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Abstract: We quantitatively analyze how a polarization-sensitive imager
can overcome the precision of a standard intensity camera when estimating
a parameter on a polarized source over an intense background. We show that
the gain is maximized when the two polarimetric channels are perturbed
with significantly correlated noise fluctuations. An optimal estimator is
derived and compared to standard intensity and polarimetric estimators.
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1. Introduction and posing of the problem

1.1. Introduction

Polarimetric-sensitive detectors (PSD) have long been implemented and have proved efficient
in many application fields, such as biomedical imaging [1,2], and vision/contrast enhancement
through turbid media [3–5]. In this context, the benefits of polarimetric imaging have been
thoroughly investigated by considering various imaging architectures and noise models [6–9].
However, the gain in measurement precision that can be reached when a PSD is used instead of
a standard intensity detector (ID), in the presence of significantly correlated noise fluctuations
in each polarimetric channel, is still unexplored to the best of our knowledge. Indeed, for prac-
tical reasons it is usually assumed that these noise fluctuations are uncorrelated. As a result,
considering the most favorable situation of a perfectly polarized source (or polarizing object)
embedded in unpolarized background, the polarimetric channel which offers the best contrast
is the one corresponding to the polarization state of the source. In this channel, the mean in-
tensity level of the source is thus preserved, whereas that of the unpolarized background is
reduced by a factor of two, leading to a doubling of contrast as compared to standard intensity
detection [1, 10]. Nevertheless, the assumption of uncorrelated noise fluctuations is not repre-
sentative of most real field scenarios especially when the polarimetric channels are acquired
simultaneously [11]. For instance, a polarized source appearing through fog or haze is a situa-
tion where the background mean level is time-varying [12] especially when the imaging system
is moving or vibrating. More generally, similar situations might be encountered when imaging
objects through turbid media, as in the fields of underwater imaging [13, 14], or infrared target
detection [15]. Imaging a static scene might also be subject to intensity fluctuations of the illu-
minating source, as often encountered in polarimetric microscopy [16]. Thus, one can wonder
whether the noise correlation properties of the different polarimetric channels could be prop-
erly exploited in order to optimize, in terms of contrast, the representation of the polarimetric
image.

In this article, we intend to rigorously quantify the gain in measurement precision that can
be reached when a PSD is used in the presence of significantly correlated noise fluctuations
in each polarimetric channel. This article is organized as follows: in the remainder of the first
Section, we describe the general polarimetric image formation model addressed, as well as
the correlated-noise statistical model considered throughout this article. Within the theoretical
framework of information theory, the benefit of using PSD instead of a standard ID is then
derived in Section 2, for a general estimation problem consisting in measuring a parameter
(intensity, absorbance, location, etc.) on a polarized source over an intense background. The
expression of this gain in optimal estimation precision is then thoroughly analyzed in Section
3 in relation with realistic experimental imaging conditions. Lastly, optimal estimation pro-
cedures are derived and discussed in Section 4, before providing conclusions of the article in
Section 5.
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1.2. Image formation model

We will consider a general framework consisting in the estimation of a given parameter (in-
tensity, location, etc.) from a polarized signal contribution, denoted si at location i, with a de-
gree of polarization (DOP) denoted by P ∈ [0,1], which is either emitted by an active source
or backscattered by an object of interest. Using a simple classical but realistic illumination
model [9, 10, 17], the intensity XI

i detected at location i is assumed to also comprise a back-
ground contribution bi, with a DOP denoted by β ∈ [0,1]. This background contribution is
due to ambient light scattering through a turbid medium (atmosphere, water, or biological tis-
sue). For the sake of generality, we shall analyze any couple of polarization parameters P and
β which can correspond to many different experimental conditions. Although in most experi-
ments the signal contribution is highly polarized in comparison to an unpolarized background
(P � β ), some situations can involve opposite physical conditions (β � P), such as underwater
imaging as mentioned in [10].

