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[1] This study aims at better understanding the space-time statistical properties of rain
over a Mediterranean region. To this end we analyzed temporal, spatial, and
spatio-temporal spectra of rain field maps provided by an X-band radar situated in the
southeast part of France. The database extends from 2009 to 2012 and has a spatial and
temporal resolution of 1 km2 and 5 min. The analysis highlights several scaling regimes,
which are interpreted in terms of meteorological structures (convective cells, mesoscale
structures, and midlatitude cyclones). The analysis of spectra per month confirms the
dependency of the spectral signature to the underlying meteorological process.
Nevertheless, our results also reveal that for a given range of scales (20–45 min in time
and 7–20 km in space), spectral slope is monthly invariant. It means that rain behaves
identically, in terms of scaling, whatever the mechanism that generated it (convection,
front). Moreover, spectral analysis shows that the temporal decorrelation scale is 10 days,
which can possibly be related to the longest lifetime of a meteorological phenomenon in
the region (i.e., about 10 days). An approach to compute the scaling anisotropy between
space and time is proposed. It reveals that, over two distinct ranges of scales (7–20
km/20–45 min and 20–70 km/45 min–3 h), the scaling anisotropic coefficient is equal to
2. It also reveals that the ratio of spectral slope of 2-D angle averaged spatial spectrum
versus 1-D temporal spectrum is equal to 1 over these ranges of scales. It suggests a
similarity in the second-order properties (e.g., correlation) of temporal and spatial rain
field. All these results are important to better understand rainfall statistical behavior and
could also be used for the development of downscaling schemes and the validation of
numerical weather models.
Citation: Rysman, J.-F., S. Verrier, Y. Lemaître, and E. Moreau (2013), Space-time variability of the rainfall over the western
Mediterranean region: A statistical analysis, J. Geophys. Res. Atmos., 118, 8448–8459, doi:10.1002/jgrd.50656.

1. Introduction
[2] Rainfall processes in the western part of the Mediter-

ranean region are characterized by an important spatial and
temporal variability. Because of its latitude (between 36ıN
and 44ıN), the region is affected both by the midlatitude
low-pressure belt and by the subtropical highs. In particu-
lar, during winter, the region is constantly affected by frontal
precipitations generated by midlatitude disturbances. During
the summer, the weather is drier because of the Azores anti-
cyclone. Nevertheless, deep convection frequently occurs
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during the afternoon [Funatsu et al., 2009]. Other fac-
tors such as North Atlantic Oscillation, convergence zones,
and mountains influence the precipitation of this region
[see Boudevillain et al., 2009]. The western Mediterranean
region has also one of the world’s highest density of cyclo-
genesis [Pettersen, 1956; Hoskins and Hodges, 2002; Wernli
and Schwierz, 2006].

[3] All these processes influence the rainfall and can cause
dryness or severe floods over this region. For instance, the
Draguignan region in the south of France was affected by
a recent flood (15–16 June 2010) that caused 20 casual-
ties and damages estimated at more than 500 million euros
[Moreau and Roumagnac, 2010]. Since more than 150 mil-
lions people live in the Mediterranean region, study and
prevention of such disasters are crucial. For this purpose,
an X-band polarimetric and Doppler radar called Hydrix has
been installed close to Nice (southeastern France) in 2007
in the frame of FRAMEA project (Flood forecasting using
Radars in Alpine and Mediterranean Areas) [Testud et al.,
2007]. This radar measures rain with spatial and temporal
resolutions of respectively, 1 km2 and 5 min. The established
database extends from 2009 to 2012. The high resolution and
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wide temporal extension of measurements associated to the
diversity of rainfall processes found in this region make this
data set particularly valuable and gives the possibility to ana-
lyze statistically the space-time variability of precipitation
under various meteorological conditions.

[4] Every meteorological process from the synoptic scale
to the scale of droplets formation impacts the temporal and
spatial characteristics of rain. Thus, precipitation involve a
large spectrum of phenomena whose respective contribu-
tions are extremely difficult to diagnose and for some of
them to forecast. However, numerous authors [Fraedrich
and Larnder, 1993; Olsson et al., 1993; Tessier et al.,
1993; Fabry, 1996; Over and Gupta, 1996; Deidda, 1999;
Nykanen and Harris, 2003; Lovejoy and Schertzer, 2008;
Mandapaka et al., 2009; Verrier et al., 2011] showed
that despite this complexity, rainfall variability is charac-
terized by an empirical scale-invariance. Scale-invariance
(or self-similarity) implies that the statistical moments of
rainfall follow a power law whose exponent remains con-
stant over a range of scales. Moreover, several studies [Over
and Gupta, 1994, 1996; Perica and Foufoula-Georgiou,
1996; Harris et al., 1996; Purdy et al., 2001; Nykanen and
Harris, 2003; Nykanen, 2008] showed that various scal-
ing exponents are influenced by the implied meteorological
processes (synoptic weather, CAPE, orography).

