molecular Reynolds num-
ber Remol ≡ vrelrm/νmol, where νmol is the molecular viscosity,
νmol = λcs/3. If Remol � 20, we assume that the gas drag is in
the quadratic regime, and the differential equations for the evo-
lution of the eccentricity and inclination are given by

de2

dt

∣∣∣∣∣
drag
= − 2e2

τdrag

(
9
4
η2 +

9
4π
ξ2e2 +

1
π

i2
)1/2

, (34)

di2

dt

∣∣∣∣∣
drag
= − i2

τdrag

(
η2 +

ξ2

π
e2 +

4
π

i2
)1/2

(35)
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(Adachi et al. 1976 corrected by Inaba et al. 2001)4, with
ξ 
 1.211. The value of η depends upon the distance to the star,
on the gas density and on the pressure gradient, dP/da,

η(a) = − 1
2Ω2aρgas

dP
da
, (36)

where ρgas and dP/da are derived from the disc model.
The gas drag timescale is

τdrag =
8ρmrm

3CDρgasvk
, (37)

where CD is the drag coefficient, which is of the order of unity.
The Stokes regime occurs for rm � λ and Remol < 20, and the

equations for the eccentricity and inclinations of planetesimals
are

de2

dt

∣∣∣∣∣
drag
= −3

2

λcsρgase2

ρmr2
m
, (38)

di2

dt

∣∣∣∣∣
drag
= −3

4

λcsρgasi2

ρmr2
m
, (39)

(Adachi et al. 1976; Rafikov 2004).
In this paper, as for example in Stepinski & Valageas (1996),

we defined two different Reynolds numbers, Re and Remol, and
two different viscosities, ν and νmol. The macroscopic quantities
(Re and ν) are a measure of the fluid dynamics of the disc in a
global scale (to compute the evolution of the disc) while the mi-
croscopic quantities (Remol and νmol) characterise the local state
of the gas and are used to calculate the eccentricities and incli-
nations of planetesimals.

When rm � λ, the third regime, Epstein regime, takes place,
and the evolution of eccentricities and inclinations follows the
equations

de2

dt

∣∣∣∣∣
drag
= −e2 csρgas

ρmrm
, (40)

di2

dt

∣∣∣∣∣
drag
= − i2

2

csρgas

ρmrm
(41)

(Adachi et al. 1976; Rafikov 2004). In this paper we consider
that the population of planetesimals is represented by spheri-
cal bodies of a single size. It is worth mentioning that although
we allow for the three drag regimes according to the above-
mentioned criterions, for the ranges of planetesimal sizes con-
sidered in this work (100−0.1 km) and for the kind of interaction
we are mostly interested in here (protoplanet-planetesimal inter-
actions), planetesimals are found to be mainly in the quadratic
regime. Therefore, in most of the cases, for determining the
solids accretion rate the effect of the gas drag is governed by
Eqs. (34), (35).

The planetesimal eccentricities and inclinations are excited
by the presence of a protoplanet. Ohtsuki et al. (2002) studied
the evolution of the mean square orbital eccentricities and incli-
nations and introduced semi-analytical formulae to describe the
stirring produced by the protoplanet

de2

dt

∣∣∣∣∣
VS,M

=

(
M

3bM�Porbital

)
PVS, (42)

di2

dt

∣∣∣∣∣
VS,M

=

(
M

3bM�Porbital

)
QVS, (43)

4 We did not find any noticeable difference in our results when using
the original formulas of Adachi et al. (1976) or the corrected ones by
Inaba et al. (2001).

where b is the full width of the feeding zone of the protoplanet
in terms of their Hill radii (here we adopt b ∼ 10), and PVS and
QVS are given by

PVS =

[
73ẽ2

10Λ2

]
ln(1 + 10Λ2/ẽ2)

+

[
72IPVS(β)

πẽĩ

]
ln(1 + Λ2), (44)

QVS =

[
4ĩ2 + 0.2ĩẽ3

10Λ2ẽ

]
ln(1 + 10Λ2ẽ2)

+

[
72IQVS(β)

πẽĩ

]
ln(1 + Λ2), (45)

with Λ = ĩ(ẽ2 + ĩ2)/12. The functions IPVS(β) and IQVS(β) can be
approximated for 0 < β ≤ 1 by

IPVS(β) 
 β − 0.36251
0.061547+ 0.16112β+ 0.054473β2

, (46)

IQVS(β) 
 0.71946− β
0.21239 + 0.49764β+ 0.14369β2

(47)

(Chambers 2006). The excitation that the protoplanet produces
on the planetesimals weakens with the increase in the distance
between the protoplanet and the planetesimals, i.e. farther away
planetesimals are less excited. Here we follow the approach of
Guilera et al. (2010) and consider that the effective stirring is
given by

de2

dt

∣∣∣∣∣
eff

VS,M
= f (Δ)

de2

dt

∣∣∣∣∣
VS,M
, (48)

di2

dt

∣∣∣∣∣
eff

VS,M
= f (Δ)

di2

dt

∣∣∣∣∣
VS,M
, (49)

where f (Δ) ensures that the perturbation of the protoplanet is
confined to its neighbourhood,

f (Δ) =

⎡⎢⎢⎢⎢⎢⎣1 +
(
Δ

nRH

)5⎤⎥⎥⎥⎥⎥⎦
−1

, (50)

with Δ = |aM − am|, where aM is the semi-major axis of the
protoplanet and am is the semi-major axis of the planetesimal.
Although the functional form is arbitrary, the scale on which the
stirring acts is similar to the one found in N-body calculations
(excluding the effects of resonances). For this work we have cho-
sen n = 5 to limit the perturbation of the planet to its feeding
zone. In the future, with the aid of N-body calculations, we plan
to obtain a better semi-analytical function to characterise the ex-
tent of the planetary perturbation.

We also consider that the planetesimals’ eccentricities and
inclinations are stirred by their mutual interactions. For a pop-
ulation of planetesimals of equal mass m, the evolution of their
eccentricities and inclinations are well described by

de2

dt

∣∣∣∣∣
VS,m
=

1
6

√
Ga
M�
ΣmhmPVS, (51)

di2

dt

∣∣∣∣∣
VS,m
=

1
6

√
Ga
M�
ΣmhmQVS (52)

(Ohtsuki et al. 2002), with

hm =

(
2m

3M�

)1/3

· (53)
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In this case PVS and QVS are evaluated with the reduced ec-
centricity and inclination relative to the planetesimal mass (i.e.
ẽ = 2e/hm, ĩ = 2i/hm). There is no dynamical friction term
in Eqs. (51), (52), as it vanishes when a single mass popu-
lation of planetesimals is considered (Ohtsuki et al. 2002).
Although strictly speaking we have two populations of planetes-
imals (rocky and icy bodies depending on whether they are in-
side or beyond the ice line) that have the same size but not the
same mass (because of the difference in their density), the region
where the two types of planetesimals are present at the same time
is very narrow.

In this work we neglect changes in the mass of planetesimals
due to fragmentation and changes in the surface density owing
to planetesimal drifting.