Fig. 1. Sketch of the image formation model: a polarization-splitting analyzing device
(PSAD) can be any suitable birefringent crystal in case of simultaneous acquisitions of
images X// and X⊥ [11], or a rotating polarizer or liquid crystal device for sequential
acquisitions. Image formation optics are not represented for the sake of clarity.

A non-polarimetric ID with N pixels gives access to a sample XI
i = {XI

i }i=1,...,N , with 〈XI
i 〉=

si +bi, whereas a PSD provides a bidimensional vector XP
i =

[
X//

i , X⊥
i

]T
at each location i of

the detector, obtained from the intensities recorded along two orthogonal polarization directions
[11], as sketched in Fig. 1. With the above illumination model, the average value of XP

i is simply
given by

〈XP
i 〉=

[
1+P

2 si +
1+β

2 bi
1−P

2 si +
1−β

2 bi

]

. (1)

1.3. Noise model

Throughout this article, we shall consider a Gaussian noise model, which makes it possible to
take into account various sources of noise in realistic situations. In addition, such model pro-
vides closed-form expressions which is in favour of physical interpretation. At a given location
i, the second order statistical properties of the bidimensional measurement vector XP

i are mod-

eled by a covariance matrix Γi =
〈

δXP
i

(
δXP

i

)T
〉

, with δXP
i = XP

i − 〈XP
i 〉, of the following

form:

Γi =

[
σ2
//,i ci

ci σ2
⊥,i

]

=

⎡

⎣
1+β

2 ε2
i +σ2

0 ρ
√

1−β 2

2 ε2
i

ρ
√

1−β 2

2 ε2
i

1−β
2 ε2

i +σ2
0

⎤

⎦ .
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The Gaussian probability density function of a N−pixels measurement sample is then given by
PX(XP) = ∏N

i=1 exp
{− 1

2

(
δXP

i

)T Γ−1
i δXP

i

}
/2π

√
det[Γi].

Table 1. List and description of symbols and acronyms. Dependency in scene location i has
been omitted for the sake of concision.

Symbols: Acronyms:
s / b Source / background mean value PSD Polarization-sensitive
P / β Source / background DOP detector
XI / XP Intensity / polarimetric sample measured ID Intensity detector
X// / X⊥ Orthogonal polarimetric measures DOP Degree of polarization
Γ Covariance matrix of XP PSAD Polarization-splitting
σ2
// / σ2

⊥ Noise variance on polarimetric channels analyzing device
σ2

0 Detector electronic noise variance FI / IF Fisher information
ε2 Optical multiplicative noise variance CRB Cramer-Rao bound
ω2 Ratio of noise variances (ω2 = ε2/σ2

0 ) SNR Signal-to-noise ratio
ρ Correlation parameter ML Maximum likelihood
μ / μ∞ Gain / asymptotic gain in optimal estimation precision
ŝI

ML / ŝP
ML Intensity / polarimetric ML estimator

ŝP
Δ Polarimetric difference estimator

Let us focus on the parallel channel: through this statistical description, we assume that
the noise variance can be written σ2

//,i = (1+β )ε2
i /2+σ2

0 , with the detector electronic noise

contribution σ2
0 being rationally independent from the location i in the image, and from the il-

lumination level or polarization properties. The first term in the expression of σ2
//,i accounts for

a multiplicative “optical” noise, introduced by background optical intensity fluctuations, and
hence depends on the background DOP β . This noise contribution, proportional to the back-
ground average level bi, can model the effect of turbulence or variations of scatterers density,
as well as photon noise in the high background intensity limit.

Due to these scene-dependent optical fluctuations, the intensity measurements in the two po-
larimetric channels are likely to be correlated, especially in the case of simultaneous acquisition
of the polarimetric images with a polarization-splitting analyzing device (PSAD), as sketched
in Fig. 1 or as extensively described in [11]. Such partial correlation will be modeled by a non-
null covariance term ci in Γi. We assume that the scene-dependent noise contributions only are
partially correlated through a correlation parameter ρ , whereas the detector noise is assumed to
be uncorrelated between the two channels.

