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EXPONENTIAL DECAY FOR THE SCHRÖDINGER EQUATION ON A

DISSIPATIVE WAVEGUIDE

JULIEN ROYER

Abstract. We prove exponential decay for the solution of the Schrödinger equation on a
dissipative waveguide. The absorption is effective everywhere on the boundary but the geo-
metric control condition is not satisfied. The proof relies on separation of variables and the
Riesz basis property for the eigenfunctions of the transverse operator. The case where the
absorption index takes negative values is also discussed.

1. Introduction

Let l > 0 and d > 2. Let Ω denote the straight waveguide R
d−1×]0, l[⊂ R

d. We consider on
Ω the Schrödinger equation with dissipative boundary condition





i∂tu+∆u = 0 on ]0,+∞[×Ω,

∂νu = iau on ]0,+∞[×∂Ω,
u(0, ·) = u0 on Ω.

(1.1)

Here u0 ∈ L2(Ω) and ∂ν denotes the outward normal derivative. The absorption index a belongs
to W 1,∞(∂Ω). In the main result of the paper, a takes positive values, but we also discuss the
case where a takes (small) negative values.

We will first prove well-posedness for this problem. Then it is standard computation to check
that when a > 0 the norm of u(t) in L2(Ω) is non-increasing, and that the decay is due to the
boundary condition:

d

dt
‖u(t)‖2L2(Ω) = −2

∫

∂Ω

a |u(t)|2 6 0.

Whether this norm goes to 0 for large times, and then the rate of decay, are questions which have
been extensively studied in different contexts. For the Schrödinger equation as in the present
paper, or for the (damped) wave equation which is a closely related problem.

Many papers deal with the wave equation on compact manifolds, with dissipation in the
interior of the domain or at the boundary.

We know from [Har85, Leb96] that a weak assumption on the absorption index a (for instance
the dissipation is effective on any open subset of the domain) is enough to ensure that the energy
goes to 0 for any initial datum.

Uniform exponential decay has been obtained in [RT74, BLR92] under the now usual geomet-
ric control condition. Roughly speaking, the assumption is that any (generalized) bicharacteristic
(or classical trajectory, or ray of geometric optics) meets the damping region (in the interior of
the domain or at the boundary). For the free wave equation on a subset of R

d, the spatial
projections of these bicharacteristics are straight lines, reflected at the boundary according to
classical laws of geometric optics. This condition is essentially necessary and sufficient (we do
not discuss here the subtilities due to the trajectories which meet the boundary tangentially).

Then the question was to understand what happens when this damping condition fails to
hold. In [Leb96, LR97] it is proved that we have at least a logarithmic decay of the energy if the
initial datum belongs to the domain of the infinitesimal generator of the problem. This can be
optimal, in particular when non controlled trajectories are stable. Intermediate rates of decay
have been obtained for several examples where the flow is unstable near these trajectories (see
for instance [LR05, BH07, Chr10, Sch11, AL]).
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The same questions have been investigated for the Schrödinger or wave equation on the
Euclidean space. Even in the self-adjoint case, where the norm for the solution of the Schrödinger
equation or the energy for the solution of the wave equation are conserved, it is interesting to
study the local energy decay, which measures the fact that the energy escapes at infinity. For the
free case and with compactly supported initial conditions, explicit computations show that the
energy on a compact vanishes after finite time for the wave in odd dimension d > 3, while the
decay is of size t−d in even dimension. For the Schrödinger equation, the norm of the solution

decays like t−
d
2 .

Many authors have proved similar estimates for perturbed problems. For instance the wave
or Schrödinger equations can be stated outside a compact obstacle of Rd (we can also consider
a perturbation of the Laplace operator). For the wave equation on an exterior domain, we
have uniform (exponential) decay for the local energy decay if and only if the non-trapping
assumption holds. This means that there is no trapped bicharacteristic. See [LP67, Ral69,
Mel79]. See [Bur98] for logarithmic decay without the non-trapping assumption, and [NZ09] for
an intermediate situation.

For the dissipative equations, this non-trapping assumption can be replaced by the same
damping condition (geometric control condition) on bounded trajectories as in the compact case
(where all the trajectories were bounded). This means that the energy of the wave (or at least
the contribution of high frequencies) escapes at infinity or is dissipated by the medium. This
has been used in [AK07] for a dissipation in the interior of the domain and in [Alo02, AK10]
for dissipation at the boundary, for the free equations on an exterior domain in both cases. See
also [Roy10b] for the corresponding resolvent estimates, and [BR] for the damped wave equation
with a Laplace-Beltrami operator corresponding to a metric which is a long-range perturbation
of the flat one.

In this paper we consider a domain which is neither bounded nor the complement of a bounded
obstacle. In particular, compared to the situations mentioned above, the boundary of the wave-
guide is not compact.

More precisely, we are going to use the fact that Ω is a Euclidean space in some directions and
compact with respect to the last coordinate, so that properties of both compact and Euclidean
domains will appear in our analysis.

The main result of this paper is the following:

Theorem 1.1. Assume that there exist two constants a0, a1 such that on ∂Ω we have

0 < a0 6 a 6 a1.

Then there exist γ > 0 and C > 0 such that for all u0 ∈ L2(Ω) the solution u of the problem
(1.1) satisfies

∀t > 0, ‖u(t)‖L2(Ω) 6 Ce−γt ‖u0‖L2(Ω) .

In this theorem the absorption is effective everywhere on the boundary, so the damping
condition is clearly satisfied on bounded trajectories. However, it is important to note that we
prove exponential decay for the total energy and not only for local energy. This means that all
the energy is dissipated by the medium, including the energy going at infinity. This suggests
that all the classical trajectories, and not only the bounded ones, should be controlled by the
dissipation. This is clearly not the case here.

Thus this theorem provides a new example for the already mentioned general idea that given a
result for which the non-trapping condition (or the damping condition for dissipative problems)
is necessary, we get a close result if there are only a few trajectories which contradict the assump-
tion. Here the initial conditions in T ∗Ω whose corresponding trajectory avoid the boundary form
a submanifold of codimension 1 (the frequency vector has no tranversal component). Moreover
the flow is linearly unstable. Compared to the related results on compact or Euclidean domains,
our analysis will be based on simpler arguments. The key argument is that our problem will
inherit the decay property of the transverse problem (that is the Schrödinger equation on ]0, l[
with the same dissipative boundary condition), for which the geometric control assumption holds.