[5] In this context, this paper aims at investigating statis-
tically the spatial and temporal variability of rain in terms
of meteorological processes over the western Mediterranean
region. Understanding of the space-time variability of rain-
fall over various ranges of scales is particularly valuable
for meteorologists and hydrologists either to analyze the
involved processes or to develop downscaling methods for
local rain estimate from space-borne observations or large-
scale numerical models [see Olsson, 1998; Biaou, 2004;
Rebora et al., 2006].

[6] The paper is organized as follows. Section 2 presents
the data set used in this study. Section 3 introduces the
analysis tools. Section 4 highlights the main characteris-
tics of the precipitation observed by the radar. First, we
present and interpret in terms of meteorological processes
the one-dimensional temporal and spatial spectra of rain-
fall. Then we analyze the spatio-temporal field by computing
two-dimensional space-time spectra and scaling anisotropy
coefficient. The discussion and conclusion are given in
section 6.

2. Data
[7] The rainfall dataset is derived from radar measure-

ments performed by an X-band polarimetric and Doppler
radar, called Hydrix, located at Mont Vial (1500 m) close to
Nice in the southeastern France (Figure1). Technical infor-
mation about this radar can be found in Le Bouar et al.
[2008] and Moreau et al. [2009]. In order to convert the
radar reflectivity (i.e., the reflected electromagnetic signal)
into rainfall intensity, the ZPHI algorithm [Testud et al.,
2000] is applied. This algorithm corrects from beam attenu-
ation along each radial and then computes the N*

0 parameter
derived from the drop size distribution N(d) in order to
retrieve the rain rate through the relation (equation (1)):

R = a(N*
0)1–bZb (1)

where R is the rain rate (mm/h), a and b are two constant
empirical coefficients, and Z is the reflectivity (dBz). An esti-
mation of rain at ground is performed using a weight average
of the rainfall obtained at multiple elevations. Weights take
into account the altitude of measurements, the precipitation
phase, and the beam masking. For a more detailed descrip-
tion of this method. see Le Bouar et al. [2008]. Rainfall
data validation has been performed by comparison with S-
band radar observations [Diss et al., 2009] and rain gage
measurements [Moreau et al., 2009].

[8] The rainfall database extends continuously from
March 2009 until today. The spatial resolution is 1 � 1 km
and the temporal resolution is 5 min. Most of interruptions
last only a few hours (the longest six interruptions lasted
between 3 and 7 days). In order to get a regular sampling,
linear interpolation was performed for interruptions shorter
than 1 h and rain was set to zero for interruptions longer
than 1 h. This method does not impact significantly the sta-
tistical properties because missing data represent less than
5% of the full time series. Another issue comes from the
radar signal attenuation with distance. Indeed, in spite of
the correction of radar attenuation along each radial beam,
the rainfall measurement can be affected by remaining atten-
uation in case of strong rain. As a result, in order to minimize
errors on the highlighted rainfall statistical properties, radar
measurements are restricted to a 100 km radius.

3. Scaling Behavior
[9] As discussed above, numerous authors demonstrated

the presence of scale invariance in various meteorological
fields. This section describes the spectral analysis, which
permits to highlight the scaling behavior of rain and shows
how to link scaling properties and meteorological processes.

3.1. Spectral Analysis
[10] Spectral analysis, just like other tools such as auto-

correlation and variograms [see Creutin and Obled, 1982;
Lebel et al., 1987; Berne et al., 2004; Barros et al., 2004;
Berne et al., 2009; Kirstetter et al., 2010; Molinié et al.,
2012; Mandapaka et al., 2012], allows to investigate the
second-order properties of a field. It has been shown that if
a physical process presents a scale-invariance in the time or
space domain, its power spectral density exhibits a power
law behavior in the frequency domain (equation (2)):

P( f ) � f –ˇ � Tˇ (2)

where f is the frequency and T the period.
[11] Decrease of P( f ) with frequency is related to the

increase of the mean variance with period. The ˇ value
shows how fast this increase is. In other words, it shows how
fast the autocorrelation (the autocorrelation is the Fourier
transform of the power spectral density) decreases with lag.
The faster the autocorrelation decreases, the lower the ˇ
value is. In the limit, a white noise has a ˇ exponent equal to
zero whereas a highly correlated process has a high ˇ value.
A way to understand this concept is to consider a Brownian
motion. For example, a Brownian motion is highly corre-
lated at a given time t + 1 with time t and is less and less
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Figure 1. Area covered by the radar Hydrix.

correlated as far as the lag increases. As a result, mean vari-
ance at lag(1) is lower than mean variance at lag(n > 1).
Moreover, if diffusivity coefficient associated to a Brownian
motion is very important, then the autocorrelation decreases
strongly with lag and the spectral slope is low.

[12] The power law behavior of power spectral density
has been widely used to highlight the scaling behavior of
various geophysical fields such as morphology of fractured
rock surfaces [Schmitt and Scholz, 1995], wind and tempera-
ture [Gage and Nastrom, 1986] or radar reflectivity [Tessier
et al., 1993]. Concerning rainfall, temporal [Fraedrich and
Larnder, 1993] and spatial [Mandapaka et al., 2009] spec-
tral analysis revealed a scaling behavior over a wide range
of scales.