2. Gain in optimal estimation performance

2.1. Principle

To characterize the gain in terms of estimation precision when PSDs are used instead of classi-
cal IDs, we propose to resort to information theory, by determining and comparing the Fisher
Information (FI) associated to each imaging modality. The FI characterizes the amount of in-
formation available in a sample X for the estimation of a parameter y, and is defined as [18]

IF(y) =−
〈

∂ 2 lnPX(X)

∂y2

〉

. (2)

According to the well-known Cramer-Rao theorem, its inverse value IF−1(y) defines a lower
bound (Cramer-Rao bound (CRB)) on the minimum variance expectable for estimating param-
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eter y with an unbiased estimation procedure [18]. In the following, we shall limit ourselves
to the estimation of the mean signal intensity si at location i for the sake of simplicity but
without loss of generality. Indeed, it is possible to extrapolate the results of this article to
other physical situations since one has IF(z) = IF(y)

[
dy/dz

]2
from simple variable transfor-

mation relations. For instance, for the estimation of an atmospheric transmittance τ such that
s = e−Lτ , the FI is directly obtained with IF(τ) = L2s2IF(s), which simply involves the FI for
the estimation of the mean signal intensity IF(s). Another illutration is the interesting case of
image registration addressed in [9], in which a translation parameter η is to be estimated over
the whole image such that s = {s(xi −η)}i=1,...,N . In this latter case, the above relation yields
IF(η) = ∑N

i=1[s
′(xi−η)]2IF(si), which again only involves the FI for the estimation of the mean

intensity at each location i.

2.2. Expression of the gain

The FI in the case of polarimetric and intensity measurements are derived in Appendix A, and
are not recalled here for the sake of concision. We propose to define a gain in optimal precision
by comparing the FI available with a polarimetric setup over the FI available with a standard
intensity detector, for given experimental conditions. This definition, which has been used in
other references [9, 19], yields:

μ(ω,P,β ,ρ) =
IF

P(s)

IF
I(s)

=
(1+ω2)

[
1+P2

2 + Q
4 ω2

]

1+ω2 + (1−ρ2)(1−β 2)
4 ω4

, (3)

where
Q = (1−2βP+P2)−ρ(1−P2)

√
1−β 2, (4)

and with ω2 = ε2/σ2
0 . This last parameter ω2 gives the relative value of the noise contributions

variances, allowing one to identify the dominant noise term. Thus, “optical” noise ε2 dominates
when ω2 � 1, whereas electronic fluctuations are the main source of noise when ω2 
 1. As
an illustration, the evolution of the gain μ(ω,P,β ,ρ) given in Eq. (3) is plotted in Fig. 2 as
a function of ρ for various values of ω , and for a partially polarized source (P = 0.4) and
background (β = 0.1). It can be immediately checked that the gain does not depend on ρ when
electronic noise dominates (ω 
 1), and that it increases as ω increases.

As will be shown in the following, such definition of a gain in optimal estimation precision
can provide insightful results on the physical estimation problem at hands, regardless of the
actual estimation procedure used, since derived from information theory. In addition, it can
have practical implications if optimal estimators can be identified, as will be shown in Section
4.

3. Physical analysis of the gain μ(ω,P,β ,ρ)

In this section, we derive and analyze a number of properties of the gain in optimal precision
μ(ω,P,β ,ρ) defined above. These results will allow us to study the benefits of using PSDs
for estimation tasks in the presence of intense background and potentially correlated measure-
ments.

3.1. Influence of ambient illumination level

Let us first study how the gain evolves as a function of the ambient background illumination
level b. For that purpose, we analyze the behaviour of the gain μ(ω,P,β ,ρ) as a function of
ω = ε/σ0, since ε has been assumed proportional to b. A tractable but tedious calculus sketched
in Appendix B leads to this first property:
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Fig. 2. Evolution of μ(ω,P,β ,ρ) for P = 0.4 and β = 0.1 as a function of ρ for ω =
{10−3,1,5,104}.

Property 1 The gain μ(ω,P,β ,ρ) is a monotonically increasing function of ω .

