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h i g h l i g h t s

� Water managers need to assess contaminant’s bioavailability and surface water contamination risk.

� We present a novel method of pesticide partition coefficient Kd assessment.

� Kd is expressed as a function of Kow and total suspended matter concentration.

� This method can be applied to a wide range of organic contaminants and catchments.

� The resultant equation is suggested to be implemented in pesticide fate models.
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a b s t r a c t

Pesticides applied on crops are leached with rainfall to groundwater and surface water. They threat the

aquatic environment and may render water unfit for human consumption. Pesticide partitioning is one of

the pesticide fate processes in the environment that should be properly formalised in pesticide fate mod-

els. Based on the analysis of 7 pesticide molecules (alachlor, atrazine, atrazine’s transformation product

deethylatrazine or DEA, isoproturon, tebuconazole and trifluralin) sampled from July 2009 to October

2010 at the outlet of the river Save (south-western France), the objectives of this study were (1) to check

which of the environmental factors (discharge, pH, concentrations of total suspended matter (TSM), dis-

solved organic carbon (DOC) and particulate organic carbon (POC) could control the pesticide sorption

dynamic, and (2) to establish a relationship between environmental factors, the partition coefficient Kd

and the octanol/water distribution coefficient Kow. The comparison of physico-chemical parameters val-

ues during low flow and high flow shows that discharge, TSM and POC are the factors most likely control-

ling the pesticide sorption processes in the Save river network, especially for lower values of TSM (below

13 mg Lÿ1). We therefore express Kd depending on the widely literature-related variable Kow and on the

commonly simulated variable TSM concentration. The equation can be implemented in any model

describing the fluvial transport and fate of pesticides in both dissolved and sorbed phases, thus, Kd

becomes a variable in time and space. The Kd calculation method can be applied to a wide range of catch-

ments and organic contaminants.

1. Introduction

Intensive agriculture is known to have a detrimental effect on

soils, surface water and groundwater quality, which leads to acute

problems such as soil erosion or water contamination (Atasoy

et al., 2009; Zeiger and Fohrer, 2009; Yi et al., 2012). Organic pol-

lutants, such as excessive pesticides loading from cultivated land,

are transferred to surrounding surface water either dissolved or

sorbed to particles, and may be harmful to aquatic ecosystems

(Polard et al., 2011; Beketov et al., 2013; Proia et al., 2013).

Pesticides loads may also render stream water and groundwater

unfit for drinking water provision (EC, 1998). The occurrence and

the bioavailability of pesticides in water are controlled by

environmental, physico-chemical, and anthropogenic factors (e.g.

Imfeld et al., 2009; Lewan et al., 2009; Fenoll et al., 2011;
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Rodriguez-Liébana et al., 2011). Recent studies in the south-

western France area showed the role of intense rainfall events such

as floods on water quality degradation regarding suspended

matters and pesticides (Boithias et al., 2011; Oeurng et al., 2010,

2011; Taghavi et al., 2010, 2011). Understanding pesticide

dynamics during storm events is therefore of major importance

to assess surface water quality degradation risk and subsequent

possible transfers to living organisms.

The relationships between pesticides and suspended sediments,

dissolved or particulate organic carbon (DOC and POC), were high-

lighted in various studies (Gao et al., 1997;Wuet al., 2004; Thevenot

et al., 2009; Taghavi et al., 2010). Adsorptionof pesticides to the solid

phase (organicmatter and clay content) was shown to be a key pro-

cess driving themobility of pesticides in the environment, as well as

pH (Hayes, 1970;Novak et al., 1997; Coquet andBarriuso, 2002;We-

ber et al., 2004; El Bakouri et al., 2009). Chiou et al. (1979) formalised

sorption processes in terms of the organic carbon normalised parti-

tion coefficient (Koc). The octanol/water distribution coefficient

(Kow) gives a measure of the organic molecules’ hydrophobicity

and partly describes the intensity of the pesticide adsorption and

desorptionmechanisms inwater: somemolecules, such as glyphos-

ate, generally have a strong sorption although their Kow is low (Goss

and Schwarzenbach, 2001, 2003). Relationships between Koc and

Kow were found by several authors in batch conditions (Karickhoff

et al., 1979; US EPA, 1996; Xu et al., 1999; Toul et al., 2003). For in-

stance Karickhoff et al. (1979) expressed Koc as a function of Kow

for non-charged organic hydrophobic compounds whose log(Kow)

were between 2.1 and 6.3. The latter relationship is widely used to

parameterise the partition coefficient Kd in pesticide fate and trans-

port models (e.g. SWAT – Arnold et al., 1998), by relating Kd to POC

and to Koc through fOC-TSM, the fraction of POC in total suspended

matter, sometimes assuming a specific value of fOC-TSM (Chapra,

1997). Thus, Kd is defined for each molecule as a constant value in

time and space for a whole drainage network.