[13] No theory fully explains the observed scaling
behavior of rain, but because rain is strongly coupled with
wind, the rainfall scaling behavior could be related to the
theory of turbulent fields [see Kolmogorov, 1941; Obukhov,
1949; Corrsin, 1951; Kolmogorov, 1962]. In the framework
of this theory, Kolmogorov showed in 1941, that the spec-
trum of velocity increments within an isotropic turbulent
flow has a ˇ exponent equal to 5/3. Later, Corrsin and
Obukhov showed that the spectrum of the concentration of
a passive scalar is also scaling with the same 5/3 exponent.
For a more detailed discussion about rain and turbulence, see
Lovejoy and Schertzer [2008].

[14] Space and time are not independent for rainfall pro-
cesses. For example, a rain cell advected by winds induces
a space and time relationship. It is why we conducted
a space-time spectral analysis. Indeed, 2-D analysis high-
lights the relations between space and time in the frequency
domain through their respective scaling behavior and gives
information about the space-time characteristics of a given
meteorological situation in the real space.

[15] In the present study, the ˇ spectral exponent is com-
puted by performing a linear regression of the logarithm of
the frequency versus the logarithm of the power spectral
density over a range of scales (temporal or spatial).

[16] In this section, we explained that the value of the
exponent of the power law depends on the mean variance
between scales. In the next section, we explain that it is
possible to link this exponent and the scaling regimes to
meteorological processes.

3.2. Scaling Properties and Meteorological Processes
[17] The main objective of this section is to relate empiri-

cal scaling behavior of rainfall to meteorological processes.
[18] First, we have to overcome some difficulties related

to rainfall behavior. Indeed, the rainfall is very often inter-
mittent. It means that the measured signal is the superposi-
tion of the rain signal and the so-called support (meaning the
combination of rain and no rain). These two components of
the spectrum cannot be easily separated. The only way to get
the intrinsic statistical properties of the rain is to extract and
to analyze the rainfall signal only for periods of continuous
rain. If we do not, the support impacts the spectra as shown
by de Montera et al. [2009] and Verrier et al. [2011]. In par-
ticular, these authors showed that dry periods in time series
of rain tend to decrease spectral slope. These dry periods are
governed by physical processes. For instance, gravity waves
can produce periodic patterns of rain/no rain areas. Obvi-
ously, this has a signature on the support. Thus, the support
itself is related to the underlying physical processes. In this
study we kept the full time series including the zero rain data,
i.e., both rain and support signature.

[19] The instrumental approach to measure rainfall is also
important: for example, radar measurements have a decreas-
ing spatial resolution with distance because of the increasing

Table 1. Spatial and Temporal Typical Scales Depending on Rossby Number

Meteorological Scale Rossby Number Spatial Scale Temporal Scale

Front � 10–1 1000 km 30 h
Mesoscale convective system � 1 100 km 3 h
Storm � 10 10 km 15 min
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Figure 2. Energy spectral density versus temporal period
in a log-log plot.

beam width. It means that the analysis of small scales must
be handled with care and that a critical eye on results is
important before any conclusion. Concerning radar, another
problem appears when the freezing level is at low altitude
because radar does not measure rain anymore but snow.
Therefore, the question is as follows: Are snow and rain
equivalent in terms of scaling properties? Fabry [1996]
showed that snow and rain have a different scaling behavior
but for very small scales (�100 m and �10 sec) compared
to the resolutions considered in this study.

[20] Eventually, various other processes can impact rain-
fall scaling behavior such as instrumental artifact or noise,
which must be taken into account.

[21] Purdy et al. [2001], Nykanen and Harris [2003],
and Nykanen [2008] showed experimentally that the ˇ
spectral exponent depends of the meteorological processes.
They showed in particular that rain events associated to
convective processes have higher ˇ exponents than those
associated to stratiform processes. Thus, it means that the
scaling regimes of rainfall spectra could be explained by the
underlying dynamical processes that generate rain and that
we need to know the typical scales of these processes. A
possibility is to observe the typical scales of meteorological
processes that occur over the studied region as did Fraedrich
and Larnder [1993], Olsson et al. [1993], and Fabry [1996].

[22] It is also possible to estimate the typical scales of
these processes through a scale analysis of the equations
of motion. The horizontal motions are governed by the
horizontal momentum equations. If the viscosity terms are
neglected, the horizontal projection on the x axis is

du
dt

= fv –
1
�

@P
@x

where u, v is the horizontal velocity, P the pressure, � the
atmospheric density, and f the Coriolis factor.