This is an interesting result, showing that increasing the relative amount of “optical” noise
with respect to electronic noise tends to favour a polarimetric setup in terms of estimation
performance, even if the polarimetric measurements are totally uncorrelated (ρ → 0).

When electronic noise dominates, the gain falls down below unity, since μ(ω 
 1,P,β ,ρ)→
(1+P2)/2 ≤ 1. Indeed, for a given amount of light energy entering the imaging system, the
PSAD reduces the signal-to-noise ratio (SNR) on the detectors in comparison to a standard ID
since energy is splitted into two polarization channels. This property can be checked in Fig. 2
where μ(ω,P,β ,ρ) is plotted as a function of ρ , when P = 0.4 and β = 0.1.

3.2. Asymptotic behaviour in the high intensity regime

Focusing on the high intensity regime by setting ω → ∞, we obtain a simpler expression

μ∞(P,β ,ρ) = μ(ω � 1,P,β ,ρ) =
Q

(1−ρ2)(1−β 2)
, (5)

which will be referred to as asymptotic gain subsequently.
Let us analyze the evolution of the asymptotic gain as a function of the correlation between

polarimetric channels. Surprisingly, it can be shown that μ∞(P,β ,ρ) is not a monotonically
increasing function of the correlation parameter ρ , as can be observed in Fig. 2. The following
property can indeed be demonstrated (see Appendix C):

Property 2 The asymptotic gain μ∞(P,β ,ρ) reaches a minimum value μ∞,min for a correlation
parameter ρmin, such that

⎧
⎨

⎩

μ∞,min =
(1+P)2

2(1+β ) and ρmin =
1−P
1+P

√
1+β
1−β , if β ≤ 2P

1+P2

μ∞,min =
(1−P)2

2(1−β ) and ρmin =
1+P
1−P

√
1−β
1+β , otherwise

(6)

This property is rather counter-intuitive but can be interpreted as follows. First, when the two
acquired polarimetric images are uncorrelated (ρ  0), gain in estimation precision only occurs
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if SNR reduction caused by intensity splitting between the two polarization channels is com-
pensated by the increase in size of the statistical sample considered (Two sets of N measures
with a PSD, instead of one in an standard ID). Though, as soon as ρ �= 0, the polarimetric
measures are no longer independent, and thus the available FI is necessarily lower than the one
available with two independent sets of N measurements. This remains true for smaller values
of ρ . However, for values of ρ > ρmin, the strongly correlated noise perturbing each polariza-
tion channel can be partly cancelled out by taking profit of the two acquired images, leading
to a potentially strong increase in the gain. This is indeed possible if signal and background
contributions exhibit different relative intensity levels on the two acquired images. In this case,
an optimal estimation procedure, such as the one described in Section 4, can take profit of this
relative contrast mismatch to estimate the desired parameter on the signal contribution with a
high precision.

Using the expression of the asymptotic gain given in Eq. (5), let us now analyze in which
physical conditions one should favour using a PSD rather than a standard ID. For that pur-
pose, the two following properties can be established. A sketch of the demonstration of these
properties is given in Appendix D.

Property 3 For a given value of P, the asymptotic gain μ∞(P,β ,ρ) is greater or equal to a
minimum gain value K (with K ≥ 1) for any value of the correlation parameter ρ provided

β ≤ (1+P)2

2K
−1, if β ≤ P, (7)

β ≥ 1− (1−P)2

2K
if β ≥ P. (8)

Property 4 When the conditions of Property 3 are not verified, the asymptotic gain μ∞(P,β ,ρ)
is greater or equal to a minimum gain value K (with K ≥ 1) provided the correlation parameter
ρ verifies

ρ ≥ ρK
lim =

1−P2

2K
√

1−β 2
+
√

Φ, (9)

where

Φ =
[
1− 1

2K
(1−P)2

1−β

]
×
[
1− 1

2K
(1+P)2

1+β

]
. (10)

3.3. Discussion

The previous properties provide conditions on the physical parameters at hand in order to ensure
a minimum gain K when using PSDs instead of standard imagers. In this subsection, we propose
to quantitatively analyze these theoretical results.