In order to prove time-dependent estimates for an evolution equation as in Theorem 1.1, we
often use spectral properties for the generator of the problem (spectral gap for the eigenvalues
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on a compact manifold, absence of resonances close to a positive energy on a perturbation of the
Euclidean space, etc.). Here, the problem is governed by the operator

Haϕ = −∆ϕ (1.2)

defined on the domain

D(Ha) =
{
ϕ ∈ H2(Ω) : ∂νϕ = iaϕ on ∂Ω

}
⊂ L2(Ω). (1.3)

In particular, when a > 0 the solution u of the problem (1.1) is given by the semi-group
e−itHa generated by this operator. When u0 ∈ D(Ha) this solution belongs to C0(R+,D(Ha))∩
C1(R+, L

2(Ω)).

The main part of this paper is devoted to the proof of resolvent estimates for the operator
Ha. More precisely, in order to prove Theorem 1.1 we will use the following result:

Theorem 1.2. Let a be as in Theorem 1.1. Then there exist γ > 0 and C > 0 such that any
z ∈ C with Im(z) > −3γ is in the resolvent set of Ha and moreover

∥∥(Ha − z)−1
∥∥
L2(Ω)

6 C.

When a is constant, our analysis will provide a good description of the spectrum of Ha, and
in particular there is a spectral gap as stated in Theorem 1.2. However, for a non-selfadjoint
operator the norm of the resolvent can be large far from the spectrum, so the uniform bound of
the resolvent on a strip around the real axis is not a consequence of the spectral gap and has to
be proved directly.

In the papers we have mentioned above concerning the damped Schrödinger equation [Alo08b,
Alo08a, AKV13, AKR], it is proved that this equation satisfies the Kato smoothing effect, that
is an estimate of the form ∫ ∞

0

∥∥∥〈x〉−δ
(1−∆)

1
4u(t)

∥∥∥
2

L2
dt . ‖u0‖2L2 .

In these papers, the absorption is in the interior of the domain and, more important, it is of the
form a(x)(1−∆)

1
2 a(x). This is stronger than multiplication by a(x)2 for high-frequencies. It is

not the case here, which is why we have no smoothing effect for our problem. However, we still
have the usual smoothing property in the unbounded directions:

Theorem 1.3. Let a be as in Theorem 1.1. Let δ > 1
2 . Then there exists C > 0 such that for

all u0 ∈ L2(Ω) the solution u of (1.1) satisfies
∫ ∞

0

∥∥∥〈x〉−δ (
1−∆x

) 1
4u(t)

∥∥∥
2

L2(Ω)
dt 6 C ‖u0‖2L2(Ω) ,

where ∆x =
∑d−1

n=1 ∂
2
xn

is the partial Laplacian acting on the unbounded directions.

In the results above, we can relax the assumption that the absorption index is positive every-
where. For instance, the proofs hold true without modification in the case where a is a positive
constant one one side of the boundary, say R

d−1×{l}, and vanishes on the other side Rd−1×{0}.
What happens if the absorption index is a negative constant on one side is not so clear.

Let al, a0 ∈ R be such that

al + a0 > 0 (1.4)

and consider the problem




i∂tu+∆u = 0 on ]0,+∞[×Ω,

∂νu = ialu on ]0,+∞[×R
d−1 × {l} ,

∂νu = ia0u on ]0,+∞[×R
d−1 × {0} ,

u(0, ·) = u0 on Ω.

(1.5)

When al and a0 have different signs but satisfy (1.4), we will say that the boundary condition
is weakly dissipative. Estimates like those of Theorems 1.1 and 1.2 are not likely to hold with-
out this assumption. For instance, when a0 = −al we get a PT -symmetric waveguide. Such
a boundary condition has been studied in [KBZ06, BK08]. See also [KT08]. In particular it
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is known that in this case the spectrum is real, so we cannot expect any generalization of our
results. The case al + a0 < 0 is dual to the case al + a0 > 0. We will see that in this case the
norm of the solution grows exponentially (see Remark 7.5).

In the weakly dissipative case we have the following theorem:

Theorem 1.4. Let al, a0 ∈ R satisfy Assumption (1.4). If u0 ∈ D(Ha) then the problem (1.5)
has a unique solution u ∈ C1(]0,+∞[, L2(Ω)) ∩ C0([0,+∞[,D(Ha)). Moreover, if |al| and |a0|
are small enough there exist γ > 0 and C > 0 such that for all u0 we have

∀t > 0, ‖u(t)‖L2(Ω) 6 Ce−γt ‖u0‖L2(Ω) .

Let us discuss the assumption that the absorption has to be small. In [Roy] it was proved in
another context that for high frequencies the properties of a dissipative problem remain valid
when the absorption index is positive on average along the corresponding classical flow. This is
the case here under Assumption (1.4). The restriction comes from low frequencies. When a 6= 0,
the boundary condition can be rewritten

u =
1

a
∂νu on ∂Ω.

When a is large compared to the frequency, this is close to a Dirichlet condition. That for large
dissipation we recover a self-adjoint problem is usually called the overdamping phenomenon. This
suggests that the problem is now governed by the quantity 1/a. And when ab < 0, Assumption
(1.4) can be rewritten as

1

al
+

1

a0
< 0.

It turns out that for al, a0 large enough with ala0 < 0 and (1.4), the contribution of low fre-
quencies is indeed exponentially increasing (see Proposition 7.4).

In this paper we prove all these results on the model case of a straight waveguide with a
one-dimensional section. The purpose is on one hand to observe all the non-trivial phenomenons
mentioned above on a quite simple example. On the other hand our analysis is the first step
toward the understanding of similar properties for the wave equation on a more general domain.

On this model case, and with the additional assumption that a is constant, we can rewrite Ha

as the sum of the usual Laplacian on the Euclidean space R
d−1 and a Laplace operator on the

compact section. Since this section is of dimension 1, we can give quite explicitely many spectral
properties for this operator. In particular, we will see that its eigenfunctions form a Riesz basis,
which will give a good description of the spectrum of Ha, first when a is constant and then in
the general case. The time dependent estimate will follow.

In Section 2 we prove that Ha is maximal dissipative, which gives in particular well-posedness
for the problem (1.1). In Section 3 we study the transverse operator, that is the Laplace operator
on the section ]0, l[. Spectral properties of Ha are obtained for a constant absorption index in
Section 4, and then Theorems 1.2 and 1.3 are proved in Section 5. Once the spectral properties
of Ha are well-understood, the proof of Theorem 1.1 is given in Section 6. Finally, the problem
(1.5) where a can take negative values is discussed in Section 7.