3.1. Comparison with previous accretion rate of solids

In previous works (A05, M09), the accretion rate of solids has
been treated in a very simple way which led to an underesti-
mation of the formation timescale of planets. In those works,
the prescription for the planetesimals’ eccentricities and incli-
nations was the same as in Pollack et al. (1996), who assumed
that the planetesimals’ inclinations depend only on planetesimal-
planetesimal interactions. Under this assumption, the reduced
value of the planetesimals’ inclination, ĩ, was prescribed as

ĩ =
vE√

3ΩRH

, (54)

where vE is the escape velocity from the surface of a planetesi-
mal. This means that the planetesimal’s inclination i = ĩ RH/a
is constant independently of the mass of the planet. On the other
hand, eccentricities are assumed to be controlled by both plan-
etesimals and protoplanet stirring, its value given by

ẽ = max(2ĩ, 2). (55)

Therefore, if ẽ = 2ĩ, the protoplanet is growing according to the
runaway regime because e and i would be independent of the
mass of the protoplanet. If ẽ = 2, the eccentricity of planetes-
imals would be affected by the presence of the protoplanet, so
to a certain extent the stirring of the embryo is taken into ac-
count. However, this condition corresponds to the protoplanet-
planetesimal scattering in the shear-dominated regime. Ida &
Makino (1993) showed that the shear-dominated regime lasts
for only a few thousand years, after which planetesimals are
strongly stirred by the protoplanet. During the shear-dominated
period, eccentricities and inclinations of planetesimals in the
vicinity of the protoplanet remain low. This leads to an ac-
cretion scenario that is much faster than that corresponding to
the oligarchic regime (the oligarchic regime usually occurs in
the dispersion-dominated regime). To clearly show the differ-
ence between this quasi-runaway accretion of solids and the oli-
garchic regime, we performed two simulations that are identical
in all parameters except for the prescription of e and i. The planet
is assumed to form in situ at 6 AU. Accreted planetesimals are
100 km in radius. No disc evolution is considered, so simula-
tions are stopped when the planet reaches one Jupiter mass. For
the quasi-runaway regime we use Eqs. (55) and (54) to calculate
e and i, while for the oligarchic growth we solve the differential
equations presented in the previous section. Figure 2 (left panel)
shows the ratio of oligarchic and quasi-runaway eccentricities
and inclinations as a function of the mass of the planet. In the
case of the eccentricity, the one corresponding to the oligarchic
regime is ∼4 times higher than in the quasi-runaway regime.
The oligarchic inclination is several tens of times higher than the

quasi-runaway regime. As a consequence, the accretion rate of
solids is much lower in the oligarchic than in the quasi-runaway
regime because in the oligarchic regime planetesimals are more
excited and more difficult to accrete. A comparison between the
two accretion rates of solids is shown in Fig. 2 (right panel).
Owing to the lower accretion rate in the oligarchic regime, while
in the quasi runaway regime it takes less than 1 Myr to form the
planet, in the oligarchic regime formation is much longer, taking
3.25 × 107 years.

4. Results

In the previous section we introduced the main characteristics
of the planet formation model, with special focus on the differ-
ences in the physical and numerical model with respect to A05.
In the following sections we will concentrate on the impact that
the accretion rate of solids has on the formation of giant plan-
ets. Here we will consider the formation of isolated planets, i.e.
only one planet per disc. The computations of planetary system
formation will be presented in other papers (Alibert et al. 2012;
Carron et al. 2012).

As we described in Sect. 3, the treatment of the evolution of
eccentricities and inclinations of planetesimals intends to min-
imise the assumptions on their values (keeping in mind that it
is not an N-body calculation, but the adopted formulas repro-
duce N-body results of the planetesimals’ accretion rates and
excitation). To consider a realistic accretion rate that is not too
computationally expensive, Thommes et al. (2003) considered
that the planetesimals’ eccentricities and inclinations can be es-
timated assuming that the stirring produced by the protoplanet is
instantaneously balanced by the gas drag. The approximation to
the equilibrium values of e (eeq) can be derived by equating the
stirring timescale and the damping timescale, resulting in

eeq = 1.7
m1/15M1/3ρ2/15

m

b1/5C1/5
D ρ

1/5
gas M1/3

� a1/5
· (56)

The equilibrium value for i (ieq) is assumed to be half the value
of eeq, as this relationship has been shown to be a good approxi-
mation in the high-velocity cases (Ohtsuki et al. 2002):

ieq =
1
2

eeq. (57)

However, it is not clear whether planetesimals are always in
equilibrium, especially if we consider that depending on their
mass, planetesimals are differently affected by gas drag, and that
during its formation, a planet migrates and the protoplanetary
disc evolves. On the other hand, if equilibrium is attained, it is
interesting to compare the equilibrium values obtained by ex-
plicitly solving Eqs. (31), (32) with the approximations given by
Eqs. (56), (57) based on timescale considerations.

Fortier at al. (2007, 2009) and Benvenuto et al. (2009)
assumed, for simplicity, the equilibrium approximation of
Thommes et al. (2003) in their in situ, giant planet formation
models. However, Chambers (2006) found that significant de-
viations from equilibrium occur at the very beginning of the
growth of the embryo, but eventually equilibrium is attained. In
the cases he discussed, these deviations do not seem to have a no-
ticeable effect on the final mass of the planet as long as no time
restriction for the lifetime of the disc is assumed. On the other
hand, Guilera et al. (2010, 2011) did not use any approximations
and explicitly calculated e and i by solving the corresponding
time evolution differential equations in their giant planet forma-
tion model. No study comparing the equilibrium approximation
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Fig. 2. Left panel: the ratio between eccentricities (red) and inclinations (blue) as a function of the planet’s mass considering both the oligarchic
and the quasi-runaway growth. Clearly, the planetesimals’ excitation is several times higher in the oligarchic growth than in the quasi-runaway
growth. The right panel shows the impact of the planetesimals’ excitation in the accretion rate of solids: for the quasi-runaway growth (yellow)
the accretion rate is much higher than in the oligarchic growth (green).

and the explicit calculation of e and i has been made using a
self-consistent giant planet formation model. Moreover, out-of-
equilibrium effects can be important, not only at the beginning of
the formation of a planet. When planets migrate, they can enter
regions where planetesimals are in principle cold (low values of
e and i), or already excited if there is another planet growing in
the neighbourhood. Depending on the ratio between the stirring
and the migration timescale, one can expect some cases where
the equilibrium approximation may not be accurate.

We study the formation of giant planets considering a self-
consistent model for the interplay between the disc evolution,
accretion by the growing planets and gas-driven migration. In
this paper, we focus our study on the formation of single plan-
ets, looking in detail at the dependence of planetary growth upon
the planetesimal size and the differences in the final results be-
tween the equilibrium approximation and the explicit calculation
of e and i, all together with planetary migration. We perform this
analysis in four steps. First we consider the formation of a 1 M⊕
planet, neglecting the presence of an envelope, of planetary mi-
gration and of disc evolution (Sect. 4.1). Second, we compute the
full formation of a planet (except migration), which is assumed
to be over when the gaseous component of the disc disappears.
We keep the in situ formation hypothesis to facilitate the analy-
sis (Sect. 4.2). Third, we allow for gas driven migration during
the formation of the planet (Sect. 4.3). Fourth, we generalise the
examples presented in the third step by considering a wide range
of plausible protoplanetary discs and initial locations for the em-
bryo to have an overview of all possible outcomes (Sect. 4.4).

4.1. Formation of a 1 M⊕ planet

We analyse first the formation of a 1 M⊕ planet (we stop the cal-
culation when this mass is reached), neglecting the presence of
an envelope, planetary migration, and disc evolution. The point
of this case is to focus on the initial stages of the accretion and
analyse the importance of the size of the accreted planetesimals
and the implications for the growth of the embryo when con-
sidering the equilibrium approximation. This is because we aim

to clearly show the consequences of these assumptions that we
neglect other physical processes that act simultaneously. This
means, for example, that for a fixed mass of the embryo and in-
dependently of the elapsed time, the state of the protoplanetary
disc is the same in terms of surface density (solids and gas). The
same applies for the capture radius of the planet. In this example,
the embryo is assumed to be located at 6 AU, where the initial
solids surface density is Σm = 10 g cm−2 and the density of the
nebular gas is ρgas = 2.4 × 10−9 g cm−3. For this disc the snow
line is at 3.5 AU. The initial surface density profile of the disc is
given by Eq. (8) with γ = 0.9 and aC = 127 AU. The initial mass
of the embryo is 0.01 M⊕. For the equilibrium approximation we
adopt Eqs. (56), (57) to calculate the values of e and i. For the ex-
plicit calculation of the eccentricity and inclination of planetes-
imals we solve Eqs. (31), (32). To solve Eqs. (31), (32), initial
conditions for e and i must be given. We consider two possibili-
ties for the initial conditions that we think bracket the parameter
space. On one hand, we consider that the planetesimal disc is ini-
tially cold, and the planetesimals’ eccentricities and inclinations
are given by the equilibrium value between their mutual stirring
and the gas drag. These values can be derived by equating the
stirring timescale and the damping timescale, which results in

em−m
eq = 2.31

m4/15Σ1/5a1/5ρ2/15
m

C1/5
D ρ

1/5
gas M2/5

�

, (58)

im−m
eq =

1
2

em−m
eq . (59)