To our knowledge, very few studies focused on Kd stemming

from in-stream pesticides concentration measurements (e.g. Mail-

lard et al., 2011; Taghavi et al., 2010, 2011). In this paper we handle

the hypothesis that Kd varies over time and space following the

dynamics of suspended matters and specifically the dynamics of

organic fraction estimated as fOC-TSM. The Koc metric is often related

to the organic fraction to estimate the corresponding Kd. However,

the dependency of Koc on the nature of the involved organic matter

(Toul et al., 2003) does not authorise to keep Koc as a constant

parameter along the river course. To take into account the possible

interactions of the pesticide molecules with the organic matter, we

introduced instead the widely literature-related variable Kow.

Using data sampled at the outlet of an agricultural catchment in

south-western France, the river Save catchment, our study goals

were (1) to check which of the environmental factors (i.e. dis-

charge, total suspended matter, organic carbon, pH) was signifi-

cantly different between high flow and low flow at the outlet of

the catchment, (2) to highlight which one(s) of those factors could

control the pesticide partition between dissolved and sorbed

phases, and (3) to establish a relationship between Kd, Kow and

environmental factors, suitable to the local environmental context

of a wide range of catchments where the log(Kow) of detected mol-

ecules is below 5. Thus the pesticide-specific Kd parameter could

become a variable in time and space, implementable in pesticide

fate and transport models.

2. Materials and methods

2.1. Study area

The river Save is located in south-western France and drains an

area of 1110 km2 (Fig. 1). The geological substratum is built from

impermeable molassic deposits stemming from the erosion of the

Pyrenees Mountains during the end of the Tertiary period. Calcic

soils stem from molasses and represent 61% of the whole catch-

ment area with a clay content ranging from 35% to 50%. They are

located on the top of the hills and on their slopes. Non-calcic silty

soils represent 30% of the soil in this area (40–60% silt). They are

mainly located downstream, close to the Garonne alluvial plain.

Alluvial deposits are found along the streams and represent 9% of

the catchment area (Boithias et al., in press). Top soil organic mat-

ter content is about 2% (Veyssy et al., 1999).

The climate is temperate oceanic. The river Save hydrological

regime is mainly pluvial with a maximum discharge in May and

low flows during the summer (July–September). The annual pre-

cipitation is of 600 to 900 mm with an annual evapotranspiration

of 500–600 mm (1998–2010). Mean annual discharge measured

by the hydrometric station at the catchment outlet is about

6.1 m3 sÿ1 (1998–2010) (see gauging station in Fig. 1). During

low flows, the river flow is sustained upstream by the Neste canal

(about 1 m3 sÿ1) that derives water from a Pyrenean river, namely

the river Neste, for irrigation purpose (data from Compagnie

d’Aménagement des Coteaux de Gascogne – CACG).

Approximately 90% of the catchment surface is devoted to agri-

culture. The upstream part of the catchment is a hilly agricultural

area mainly covered with pasture and forest associated to cereals

and corn on small plateaus (Macary et al., 2013). The downstream

part is devoted to intensive agriculture with mainly both corn

grown as monoculture and a 4-year crop rotation alternating win-

ter wheat with sunflower and corn, sorghum or soybean. The

110 km2 of corn are irrigated with 210 mm yrÿ1 of water from July

to September (Boithias et al., in press).

2.1.1. Observed discharge

The river Save discharge was monitored from 2007 to 2010. At

the hydrometric station (Fig. 1), hourly discharges (Q) were ob-

tained from CACG. The hourly discharge was plotted by the rating

curve Q = f(H) in which the water level (H) was measured continu-

ously and then averaged for each day. Fig. 2 shows the daily aggre-

gated discharge data.