All along the paper, a general point in Ω will be written (x, y) ∈ Ω ≃ R
d−1×]0, l[, with

x ∈ R
d−1 and y ∈]0, l[. As in Theorem 1.3, we denote by ∆x the usual laplacian on R

d−1. For
Hilbert spaces H1 and H2, L(H1,H2) is the set of bounded operators from H1 to H2. For γ > 0
we finally set

Cγ = {z ∈ C : Im z > −γ} , and then C+ := C0.

Acknowledgements: I am grateful to Petr Siegl for stimulating discussions which motivated
this paper and helped me through its realization. This work is partially supported by the French-
Czech BARRANDE Project 26473UL and by the French National Research Project NOSEVOL
(ANR 2011 BS01019 01).
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2. Operator associated to the dissipative waveguide

In this section we consider a more general waveguide Ω of the form R
p × ω ⊂ R

d where
p ∈ {1, . . . , d− 1} and ω is a smooth open bounded subset of Rd−p. In particular, Ω is open in
R

d.

Let a ∈ W 1,∞(∂Ω). Until Proposition 2.5, we make no assumption on the sign of a. We
consider on L2(Ω) the operator Ha defined by (1.2) with domain (1.3). For all ϕ ∈ D(Ha) we
have

〈Haϕ,ϕ〉L2(Ω) = −〈∆ϕ,ϕ〉L2(Ω) = 〈∇ϕ,∇ϕ〉L2(Ω) − i 〈aϕ, ϕ〉L2(∂Ω) . (2.1)

On the other hand, we consider the quadratic form defined for ϕ ∈ D(qa) = H1(Ω) by

qa(ϕ) =

∫

Ω

|∇ϕ|2 − i

∫

∂Ω

a |ϕ|2 .

We also denote by qa the corresponding sesquilinear form on D(qa)
2. That this quadratic form

is sectorial and closed follows from the following lemma and traces theorems:

Lemma 2.1. Let qR be a non-negative, densely defined, closed form on a Hilbert space H. Let
qI be a symmetric form relatively bounded with respect to qR. Then the form qR− iqI is sectorial
and closed.

It is important to note that there is no smallness assumption on the relative bound of qI with
respect to qR. In particular, for qa we do not need any assumption on the size of a in L∞(∂Ω).

Proof. There exists C > 0 such that for all ϕ ∈ D(qR) we have

|qI(ϕ)| 6 C
(
qR(ϕ) + ‖ϕ‖2

H

)
.

Let ε0 = 1
2C . If we already know that (qR − iλqI) is sectorial and closed for some λ > 0, then

(qR− i(λ+ ε)qI) is sectorial and closed for all ε ∈ [0, ε0] according to Theorem VI.3.4 in [Kat80].
Now since qR is sectorial and closed, we can prove by induction on n ∈ N that (qR − iλqI) is
sectorial and closed for all λ ∈ [0, nε], and hence for all λ > 0. This is in particular the case
when λ = 1. �

We recall the definitions of accreative and dissipative operators (note that the conventions
may be different for other authors):

Definition 2.2. We say that an operator T on the Hilbert space H is accreative (respectively
dissipative) if

∀ϕ ∈ D(T ), Re 〈Tϕ, ϕ〉
H

> 0,
(
respectively Im 〈Tϕ, ϕ〉

H
6 0
)
.

Moreover T is said to be maximal accreative (maximal dissipative) if it has no other accreative
(dissipative) extension on H than itself. In particuliar T is (maximal) dissipative if and only if
iT is (maximal) accreative.

Let us recall that an accreative operator T is maximal accreative if and only if (T − z) has
a bounded inverse on H for some (and hence any) z ∈ C with Re(z) < 0. In this case we know
from the Hille-Yosida Theorem that −T generates a contractions semi-group t 7→ e−tT . Then
for all u0 ∈ D(T ) the map u : t 7→ e−tTu0 belongs to C1(R+,H) ∩ C0(R+,D(T )) and solves the
problem {

u′(t) + Tu(t) = 0, ∀t > 0,

u(0) = u0.

Let us come back to our context. According to Lemma 2.1 and the Representation Theorem
VI.2.1 in [Kat80], there exists a unique maximal accreative operator Ĥa on L2(Ω) such that

D(Ĥa) ⊂ D(qa) and

∀ϕ ∈ D(Ĥa), ∀ψ ∈ D(qa),
〈
Ĥaϕ, ψ

〉
L2(Ω)

= qa(ϕ, ψ).

Moreover we have

D(Ĥa) =
{
u ∈ D(qa) : ∃f ∈ L2(Ω), ∀v ∈ D(qa), qa(u, v) = 〈f, v〉

}
,

and for u ∈ D(Ĥa) the corresponding f is unique and given by Ĥau = f .
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Proposition 2.3. We have Ĥa = Ha. In particular Ha is maximal accreative.

For a one-dimensional section we can essentially follow the proof of Lemma 3.2 in [BK08].
This would be enough for our purpose but, for further use, we prove this result in the general
setting.

Proof. It is easy to check that D(Ha) ⊂ D(Ĥa) and Ha = Ĥa on D(Ha). Now let u ∈ D(Ĥa).
By definition there exists f ∈ L2(Ω) such that

∀v ∈ H1(Ω),

∫

Ω

∇u · ∇v − i

∫

∂Ω

auv =

∫

Ω

fv.

Considering v ∈ C∞
0 (Ω) we see that −∆u = f in the sense of distributions and hence in L2(Ω).

This proves that u ∈ H2
loc(Ω). It remains to prove that u ∈ H2(Ω) and that the boundary

condition ∂νu = iau holds on ∂Ω. Let j ∈ {1, . . . , p} and let ej be the j-th vector in the
canonical basis of Rp. Let δ ∈ R

∗ and uδ : (x, y) 7→ 1
δ (u(x+ δej , y)− u(x, y)) ∈ H1(Ω). See for

instance [Eva98, §5.8.2] for the properties of the difference quotients. For all v ∈ H1(Ω) we have

q(uδ, v) = −
∫

Ω

f(x, y)v−δ(x, y) dx dσ(y)− i

∫

∂Ω

u(x, y)a−δ(x, y)v(x− δej , y) dx dσ(y),

where σ is the Lebesgue measure on ω. Since a ∈ W 1,∞(∂Ω) there exists C > 0 such that for
all v ∈ H1(Ω) and δ > 0 we have

|qa(uδ, v)| 6 C ‖v‖H1(Ω) .

Applied with v = uδ this gives

‖uδ‖2Ḣ1(Ω) = Re qa(uδ, uδ) 6 C ‖uδ‖H1(Ω) .