This means that we are assuming that the embryo instanta-
neously appears in an unperturbed planetesimal disc. The other
extreme situation is to assume a hot disc, where planetesimals
are already excited by the embryo and their initial eccentricities
and inclinations are those corresponding to the value of equi-
librium between the stirring of the embryo (0.01 M⊕) and the
gas drag, approximated by Eqs. (56), (57). The initial values of
e for these cases are given in Table 2, where em−m

eq,0 corresponds
to Eq. (58) and eeq,0 to Eq. (56). The initial values of i are as-
sumed to be e/2 (i0 = e0/2). We perform calculations for the
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Fig. 3. In situ formation of a 1 M⊕ planet at 6 AU for different radii of accreted planetesimals (red, 100 km; blue, 10 km; green, 1 km; orange,
0.1 km). The solid line is for the equilibrium approximation of eccentricities and inclinations (see Eqs. (56), (57)). The dashed and dotted lines
are for the explicit calculation of e and i solving the differential equations Eqs. (31), (32). Two different initial values, e0, i0, were considered: the
dashed line represents the case where e0 and i0 are given by Eqs. (59), (58), while the dotted line assumes e0, i0 to be the initial equilibrium values
of the equilibrium case. The top-left panel depicts the mass growth of the protoplanet as a function of time. The top-right panel shows the time
evolution of the eccentricity. The bottom-left panel shows the eccentricity as a function of the mass of the embryo. Clearly, in all cases, equilibrium
is attained after an out of equilibrium state. The bottom-right panel plots the accretion rate of solids as a function of the embryo mass. Note that,
as a function of the planet mass, the difference in the accretion rate is only a consequence of the difference in e and i.

Table 2. Two sets of initial values of the eccentricity for the explicit
calculation of its evolution.

rm em−m
eq,0 eeq,0

100 km 8.4 × 10−3 2.13 × 10−2

10 km 1.3 × 10−3 1.35 × 10−2

1 km 2.0 × 10−4 8.70 × 10−3

0.1 km 3.3 × 10−5 5.53 × 10−3

equilibrium approximation and the two sets of initial conditions
for the explicit calculation for four radii of the accreted planetes-
imals: 100, 10, 1, and 0.1 km.

Figure 3 shows the results of the simulations mentioned
above. The top-left panel depicts the mass growth of the planets
as a function of time. What is first evident from this plot is the
timescale difference in the formation of the 1 M⊕ planet depend-
ing on the size of the accreted planetesimals: while for accreted
planetesimals of 100 km it takes ∼107 yr to grow from 0.01 M⊕
mass to 1 M⊕, it takes ∼105 yr in the case of 0.1 km planetesi-
mals. This difference in the growth timescale is entirely due to
the fact that large planetesimals are less damped by gas drag than
the smaller ones. Hence, while they are stirred up by the mas-
sive embryos to about the same value, they keep higher e and i

values (bottom-left panel), making the accretion process much
slower. We recall that the disc does not evolve and planets do
not migrate, therefore differences depend only on the planetesi-
mal size. Note that for a fixed mass of the embryo the accretion
rate of solids differs by two orders of magnitude between the two
extreme cases (bottom-right panel).

If we now turn our attention to the differences in growth
rate for a fixed planetesimal size, but for different approaches
in the calculation of the eccentricities and inclinations, we see
that adopting the equilibrium approximation may lead to signif-
icant differences in the mass of the planet, more evident when
the accreted planetesimals are small (top-left panel, compare the
solid line with the dashed or the dotted lines of the same colour).
For 100 km and 10 km planetesimals we do not see deviations
from equilibrium when the initial conditions for e and i are given
by Eqs. (56), (57) (red and blue dotted lines, top-right panel). If
the initial values for e and i are given by Eqs. (58), (59), the
equilibrium values given by Eqs. (56), (57) are reached in an
almost negligible fraction of the formation timescale. We con-
clude that the equilibrium approximation for e and i gives results
that nicely agree with more complex calculations, as far as the
planetesimal size is relatively big or the evolution time is suffi-
ciently long. However, as shown in the same picture, the growth
of a small planet is very long when considering such massive
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Fig. 4. Inclination-eccentricity ratio for the out-of-equilibrium cases of
Fig. 3. Red is for 100 km planetesimals, blue for 10 km, green for 1 km,
and orange for 0.1 km. The dotted line represents the case of an initially
hot disc, while the dashed line represents an initially cold one. The grey
line is the standard equilibrium value, βeq = i/e = 1/2.

planetesimals, and the formation of a gas giant under these con-
ditions is highly compromised.

The situation becomes more critical when we consider
smaller planetesimals. Deviations from equilibrium are evident
regardless of the initial values adopted for e and i, especially
for rm = 0.1 km. Nevertheless, equilibrium is always attained,
although the equilibrium values for e and i are lower than those
given by Eqs. (56), (57), especially for the inclination. As we can
see from Fig. 4, the approximation βeq = i/e = 1/2 is poor for
smaller planetesimals. Note that the real equilibrium value of β
depends upon the planetesimal size. While βeq = 1/2 is a good
approximation for planetesimals larger than ∼1 km, this is not
the case for smaller planetesimals, which tend to have inclination
values lower than 1/2 e. We find that for small planetesimals, the
velocity regime is at the limit between the high- and medium-
velocity regime (ẽ , ĩ � 2), therefore eccentricities are more ef-
fectively excited than inclinations (see Ohtsuki et al. 2002). The
low values of e, i, and β increase the accretion rate, as can be
seen in the bottom-right panel of Fig. 3, speeding up the for-
mation of the embryo (relative to the equilibrium approximation
case).

4.2. Planet formation without migration

In this section we analyse the complete formation of a planet for
the same cases as before. Now, the planet accretes mass (solids
and gas) as long as the disc is still present. This means that we
allow for disc evolution (Sect. 2.1), therefore planet formation
is considered to be over when the disc disperses. The presence
of the gaseous envelope is taken into account for calculating the
capture radius. However, we still neglect the migration of the
embryo to facilitate the analysis of the dependence on the plan-
etesimals’ e and i.

As has already been shown in other works, the presence of
the envelope increases the capture radius, speeding up the for-
mation of the planet. The enhancement in the capture cross sec-
tion makes the accretion of solids more effective. This effect is
more noticeable for small planetesimals. Compared to the cases
of Sect. 4.1, the formation timescale of a 1 M⊕ can be reduced to
∼35% (for the smallest planetesimals, rm = 0.1 km), due only to
the enhancement in the capture cross section. The presence of an
atmosphere, even if its mass is negligible compared to the total

mass of the planet, has to be considered for embryos as small
as 0.1 M⊕ because it plays an important role for the accretion of
solids.