2.1.2. Water quality monitoring

At the catchment outlet gauging station, Total Suspended Mat-

ter (TSM), Dissolved Organic Carbon (DOC), Particulate Organic

Carbon (POC), and pH were monitored from July 2009 to October

2010, both manually and automatically, as described in previous

studies on the river Save catchment (Oeurng et al., 2011). An auto-

matic water sampler, connected to a probe, was programmed to

activate pumping water for 30 cm water level variations during

high flows, for the rising and falling stages, thus providing 1–29

river 4 L water samples in 1 L glass jars per stormflow event

depending on its intensity. Grab sampling was also undertaken

near the probe position at weekly intervals during low flow. TSM,

DOC, POC and pH laboratory analysis were performed as described

in Oeurng et al. (2011) Additional POC and TSM concentrations

measured from January 2007 to March 2009 (Oeurng et al., 2011)

were used in this study.

In the same way, water samples for pesticides residues analyses

were collected in the glass jars of the automatic water sampler.

Pesticide laboratory analysis of 170 samplings was performed as

described by Taghavi et al. (2010, 2011) on both filtered and

unfiltered extracts of the same sample of water with a limit of

detection (LOD) ranging between 0.001 and 0.003 lg Lÿ1 depend-

ing on the molecule. A total of 7 non-charged molecules with

log(Kow) values ranging from 1.5 to 4.8 (mean = 3 ± 1) were

considered in this study (alachlor, atrazine, deethylatrazine (DEA

– metabolite of atrazine), isoproturon, metolachlor, tebuconazole

and trifluralin). Pesticides concentration data are available at



http://www.aguaflash-sudoe.eu. Pesticide measurements all along

the year allowed covering the full variability of pesticides

exportations, from their application till their sinking.

2.2. Low and high flow discrepancy

To find out if TSM, POC and DOC concentrations and log(Kd) of

the 7 molecules (see Section 2.4 for Kd calculation) were signifi-

cantly different between high and low flow during the 2009–

2010 period, event-scale aggregation was chosen in order to avoid

the bias stemming from the data sampling frequency, i.e. to make

the average concentration during a high or low flow event inde-

pendent from the number of sampled grabbed during that event.

To separate high flow periods, discharge peak was considered as

a high flow event when the discharge was back to its base level. Be-

cause of the relative small amount of samples, we considered the

base level as being the smallest discharge between two peaks, pro-

vided that the number of available samples was at least 3 to calcu-

late averages. To increase the number of samples, low flow periods

were separated with an autocorrelation method. The autocorrela-

tion was sought after shifting the discharge signal from day to

day till the resulting R2 was found to be below 0.2, indicating that

the discharge signal could be considered as being no more corre-

lated. For each period, the average observed DOC, POC, TSM con-

centrations and pH (2009–2010), were weighted by the

corresponding observed discharge. The discrepancy of those values

between high and low flow events was sought with Fisher’s statis-

tical test (software: SigmaPlot 11.0). The same approach was per-

formed for Kd analysis, based on discharge-weighted pesticide

concentrations.

2.3. Relationship between POC and TSM

A graphical relationship between the TSM and the fraction of

POC in TSM (fOC-TSM) was sought out of the 332 measurements of

TSM and POC grabbed from 2007 to 2010 (data from this study

and from Oeurng et al. (2011)).

2.4. Relationship between Kd, Kow and TSM

Event-scale calculations were also performed on pesticide con-

centrations at catchment outlet: average pesticide concentrations

weighted by the observed discharge were calculated for each

hydrological period. The partition coefficient Kd (L mgÿ1 or

m3 gÿ1) of each molecule was calculated as follows:

Kd ¼
Csorbed

Csoluble

ð1Þ

where Csorbed (lg mgÿ1 or mg gÿ1) and Csoluble (lg Lÿ1) are the ob-

served pesticide concentrations in sorbed and dissolved phases

respectively. Csoluble was directly obtained from the analysis of the

filtered samples and Csorbed was calculated as the difference of con-

centration between the unfiltered and the filtered samples, and re-

lated to the TSM concentration. Kd could be calculated when Csoluble
or Csorbed were both over the detection limit. Therefore, the percent-

age of samples grabbed from 2009 to 2010 that could be considered

for Kd calculations was ranging between 9% (tebuconazole) and 41%

(metolachlor).

Kd is assumed to be a function of Koc and fOC-TSM through the fol-

lowing relationship:

Kd ¼ fOC-TSM � Koc ð2Þ

Fig. 1. Location of the river Save catchment.