We obviously start focusing on the case of unitary gain (i.e., K = 1) which delimitates situa-
tions in which polarimetric imaging systems can bring an improvement in estimation precision.
In this case, the conditions of Eqs. (7) and (8) respectively read β ≤ (1+P)2/2−1 when β ≤P,
and β ≥ 1− (1−P)2/2 when β ≥ P. For a fully depolarized background (β = 0), for instance,
this means that a polarimetric imaging system can improve the quality of estimation, whatever
be the value of ρ , as long as a moderately polarized source is used with a minimum value of
P =

√
2− 1  0.414. On the other hand, when the source is totally unpolarized, a gain can

be expected for any value of ρ provided β ≥ 1/2. In the two-dimensional plot of Fig. 3(a) as
a function of polarization parameters P and β , the conditions of Eqs. (7) and (8) for K = 1
are represented with continuous green curves and delimitate two regions. When the conditions
hold (greyed region in Fig. 3(a)), the values of μ∞,min and ρmin are represented in contour plots,
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respectively in blue dashed lines and green dot-dashed lines. In the second region, i.e., when
the inequalities of Eqs. (7) and (8) are not verified, the correlation parameter ρ has to be greater
than a minimum value denoted ρK=1

lim so as to ensure μ∞(P,β ,ρ) ≥ 1. The values of ρK=1
lim are

plotted in Fig. 3(a) in red continuous lines, as a function of P and β .
The same graphical representation has been used in Fig. 3(b)-3(d) in the case of K =

{2,5,10} respectively, to plot the values of ρmin and μ∞,min when the relation of Eq. (8) holds,
and the values of ρK

lim otherwise. It is interesting to notice that when P ≥ β , a limit value
ρK

lim > 0 always has to be ensured for any couple of parameters P and β as long as K ≥ 2
since condition of Eq. (7) cannot be fulfilled in this case. On the other hand, when a highly
polarized background is considered and β ≥ P, a high asymptotic gain value K can be reached
with uncorrelated measurements (i.e., ρ = 0) provided P is small enough. This property can be
understood by noticing that a high value of β implies a low background contribution on one of
the two acquired images, thus facilitating estimation of a parameter on the low polarized signal
contribution. This result must be however mitigated since the detector noise has been neglected
to derive Properties 3 and 4, but should be taken into account in this latter case involving low
background illumination levels.

In terms of practical application, the charts given in Fig. 3 provide insightful information
about the expectable gain in precision using a PSD for a given set of physical parameters P, β
and ρ . As could be expected, the best performance gain is obtained when a high polarimetric
contrast can be observed between the background and signal contributions (high P and low
β , or high β and low P). However, these charts clearly evidence that the gain in performance
increases also when the measurements are significantly correlated. Yet, these charts may be
of great use to assess the optimal performance of a real field polarimetric imaging system, in
which all intermediate situations are likely to occur. For instance, the degradation of the DOP
of a highly polarized source could be taken into account in the dimensioning of an experiment.
The influence of unwanted or unexpected polarization/depolarization of the background could
be also analyzed with the above results.

4. Optimal estimation procedure

The relevance of the above results is however conditioned to the definition of efficient estima-
tion procedures, i.e., estimators ensuring unbiased estimation and a minimum variance which
reaches the CRB studied above. Let us thus consider estimators of s in the maximum likelihood
(ML) sense, since ML estimators are known to be efficient under Gaussian fluctuations [18],
which is the noise model considered throughout this article. Limiting ourselves to the high in-
tensity regime (ω → ∞), and assuming that the background mean value b is a priori known, the
ML estimator of s using a standard intensity detector is simply given by ŝI

ML = X̂ I −b. When a
polarimetric imager is used, the derivation of the ML estimator of s is detailed in Appendix E
and leads to

ŝP
ML =

UX̂//+V X̂⊥+Z
W

, (11)

where U , V , W and Z are functions of P, β , ρ and b, which parameters are assumed a priori
known. These functions can be easily derived from Appendix E with appropriate changes of
variable, but are not detailed here for brevity reasons. Both ML estimators are unbiased, i.e.,
〈ŝP

ML〉= 〈ŝI
ML〉= s, and their variances are easily compared using the above characterization of

the FIs since they respectively reach the CRBs computed above in the cases of polarimetric and
intensity measurements. As a result, the gain studied in the previous section corresponds to the
ratio of the variances of these two ML estimators: μ∞(P,β ,ρ) = var(ŝI

ML)/var(ŝP
ML).