Since we already know that uδ ∈ L2(Ω) uniformly in δ > 0, we have

‖uδ‖2H1(Ω) . 1 + ‖uδ‖H1(Ω) ,

which implies that uδ is uniformly in H1(Ω). This means that ∂xj
u ∈ H1(Ω). Since this holds

for any j ∈ {1, . . . , p}, this proves that all derivatives of order 2 with at least one derivative in
the first p directions belong to L2(Ω). Then we get

−∆yu = f +∆xu ∈ L2(Ω).

According to the Green Formula we have for all v ∈ H1(Ω)
∫

Ω

−∆yu v dx dy =

∫

Ω

∇yu · ∇yv dx dy − 〈∂nu, v〉H−1/2(∂Ω),H1/2(∂Ω)

(see for instance [Gri85, eq. (1.5.3.10)]). By density of the trace map, we obtain that

∂νu = iau on ∂Ω. (2.2)

In particular ∂νu ∈ H1/2(∂Ω). Then there exists v ∈ H2(Ω) such that ∂νv = ∂νu (see [Gri85,
Th. 1.5.1.1] for a fonction on R

d
+ ; for a function on Ω we follow the same idea as for a fonction

on a bounded domain, except that we only use a partition of unity for ∂ω, which allows to cover
∂Ω by a finite number of strips, each of which is diffeomorphic to a strip on R

p). Let w = u− v.
We have w ∈ H1(Ω), ∆yw ∈ L2(Ω) and

{
−∆yw + w = f +∆xu−∆yv + w on Ω,

∂νw = 0 on ∂Ω.

Then for almost all x ∈ R
p we have{

−∆yw(x) + w(x) = f(x) + ∆xu(x)−∆yv(x) + w(x) on ω,

∂νw(x) = 0 on ∂ω.

By elliptic regularity for the Neumann problem (see for instance Theorem 9.26 in [Bre11]) we
obtain that w(x) ∈ H2(ω) with

‖w(x)‖H2(ω) . ‖f(x) + ∆xu(x)−∆yv(x) + w(x)‖L2(ω) .

After integration over x ∈ R
p, this gives

‖u‖H2
y(Ω) . ‖f +∆xu−∆yv + w‖L2(Ω) + ‖v‖H2(Ω) .
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Since we already know that second derivatives of u involving a derivation in x are in L2(Ω), this
proves that u ∈ H2(Ω) and concludes the proof. �

Remark 2.4. We have H∗
a = H−a.

Now assume that a takes non-negative values. According to (2.1), a is a dissipative operator.
Since it is maximal accreative, it is easy to see that it is in fact maximal dissipative:

Proposition 2.5. The maximal accreative operator Ha is also maximal dissipative.

Proof. We already know that Ha is dissipative. Since it is maximal accreative, any z ∈ C

with Re z < 0 is in its resolvent set. Then it is easy to find z in this resolvent set of Ha with
Im z > 0. �

Proposition 2.6. If a > 0 in an open subset of ∂Ω then Ha has no real eigenvalue.

Proof. Let u ∈ D(Ha), λ ∈ R, and assume that Hau = λu. Taking the imaginary part of the

equality qa(u, u) = λ ‖u‖2 gives ∫

∂Ω

a |u|2 = 0.

This implies that u = 0 where a 6= 0 and ∂νu = iau = 0 everywhere on ∂Ω. By unique
continuation, this implies that u = 0 on Ω. �

3. The Transverse Operator

Let us come back to the case of a one-dimensional cross-section ω =]0, l[. Under the additional
assumption that the absorption index a is constant on ∂Ω the operator Ha can be written as

Ha = −∆x ⊗ IdL2(0,l) +IdL2(Rd−1) ⊗Ta, (3.1)

where −∆x is as before the usual flat Laplacian on R
d−1 and Ta is the transverse Laplacian on

]0, l[. More precisely, we consider on L2(0, l) the operator Ta = − d2

dy2 with domain

D(Ta) =
{
u ∈ H2(0, l) : u′(0) = −iau(0), u′(l) = iau(l)

}
.

This is the maximal accreative and dissipative operator corresponding to the form

q : u ∈ H1(0, l) 7→
∫ l

0

|u′(x)|2 dx− ia |u(l)|2 − ia |u(0)|2 .

In this section we give the spectral properties of Ta which we need to study the full operator
Ha. This operator has compact resolvent, and hence its spectrum is given by a sequence of
isolated eigenvalues. When a = 0, which corresponds to the Neumann problem, we know that
the eigenvalues of T0 are the real numbers n2ν2 for n ∈ N, where we have set

ν =
π

l
.

These eigenvalues are algebraically simple.

Proposition 3.1. There exists a sequence (λn)n∈N
of continuous functions on R such that

λn(0) = nν and for all a ∈ R the set of eigenvalues of Ta is
{
λn(a)

2, n ∈ N
}
. Moreover:

(i) For (n, a) ∈ (N×R)\{(0, 0)} the eigenvalue λn(a) is algebraically simple and a correspond-
ing eigenvector is given by

ϕn(a) : x 7→ An(a)

(
eiλn(a)x +

λn(a) + a

λn(a)− a
e−iλn(a)x

)
, (3.2)

where we can choose An(a) ∈ R
∗
+ in such a way that ‖ϕn(a)‖L2(0,l) = 1 (when a = 0 then

0 is a simple eigenvalue and corresponding eigenvectors are non-zero constant functions).

(ii) For n ∈ N and a ∈ R we have λn(−a) = λn(a).
(iii) Let n ∈ N. For all a ∈ R

∗ we have Re(λn(a)) ∈]nν, (n+1)ν[ (when n = 0, we have chosen
the square root of λ20(a) which has a positive real part).

(iv) For all n ∈ N there exists Cn > 0 such that for a > 0 we have −Cn < Im(λn(a)) < 0.
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(v) Let a > 0 be fixed. We have

λn(a) = nν − 2ia

nνl
+ O

n→+∞

(
n−2

)

and hence

λn(a)
2 = (nν)2 − 4ia

l
+ O

n→+∞

(
n−1

)
.

Proof. • It is straightforward computations to check that 0 is an eigenvalue of Ta if and only
if a = 0 and, if λ ∈ C

∗, λ2 is an eigenvalue if and only if

(a− λ)2e2iλl = (a+ λ)2. (3.3)

If λ2 is an eigenvalue then the corresponding eigenfunction is of the form ϕ : x 7→ Aeiλx+Be−iλx

with

A =
λ− a

λ+ a
B =

λ+ a

λ− a
e−2iλlB. (3.4)

Moreover, all these eigenvalues have geometric multiplicity 1. Indeed, given n ∈ N, the space
of eigenvectors corresponding to the eigenvalue λn(a)

2 is stricly included in the space of H2

functions which are solutions of −u′′ − λn(a)
2u = 0, and this space is of dimension 2. The fact

that the eigenvalues of H−a are conjugated to the eigenvalues of Ha is a consequence of Remark
2.4.
• Let a > 0 and λ ∈ C

∗ be such that λ2 is an eigenvalue of Ta. Assume that Reλ ∈ νN. Then
(
a+ λ

a− λ

)2

= e2iλl ∈ R+

(note that λ cannot be equal to a in (3.3)) and hence

r :=
a+ λ

a− λ
∈ R.