Fig. 2. Daily observed discharge (m3 sÿ1) at river Save catchment outlet, with 11 high flow periods and 5 low flow periods (July 2009–October 2010).



where fOC-TSM is in gC gÿ1 and Koc is in ((mg gCÿ1/(mg mÿ3)). The Koc

of the 7 molecules was calculated at each hydrological event based

on the corresponding Kd and fOC-TSM values.

The graphical relationship between Koc and Kow ((mg mÿ3
octanol)/

(mg mÿ3
water)) was then sought for the river Save catchment based

on 2009–2010 data for the 7 molecules.

3. Results and discussion

3.1. Physico-chemical parameters dynamics

3.1.1. Low and high flow discrepancy

Eleven high flow periods, i.e. 11 flood events, and 5 low flow

periods, are identified from July 2009 to October 2010 (Fig. 2).

Fig. 3(a) shows event-scale aggregations of average and maximal

discharge, TSM, DOC, and POC concentrations, and pH. They are

plotted as boxplots for both low flow and high flow. Average and

maximal discharge, TSM and POC concentrations are significantly

different between low flow and high flow periods (p < 0.05)

(Fig. 3(a)).

The concentrations of DOC are very similar in both flow condi-

tions. This physico-chemical parameter is not linearly related to

flow (Wagner et al., 2008; Oeurng et al., 2011). Strong correlations

are found between POC and TSM (R2 = 0.97, p < 0.05, n = 15) and

between POC and maximal discharge (R2 = 0.92, p < 0.05, n = 15)

(Table 1, Fig. 3(b)). High correlation between POC and TSM has

been already shown at global scale by Ludwig et al. (1996). High

discrepancies for TSM and POC between low and high flows are re-

lated to the control of runoff on the erosion of the upper soil layers,

as shown by Oeurng et al. (2010, 2011) in a previous study at the

river Save outlet. Changes of pH are insignificant between low flow

and high flow, eliminating its possible effect on the ionisation of

the pesticide molecule. So the environmental factors liable to drive

pesticide partition between dissolved and sorbed phases in the riv-

er Save are POC and TSM concentrations, observed under a wide

range of discharge values.

3.1.2. Relationship between POC and TSM

A relationship between fOC-TSM and TSM is established for each

sample grabbed from 2007 to 2010. Observed TSM concentration

ranges from 6 to 15743 mg Lÿ1. Observed fOC-TSM ranges from

0.25% to 8%. fOC-TSM and TSM are correlated through a hyperbolic

regression (R2 = 0.5, p < 0.05, n = 332), the Eq. (3), which is illus-

trated in Fig. 4:

fOC-TSM ¼
0:094

TSMÿ 5
þ 0:021 ð3Þ

At high concentrations of TSM, the Eq. (3) converges on a min-

imal value of fOC-TSM to be related to the gradual increase of mineral

constituents in fluvial TSM during erosive rainy events. The value

of 2.1% is in agreement with the top soil POC rates observed in

south-western France catchments (2% – Probst, 1992; Veyssy

et al., 1999). This value will be later mentioned as fOC-TSMtopsoil.

fOC-TSMtopsoil is a catchment-specific constant. Fig. 4 also shows

about 12 samples with fOC-TSM below fOC-TSMtopsoil (fOC-TSM � 1.6%)

for TSM concentrations beyond 1000 mg Lÿ1, for discharges higher

than 40 m3 sÿ1. This may be related to the desorption of DOC from

POC during high flow (Bass et al., 2011). Conversely, lowest TSM

concentrations measured at the outlet of the river Save tends to

a minimum value (TSMmin) of 5 mg Lÿ1. TSMmin depends on the

supply of TSM together with the water flow of the Neste canal, reg-

ulated by the upstream Neste reservoir that consequently regu-

lates the sediments flux. TSMmin is a catchment-specific constant,

including an anthropogenic impact in the Save case. At last, the

numerator, which value is 9.4%, is a catchment-specific constant

related to the primary production of the river and to the land cover

of the basin (Martins and Probst, 1991). This constant will be later

called NUM.