[23] The Rossby number allowing this scale analysis is
defined by the ratio between the acceleration and the Coriolis
force:

Ro =
du/dt

fv
�

U
foL

where U is the characteristic horizontal velocity and L
is the characteristic horizontal dimension (for details, see
Holton [1992]). It characterizes the influence on motion of

the Earth’s rotation with respect to other processes. At the
Mediterranean latitude, typical values for wind velocity and
Coriolis factor are U � 10 m/s and fo � 10–4 s–1. There-
fore, typical temporal and spatial scales of meteorological
processes with respect to Rossby value can be estimated
(see Orlanski [1975], Atkinson [1981] and Table 1). A high
value of the Rossby number (order of magnitude �10) cor-
responds to storm scale (or convective scale). It is the size
of isolated thunderstorms with typical temporal and spa-
tial scales of about 15 min and 10 km, respectively. A low
value of the Rossby number (OoM �0.1) corresponds to
synoptic scales (midlatitude cyclones) with typical tempo-
ral and spatial scales of 30 h and 1000 km. Intermediate
values of the Rossby number (OoM �1) correspond to the
mesoscale (convective clusters) with typical temporal and
spatial scales of 3 h and 100 km. Since for these different
scales the primary forces (Coriolis, pressure, gravity,...) and
thus the associated dynamical processes are not the same, we
might expect the corresponding rainy structures to show dif-
ferent statistical properties. If we now make the hypothesis
that a constant slope (i.e., a scaling regime) is associated to a
dynamical process, breaks are expected in the spectra, each
break giving roughly the typical scale of the rainfall process.
Therefore, we can link the different scale ranges in space and
in time of the spectra with meteorological processes.

4. One Dimensional Spectral Analysis
[24] As explained in the introduction, the first part of

this work is devoted to one-dimensional analyses for time
and space separately. The power spectral density of rain-
fall is computed and compared to previous works. Then
the identify scaling regimes are interpreted in terms of
meteorological processes.

4.1. Temporal Analysis
[25] The temporal power spectral density is obtained as

follows: each radar map (resolution 1 � 1 km) is uniformly
averaged on a grid with a resolution of 5 km2. Then, for each
grid box, the temporal Fourier transform (5 min resolution)
is computed. Finally the mean of all the temporal spectra
obtained is computed.

20 min 45 min 3 h 1 day 10 days

P
(

)

Period

Summer

January
February

March
April
May
June
July

August
September

October
November
December

Winter

Fall

Figure 3. Energy spectral density versus temporal period
in a log-log plot by month.
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Table 2. Temporal Spectral Slopes for Winter, Summer, and Fall
Per Scaling Range

Season 20–45 min 45 min–3 h 3 h–1 day 1–10 days

Winter 1.49˙ 0.05 1.35˙ 0.09 1.19˙ 0.23 0.67˙ 0.3
Summer 1.49˙ 0.05 1.01˙ 0.02 0.7˙ 0.07 0.12˙ 0.06
Fall 1.11˙ 0.13 1.06˙ 0.11 0.97˙ 0.18 0.67˙ 0.3

[26] The aggregation results in increasing correlation
(organization) within the field as shown by Olsson et al.
[1999], and as a result, it increases the slope of the com-
puted spectrum. Nevertheless, in the present case, the impact
of this aggregation is certainly weak. Indeed, Olsson et al.
[1999] found that the increase of spectral slope was about
30% for an aggregation of the rainfall field over 500 km2

area.
[27] The resulting temporal spectrum is shown in

Figure 2. The reader must note that the abscissa corresponds
to the time period. The spectrum is scaling down to 10
days and shows five different domains of scale invariance.
Between 20 and 45 min, the spectrum presents a power law
with an exponent of about 1.31, between 45 min and 3 h
of about 1.02, between 3 h and 1 day of about 0.79 and
between 1 and 10 days of about 0.46. For periods greater
than 10 days, the spectrum presents a spectral plateau (expo-
nent 0.09). It means that, for periods larger than 10 days,
mean variance between 2 points does not increase anymore,
i.e., correlation between rain events does not exist anymore.
Comparison with past studies shows that these exponents
agree with those previously found [e.g., Fraedrich and
Larnder, 1993; Olsson, 1995; Fabry, 1996; Verrier et al.,
2011]. The different regimes (domains of scale invariance)
also match well with those previously found except that the
20–45 min regime is not always highlighted in these studies.

[28] For scales lower than 15 min, we can notice the
flattening of the spectrum. This behavior is probably due
to instrumental accuracy and has already been noticed by
Fabry [1996] and de Montera et al. [2009].

[29] The 15 min peak is related to the scanning strategy
of the radar. Indeed, the radar scanning cycle is composed
of three subcycles of 5 min in order to produce 5 min rain-
fall estimation. During test phases, the third part of the
cycle is used with various operational modes, which slightly
modifies the rain rate estimation. Concretely, this effect
corresponds to the multiplication of the signal by a value
slightly higher than 1 per 15 min. It does not impact the
scaling properties of rainfall at other frequencies.