If r = −1 then a = 0. Otherwise λ = a(1−r)
1+r ∈ R. In both cases we obtain a contradiction

(see Proposition 2.6), and hence Reλ /∈ νN. This proves that for a > 0 the operator Ta has no
eigenvalue with real part in νN.
• Now let R > 0. We prove that if CR > 0 is chosen large enough and if a ∈ R and λ ∈ C

∗ are
such that λ2 is an eigenvalue of Ta, then

|Reλ| 6 R =⇒ |Imλ| 6 CR. (3.5)

Assume by contradiction that this is not the case. Then for all m ∈ N we can find xm ∈ [−R,R]
and ym ∈ R with |ym| > m such that (xm + iym)2 is an eigenvalue of Tam

for some am ∈ R. We
have

e−2yml =

∣∣∣∣
am + xm + iym
am − xm − iym

∣∣∣∣
2

=
(am + xm)2 + y2m
(am − xm)2 + y2m

−−−−→
m→∞

1,

which gives a contradiction.
• The family of operators Ta for a ∈ R is an analytic family of operators of type B in the sense
of Kato [Kat80, §VII.4]. We already know that the spectrum of T0 is given by

{
(nν)2, n ∈ N

}
.

Then for all n ∈ N there exists an analytic function λ2n such that, at least for small a, λ2n(a) is
in the spectrum of Ta (and then we define λn as the square root of λ2n with positive imaginary
part). See Theorem VII.1.7 in [Kat80].
• Let n ∈ N

∗. We write λn(a) = nν + βa+ γa2 +Oa→0(a
3). We have

e2iλn(a)l = 1 + 2ilβa+ 2ilγa2 − 2l2β2a2 +O(a3),

and on the other hand:
(
λn(a) + a

λn(a)− a

)2

= 1 +
4a

nν
− 4(β − 2)a2

n2ν2
+O

(
a3
)
.

Since λn(a) solves (3.3) for any a > 0 we obtain

β =
2

ilnν
= − 2i

πn

and

Re(γ) =
4l

n3π3
.
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Since Re(β) = 0 and Re(γ) > 0 we have Re
(
λn(a)

)
∈ ]nν, (n+ 1)ν[ for a > 0 small enough. The

functions a 7→ Re
(
λn(a)

)
are continuous and cannot reach νN unless a = 0, so this remains true

for any a > 0 such that λn(a) is defined. Similarly Re
(
λ0(a)

)
∈]0, ν[ for all a > 0. In particular

the curves a 7→ λn(a) for n ∈ N never meet. Moreover we know from (3.5) that λn(a) remains
in a bounded set of C, so the curves a 7→ λn(a) are defined for all a ∈ R and for all a ∈ R the
eigenvalues of Ta are exactly given by λn(a)

2 for n ∈ N.
• It remains to prove that the asymptotic expansion of λn(a) for n fixed and a small is also
valid for a fixed and n large. Let a > 0 be fixed. Derivating (3.3) and using the fact that
|λn(s)| > nν for all s ∈ R we obtain that

sup
s∈[0,a]

|λ′n(s)| = O
(
n−1

)
.

This means that λn(a) = nν + O(n−1). Then we obtain the asymptotic expension of λn(a)
for large n as before, using again (3.3). This gives the last statement of the proposition and
concludes the proof. �

Now that we have proved what we need concerning the spectrum of the operator Ta, we study
the corresponding sequence of eigenfunctions. In the self-adjoint case a = 0, we know that the
eigenfunctions ϕn(0) form an orthonormal basis. Of course this is no longer the case for the non-
selfadjoint operator Ta with a 6= 0. However we can prove that in this case we have a Riesz basis.

We recall that the sequence (ϕn)n∈N
of vectors in the Hilbert space H is said to be a Riesz

basis if there exists a bounded operator Θ ∈ L(H) with bounded inverse and an orthonormal
basis (en)n∈N

of H such that ϕn = Θen for all n ∈ N. In this case any f ∈ H can be written as∑
n∈N

fnϕn with (fn)n∈N
∈ l2(C), and there exists C > 1 such that for all f =

∑
n∈N

fnϕn ∈ H
we have

C−1
∑

n∈N

|fn|2 6

∥∥∥∥∥
∑

n∈N

fnϕn

∥∥∥∥∥

2

H

6 C
∑

n∈N

|fn|2 .

In these estimates we can take C = max
(
‖Θ‖2 ,

∥∥Θ−1
∥∥2
)
.

Let (ϕn)n∈N
be a Riesz basis of H with Θ and (en)n∈N

as above. If we set ϕ∗
n = (Θ−1)∗en for

all n ∈ N then (ϕ∗
n)n∈N is also a Riesz basis, called the dual basis of (ϕn)n∈N

. In particular for
all j, k ∈ N we have

〈ϕj , ϕ
∗
k〉H = δj,k. (3.6)

We refer to [Chr03] for more details about Riesz bases. Now we want to prove that for any a ∈ R

the sequence of eigenfunctions for the operator Ta is a Riesz basis of L2(0, l).

Proposition 3.2. For all a ∈ R the sequence (ϕn(a))n∈N defined in (3.2) is a Riesz basis of
L2(0, l). Moreover for all R > 0 there exists C > 0 such that for a ∈ [−R,R] and (cn)n∈N

∈ l2(C)
we have

C−1
∞∑

n=0

|cn|2 6

∥∥∥∥∥

∞∑

n=0

cnϕn(a)

∥∥∥∥∥

2

6 C

∞∑

n=0

|cn|2 .

If C was chosen large enough and if (cn)n∈N
∈ l2(C) is such that

∑∞

n=0 |λn(a)cn|
2
<∞ we also

have

C−1
∞∑

n=0

|λn(a)cn|2 6

∥∥∥∥∥

∞∑

n=0

cnϕ
′
n(a)

∥∥∥∥∥

2

6 C

∞∑

n=0

|λn(a)cn|2 .