Figure 5 is the analog of Fig. 3 for the complete formation of
the planets. As the disc disperses after 6 Myr, in the cases where
the accretion of planetesimals is slow (rm = 100, 10 km), the fi-
nal masses of the planets are lower than 1 M⊕. The differences in
growth observed in the previous section as a function of the plan-
etesimal size have dramatical consequences for the final mass of
the planet, which can be ∼0.1 M⊕ if the accreted planetesimals
have a radius of 100 km, ∼0.8 M⊕ for planetesimals of 10 km,
∼1200 M⊕ (3.7 Jupiter masses, MJ) for 1 km planetesimals, and
7100 M⊕ (22 MJ) for 0.1 km planetesimals. These numbers show
how differences in the accretion rate of solids (here regulated
by the size of the accreted planetesimals, bottom-right panel)
impact on the final mass of a planet and the non linear aspect
of planet formation in the core accretion model: once the crit-
ical mass is attained, the high accretion of gas rapidly leads to
massive planets. The fact that bigger planets form when the ac-
creted planetesimals are small is a consequence of the gas drag,
which operates in two ways that combine positively: nebular gas
drag is more effective in damping the planetesimal’s eccentric-
ities and inclinations when planetesimals are small (bottom-left
panel) and atmospheric gas drag is able to deflect the more dis-
tant planetesimals’ trajectories, therefore enlarging the capture
radius of the planet. In fact, for the cases of 1 km and 0.1 km ac-
creted planetesimals, embryos grow to become big giants. When
a massive solid embryo is formed, it triggers the accretion of gas,
leading to the formation of a gas giant planet (green and orange
lines).

Indeed, planets can end up being very massive if they enter
the runaway phase of gas. As explained before, during the at-
tached phase, the accretion of gas is a result of solving the equa-
tions presented in Sect. 2.3. The planet will remain attached to
the disc until its accretion rate exceeds the maximum amount of
gas that the disc can deliver. When this condition is not longer
satisfied, it goes into the detached phase. During the detached
phase, the maximum accretion rate is given by Eq. (20). As in
M09 and M12, here we follow the results of Kley & Dirksen
(2006) for the accretion of gas during the detached phase. Planet-
disc interactions can lead to eccentric instabilities, which means
that the planet can enter regions that are outside its gap and have
full access to the gas present in the disc, with no limitation for
accretion except for the ability of the disc to supply it. Although
it is not clear whether all planets can suffer from an eccentric in-
stability, for the sake of simplicity we assume this is the general
situation in our simulations. On the other hand, other works (e.g.
Lissauer at al. 2009) include a limitation for the accretion of gas
when the planet opens a gap in the disc, because they consider
that planets are in circular orbits. Comparatively, this assumption
leads to less massive planets.

The equilibrium approximation and the explicit calculation
of e and i also bring differences in the final mass of the planet.
While for large planetesimals (100 and 10 km) the equilibrium
approximation works fine, as shown in the previous section, for
smaller planetesimals this might not be the case. For rm = 1 km,
the final mass of the planet in the equilibrium approximation
is 537 M⊕, while with the explicit calculation considering an
initially hot disc it is 950 M⊕ and with an initially cold disc,
1200 M⊕. For rm = 0.1 km, the final mass of the planet in the
equilibrium approximation is 4745 M⊕, while with the explicit
calculation considering an initially hot disc it is 6745 M⊕ and
with an initially cold disc, 7100 M⊕. Differences in mass are the
consequence of a timing effect. When the planet grows faster,
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Fig. 5. In situ planetary formation at 6 AU for different radii of the accreted planetesimals (red, 100 km; blue, 10 km; green, 1 km; orange, 0.1 km).
The same line code as in Fig. 3 is adopted. The formation of the planet ends when the gas component of the disc is dispersed.

the damping produced by the nebular gas is more effective be-
cause the gas density in a younger disc is higher than in an older
one. Then, the faster an embryo grows, the more it profits from
the nebular gas drag. Moreover, the cross-over mass (the mass
of the core for which the mass of the envelope equals the mass
of the core), which in this case is ∼30 M⊕, is achieved earlier
when the accretion rate of solids is higher. When a protoplanet
reaches the cross-over mass its growth is dominated by the ac-
cretion of gas that is already in the runaway regime. If the pro-
toplanet starts the accretion of gas when the disc is younger and
more massive, it provides a larger reservoir of gas which trans-
lates, in the end, into a bigger planet.

It is important to remark that Eqs. (56), (57) are obtained
assuming that the stirring timescale is equal to the damping
timescale (Thommes et al. 2003), and the equilibrium approx-
imation (i = 0.5 e). On the other hand, Eqs. (31), (32) explicitly
solve the coupled evolution of e and i given a set of initial con-
ditions. This means that out-of-equilibrium states are allowed
(e.g. as seen at the beginning of the calculations) and equilib-
rium states are reached naturally and without a fixed ratio be-
tween e and i. Clearly, the explicit resolution of the differential
equations is a better physical approach. We here included calcu-
lations with the equilibrium approximation just for comparison.
Results show that the equilibrium approximation works fine for
larger planetesimals, but overestimates the excitation of smaller
ones, making their accretion less effective. This delays the whole
process of planet formation. Because the planet is embedded in
a disc with a finite (and short) lifetime, this delay impacts on the
final mass of the planet. When explicitly solving the equations of
e and i, initial conditions for these quantities are needed. This is a

problem because we cannot be certain about the state of the disc
at the beginning of our calculations. So assumptions for the ini-
tial values cannot be avoided. The initially cold disc favours the
growth of a planet allowing for high accretion rates in the first
thousands of years (Fig. 5, bottom-right panel). In the initially
hot disc this effect is not present because departures from equi-
librium are smaller and therefore equilibrium is attained faster
(we recall that the equilibrium attained when solving the differ-
ential equations can be different from the equilibrium approx-
imation for small planetesimals). However, final results do not
strongly depend upon the initial choices. The differences in the
final mass are 20% and 5% for rm = 1 km and rm = 0.1 km,
respectively. Given all the uncertainties of the model, these dif-
ferences are acceptable.

4.3. Planet formation with migration

We now complete our analysis by including the migration of
the protoplanets. The migration model is the one presented in
Dittkrist et al. (in prep.) and Mordasini et al. (2010). Figure 6
shows the total mass of the planet and its semi-major axis as a
function of time for the same cases as in the previous sections.
Clearly, the situation is very different from the in situ hypothe-
sis. To start with, in all cases the final location of the planet is far
from its initial location. Indeed, the three calculations for 1 km
planetesimals result in lost planets (planets cross the inner edge
of the disc and are considered to fall into the central star). The
same is the case for the equilibrium approximation of 0.1 km
planetesimals.
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Fig. 6. Full planetary formation, now allowing for the migration of the embryos, for different radii of the accreted planetesimals (red, 100 km;
blue, 10 km; green, 1 km; orange, 0.1 km). The same line code as in Fig. 3 is adopted. Embryos are initially located at 6 AU. The left panel shows
the cumulative mass of the embryo (solids plus gas) as a function of time (in logarithmic scale). The right panel depicts the migration path of the
protoplanet (in linear scale). For the accretion of 1 km planetesimals, the embryos are lost in the Sun (indicated with crosses in the plot). The same
happens for the planet that grows by accretion of 0.1 km planetesimals in the equilibrium approximation (orange solid line). When planets are lost,
calculations are stopped.
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Fig. 7. Mass versus semi-major axis for the cases shown in Fig. 6. Note
that the accretion rate of solids plays a major role not only in the growth
of the planet but also in its migration path.

For the cases where planets are not lost in the star, we find
that the final masses for accreted planetesimals of rm = 100 km
and 10 km are independent of the way e and i were computed
(∼0.2 M⊕ and 0.7 M⊕, respectively). The final locations are also
similar for the different considerations for e and i (∼1.7 AU for
both rm = 100 km and 10 km). For a fixed planetesimal size, the
migration paths for the different assumptions on the eccentrici-
ties and inclinations are somehow shifted in time but are similar
if we consider them as a function of mass (Fig. 7).