[30] Meteorological processes associated to rainfall in
the Mediterranean region vary during the year. In order to
see their effects on rainfall spectra, we computed tempo-
ral spectra per month. Figure 3 shows that the spectra can
be split roughly in three classes: winter months (January to
March), summer months (June to August) and fall months
(October to December). Spring months show a mix signal
between winter and summer months. Between 20 and 45 min
every spectrum has roughly the same scaling regime with a
slope of about 1.49 ˙ 0.05 except for fall months, which
have a lower slope (1.11 ˙ 0.13). For summer months, a
break occurs at 45 min and a second scaling regime extends
between 45 min and 3 h (slope �1.01 ˙ 0.02). For other
months, no break occurs but the slopes are slightly lower
than for 20–45 min period (1.35 ˙ 0.09 for winter and
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Figure 4. Level map of the logarithm of the power spectral
density (x-y) computed between June 2009 and December
2011.

1.06 ˙ 0.11 for the fall). Two other breaks are found for
every spectra at 3 h and 1 day (corresponding slope for sum-
mer: 0.7 ˙ 0.07, winter: 1.19 ˙ 0.23 and fall: 0.97˙ 0.18).
Greater than 1 day, the spectra remains scaling up to 10 days
during winter and fall months (0.67 ˙ 0.3) whereas in sum-
mer the slope is close to zero (0.12 ˙ 0.06). Higher than 10
days, every spectra show the spectral plateau. These results
are summarized in Table 2.

[31] The previous discussion on dynamical scale (section
3.2), indicates that the accessible scales in the present
analysis cover convective scale (partially), mesoscale, and
synoptic scale.

[32] An interesting feature is that, between 20 and 45 min,
the spectral slope is independent of the month (except during
the fall). Moreover, the obtained value is close to 5/3, which
is the expected value for velocity within a turbulent flow. It
could indicate that rain at small scales rain is driven by tur-
bulence. The value is a bit lower than 5/3 possibly because
of some zero rain data in time series or because of strong rain
cell displacement (two successive points in time at a constant
location do not correspond exactly to the same rain cell).
This time scale regime (20–45 min) can be related to the
minimal time interval encompassing a single and continuous
rainfall event. Except for summer months, this scaling range

Figure 5. Energy spectral density versus spatial period in
a log-log plot.
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Figure 6. Energy spectral density versus spatial period in
a log-log plot by month.

extends until about 3 h despite a slightly lower slope for
periods higher than 45 min. An interpretation could be that,
during those months, typical duration of rainfall is between
a few minutes and 3 h. It is interesting to note that 3 h is
the typical duration of mesoscale events (organized convec-
tion, front, etc.) as revealed by the analysis of the equations
of motion (section 3.2). The slope is slightly lower when
periods are higher than 45 min that could be related to the
variable duration of rainfall and that, as the period con-
sidered becomes longer, more zero rain points are taking
into account.

[33] Concerning the summer spectra, we showed that a
break appears at 45 min. In section 3.2, we argued that
45 min is the typical time associated to convective scale,
and we know that, in summer, most of rain events cor-
respond to convective rain. Thus, lower than 45 min, the

Table 3. Spatial Spectral Slopes for Winter and Summer Per
Scaling Range

Season 3–7 km 7–20 km 20–70 km

Winter 1.55˙ 0.05 1.55˙ 0.05 1.55˙ 0.05
Summer 2.29˙ 0.11 1.55˙ 0.03 0.94˙ 0.07

scaling range could correspond to a single rainfall events
within a convective cell and, between 45 min and 3 h, the
scaling range could correspond to the time between consec-
utive convective cells. Eventually, the break at 3 h could
show that, during the summer, mesoscale rain structures
also occur.

[34] The break at 1 day appears each month and can be
related to the mean time between large scale rain events
(for example the time between two fronts on the region).
Eventually, the scale range 1–10 days corresponds to the life-
time of synoptical scale structures (i.e., midlatitude cyclone)
[McIlveen, 1992]. At longer scales than 10 days, the spectral
plateau implies that we do not have any correlation between
weather precipitating systems, which travel on the region.
A possible interpretation is that organized rainfall processes
do not exist longer than the synoptical scale processes. This
interpretation is supported by the fact that Lovejoy and
Schertzer [2010] showed, by a semi-empirical approach,
that the 10 day scale is the expected value for the transi-
tion between synoptical events and spectral plateau in the
atmosphere.

[35] During the fall, slope is lower at high frequency.
This surprising behavior appears each year taken individu-
ally and will be discussed in detail in the next section.

4.2. Spatial Analysis
[36] The spatial extension (the radar coverage) of our

data set is much smaller than the temporal one. It is still
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Figure 7. Scheme of spatial and temporal spectra of rainfall with slopes and breaks. We indicated some
possible meteorological scales and processes. Dashed lines of the spectra are adapted from Fraedrich and
Larnder [1993] & Verrier et al. [2011]. Note that spatial slopes are estimated by averaging over angles in
the 2-D spectra.
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Figure 8. Level map of the logarithm of the power spectral density (x-t) computed between June 2009
and December 2011 (January to June).