The decrease of fOC-TSM together with the increase of TSM is

attributed to changes in organic carbon sources (Ludwig et al.,

1996; Coynel et al., 2005; Oeurng et al., 2011). A high fOC-TSM high-

lights an in-stream phytoplankton production and litter contribu-

tion during low flow periods (autochthonous sources). Low fOC-

TSM corresponds to terrigenous POC from soil erosion during in-

tense rainfall events, therefore from allochthonous origin. It is

worth noting that the fOC-TSM of 40% (Chapra, 1997), characteristic

of the phytoplankton organic carbon content, is never reached at

river Save outlet (maximum is about 8%), thus highlighting the

dilution of POC by mineral suspended sediments during low flow

(when water is mainly supplied by the Neste canal) that is also

the irrigation period. The latter also explains why 49% of the fOC-

TSM measurements (Fig. 4) at the outlet of the Save catchment

are between 1.6% and 2.4%.

Several authors have found similar relationships between fOC-

TSM and TSM (Ittekkot, 1988; Martins and Probst, 1991; Ludwig

et al., 1996; Veyssy et al., 1999; Oeurng et al., 2011; Cerro et al.,

in press). Cerro et al. (in press) and Ludwig et al. (1996) have pub-

lished the related equation but none of them have expressed the

relationship between fOC-TSM and TSM as a hyperbole, including

physically understandable parameters. The term fOC-TSMtopsoil re-

lates to the allochthonous carbon source, whereas the term

NUM/(TSM–TSMmin) relates to the autochthonous carbon source,

which is added to the base fOC-TSMtopsoil for total carbon content

calculations.

3.2. Pesticide dynamics

3.2.1. Low and high flow discrepancy

The values of Kd for the 7 molecules are calculated with Eq. (1)

using the samples grabbed from July 2009 to October 2010 during

the 11 high flow periods and 5 low flow periods (Table 2). Fig. 5

shows event-scale aggregations of log(Kd) values plotted as box-

plots for both low flow and high flow. At the river Save outlet,

the range of log(Kd) is [ÿ4.7;ÿ0.6], which is consistent with the

[ÿ10.0;ÿ0.1] range of log(Kd) values previously mentioned by

Taghavi (2010) and Taghavi et al. (2010) from 2008 to 2009 in

the river Save catchment and for pesticides having a similar range

of log(Kow), i.e. [2.5;5.2]. Our calculated values are also consistent

with the [ÿ3.3;1.1] range of log(Kd) values mentioned by Maillard

et al. (2011) in 2009 at the outlet of a vineyard catchment in Rou-

ffach and for pesticides within the similar log(Kow) range

[ÿ1.5;4.0]. Also, the Kd values we calculated from in-stream met-

olachlor, trifluralin and atrazine measurements are in the range

of the one reported by Tomlin (2009) in the environment

[ÿ6.7;ÿ3.2].

Because of the small number of available sample measurements

during low flow periods, some molecules (DEA, isoproturon and

tebuconazole) are less detected and their results are therefore less

significant. A dominant trend for all molecules (Fig. 5) is however

that Kd changes depending on the hydrological regime: (1) the

minimal Kd value is observed during high flows and (2) the median

Kd value increases during low flows, in agreement with the de-

crease of TSM and POC concentrations. Observed median log(Kd)

values of atrazine, alachlor and trifluralin are similar during both

low and high flows. The latter has to be related to the homogeneity

of the river Save catchment highlighted by the stable pH (Fig. 3(a)),

to a constant dissolved organic matter contain (DOC between 3 and

6 mg Lÿ1 – Fig. 3(a)), to the small range of variation of fOC-TSM (most

values are between 1.6% and 2.4%), and to the regular top soil com-

position all over the agricultural part of the basin (Boithias et al., in



press). Significant changes in metolachlor log(Kd) could be attrib-

uted to its high solubility (470 mg Lÿ1).

To investigate the role of both the sorbed and the dissolved

phases in the pesticide dynamics, the average value of log(Kd) is

compared to the physico-chemical parameters of the river Save

catchment (Table 3). Isoproturon and metolachlor have an affinity

with the particulate carbon fraction (POC). Trifluralin shows an

intermediate affinity with the POC. Conversely, tebuconazole is

Fig. 3. (a) Boxplots of average discharge (m3 sÿ1), maximal discharge (m3 sÿ1), and discharge-weighted concentrations (mg Lÿ1) of Total Suspended Matter (TSM), Dissolved

Organic Carbon (DOC) and Particulate Organic Carbon (POC), and pH during low flow (n = 5) and high flow periods (n = 11) and (b) scatterplots of maximal discharge versus

discharge-weighted TSM, POC and DOC concentrations (July 2009–October 2010).