For similar results we refer to [Mik62] (see also Lemma XIX.3.10 in [DS71]). For the proof
we need the following lemma:

Lemma 3.3. Let R > 0. Then there exists C > 0 such that for a ∈ [−R,R] and j, k ∈ N with
j < k we have

〈ϕj(a), ϕk(a)〉L2(0,l) 6
C

〈j〉 (k − j)
and

〈
ϕ′
j(a), ϕ

′
k(a)

〉
L2(0,l)

6 C
k

k − j
.
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Proof. Let en(a, x) = eiλn(a)x and ẽn(a, x) = e−iλn(a)x. According to Proposition 3.1 we have
λn(a) = nν +O(n−1) (here and below all the estimates are uniform in a ∈ [−R,R]), so

‖en(a)‖2L2(0,l) =
e−2l Im(λn(a)) − 1

−2 Im(λn(a))
= l +O(n−1).

Similarly ‖ẽn(a)‖2L2(0,l) = l+O(n−1), and 〈en(a), ẽn(a)〉 = O(n−1). Moreover, with (3.2) we see

that

An(a) =
1√
2l

+O(n−1).

Now let j, k ∈ N with j < k. We omit the dependence in a for ϕj , ej , ẽj and λj . We have

〈ej , ek〉 =
ei(λj−λk)l − 1

λj − λk
and 〈ẽj , ẽk〉 =

e−i(λj−λk)l − 1

−(λj − λk)
.

Since

λj − λk = (j − k)ν +O(1/j)

we have

|〈ej , ek〉|+ |〈ẽj , ẽk〉| .
1

k − j
and |〈ej , ek〉+ 〈ẽj , ẽk〉| .

1

〈j〉 (k − j)
.

Similarly

|〈ẽj , ek〉|+ |〈ej , ẽk〉| .
1

k + j
and |〈ẽj , ek〉+ 〈ej , ẽk〉| .

1

〈j〉 (k + j)
.

And finally

|〈ϕj , ϕk〉| =
∣∣∣∣AjAk

〈
ej +

λj − a

λj + a
ẽj , ek +

λk − a

λk + a
ẽk

〉∣∣∣∣
. |〈ej , ek〉+ 〈ej , ẽk〉+ 〈ẽj , ek〉+ 〈ẽj , ẽk〉|
+ 〈j〉−1

(|〈ej , ek〉|+ |〈ej , ẽk〉|+ |〈ẽj , ek〉|+ |〈ẽj , ẽk〉|)

.
1

〈j〉 (k − j)
.

The second estimate is proved similarly, using again that |λn(a)| = nν +O(n−1) for large j. �

Proof of Proposition 3.2. • Let a ∈ R and (cn)n∈N
∈ l2(C). Let C > 0 be given by Lemma

3.3. For N, p ∈ N we have
∥∥∥∥∥

N+p∑

n=N

cnϕj(a)

∥∥∥∥∥

2

−
N+p∑

n=N

|cn|2 =

N+p∑

j=N

N+p∑

k=j+1

2Re (cjck 〈ϕj , ϕk〉) 6 2C

∞∑

j=0

|cj |
〈j〉

∞∑

k=1

|ck+j |
k

. ‖c‖2l2(C) .

This proves that the series
∑∞

n=0 cnϕn(a) converges in L
2(0, l) and

∥∥∥∥∥

∞∑

n=0

cnϕn(a)

∥∥∥∥∥

2

L2(0,l)

.

∞∑

n=0

|cn|2 .

• Let n,m ∈ N be such that n 6= m. In L2(0, l) we have

λn(a)
2 〈ϕn(a), ϕm(−a)〉 = 〈Haϕn(a), ϕm(−a)〉 = 〈ϕn(a), H

∗
aϕm(−a)〉

= λm(a)2 〈ϕn(a), ϕm(−a)〉 ,
and hence 〈ϕn(a), ϕm(−a)〉 = 0. On the other hand, with (3.2) we can check that 〈ϕn(a), ϕn(−a)〉 6=
0 at least for n large enough. Now let (cn)n∈N

∈ l2(C) be such that
∑∞

n=0 cnϕn(a) = 0. Taking
the inner product with ϕm(−a) we see that cm = 0 for m > N if N is chosen large enough.
Then for all k ∈ {0, . . . , N} we have

0 = Hk
a

N∑

n=0

cnϕn(a) =

N∑

n=0

λn(a)
2kcnϕn(a).

Since the eigenvalues λn(a)
2 for n ∈ {0, . . . , N} are pairwise disjoint, this proves that for all n ∈

{0, . . . , N} we have cnϕn(a) = 0, and hence cn = 0. Finally the map (cn) ∈ l2 7→
∑
cnϕn(a) ∈

L2(0, l) is one-to-one.
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• As above we can check that for N ∈ N we have
∥∥∥∥∥

∞∑

n=N

cnϕn(a)

∥∥∥∥∥

2

−
∞∑

n=N

|cn|2 .

∞∑

n=N

|cn|2
√√√√

∞∑

n=N

1

〈n〉2
.

This is less that 1
2

∑∞

n=N |cn|2 is N is chosen large enough. Let such an integer N be fixed.

Now assume by contradiction that the sequences (am)m∈N
∈ [−R,R]N and (cm)m∈N in l2(C)N

are such that ‖cm‖l2 = 1 for all m ∈ N and

∥∥∥∥∥

∞∑

n=0

cmn ϕn(am)

∥∥∥∥∥

2

−−−−→
m→∞

0.

For m ∈ N we set fm =
∑N−1

n=0 c
m
n ϕn(am) and gm =

∑∞

n=N cmn ϕn(am). After extracting a
subsequence if necessary we can assume that am converges to some a ∈ [−R,R] and fm con-
verges to some f ∈ L2(0, l). Let Pm (respectively P ) denote the orthogonal projection on
span(ϕj(am))j>N (respectively on span(ϕn(a))n>N ). We have

‖fm + gm‖2 = ‖fm‖2 + 2Re 〈Pmfm, gm〉+ ‖gm‖2 > ‖fm‖2 − ‖Pmfm‖2 −−−−→
m→∞

‖f‖2 − ‖Pf‖2 .

This gives f = Pf , and hence f = 0. This gives a contradiction with

0 = lim
m→∞

‖gm‖2 > lim
m→∞

1

2

∞∑

n=N

|cmn |2 =
1

2

and proves the first inequality of the proposition.
• It remains to prove that the sequence (ϕn(a)) is complete. We know that the family(
ϕn(0)

)
n∈N

is an orthonormal basis of L2(0, l). Since ϕn(a) = ϕn(0) + O
(
n−1

)
in L2(0, l),

this follows from a perturbation argument (see Theorem V.2.20 in [Kat80]). This concludes the
proof. �

For a ∈ R we denote by (ϕ∗
n(a))n∈N the dual basis of (ϕn(a))n∈N. We have ϕ∗

n(a) = ϕn(−a) =
ϕn(a).