possible to study the rainfall scaling behavior for scales
lower than the radar area (40, 000 km2) and higher than the
minimal resolution 1 km2. As the rainfall field shows a
spatial scaling isotropy (see Figure 4), it is equivalent to
compute the one-dimensional Fourier spectrum whatever
the direction (for any combination of the latitude and lon-
gitude). In the present case, for each radar map, two 1D
spectra centered on the radar are computed. One along a

direction of constant latitude, and one along a direction of
constant longitude. Then, the mean of both 1-D spectra for
all the radar maps is computed. In the Kolmogorov sense, the
power spectrum is defined as the square of the 2-D Fourier
spectrum integrated over all angles. It means that for an
angle averaged isotropic 2-D spectrum, an extra factor of
2� f is needed. Nevertheless, this definition can not be inter-
preted in terms of correlation within the field that makes
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Figure 9. Level map of the logarithm of the power spectral density (x-t) computed between June 2009
and December 2011 (July to December).

difficult an interpretation in terms of meteorological pro-
cesses. For instance, using this definition, a 2-D spatial noise
shows a spectral exponent of –1 without meaning in terms
of correlation.

[37] The obtained spatial spectrum is shown in Figure 5.
Three scaling regimes are identified between 3 and 70 km.
The first one extends from 3 to 7 km with a ˇ exponent of
about 2.00. Between 7 and 20 km, the exponent is about

1.50. Between 20 and 70 km, the slope is equal to 1.16.
For larger scales, the slope of the spectrum decreases slowly
(ˇ � 0.92 between 70 and 200 km) and does not appear to
be scaling anymore.

[38] As previously discussed, the equivalent slopes in a
Kolmogorov sense are 1, 0.50, and 0.16. These values are
lower than the one predicted by Kolmogorov (5/3) and the
one computed by Tessier et al. [1993], who found a ˇ equal
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to 1.45 between 75 m and 10 km for radar reflectivity,
and Verrier et al. [2010] who reported that the spectrum of
African monsoon storms is scaling between 1 and 10 km
with a ˇ exponent of 1.47. These authors estimated this
exponent on full rain maps. Therefore, the observed slopes
are lower probably because of zero rain data effect (radar
maps with partial rain coverage).

[39] In Figure 5, we can also see that for scales lower than
3 km, the spectrum becomes flatter. This is related to the
minimum scale reachable by the radar resolution (see, for
example, the spatial spectrum in Verrier et al. [2010]).

[40] As for the temporal analysis, each month is analyzed
separately (Figure6). Winter and summer months show very
different behaviors. Winter months are scaling from 3 to 70
km with a slope of about 1.55 ˙ 0.05, whereas summer
months show two breaks at 7 and 20 km (slope: 2.29˙ 0.11,
1.55 ˙ 0.03, and 0.94 ˙ 0.07). Other months show a mix
signal between winter and summer months. These results are
summarized in Table 3.

[41] Spatial scales analyzed correspond to convective
scale and mesoscale. As for temporal spectra, the slope of
a scaling regime (i.e., 7–20 km) is found to be constant
whatever the month. Moreover, for winter months, the slope
(� 1.55) remains constant between 3 and 70 km. Thus, in
winter, a unique scaling regime characterizes the rainfall
scaling behavior from 3 to 70 km. This scaling range could
be related to the size of a continuous rainfall events (i.e.,
frontal system), which is wider than 70 km in winter. In sum-
mer, the situation is more complex: three scaling regimes are
observed (3–7 km, 7–20 km, and 20–70 km). Because 3–
7 km scaling regime occurs only in summer, it is probably
related to convection. Nevertheless 3–7 km is smaller than
the typical size of a convective system in this region (�20
km), and the slope of this scaling regime is much greater
than the slope of the corresponding scaling regime in winter.
A possible explanation can be that during convective activ-
ity, the main flux is buoyancy variance flux [see Schertzer
and Lovejoy, 1985] (not the energy flux), which can increase
the spectral slope. Another explication could be that turbu-
lence within updraft area is strongly anisotropic. Therefore,
the 3 to 7 km scaling regime could be related to the updraft
region of the convective cell where atmosphere is strongly
anisotropic.

[42] However, the previous interpretations must be han-
dled with care because filtering methods can also affect spec-
tra at small scales. In particular, spatial resolution decreases
with distance from the radar. As a result, rain field is
smoother when it is far from the radar that can increase
spectral slope for small scales.

[43] Another break occurs at 20 km in summer. It prob-
ably corresponds to the transition between intra-events and
inter-events regimes. Indeed 20 km is the typical size of
convective cells in the region. In winter, no break occurs
because rainfall is more widespread.

[44] Eventually, the fact that the spectra does not show a
clear scaling regime for larger scale than 70 km probably
results from radar attenuation.

[45] Most of the authors [e.g., Menabde et al., 1997;
Nykanen and Harris, 2003; Nykanen, 2008] who studied the
spatial scaling of the rainfall did not discuss the breaks at
7 and 20 km (Gires et al. [2011] mentioned the break at
20 km). It is probably related to the fact that most of the

Figure 10. Spectral exponent ratios for each month for
scale range 7–20 km/20–45 min and 20–70 km/45 min–3 h.

previous studies focused on particular convective storms and
not on successive convective precipitating systems including
their stratiform zones as we did here.