Table 1

Determination coefficient R2 of compared physico-chemical parameters (discharge (m3 sÿ1), TSM, POC and DOC concentrations in mg Lÿ1) at the outlet of the river Save

catchment (July 2009–October 2010). ‘‘n’’ is the number of observations. Each observation is an average weighted by the discharge for each hydrological event (both high flow and

low flow periods).

TSM POC DOC

R2 n R2 n R2 n

Average discharge 0.40 (p < 0.05) 15 0.48 (p < 0.05) 15 0.21 14

Maximal discharge 0.86 (p < 0.05) 15 0.92 (p < 0.05) 15 0.39 (p < 0.05) 14

pH 0.02 14 0.02 14 0.13 14

POC 0.97 (p < 0.05) 15 – –

DOC 0.39 (p < 0.05) 14 0.39 (p < 0.05) 14 –
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Fig. 4. Relationship between Total Suspended Matter (TSM) concentration (mg Lÿ1) and Particulate Organic Carbon (POC) content (fOC-TSM x 100 in % of TSM dry weight) at
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Table 2

Average and standard deviation of Kd (m3 gÿ1) and Koc ((mg gCÿ1)/(mg mÿ3)) for 7 pesticides detected at the outlet of the river Save catchment (July 2009–October 2010), and

their respective Kow ((mg mÿ3
octanol)/(mg mÿ3

water) values (Tomlin, 2009).

Kow ((mg mÿ3
octanol)/(mg mÿ3

water) Log (Kow)
a Kd (m3 gÿ1) Koc ((mg gCÿ1)/(mg mÿ3))

Alachlor 1259 3.1 0.004 ± 0.006 0.147 ± 0.198

Atrazine 501 2.7 0.013 ± 0.018 0.481 ± 0.668

DEA 32 1.5 0.006 ± 0.012 0.268 ± 0.636

Isoproturon 316 2.5 0.020 ± 0.032 0.579 ± 0.999

Metolachlor 794 2.9 0.010 ± 0.021 0.310 ± 0.669

Tebuconazole 5012 3.7 0.016 ± 0.019 0.633 ± 0.720

Trifluralin 63096 4.8 0.044 ± 0.082 1.265 ± 2.061

a Tomlin (2009).

Fig. 5. Boxplots of average Kd (m3 gÿ1) weighted by the discharge for 7 pesticides during low flow (2 < n < 5) and high flow periods (5 < n < 11) (July 2009–October 2010).



correlated with the dissolved carbon fraction (DOC). Except for

tebuconazole, and although the R2 are poorly significant, as the

correlation of the pesticide molecules with POC is very similar to

the correlation with TSM, all molecules sorbed to TSM are actually

sorbed to the POC included in TSM. As the TSM parameter is easily

measurable and predictable, and strongly correlated to POC (Ta-

ble 1), it appears relevant expressing Kd depending on TSM instead

of POC.

3.2.2. Contribution of the Koc approach

The values of Koc calculated with Eq. (2) are given for the 7 mol-

ecules in Table 2. The boxplots of log(Koc) depending on log(Kow)

are shown in Fig. 6: boxplots integrate measurements of all hydro-

logical periods from July 2009 to October 2010. A linear regression

is drawn based on log(Koc) and log(Kow) values, leading to the fol-

lowing equation:

Koc ¼ 7:55� 10ÿ3 � K0:36
ow ð4Þ

R2 of the relationship between averages of Koc and averages of Kow is

0.8 (n = 7, p < 0.05). The standard deviations of the average Koc for

the 7 molecules are higher than the average Koc of all 7 molecules

(Table 2) because the high variability of the POC concentration of

the river Save (Fig. 3).

The log(Koc) values we calculated from in-stream metolachlor,

trifluralin and atrazine measurements are in the range of the one

reported by Tomlin et al. (2009) in the environment [ÿ4.4;ÿ1.4].