In the case of rm =1 km, protoplanets are lost in the central
star when their mass is ∼20 M⊕, most of which is in the solid
core. At ∼8 M⊕ the protoplanet undergoes inward migration in
the adiabatic saturated regime5 (see Paardekooper et al. 2010,
2011; Mordasini et al. 2010; Dittkrist et al.). This timescale turns

5 The regime is called adiabatic when the local cooling timescale in
the disc is longer than the time it takes for a parcel of gas to make a
U-turn on the horseshoe orbit close to the planet in the corotation region.
A regime is called saturated when the contribution of the corotation
region to the angular momentum exchange is reduced by the the ratio
of viscous timescale and libration timescale. In this case, the migration

out to be shorter than the accretion timescale. The protoplanet
covers Δa 
 5 AU in ∼7 × 105 yr. In this time it doubles its
mass, which, however, is not big enough for the planet to enter
type II migration. Planet migration in general slows down when
the protoplanet is able to open a gap in the disc (type II mi-
gration), which, as a rule of thumb, happens when the planet
mass is ∼100 M⊕. This situation is not reached in this case,
where accretion is too slow compared to migration, resulting
in the loss of the forming planet. For rm = 0.1 km the differ-
ences between the equilibrium approximation and the explicit
calculation of e and i are more dramatic: adopting the equilib-
rium approximation leads to the loss of the planet in the central
star (for the same reason as in the previous case, the growth rate
is very slow) while for the explicit calculation of e and i, al-
though the planet ends in an orbit very close to the central star
(∼0.2 AU), the previous growth of the embryo is fast enough to
enable a large accretion of gas. In this case the planet reaches
a mass that enables it to switch to type II migration. The planet
decelerates its migration speed until it stops. The final masses
are 13 MJ for an initially hot disc and 15 MJ for an initially cold
disc. The fate of an embryo (becoming a high- or a low-mass
planet, surviving or being lost in the central star), as it is shown
here, depends upon the size of the accreted planetesimals and on
the assumptions we adopt to describe their dynamics, because
these strongly impact on the accretion rate of solids and there-
fore on the whole formation process through the regulation of
the growth timescale. Here we have shown the interplay between
the evolution of the protoplanetary disc, the growth of the pro-
toplanet, and the operation of migration. In all the cases we are
considering the same disc, that globally evolves with time in the
same way. Differences in the local evolution of the disc arise due
to accretion (solids and gas accreted by the planet are removed
from the disc) and ejection of planetesimals (when the planet is
massive enough). That in Fig. 7, for the same mass of a proto-
planet, the location in the disc can be different is a consequence
of this interplay: protoplanets reach a certain location earlier or
later in the evolution of the disc, depending on their growth rate.

behaviour will become dominated by the angular momentum exchange
at the Lindblad resonances.
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Fig. 8. Protoplanet’s growth and migration timescales (τgrowth = M/|Ṁ| and τmig = a/|ȧ| respectively) as a function of the protoplanet’s mass for
the four different sizes of the accreted planetesimals of Fig. 6 (corresponding to the dashed line in Fig. 6). The peaks in the migration timescale
correspond to the changes in the sense of migration of the protoplanet. From the two bottom panels, it can be seen that when the protoplanet’s
mass is �10 M⊕, both timescales become comparable and eventually the migration timescale becomes shorter than the accretion timescale, leading
to a fast migration of the protoplanet with very little accretion. For 1 km planetesimals the protoplanet growth is too slow to gain enough mass to
change the type of migration before they are lost in the star (when its mass is ∼30 M⊕). For 0.1 km planetesimals, the protoplanet can grow more
massive because its accretion rate is higher than in the previous case, then it is able to open a gap in the disc and migration switches to type II,
preventing it from falling in the star.

The state of the disc and the mass of the protoplanet at that mo-
ment determines its migration rate. Accordingly, independently
of what regulates the growth of the planets, the examples here
show that planet’s growth and migration rate are tightly coupled.

Figure 8 shows a comparison between the migration
timescale (τmig = a/|ȧ|) and the protoplanet’s growth timescale
(τgrowth = M/|Ṁ|) for the four sizes of the accreted planetesimals
we have considered, solving explicitly the equations for e and
i and adopting an initially cold planetesimal disc. For accreted
planetesimals of 100 km and 10 km, the jump in the growth
rate of the planets at M � 0.1 M⊕ corresponds to the cross-
ing of the ice line. Planetesimals in the inner region (inside the
ice line) are denser and the gas drag is less effective on them
(see Eqs. (34), (35) and (37)), therefore their random velocities
are higher and accretion rates are lower. Also, the solids surface
density is lower, which contributes to decrease the accretion rate.
The peaks in the migration timescale correspond to changes in
the sense of migration6.

When the accreted planetesimals have a radius of 1 km, the
migration timescale becomes lower than the growth timescale
when the mass of the protoplanet is ∼10 M⊕. The planetesimals
relative velocities are very high in the neighbourhood of the pro-
toplanet and accretion becomes more difficult as the protoplanet

6 Depending on the regime – isothermal versus adiabatic, and satu-
rated versus unsaturated – the migration can be inward or outward, see
Paardekooper et al. (2010, 2011); Mordasini et al. (2010); Dittkrist et al.
(in prep.)

increases its mass. The protoplanet grows slowly and migrates
fast. This situation is never reverted and the protoplanet is lost
in the central star. Because the migration rate is high and the
accretion rate is not enough to counteract it, the protoplanet mi-
grates without limit, almost at a constant mass, until it reaches
the central star.

For accreted planetesimals of 0.1 km, the protoplanet’s mi-
gration timescale is shorter than the protoplanet’s accretion
timescale (just as in the former case) for the critical mass interval
of a few tens to about one hundred of Earth masses. However, in
this case accretion proceeds fast enough for the protoplanet to
start runaway accretion of gas before reaching the inner edge of
the disc. Therefore the planet is able to accrete mass very fast
(gas accretion dominates the growth of the planet), which means
that it becomes massive enough to enter type II migration. The
migration rate (in type II with gap opening) decreases as the pro-
toplanet grows in mass. Therefore, being in the runaway phase
is what saves the planet from falling into the star.

The situation can be summarised as follows: when the
growth of the planet is dominated by the accretion of solids
in the oligarchic regime (before gas runaway accretion), the
growth timescale is proportional to M1/3 (Ida & Makino 1993).
However, for planets massive enough to trigger rapid gas accre-
tion, the growth timescale is much shorter. On the other hand,
typical migration time scales with M−1 in type I and is inde-
pendent of the planet’s mass in type II, being generally much
longer than in type I. As a consequence, if a planet migrates
in type I and is dominated by the oligarchic growth, it is very
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likely to be lost in the star. It is only if the planet succeeds to
become massive enough to start the runaway gas accretion, and
quasi-simultaneously enter type II migration, that it can brake
before reaching the central star. Therefore, there is a critical
mass range between ∼10−100 M⊕: a planet in this mass range is
likely to be undergoing inward type I migration and a decreasing
growth rate, which at this stage is dominated by the accretion of
solids. Indeed, because it is massive, the protoplanet excites the
random velocities of planetesimals, making its accretion diffi-
cult. Therefore the growth of the planet is very slow at this stage,
because planetesimals cannot be effectively accreted. Although
this is the pathway to the runaway accretion of gas, the transi-
tion between being dominated by the accretion of solids and the
accretion of gas, even though it is fast, is not immediate. On the
other hand, inward type I migration in this mass range is still
very fast. Therefore, if planets enter the runaway gas phase, they
would probably grow massive, change to type II migration, and
avoid a fatal end in the central star. If they remain very small,
type I migration is not very harmful. Finally, if they grow to
about Neptune mass while the disc is still young, but do not man-
age to grow fast enough, their migration accelerates and they end
in the central star.

4.4. Exploring the parameter space of initial conditions

One may wonder if the examples presented in the previous sec-
tion are representative of a general case. To answer this question
we applied our planet formation model to a variety of protoplan-
etary discs (including different lifetimes, masses, metallicities,
etc.) and initial locations for the embryo.