[46] In the previous section, we showed that temporal
spectra have a surprising behavior for small periods during
the fall. On the other hand, in this section, we showed that
spatial spectra in the fall are very similar to winter spectra.
A possible explanation of this behavior follows.

[47] Rysman et al. [2012] showed that, in the fall, since
the Mediterranean is warmer than land, convection occurs on
the Mediterranean and is quickly advected by wind because
there is no land barrier. So, a possible explanation could be
that cell displacement is too quick relative to sampling time
which does not permit to sample a continuous rain cell, and
as a result, two successive points in time are not strongly
correlated and spectral slope is lower.

[48] As a conclusion, Figure 7 summarizes the main
characteristics of the one-dimensional temporal and spa-
tial spectra described in this section. In this figure, we
added some part of spectra extracted from other stud-
ies at larger and lower scales. In particular, Fraedrich
and Larnder [1993] showed that for periods greater than
3 years, the spectra rises monotonically. As we showed, for
periods greater than 10 days, we do not have any correla-
tion among the data and it could appear surprising to have
a correlation at much more larger scales. A possible expla-
nation could be that this correlation is related to the climatic
tendency. This tendency could be part of a long-term cycle
and be significantly detectable only for time scales greater
than 3 years. The spectral plateau between 10 days and 3
years could correspond to an intermediate region where vari-
ance between two points does not increase as the temporal
lag increases (i.e., successive weather systems do not show
any correlation above the region) and where climate ten-
dency is hidden by meteorological noise. As a consequence,
we could fix the limit of deterministic meteorology analysis
at a period lower than 10 days and the lower boundary of
climate analysis at 3 years. It would imply that trying to fore-
cast weather at higher ranges than 10 days based on actual
observations might be hopeless. Moreover, we showed that
the spectral plateau occurs for periods lower than 10 days in
summer. It could explain why forecasts are less accurate in
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summer than in winter in the region. Nevertheless, previous
interpretations must be handled with care. In particular, we
only studied the second-order properties of the rain signal.
Additional analysis for other moments are needed in order
to check that the decorrelation at 10 days appears for every
moment. Moreover, complementary analyses must be con-
ducted on other meteorological parameters and with other
methods.

5. Two Dimensional Spectral Analysis
5.1. Space-Time Spectra

[49] As shown previously, one-dimensional analysis is
a precious tool to explore the rainfall scaling behavior.
However, it does not allow investigations of the relation-
ship between spatial and temporal scales. Few studies used
multi-dimension spectral analyses to document rainfall scal-
ing behavior. For instance, Crane [1990] evaluated the
spatial isotropy of rain for several events. Tessier et al.
[1993] studied the rain space-time relationship (z-t) using
a two-dimensional Fourier transform. Marsan et al. [1996]
computed x-t and y-t spectra on rainfall data to test their
space-time model. de Michele and Bernardara [2005] pro-
posed a generalized form of the spectral density function to
take into account the space-time anisotropy and to realize a
3-D (x-y-t) fit on four rainfall events.

[50] In the present study, we were interested in the statis-
tical properties that exist between space and time. We used
longitude for space component, but latitude could have been
identically used because of the spatial scaling isotropy (see
Figure 4). We investigated these properties in relation to
meteorological processes and their evolution during the year.
Note that contrary to previous studies [e.g., Marsan et al.,
1996; Venugopal et al., 1999], we do not aim at proposing a
model that links space and time.

[51] A two-dimensional fast Fourier transform algorithm
is applied on a window of 120 km versus 1 day. As a result,
the spectra mainly combine convective scale and mesoscale
structures for spatial frequencies and mesoscale and syn-
optic scale structures for temporal frequencies. The energy
spectral density is averaged for every month of the 3 year
database.

[52] Figures 8 and 9 present a level map of the logarithm
of the obtained power spectral density averaged by month.
Note that spectra shown on these maps are not equivalent to
1-D spectra because frequencies are plotted on linear axes.
Because of linear axes, most of the periodicities observed
on those maps are short (mainly between 2 and 30 km spa-
tially and between 5 min and 2 h temporally). The figures
show an elliptical structure and important variability during
the year. The pattern evolves during the year from a strong
stratification in temporal frequency, for winter months, to an
isotropy for summer. As shown in previous sections, in win-
ter, the spatial spectral slope is equal to 1.55 and the temporal
slope is equal to 1.5. The spectra appear deformed because
of the chosen axis. In summer, the temporal slope is the same
but the spatial slope is higher (� 1.83). Hence, the spectra
look rather isotropic. The main idea here is that computing
a 2-D spectrum provides a straightforward way of getting
information on rainfall space-time properties and the shape

of the 2-D spectra depends on the involved meteorological
processes.

[53] These figures reveal another feature: the overall rota-
tion of ellipses. As the Fourier transform results in a � /2
direct rotation, the ellipse rotation in the frequency space
corresponds to a rotation in the real space that is related to
the eastward displacement of rain. This can be easily verified
using time series of reflectivity map (not shown).