For a fair comparison, the estimation samples should involve the same number of pixels.
Thus, a PSD with N pixels in each polarimetric channels must be compared to a 2N-pixels
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Fig. 3. Contour plots of ρK
lim for various values of K as a function of P and β . Additional

contour plots of ρmin and μ∞,min are provided when relations (7) and (8) hold. The yellow
circles correspond to the situation addressed in Fig. 2 (P = 0.4 and β = 0.1).

standard ID. In this case, the relative performance of the two estimators can be directly as-
sessed from the chart plotted in Fig. 3(b), which gives conditions for a minimum gain value
of μ∞(P,β ,ρ) ≥ K = 2. The analyzis of this chart interestingly shows that PSDs are not sys-
tematically preferable to standard ID if the correlation between the fluctuations lies below a
lower limit ρK=2

lim determined above. As a result, the chart plotted in Fig. 3(b) turns out to be
a useful tool for determining the optimal estimation procedure, depending on the experimental
conditions.

Lastly, it can be interesting to compare the ML estimator with other estimation procedures
which are classically used in polarimetric imaging. For instance, when polarimetric measure-
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ments along orthogonal polarization directions are available, a simple difference image is clas-
sically obtained by substraction of the two polarimetric channels [1]. For the estimation of the
parameter s, such difference estimator would simply read ŝP

Δ = [X̂//− X̂⊥−βb]/P. However, it
can be shown that this standard estimator is not optimal, in general, in the situation addressed in
this article. Its variance, derived in Appendix F, is indeed greater that var(ŝP

ML) (and thus greater
than the CRB) except when ρ = (1−βP)/(1−β 2), in which case the difference estimator ŝP

Δ
identifies with ŝP

ML.

5. Conclusion

As a conclusion, the theoretical results derived in this article quantitatively demonstrate that
polarimetric imagers can significantly improve the estimation precision, provided noise fluc-
tuations in each polarimetric channels are significantly correlated. Hence, this confirms the
interest of snapshot polarimetric imagers as described in [11] since they may favour correlated
background/noise fluctuations in the two polarimetric channels, which are acquired simultane-
ously. In these conditions, we have also shown that the optimal estimation procedure differs
from a natural difference image, but can be simply implemented. These results can be useful
for the design of polarimetric imaging systems involving estimation through turbid media, or
in other fields of application, for post-processing of polarimetric images exhibiting temporally
or spatially correlated fluctuations.

Appendix

To derive the expressions presented in this article, it is interesting to introduce the following
simplified notations: a = (1+P)/2 and α = (1−P)/(1+P) on the one hand, and, on the other
hand, c2 = (1+ β )/2 and γ2 = (1− β )/(1+ β ). In a single pixel configuration (N = 1) for
the sake of simplicity, the polarimetric measurement considered is XP = [X//, X⊥]T , such that
〈XP〉= [as+ c2b, αas+ γ2c2b]T and

Γ = 〈δXδXT 〉= c2
[

ε2 + ς2 ργε2

ργε2 γ2ε2 + ς2

]
,

with ς2 = 2σ2
0 /(1+β ). It is easily checked that the conditions P ∈ [0,1], β ∈ [0,1] and β ≤ P

are equivalent to α ∈ [0,1], γ ∈ [0,1] and γ2 ≥ α .