In this framework, we performed sets of more than
10 000 simulations. Each set considers a different size for the
accreted planetesimals (rm = 100, 10, 1 and 0.1 km). For these
simulations we adopted the disc models described in Sect. 2.1.2.
The initial mass of the embryo is, in all the cases, 0.01 M⊕. The
initial location of the embryo is varied between 0.2 and 30 AU.
For an embryo to start at a certain location, we checked that the
initial mass of solids at its location is greater than the mass of the
embryo. We subtracted the mass of the embryo from the initial
mass of solids of its feeding zone, which means we are assuming
instantaneous, in situ formation for it. Planets grow by accret-
ing solids and gas, and can migrate in the disc, according to the
model we presented in the previous sections. The evolution of
the eccentricity and inclination of planetesimals are calculated
solving the differential equations (Eqs. (31), (32)) all throughout
the disc for every time step. As initial conditions for e and i we
assume that they are given by Eqs. (58), (59), what we called
before an initially cold disc.

The parameter space explored for the initial mass and life-
time of protoplanetary discs is schematically shown in Fig. 9.
The rectangle surrounded by a black box shows the whole set
of initial conditions studied. Note however that the distribution
of these parameters is likely not uniform, and not all combina-
tions have the same probability of occurrence: long-lived discs as
well as very low and very massive discs are unlikely. We found
that giant planets7 do not form for the initial conditions corre-
sponding to the grey region in Fig. 9. In fact, for a population of
100 km and 10 km planetesimals, giant planets do not form un-
der any of the initial conditions considered in this work. For the
100 km population of planetesimals this is because the accretion

7 By giant planets we mean protoplanets with masses larger than the
cross-over mass and which survive from disc-planet angular momentum
exchange and migration.
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Fig. 9. Lifetime vs. initial solid mass of the protoplanetary discs con-
sidered in our simulations. The total mass of the disc relates to the solid
mass of the disc through the gas-dust ratio. The rectangle surrounded
by a black box schematically shows the parameter space explored. The
grey rectangle depicts the region where giant planets do not form at
all. The region of the parameter space where protoplanets reached the
cross-over mass are shown in yellow for protoplanets accreting 1 km
planetesimals, and in red for protoplanets accreting 0.1 km planetesi-
mals. For bigger accreted planetesimal (100 and 10 km) no giant planets
form.

time to form a massive solid core is longer than the discs’ life-
times. For 10 km planetesimals, some giant planets would form
if migration were not at work (see Sect. 5). However, according
to disc-planet interaction models, planets do migrate and the mi-
gration timescale turns out to be much shorter than the accretion
timescale. Planets are lost in the central star before they are able
to accrete enough solids to trigger the runaway accretion of gas
(as seen in the previous section, this would allow them to grow
faster and switch from type I to type II migration, therefore pre-
venting their loss in the central star).

However, the situation reverts when the accreted planetesi-
mals are smaller. Figure 9 shows that massive discs favour the
formation of giant planets. The coloured regions depict the char-
acteristics of discs where, for a particular initial position, the
embryo succeeded in growing to a giant planet. This does not
mean that a giant planet will form in any location of the disc,
but that formation is possible at certain locations. The yellow re-
gion shows the parameter space of giant planets that succeeded
to survive in the disc accreting 1 km planetesimals. Clearly, there
is a dependence on the discs lifetime: less massive but longer-
lived discs favour the formation of giant planets. In red is plot-
ted the situation of rm = 0.1 km accreted planetesimals. Because
smaller planetesimals are accreted faster and more efficiently, the
disc parameter space that leads to the formation of giant planets
is bigger. Interestingly, in this case there is no dependence on the
lifetime of the disc. When the amount of solids present is large
enough, accretion to form a core with a critical mass proceeds so
fast that it is always shorter than the lifetime of the discs consid-
ered here. If the planetesimal disc is massive, accretion can be
fast enough to enable protoplanets to reach the cross-over mass.
Massive protoplanets switch from fast type I migration to a much
slower type II, therefore decelerating and eventually braking be-
fore reaching the central star, preventing this way the loss of
planets.

Very small mass planets are the most abundant outcome in all
simulations (regardless of the size of the accreted planetesimals)
and their final location could be anywhere in the disc. Planets
more massive than 10 M⊕, in general, start their formation
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beyond the ice line (where solids are more abundant and feed-
ing zones are larger), and due to migration they reach the inner
regions of the disc. The final location of these planets extends
between the inner edge of the disc and 10 AU. Planets in the
range of 102 to 103 M⊕ are less abundant, and their final loca-
tions are very different from their initial emplacements. These
planets undergo much migration, and those that remain are the
ones that were able to accrete gas fast enough to enter the run-
away accretion of gas, which prevented their loss in the central
star. Planets in the mass range 10−102 M⊕ are those that undergo
the largest net displacement from their original location. Most of
the surviving planets in this mass range have masses lower than
20 M⊕. These planets, which were not able to reach their cross-
over masses while they were migrating towards the central star,
are preserved because the disc dissipated before they could fall
into the star. In the case of rm = 0.1 km, ∼18% of the simulations
lead to lost planets, 85% of which were not able to reach their
cross-over mass. This confirms our analysis of the previous sec-
tion. Planets that are massive enough to undergo rapid inward
type I migration (�10 M⊕) but whose growth rate is still domi-
nated by the accretion of solids are likely to be lost in the star.

In the previous sections we have noticed that results of giant
planet formation depend upon the dynamical model adopted to
describe planetesimals’ dynamics. The equilibrium approach has
the advantage of being numerically not very time-consuming.
However, it can lead to very different results when compared
to the case of explicitly solving the differential equations for e
and i. When solving the equations, we also have the problem
of setting the initial conditions, which are unknown. To test the
importance of these assumptions, we performed 10 000 simula-
tions under three different conditions. Each calculation differs
from the other only in the treatment of the planetesimals e and i.
This means that for a given set of initial conditions, we calculate
the formation of the planet three times: once assuming the full
equilibrium situation for planetesimals, another solving the ex-
plicit differential equations using as initial conditions for e and
i the equilibrium value when the stirring timescale of the em-
bryo equals the nebular gas drag timescale (we call this scenario
hot disc) and finally also solving the differential equations but
using as initial conditions the equilibrium value between mutual
planetesimal stirring and gas drag damping (we call this scenario
cold disc).

Figure 10 shows the fraction of surviving planets with re-
spect to the total amount of planets formed (surviving planets
plus planets lost in the central star). Accreted planetesimals are
0.1 km size. To make this plot we classified the planets according
to their final mass into five mass bins. Clearly, in all the cases, the
most abundant planets are the low-mass planets (<1 M⊕). The
equilibrium scenario being the one corresponding to the slowest
accretion rate, is the one with more planets in the lowest mass
bin (<1 M⊕). At the other extreme, in the case of the cold initial
disc, accretion of solids at the beginning is more efficient, em-
bryos grow bigger in a shorter time which, in turn, gives them
more chances to continue accreting. That is why in the case of
an initial cold disc planets are more massive. This is evident in
the histogram: for a cold initial planetesimal disc, the fraction
of planets in each mass bin is the highest (except, of course,
in lowest mass bin). The amount of planets in the interval of
10 to 102 M⊕ represents around 2% of the surviving planets.
Most of them are in the mass range of 10 to 20 M⊕, and just
a few in the range of 20 to 50 M⊕. There are no planets in the
range of 50 to 102 M⊕, which shows the dramatic effect of type I
migration on these intermediate mass planets. In the mass inter-
val 102−103 M⊕ a profound decrease in the number of planets
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Fig. 10. Fraction of surviving planets with final mass in a certain mass
interval. Ntotal is the sum of all surviving planets (nsurv) plus the planets
lost in the central star. Final masses of the formed planets are separated
into five mass bins (M < 1 M⊕, 1 < M[M⊕] < 10, 10 < M[M⊕] < 100,
100 < M[M⊕] < 1000, M > 1000 M⊕). The solid component of the
planets grows by the accretion of 0.1 km planetesimals. Three different
approaches in the treatment of the evolution of the eccentricities and
inclinations of planetesimals are considered: equilibrium, and explicit
calculation of the differential equations for a “hot” and “cold” initial
conditions.

can be noticed, independently of the approach used for the plan-
etesimal dynamics. This can be understood as follows: proto-
planets with masses greater than 102 M⊕ are usually in the run-
away phase of gas accretion. This means that hundreds of Earth
masses can be accreted in a very short time. Therefore planets in
the runaway phase easily grow more massive than Jupiter. Only
if the disc dissipates during this process of accretion, final plan-
etary masses can be between Saturn and a few Jupiter masses.
To a lesser extent, planet migration has also some consequences
for depleting this bin: although the mass bin in which planet mi-
gration is most effective in eliminating planets is the 10−102 M⊕
range, it is still very important in this mass regime, eliminat-
ing around 25% of these planets (especially those closer to the
102 M⊕ edge of the mass interval).