Fig. 6 also shows that the relationship found between Kow and

Koc in the river Save is strongly different from the one drawn with

the equation published by Karickhoff et al. (1979), i.e. log(Koc) =

log(Kow) ÿ 0.21 (Koc = 0.63�Kow), and suggested to parameterise

the SWAT model (Neitsch et al., 2009). The log(Koc) values pre-

dicted by their equation applied to the river Save outlet do not

fit with the calculated log(Koc) from observed data considering

the differences in intercept and slope. They are more than two log-

arithmic units higher than the calculated average log(Koc) values

with Eq. (4), and they are in any case out of the range of the calcu-

lated log(Koc) values from river sampling. The conditions of exper-

iments described in Karickhoff et al. (1979) were different to ours

in the river Save catchment. Karickhoff et al. (1979) worked in

batch laboratory conditions and reported Koc depending on Kow

for coarse silt fractions (20–50 lm) at a concentration of

20000 mg Lÿ1. In the river Save, 23.9% of the measured suspended

sediment particles (Merlina et al., personal communication) are

from the fine fraction (i.e. below 63 lm according to the OSPAR

commission criterion). Since the average TSM concentration is

20 mg Lÿ1, the interaction factor is 4000 times lower. Therefore,

the shift in the TSM concentration can impact the required level

of the involved Gibbs free energy of partition, considering the same

concentration of organic contaminant (Goss and Schwarzenbach,

2003). Our system is not energetically favourable for a strong inter-

action of the neutral pesticides molecules with the particulate or-

ganic matter. At last, the effectiveness of the hydrophobic binding

of the 7 molecules in our study (log(Kow) of 3 ± 1) is decreased

since they are less lipophilic than the aromatic hydrocarbons

and chlorinated hydrocarbons used elsewhere (log(Kow) of 5 ± 1

in (Karickhoff et al. (1979)).

3.2.3. Relationship between Kd, Kow and TSM

Kd is expressed as a function (Eq. (5), from Eq. (2)) of TSM and

Kow, by replacing fOC-TSM and Koc with their respective equations

Eqs. (3) and (4):

Kd ¼
0:094

TSMÿ 5
þ 0:021

� �

� ð7:55� 10ÿ3 � K0:36
ow Þ ð5Þ

Fig. 7(a) shows a representation of Eq. (5) in a 3D plot and

shows the scatterplot for the 7 molecules depending on Kd, Kow

and TSM. Fig. 7(b) shows 2-dimension projections of extreme val-

ues for fixed Kow and TSM concentrations, for an easier visualisa-

tion. The uncertainty of the resulting equation mostly relies on

the uncertainty on the relationship between Kd and TSM: average

observed log(Kd) is correlated to log(Kow) of respective molecules

(R2 = 0.74, p < 0.05, n = 7) but the correlation between average ob-

served log(Kd) and observed TSM concentration is weaker

(0.00 < R2 < 0.53 depending on the molecule (7 < n < 15), Table 3).

As such, Eq. (5) refines the linear relationship between Kd and

Kow previously established by Taghavi et al. (2010), as they consid-

ered an average TSM concentration per event.

The values of Kd (Figs. 5 and 7) together with the results in Sec-

tion 3.1.2 suggest that pesticides are mostly sorbed to allochtho-

nous matter during stormflow events whereas they are mostly

sorbed to autochthonous matter during low flow. Kd value de-

creases when concentration in allochthonous material increases.

This is consistent with the fact that pesticides are transferred from

land to river network mostly with surface runoff (Dur et al., 1998;

Boithias et al., 2011; Lefrancq et al., 2013; Ulrich et al., 2013) and

that the transfer depends on the nature of the sorbent (Niederer

et al., 2007). For that purpose, the hyperbolic proxy for fOC-TSM
(i.e. TSM) integrates all the components involved in the sorption

processes: mineral fraction and organic matter of either terrestrial

or aquatic origin. According to Kd values modelled through Eq. (5),

variations in log(Kd) become less than 1% for a TSM concentration

Table 3

Determination coefficient R2 between observed log(Kd) (Kd in m3 gÿ1) and observed

physico-chemical parameters (TSM, POC and DOC concentrations in mg Lÿ1) for 7

pesticides detected at the outlet of the river Save catchment (July 2009–October

2010). ‘‘n’’ is the number of observations. Each observation is an average weighted by

the discharge for each hydrological event (both high flow and low flow periods).