A. Fisher informations calculations

With the Gaussian noise model used in this article, the loglikelihood of the polarimetric mea-
sure XP can be written �(XP) = lnPX(XP) = −(

δXP
)T Γ−1δXP/2 up to an additive term in-

dependent of s. An application of Eq. (2) leads to the FI for the estimation of s, which reads
IF

P(s) =
[〈X〉′P]T Γ−1〈X〉′P, with 〈X〉′P = ∂ 〈X〉P/∂ s = 〈∂XP/∂ s〉= [a, aα]T . A direct calcu-

lation gives:

IF
P(s) =

a2

c2ε2 · (α
2 −2ραγ + γ2)+(1+α2)u−2

γ2(1−ρ2)+(1+ γ2)u−2 +u−4 , (12)

with u2 = ε2/ς2 = (1+β )ω2/2.
The FI for the estimation of s from the total intensity of the beam (non-polarimetric measure-

ment) is a standard result under Gaussian fluctuations hypothesis. One has

IF
I(s) =

a2

c2ε2 · (1+α)2

(1+ γ2)+u−2 =
σ−2

1+ω2 . (13)
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The gain μ(u,α,γ,ρ) = IF
P(s)/IF

I(s) can then be easily derived, leading to Eq. (3) with appro-
priate changes of variables.

B. Monotonicity of μ(u,α,γ,ρ) as a function of u

To demonstrate Property 1, let us first rewrite μ(u,α,γ,ρ) as

μ(u,α,γ,ρ) =
Au2 +B

Du4 +Cu2 +1
× Cu2 +1

E
, (14)

with A = (α2−2ραγ+γ2), B = 1+α2, C = 1+γ2, D = γ2(1−ρ2) and E = (1+α)2, all these
expressions being greater or equal to zero. Let us notice that μ(0,α,γ,ρ) = B/E = (1+P2)/2.

The derivative of μ(u,α,γ,ρ) as a function of u is thus

∂ [μ(u,α,γ,ρ)]
∂u

=
2uH (u)

[
1+Cu2 +Du4

]2
E
, (15)

with H (u) = A+2(AC−BD)u2 +(AC2 −AD−BCD)u4.
The function μ(u,α,γ,ρ) is monotonically increasing on u ∈ [0; ∞[ if ∂ [μ(u,α,γ,ρ)]/∂u ≥

0 ⇔ H (u) ≥ 0, ∀u ∈ [0; ∞[. Noticing that H (0) = A ≥ 0, and that H (u) is a second-order
polynomial in u2, we can compute the discriminant

Δ = 4D(A2 +DB2 −ABC) =−4γ2(1−ρ2)
[
α(1− γ2)−ργ(1−α2)

]2
, (16)

which is negative. As a consequence, H (u) does not admit real root on u ∈ [0; ∞[, and hence,
H (u) is positive on u ∈ [0; ∞[. As a result, μ(u,α,γ,ρ) is a positive, monotonically increasing
function of u for u ∈ [0; ∞[.

C. Minimum value of the asymptotic gain μ∞(α,γ,ρ):

The asymptotic gain is obtained by setting u → ∞:

μ∞(α,γ,ρ) =
(α2 −2ραγ + γ2)(1+ γ2)

γ2(1−ρ2)(1+α)2 (17)

It is easily shown that μ∞(α,γ,ρ) reaches a minimum if (αρ − γ)(α −ργ) = 0. Since ρ ∈
[0,1], the only admissible root is ρmin = α/γ when γ ≥ α and thus μ∞,min(α,γ) = (1+γ2)/(1+
α)2. When γ ≤ α , the only admissible root is ρmin = γ/α , and in this case μ∞,min(α,γ) =
α2(1+ γ2)/γ2(1+α)2. The expressions of ρmin and μ∞,min(P,β ) given in the article can be
recovered with an appropriate change of variables.

From the above results, the conditions for μ∞,min(α,γ)≥ K are directly derived as

γ2 ≥ K(1+α)2 −1 when γ ≥ α (18)

γ2 ≤ α2/
[
K(1+α)2 −α2] when γ ≤ α. (19)

D. Condition for minimum gain μ∞(α,γ,ρ) = K:

Solving μ∞(α,γ,ρ) = K leads to two roots ρK
1/2 =

[
α(1+ γ2)∓√

Φ
]
/Kγ(1+α)2 verifying

ρK
1/2 ∈ [0,1], with Φ =

[
1+ γ2 −K(1+α)2

][
α2(1+ γ2)−K(1+α)2γ2

]
, or with the notations

of Appendix B, Φ =
[
C−KE

][
α2C−KEγ2

]
.