5. Discussion

The calculations presented in this paper focus on the forma-
tion of planets and on the high degree to which this process
is affected by the accretion rate of solids. The accretion rate
of solids introduced intends to be realistic while computation-
ally tractable. Some other aspects of the model are therefore
rather simplified here; for example, we considered the forma-
tion of a single planet. The application of these calculations to
the formation of planetary systems will be presented elsewhere
(Alibert et al. 2012). We introduced a semi-analytical description
for the eccentricities and inclinations of planetesimals. In this
work we explicitly calculated the planetesimals’ eccentricities
and inclinations, taking into account the stirring of the growing
planets, the gas drag from the nebula, and the mutual stirring
of the planetesimals themselves. The stirring produced by the
growing planet excites planetesimals and makes their accretion
more difficult as it grows. On the other hand, gas drag coun-
teracts the stirring effect, an effect more important for smaller
planetesimals. We considered three approaches to determine the
rms eccentricity and inclination of planetesimals:

– analytical equilibrium calculation, as described by Eqs. (56),
(57);
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Fig. 11. In situ formation. Fraction of planets with
final mass in a certain mass interval. Ntotal rep-
resents the total amount of planets formed, inde-
pendently of their mass. Planets are separated into
five mass bins (M < 1 M⊕, 1 < M[M⊕] < 10,
10 < M[M⊕] < 100, 100 < M[M⊕] < 1000,
M > 1000 M⊕). Accreted planetesimals have a ra-
dius of 100 km (red), 10 km (green), 1 km (blue)
and 0.1 km (magenta). Most of the final masses are
in the first mass bin. The inset caption represents
the magnified histogram for the other mass bins.

– out-of-equilibrium, by solving the time evolution of
the rms eccentricity and inclination of planetesimals
(Eqs. (31), (32)); starting from a cold planetesimal disc
(their excitation state being the results of planetesimal-
planetesimal interaction and gas drag only); and

– out-of-equilibrium, starting from a hot disc, where planetes-
imals are already excited by the planetary embryo.

We have shown that these three approaches lead to different
accretion rates, the difference depending on the planetesimal
size, and being more important as a result of the migration and
disc evolution feedbacks. For large planetesimals, the three ap-
proaches lead to similar results, but the accretion rate of solids
under this hypothesis is very low, preventing the formation of
massive planets. On the other hand, for low-mass planetesimals,
the excitation state of planetesimals as derived from the analyt-
ical equilibrium calculations, and the excitation state of plan-
etesimals following the second or third approach, even after a
long time (when the equilibrium solution of Eqs. (31), (32) is
reached), are different, resulting in different accretion rates of
solids. In particular, the ratio of the eccentricity to the inclina-
tion can deviate substantially from the 1/2 ratio assumed in the
first approach.

As a consequence of the size dependence of gas drag, small
planetesimals are easier to accrete, leading to a faster formation
of planets. We have shown that in the framework of the model
hypothesis outlined in Sect. 2, the formation of planets ranging
from a fraction of an Earth mass to several Jupiter masses can
only be accomplished under the assumption of a population of
small planetesimals or, more generally, if planetesimals are, by
any process, maintained in a cold dynamical state. Similar con-
clusions were identified in other works (e.g. Fortier et al. 2007,
2009; Benvenuto et al. 2009), where it was shown that to achieve
the formation of the giant planets of the solar system in less
than 10 Myr most of the accreted planetesimals have to be small.
Those models, however, assumed in situ formation, and did not
consider a consistent calculation of the planet’s final mass (the
computations were stopped when the masses of the giant plan-
ets of the solar system were reached). Although the approach to
calculating the planet formation (regarding the accretion of gas
and solids) is similar, our work accounts for the migration of
the planets and their final masses are determined by the coupled
evolution of the disc and the planet.

To compare our results with these previous works, we per-
formed simulations where migration is switched off. We calcu-
lated the in situ formation of 10 000 planets that accrete plan-
etesimals of 100, 10, 1 and 0.1 km in radius. Indeed, as can be
seen from Fig. 11, small planets are the most abundant ones.
Larger planets form when there are small planetesimals to ac-
crete (smaller than rm = 10 km). Planets in the mass range
10−102 M⊕ (whose growth is not yet dominated by the accre-
tion of gas) are produced in about the same fraction as giant
planets in the mass range >103 M⊕, whose growth is dominated
by the a runaway accretion of gas. The runaway gas accretion
leads to the difficulty of forming planets in the mass range of
102−103 M⊕: only a fine-tuned timing effect, the gas disc disap-
pearing when the planet is in this mass range, can lead to planets
in the Saturn-Jupiter domain.

If we focus on the mass bin 10 to 102 M⊕, one difference
between the migration and in situ scenario is that, while in the
former there are no planets in the mass range between 50 and
100 M⊕ (because they are all engulfed by the central star), in the
in situ case planets are distributed in the whole mass spectrum
of the bin (however, most of them are in the lowest mass range
[10 to 20 M⊕]). It is also interesting to compare the mass per-
centage of solids for planets between 5−102 M⊕ for these two
scenarios. As can be seen in Table 3, planets that migrate have
a more massive core than planets that formed in situ. In gen-
eral, when planets migrate, they have access to regions of the
disc that have not been depleted of planetesimals. Therefore, the
solids surface density is higher and so is the accretion rate, which
results in the formation of a more massive core.

We considered that the opacity of the envelope corresponds
to the full interstellar medium opacity. However, several works
(e.g. Pollack et al. 1996; Podolak 2003; Hubickyj et al. 2005;
Movshovitz & Podolak 2008) suggest that opacity in the planet’s
envelope should be much lower, leading to a faster formation. As
a complementary result, we computed one in situ population and
one population including migration (10 000 planets each) reduc-
ing the opacity to 2% of that of the interstellar medium. We
found that with a reduced opacity the loss of planets decreases,
increasing the number of planets that survive in the protoplane-
tary disc in every mass bin. Nevertheless, the shape of the mass
distribution is very similar to that shown in Fig. 10: the frac-
tion of surviving planets decreases with the mass of the planet,
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Table 3. Percentage of the total mass contained in the solid core for
planets whose total mass is between 5 and 102 M⊕.

Mass interval Mcore/Mtotal × 100
[M⊕] With migration In situ

5−10 98 94
10−20 95 86
20−30 88 75
30−40 78 63
40−50 72 56
50−60 − 56
60−70 − 43
70−80 − 37
80−90 − 34
90−100 − 39

Notes. A comparison between a migration and non migration scenario
is also made. In the migration case there are no planets with masses
greater than 50 M⊕.

Table 4. Same as Table 3 but considering that the planet’s envelope
opacity is only 2% of the interstellar medium opacity.