TSM POC DOC

R2 n R2 n R2 n

Kd alachlor 0.06 14 0.05 14 0.09 13

Kd atrazine 0.04 13 0.05 13 0.04 12

Kd DEA 0.00 12 0.00 12 0.01 12

Kd isoproturon 0.53 7 0.52 7 0.01 7

Kd metolachlor 0.47 (p < 0.05) 15 0.47 (p < 0.05) 15 0.16 14

Kd tebuconazole 0.17 7 0.08 7 0.51 6

Kd trifluralin 0.30 10 0.29 10 0.09 9

Fig. 6. Relationship between Koc ((mg gCÿ1)/(mg mÿ3)) and Kow ((mg mÿ3
octanol)/

(mg mÿ3
water)) at river Save catchment outlet for the 16 hydrological periods, and for 7

pesticide molecules (alachlor, atrazine, deethylatrazine, isoproturon, metolachlor,

tebuconazole and trifluralin) (July 2009–October 2010).



over 13 mg Lÿ1 in the river Save, considering the 7 molecules’ Kow

range. The Kd is conversely sensitive to TSM changes for small val-

ues of TSM concentrations, as it happens at the beginning and at

the fall of the storm event.

3.3. Modelling pesticide fate at basin scale

The study shows that the partition coefficient Kd varies depend-

ing on the river’s physico-chemical parameter POC, included in

TSM. Pesticide transport and fate computer models as SWAT focus

on TSM and do not simulate the fate of organic carbon in river net-

works. Since the controlling factors discharge, POC and TSM con-

centrations are correlated among each other, it is relevant to

seek a simplified equation of Kd expressed in terms of TSM and

not POC. A hyperbolic relationship between fOC-TSM and TSM ap-

pears suitable for future implementation in computer models:

both the TSMmin and the fOC-TSMtopsoil parameters are physically

comprehensible and easy to parameterise if previously measured.

Only the NUM parameter is kept as a calibration parameter, based

on the catchment properties understanding. The equation appears

suitable to other rivers where fOC-TSM and TSM are known to be the

main controlling factors of pesticide partition. As such, the pesti-

cide dynamics control of in-stream particulate organic matter

can be introduced into the model (e.g. SWAT).

The study also shows that introducing Koc values stemming

from the equation of Karickhoff et al. (1979) into the pesticide fate

model (e.g. SWAT) may not be adapted for pesticides fate model-

ling in every catchment. We replace the use of Koc by the use of

Kow since Kow is a standard pesticide-specific value easily found

in the literature (e.g. Tomlin, 2009). As reported by Toul et al.

(2003), the observed values of Koc and Kd may broadly differ

depending on the sorbed substance and on the sorbent. Using

Kow frees us from the uncertainty of the sorbent. For a modelling

purpose, the parameters of the equation linking Koc to Kow (Eq.

(4)) may be recalculated depending on the available data set for

all modelled molecules.

4. Conclusions

This pesticide environmental fate study is a promising first at-

tempt to characterise the dynamic of organic contaminant sorption

processes depending on river hydrological regime, provided the

sorption processes are mostly driven by hydrophobic interactions.

We expressed the partition coefficient Kd as a function of the

widely literature-related variable Kow and the total suspended

matter (TSM) concentration, that is easily measurable and com-

monly simulated in pesticide fate models. The equation therefore

provides both catchment-specific and molecule-specific values of

Kd. The equation can be implemented in any model describing

the fluvial transport and fate of pesticides in both dissolved and

sorbed phases, where Kd becomes a variable in time and space.

In case of catchment scale models, the Kd parameter becomes a

channel spatialised variable based on local TSM variations and

appropriate Kow value of the modelled molecule. In addition to

bring an insight to pesticide fate modelling, we propose a method

for Kd assessment based on measurements carried out directly in

the river course. The Kd calculation method described here can

be applied to any catchments, when (1) a sufficient water quality

data set is available, and (2) the catchments are not influenced

by reservoirs, lakes or wetlands, that might imply different pesti-

cides behaviours by trapping the suspended matters (e.g. Locke

et al., 2011). The Kd calculation method can be extended to other

families of non-charged organic contaminants such as some phar-

maceuticals, and can be further adapted to inorganic contaminants,

such as complexed metals. For a risk assessment purpose, the Kd

calculations can also be used to quantify the bioavailable dissolved

concentration of contaminants in a river channel based on contam-

inant inputs into the hydrological system.

Fig. 7. Relationship between Kd (m3 gÿ1), Kow ((mg mÿ3
octanol)/(mg mÿ3

water)) and Total Suspended Matter (TSM in mg Lÿ1) concentration: (a) equation and scatterplot of the Kd

calculated from the concentration measurements of 7 pesticide molecules at the outlet of the river Save catchment (July 2009–October 2010) and (b) 2-dimension projections

of extreme values for fixed Kow and TSM concentrations.
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