Let us focus on the greatest root, denoted ρK
lim = ρK

2 in the following, and which defines
the minimum value of ρ such that μ∞(α,γ,ρ) ≥ K, ∀ρ ≥ ρK

lim. It can first be checked that
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the expressions of ρK
lim and Φ respectively given in the Eqs. (9) and (10) of Property 4 can be

retrieved with appropriate changes of variables. In particular, one has Φ = Ψ/
[
K2γ2(1+α)4

]
.

Let us now study in which conditions this upper root ρK
lim actually defines a real-valued limit

on the correlation parameter ρ . It is clear that ρK
lim is imaginary if Φ ≤ 0, which occurs when

one of the two following inequalities is verified: (a): α2C/γ2E ≤ K ≤C/E; or (b): α2C/γ2E ≥
K ≥C/E. When γ ≥ α , inequality (b) is impossible, and (a) is verified if γ2 ≥ K(1+α)2 −1.
When γ ≤ α , inequality (a) is impossible, and (b) is verified if γ2 ≤ α2/

[
K(1+α)2 −α2

]
.

These conditions obviously correspond to those derived above in Appendix C in Eqs. (18) and
(19) for ensuring μ∞,min(α,γ)≥ K.

For the sake of physical interpretation, we can rewrite these conditions as

γ2 ≥ K(1+α)2 −1, if α ≤ γ2, and (20)

γ2 ≤ α2/
[
K(1+α)2 −α2], if α ≥ γ2, (21)

which allows relations (7) and (8) of Property 3 to be retrieved by appropriate change of vari-
ables. Indeed, it can be checked that none of the conditions of Eqs. (18) and (19) apply when
γ2 ≤ α ≤ γ .

E. ML estimator ŝP
ML

We derive the ML estimator in a situation of negligible detector noise, i.e., u → ∞ (or ω → ∞).
From the expression of �(XP) given in Appendix A, we derive ŝP

ML by solving ∂�(XP)/∂ s =

0, leading to equation
(
δXP

)T Γ−1〈X〉′+ (〈X〉′)T Γ−1δXP = 0. A straightforward but tedious
calculation finally gives the expression of Eq. (11), with U = γ[γ −αρ ], V = [α − γρ ], Z =
bc2γ[ρ(α+γ2)−γ(1+α)], and W = a[α2−2ραγ +γ2]. It is easily checked that this estimator
is unbiased 〈ŝP

ML〉= s, since 〈X̂//〉= as+c2b and 〈X̂⊥〉= aαs+c2γ2b. Moreover, the variance
of this estimator necessarily reaches the CRB since ML estimator is efficient under Gaussian
fluctuations [18]. This can be checked by noticing that var(ŝP

ML)=
[
U2 var(X̂//)+V 2 var(X̂⊥)+

UVcov(X̂//, X̂⊥)
]
/W 2 which, after a simplification step, is equal to limu→∞{1/IF

P(s)}.

F. Difference image estimator ŝP
Δ

With the notations used in this appendix, the estimator ŝP
Δ given in Section 4 reads ŝP

Δ =[
(X̂// − X̂⊥)− bc2(1 − γ2)

]
/
[
a(1 + α2)

]
. One easily checks that it is unbiased and that

var(ŝP
Δ) =

[
var(X̂//)+ var(X̂⊥)− 2cov(X̂//, X̂⊥)

]
/
[
a2(1+α)2

]
, which is equal to var(ŝΔ) =

c2ε2
[
1+ γ2 −2ργ

]
/
[
a2(1+α)2

]
.

Lastly, it can be shown that var(ŝP
Δ) = var(ŝP

ML) if α + γ2 −ρ(1+α)γ = 0, i.e., if ρ = (α +
γ2)/γ(1+α) = (1−βP)/(1−β 2), in which case ŝP

Δ = ŝP
ML.
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