5.2. Space-Time Scaling Anisotropy
[54] The last part of this work is devoted to space-time

scaling anisotropy. The knowledge of space-time scaling
relationships is of primer interest to understand rainfall
internal behavior and evolution.

[55] We computed the spectral exponent ratio for every
month for two scaling regimes. The two scaling regimes
investigated are 7–20 km versus 20–45 min and 20–70 km
versus 45 min–3 h. Figure 10 gives the time evolution of the
obtained ratios during the year. The spectral exponent ratio
is shown to be equal to 1 (except during the fall). This con-
stancy during the year confirms in an indirect way that the
scaling ranges considered in this analysis are part of the same
meteorological processes. Moreover, the fact that the ratio
equals 1 suggests a similarity in the second-order properties
(e.g., correlation) of rainfall.

[56] Marsan et al. [1996] and Pecknold et al. [2001]
showed that the scaling anisotropy coefficient Ht can be
derived from spectral slopes ˇx and ˇt using the following
equation:

1 – Ht =
ˇx – 1
ˇt – 1

(3)

where ˇx is computed with integration over angle of 2-D
spectrum. Ht is found to be equal to 2 except in the fall.
Some other estimations of this coefficient based on different
methods gave different values [Marsan et al., 1996; Deidda,
2000; de Montera et al., 2010] (Ht � –0.1, Ht � –0.12
and Ht � 0.37). Some downscaling approaches based on
scaling space-time cascades assume that when lengths are
divided by ıxy, then duration is divided by ıt = ı1–Ht

xy and
Ht = 1/3 is the usual value used [e.g., Biaou, 2004; Gires
et al., 2012]. The value obtained in this study is larger than
these values possibly because of the zero effect and this must
be confirmed in future studies.

6. Conclusion
[57] A 3-year rainfall time series of radar maps obtained

from an X-band, polarimetric, and Doppler radar was ana-
lyzed. The spatial and temporal resolutions are 1 km and 5
min, respectively. These data were analyzed using temporal,
spatial, and spatio-temporal power spectral analyses.

[58] One-dimension power spectra in space and time
was used to highlight the well-known power law scaling
behavior from 5 min to 10 days. Several scaling regimes
were found for time and space. Based on meteorologi-
cal arguments, we interpreted each scaling regimes found
with the spectral analysis. In particular, the convective,
mesoscale, and synoptic scale regimes impact the tempo-
ral spectra whereas the convective and mesoscale regimes
impact the spatial spectra. Temporal spectra also showed that
the longest period where we found temporal correlation in
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rainfall is 10 days. Climatic fluctuations are only detectable
for periodicities higher than 3 years. In the second part
of the study, we used space-time spectra to investigate the
scaling relationship between space and time. We showed
that the high variability of 2-D scaling behavior from month
to month was due to the various rainfall processes during
the year. Moreover, we were able to compute space-time
anisotropy coefficient per month and we showed that it is
equal to 2.

[59] This analysis provides precious information on spa-
tial and temporal variability of rainfall events in the west-
ern Mediterranean region. It suggests that rainfall scaling
relationship strongly depends on the encountered weather
regime and on the scale. Various weather regimes occur
in this region and have clear spectral signatures in space
and time. As a result, it seems interesting to check that
outputs from weather model are in agreement with each
part of the observed rainfall spectrum. Indeed, even if rain-
fall accumulation seems well-forecasted, one has also to
verify that the involved processes are consistent with the
simulated field [see Koh et al., 2012; Gires et al., 2012,
for examples].

[60] Space-time spectrum appears to be valuable to the
investigation of statistical properties and space-time rela-
tionships. It can be valuable to statistical downscaling, which
is essential to disaggregate spatial and temporal outputs of
climate models. In particular, we identified several scaling
regimes in time and space. Some downscaling method, such
as RainFARM [Rebora et al., 2004], use the spectral infor-
mation at large scales to infer rain at small scale. They
could benefit from the highlighted scaling regimes to be
improved. Moreover, we showed that the spectral ratio is
equal to 1 except in the fall. This property, if confirmed for
other moments and other studies, reveals a straightforward
relationship between spatial and temporal scaling behav-
ior of rain, which can be important for numerical model
schemes. Indeed, it reveals that relation between scales is
identical, in terms of second-order properties, for space and
time, which suggests that some parameterizations could be
applied identically in space and time (for example, micro-
physical relations based on a characteristic time could be
symmetrically associated to microphysical relations based
on characteristic length). It has also implications for the
understanding of rainfall spatial and temporal relations over
scale. For example, organized convection is a combination
of convective cells. All these convective cells have a short
lifetime and size, whereas the organized system has a larger
lifetime and size. It reveals a relation between space and time
properties of rain that depends on the scale and that could
be related to the properties identified in this study (spectral
ratio equal to 1 for two scaling regimes).

[61] In a future work, larger spatial scales will be consid-
ered to study processes at synoptical scales. Moreover, the
multiscaling framework will be useful to improve the anal-
ysis of this data set. In particular, some parameters of this
model, such as codimension, will be helpful in understand-
ing the involved meteorological processes.
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