4. Separation of variables - Spectrum of the model operator

In this section we use the results on the transversal operator Ta to prove spectral properties
for the full operator Ha when a is constant on ∂Ω. Most of the results of this section are inspired
by the PT -symmetric analogs (see [BK08]). Let a > 0 be fixed. We set

Sa =
⋃

n∈N

{λn(a)2}+ R+ =
{
λn(a)

2 + r, n ∈ N, r ∈ R+

}
⊂ C.

Proposition 4.1. We have Sa ⊂ σ(Ha).

Proof. Let n ∈ N, r > 0 and z = λn(a)
2+r ∈ Sa. Let (fm)m∈N

be a sequence in H2(Rd−1) such
that ‖fm‖L2(Rd−1) = 1 for all m ∈ N and ‖(−∆x − r)fm‖L2(Rd−1) → 0 as m → ∞. For m ∈ N

and (x, y) ∈ R
d−1×]0, l[ we set um(x, y) = fm(x)ϕn(a; y). Then um ∈ D(Ha) and ‖um‖L2(Ω) = 1

for all m ∈ N. Moreover, according to (3.1) we have

‖(Ha − z)um‖L2(Ω) = ‖(−∆x − r)fm‖L2(Rd−1) −−−−→m→∞
0.

This implies that z ∈ σ(Ha). �

For u ∈ L2(Ω), n ∈ N and x ∈ R
d−1 we set un(x) =

〈
u(x, ·), ϕ∗

j (a)
〉
L2(0,l)

. This gives a

sequence of functions un defined almost everywhere on R
d−1.

Proposition 4.2. Let u ∈ L2(Ω). Then un ∈ L2(Rd−1) for all n ∈ N and on L2(Ω) we have

u =
∑

n∈N

un ⊗ ϕn(a).
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Proof. For N ∈ N we set vN =
∑N

n=0 un ⊗ ϕn(a). For almost all x ∈ R
d−1, vN (x) defines a

function in L2(0, l) which goes to u(x) as N → ∞. According to Proposition 3.2 we have

‖vN (x)‖2L2(0,l) .

N∑

n=0

‖un(x)‖2L2(0,l) .

∞∑

n=0

‖un(x)‖2L2(0,l) . ‖u(x)‖2L2(0,l) ,

where all the estimates are uniform in N . Since the map x 7→ ‖u(x)‖2L2(0,l) belongs to L
2(Rd−1),

we can apply the dominated convergence theorem to conclude that u− vN → 0 in L2(Ω). �

Proposition 4.3. (i) Let u ∈ D(Ha). Then un ∈ H2(Rd−1) for all n ∈ N and in L2(Ω) we
have

Hau =
∑

n∈N

(
−∆x + λn(a)

2
)
un ⊗ ϕn(a).

(ii) Let z ∈ C \Sa. Then z belongs to the resolvent set of Ha and for all u ∈ L2(Ω) we have

(Ha − z)−1u =
∑

n∈N

(−∆x + λn(a)
2 − z)−1un ⊗ ϕn(a).

In particular there exists C > 0 such that for all z ∈ C \S and u ∈ L2(Ω) we have

∥∥(Ha − z)−1u
∥∥
L2(Ω)

6
C

d(z,Sa)
‖u‖L2(Ω) .

Proof. • Let z ∈ C \Sa and u ∈ L2(Ω). Let un ∈ L2(Rd−1), n ∈ N, be as above. For n ∈ N we

set R̃n(u) = (−∆x + λn(a)
2 − z)−1un ∈ H2(Rd−1) and Rn(u) = R̃n(u)⊗ϕn(a) ∈ D(Ha). Using

the standard spectral properties of the self-adjoint operator −∆x, we see that on L2(Rd−1) we
have ∥∥∥R̃n(u)

∥∥∥ .
‖un‖

d(z, λn(a)2 + R+)
.z

‖un‖
〈n〉2

and
∥∥∥∂xR̃n(u)

∥∥∥ .z
‖un‖
〈n〉 . (4.1)

The first estimate is uniform in z but not the others. With Proposition 3.2 we obtain for N, p ∈ N

∥∥∥∥∥

N+p∑

n=N

Rn(u)

∥∥∥∥∥

2

H1(Ω)

.z

N+p∑

n=N

(∥∥∥R̃n(u)
∥∥∥
2

H1(Rd−1)
+ 〈n〉2

∥∥∥R̃n(u)
∥∥∥
2

L2(Rd−1)

)
−−−−→
N→∞

0.

This proves that the series
∑
Rn(u) converges to some R(u) ∈ H1(Ω). Moreover, with the first

inequality of (4.1) and Proposition 3.2 again, we see that

‖R(u)‖L2(Ω) .
‖u‖L2(Ω)

d(z,Sa)
, (4.2)

uniformly in z. It remains to see that

∀v ∈ H1(Ω), qa(R(u), v)− z 〈R(u), v〉 = 〈u, v〉 ,
which comes from the fact that this is true with R(u) and u are replaced by Rn(u) and un⊗ϕn(a)
respectively. This proves that R(u) ∈ D(Ha) and (Ha − z)R(u) = u. If Re(z) < 0, we already
know that (Ha − z) has a bounded inverse on L2(Ω), and hence we have (Ha − z)−1 = R. This
proves the second statement of the proposition when Re(z) < 0.
• Let u ∈ D(Ha) and v = (Ha + 1)u ∈ L2(Ω). For n ∈ N and almost all x ∈ R

d−1 we set
vn(x) = 〈v(x, ·), ϕ∗

n(a)〉L2(0,l). According to (ii) applied with z = −1 we have

u = (Ha + 1)−1v =
∑

n∈N

(
−∆x + λn(a)

2 + 1
)−1

vn ⊗ ϕn(a).

By uniqueness for the decomposition of u(x, ·) with respect to the Riesz basis (ϕn(a))n∈N, we
have for all n ∈ N

un =
(
−∆x + λn(a)

2 + 1
)−1

vn.

This proves that un ∈ H2(Rd−1). Then

Hau = v − u =
∑

n∈N

(
1−

(
−∆x + λn(a)

2 + 1
)−1
)
vn ⊗ ϕn(a)

=
∑

n∈N

(
−∆x + λn(a)

2
)
un ⊗ ϕn(a).