Mass interval Mcore/Mtotal × 100
[M⊕] With migration In situ

5−10 96 80
10−20 90 72
20−30 79 62
30−40 71 58
40−50 68 46
50−60 50 44
60−70 51 34
70−80 48 29
80−90 − 32
90−100 32 20

with a minimum in the interval 102−103 M⊕ (although with the
reduced opacity the fraction of planets in this bin is four times
higher than with the full opacity), and rising again in the last
mass interval. In Table 4 we show the solids mass fraction for
planets with masses between 5 to 100 M⊕, considering both the
in situ and a migration scenario. In both cases, the fraction of
solids is smaller than in the corresponding case calculated with
full opacity.

Using the full model (including migration and disc evolu-
tion), giant planet formation by accretion of 100 km planetesi-
mals is quite unlikely, if not impossible. In our simulations, to
actually form giant planets we had to reduce the planetesimal
size to the 0.1−1 km radius range. Such a conclusion raises the
question of the most likely planetesimal size during the epoch
of planet formation. Recent studies on planetesimal formation
give different conclusions, however. On one hand, models that
explain the formation of planetesimals by direct collapse in vor-
tices in turbulent regions (e.g. Johansen et al. 2007) predict a
fast formation of very big planetesimals (rm > 100 km). We
note, however, that this formation process may not be totally
efficient and only a small fraction of solids initially present in
protoplanetary discs is likely to end up in such big planetes-
imals. The conclusions of Johansen et al. (2007) are consis-
tent with the results of Morbidelli et al. (2009) on the initial
function of planetesimals. On the other hand, a recent study of
Windmark et al. (2012) shows that direct growth of planetesi-
mals via dust collisions can lead to the growth of 0.1 km plan-
etesimals. In addition, initially small planetesimals show bet-
ter matches to the observed size distribution of objects in the

asteroid belt and among the trans-Neptunian objects (TNOs):
Weidenschilling (2011) showed that the size distribution cur-
rently observed in the asteroid belt in the range of 10 to 100 km
can be better explained by an initial population of 0.1 km plan-
etesimals. Kenyon & Bromley (2012) concluded, by combining
observations of the hot and cold populations of TNOs with time
constraints on their formation process, that TNOs form from
a massive disc mainly composed of 1 km planetesimals. More
investigations on the formation of planetesimals, and planetary
embryos, are definitely required to test the viability of planetary
core formation by accretion of low-mass planetesimals. We note
finally that what is important in the work we have presented now
is not the initial mass function of planetesimals, but their mass
function at the time of planet formation. The two quantities are
likely to differ due to planetesimal-planetesimal collisions and
the resulting mass growth and/or fragmentation.

6. Conclusions

We presented calculations of planetary formation considering
the formation of a single planet at each time, and starting with
embryos of 0.01 M⊕. Our simulations consist of calculating the
formation of a planet, including its growth in mass by accretion
of solids and gas, its migration in the disc, and the evolution of
the disc until the gas component of the disc is dispersed. When
the nebular gas is gone, simulations were stopped. Therefore, the
subsequent growth of the planets, by accretion of residual plan-
etesimals or collisions among embryos if we were considering
planetary systems, was not considered. During their formation,
the growth of the planets was calculated self-consistently cou-
pling the accretion of solids and gas. The accretion of solids
was computed assuming the particle-in-a-box approximation,
and computing the excitation state of planetesimals, which in
turn regulates to a great extent the accretion rate of the planet.
The accretion of gas was computed by solving the differential
equations that govern the evolution of the structure of the planet.
Finally, protoplanets grow in an evolving protoplanetary disc,
whose density, temperature and pressure was calculated at every
time step.

The combination of oligarchic growth (for the solid com-
ponent of the planet) with the migration of the planet has se-
vere consequences for protoplanets that are able to grow up
to a few tens Earth masses: these planets tend to collide with
the central star (or at least to migrate to the innermost loca-
tion of the protoplanetary disc). Indeed, planets that are between
10 and 100 Earth masses are usually undergoing very rapid in-
ward type I migration, but are not massive enough to switch to
a slower, type II migration. In our simulations, the only surviv-
ing planets in the range of 10 to 20 Earth masses correspond
to cases where the gas component of the disc dissipates during
their growth, preventing them from falling into the star. In con-
trast, if the solid core grows fast enough, it enables the accretion
of large amounts of gas when the critical mass is reached. At this
point, the runaway of gas ensures an extremely quick growth in
the mass of the planet, and the planet migration rate decreases.

In the model we presented in this paper, we assumed a uni-
form population of small planetesimals whose size remains un-
changed during the whole formation of the planet. Most proba-
bly the initial population of planetesimals in protoplanetary discs
is not uniform in size, but follows a size distribution. We have
shown, however, that without small planetesimals giant planet
formation is difficult to explain, at least in the way we under-
stand it now. However, even with an initial population of small
planetesimals, the collisions among themselves are likely to be
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disruptive as soon as their random velocities start to be excited
by a planetary embryo.Therefore, it is also unlikely that an ini-
tial population of only small planetesimals can be used to explain
the formation of giant planets. Moreover, even assuming this to
be true, only a few planets in the range of several tens of Earth
masses to a few Jupiter masses can be formed.

In addition, small-mass planetesimals are subject to strong
radial drift as a result of gas drag. Planetesimal drift can have
positive or negative consequences in the formation of plane-
tary systems, as has been shown by Guilera et al. (2010, 2011).
Similarly, fragmentation and coagulation can hasten or delay
planet formation as a whole: fragments of smaller mass are eas-
ier to accrete but they can also leave a planet’s feeding zone very
quickly as a result of gas drag. Finally, in a planetary system,
fragments that are not accreted by the embryo that generated
them can be accreted by another embryo located in an inner-
most region. It is not clear what the possible outcomes of adding
planetesimals drifting, fragmentation, and many embryos form-
ing in an evolving disc could be. This represents a very important
step in the understanding of the first stage of planet formation,
however.

Because most of the accretion of solids should, at some
point, be dominated by small planetesimals or fragments, our
calculations can be understood as a description of that stage.
An interesting scenario to analyse, in particular if planetesi-
mals are born massive (Johansen et al. 2007; Morbidelli et al.
2009), would be the following. An initial population dominated
by ∼100 km planetesimals would prevent a fast growth of the
embryos at the beginning, a time during which the planetary
embryos would suffer only of a little migration and the proto-
planetary disc would evolve, reducing its gas surface density.
Fragments (smaller planetesimals), resulting from collisions be-
tween big planetesimals, would start to be generated later (the
timescale of fragmentation of 100 km planetesimals affected
by the stirring of Moon to Mars mass embryos is of the order
106 years), therefore accelerating the formation of the embryo in
a later stage of the disc evolution. The collisional cascade would
probably still produce small fragments fast enough to help the
growth of an embryo, even if they leave the feeding zone very
fast. Therefore, protoplanets could grow by the accretion of frag-
ments, not necessarily generated by themselves, but generated
by another distant embryo. Adding these different processes will
give us a better insight into the formation process and would help
us to constrain, from planetary formation models, possible initial
size distributions for planetesimals.

It is also important to mention that we have not considered
the possibility of planetesimal-driven migration. Although in
general planetesimal-driven migration acts on a longer timescale
than type I migration, recently Ormel et al. (2012) found that
planetesimal-driven migration can have a mild effect on mid-
sized planets in massive planetesimal discs, competing with
type I migration.

The main conclusions of our work are that formation of
giant planets in the framework of the sequential accretion model
needs the presence of unexcited planetesimals. One obvious
way to de-excite planetesimals is through gas drag, but this
requires this latter to be efficient, which in turn translates into
low-mass planetesimals. These planetesimals can be primordial
or fragments of originally bigger ones. But, at some point, small
boulders are needed to build protoplanetary massive cores before
the dissipation of the disc. The combination of migration and
oligarchic growth, on the other hand, prevents the formation of

intermediate mass planets. However, this result can change when
considering the formation of planets in planetary systems where
their gravitational interactions are taken into account. Captures
in resonances can prevent planets from colliding with the cen-
tral star, preserving them in planetary systems. Exploring these
effects will be the subject of future works.
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