This proves the first statement of the proposition.
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• It remains to finish the proof of (ii). Let z ∈ C \ S and w ∈ D(Ha). With (i) we see that
R
(
(Ha− z)w

)
= w. Since we already know that (Ha− z)R(u) = u for all u ∈ L2(Ω), this proves

that R is a bounded inverse for (Ha − z)−1 on L2(Ω). The estimate on (Ha − z)−1 follows from
(4.2), and the proposition is proved. �

As a first application of this proposition, we can check that the operator Ha has no eigenvalue,
as is the case for −∆x:

Corollary 4.4. The operator Ha has no eigenvalue.

Proof. Let z ∈ C and u ∈ D(Ha) be such that (Ha − z)u = 0. Then according to the first item
of Proposition 4.3 we have

∑

n∈N

(
−∆+ λn(a)

2 − z
)
un ⊗ ϕn(a) = 0.

This implies that for all n ∈ N we have
(
−∆+ λn(a)

2 − z
)
un = 0

in L2(Rd−1), and hence un = 0 since the operator −∆x has no eigenvalue. Finally u = 0, and
the proposition is proved. �

However, the main point in Proposition 4.3 is the second:

Corollary 4.5. Theorem 1.2 holds when a > 0 is constant.

Proof. According to the last statement of Proposition 3.1 and the fact that Im(λn(a)
2) < 0 for

all n ∈ N, there exists γ > 0 such that for all z ∈ Sa we have Im(z) 6 −3γ. With Proposition
4.3, the conclusion follows. �

5. Non-constant absorption index

In this section we prove Theorems 1.2 and 1.3 for a non-constant absorption index a. For
b ∈W 1,∞(∂Ω) we denote by Θb ∈ L(H1(Ω), H−1(Ω)) the operator such that for all ϕ, ψ ∈ H1(Ω)

〈Θbϕ, ψ〉H−1(Ω),H1(Ω) =

∫

∂Ω

bϕψ.

We denote by θb the corresponding quadratic form on H1(Ω). We also denote by H̃a the operator

in L
(
H1(Ω), H−1(Ω)

)
such that

〈
H̃aϕ, ψ

〉
H−1,H1

= qa(ϕ, ψ) for all ϕ, ψ ∈ H1(Ω). Let z ∈ C+.

According to the Lax-Milgram Theorem, (1 + i)(H̃a − z) is an isomorphism from H1(Ω) to
H−1(Ω). Moreover, for f ∈ L2(Ω) ⊂ H−1(Ω) we have

(H̃a − z)−1f = (Ha − z)−1f.

The following proposition relies on a suitable version of the so-called quadratic estimates:

Proposition 5.1. Let a0 > 0 be as in the statement of Theorem 1.1. Let B ∈ L
(
H1(Ω), L2(Ω)

)
.

Then there exists C > 0 such that for all z ∈ C+ we have
∥∥∥B(H̃a − z)−1B∗

∥∥∥
L(L2(Ω))

6 C
∥∥∥B(H̃a0 − z)−1B∗

∥∥∥
L(L2(Ω))

.

Proof. For z ∈ C+ the resolvent identity applied to Ha = Ha0 +Θa−a0 gives

B(H̃a − z)−1B∗ = B(H̃a0
− z)−1B∗ −B(H̃a0

− z)−1Θa−a0
(H̃a − z)−1B∗. (5.1)

Let ϕ, ψ ∈ L2(Ω). Since Θa−a0 is associated to a non-negative quadratic form on H1(Ω), the
Cauchy-Schwarz inequality gives

〈
B(H̃a0

− z)−1Θa−a0
(H̃a − z)−1B∗ϕ, ψ

〉
L2

=
〈
Θa−a0

(H̃a − z)−1B∗ϕ, (H̃∗
a0

− z)−1B∗ψ
〉
H−1,H1

6 θa−a0

(
(H̃a − z)−1B∗ϕ

) 1
2 × θa−a0

(
(H̃∗

a0
− z)−1B∗ψ

) 1
2 .
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The first factor is estimated as follows:

θa−a0

(
(H̃a − z)−1B∗ϕ

)
6 θa

(
(H̃a − z)−1B∗ϕ

)

6
1

2i

〈
2i(Θa + Im z)(H̃a − z)−1B∗ϕ, (H̃a − z)−1B∗ϕ

〉
H−1,H1

6
1

2i

〈
B
(
(H̃a − z)−1 − (H̃∗

a − z)−1
)
B∗ϕ,ϕ

〉
L2

6
∥∥∥B(H̃a − z)−1B∗

∥∥∥
L(L2)

‖ϕ‖2L2 .

We can proceed similarly for the other factor, using the fact that a− a0 6 αa0 for some α > 0.
Thus there exists C > 0 such that

∥∥∥B(H̃a0 − z)−1Θa−a0(H̃a − z)−1B∗

∥∥∥ 6 C
∥∥∥B(H̃a0 − z)−1B∗

∥∥∥
1
2
∥∥∥B(H̃a − z)−1B∗

∥∥∥
1
2

6
C2

2

∥∥∥B(H̃a0
− z)−1B∗

∥∥∥+ 1

2

∥∥∥B(H̃a − z)−1B∗

∥∥∥ .

With (5.1), the conclusion follows. �

Now we can finish the proof of Theorem 1.2:

Proof of Theorem 1.2. According to Corollary 4.5 and Proposition 5.1 applied with B = IdL2(Ω)

(note that we can simply replace H̃a by Ha when B ∈ L(L2(Ω))), there exists C > 0 such
that

∥∥(Ha − z)−1
∥∥
L(L2(Ω))

6 C for all z ∈ C+. Then it only remains to choose γ ∈
]
0, 1

3C

[
to

conclude.
�

Let us now turn to the proof of Theorem 1.3. We first prove other resolvent estimates.
Compared to the estimate of Theorem 1.2, the first estimate of Proposition 5.2 requires a weight
but decays for Re(z) ≫ 1. This allows to add a power of −∆x in the second estimate, which
gives the smoothing effect.

Proposition 5.2. Let δ > 1
2 . Then there exists C > 0 such that for all z ∈ C+ we have

∥∥∥〈x〉−δ
(Ha − z)−1 〈x〉−δ

∥∥∥
L(L2(Ω))

6 C 〈z〉−
1
2

and ∥∥∥〈x〉−δ
(1−∆x)

1
4 (Ha − z)−1(1−∆x)

1
4 〈x〉−δ

∥∥∥
L(L2(Ω))

6 C.

Proof. This result is well-known if we replace (Ha − z)−1 by (−∆x − z)−1 and L(L2(Ω)) by
L(L2(Rd−1)). When a is a constant, we obtain the result using the separation of variables

as in Section 4. Then we conclude with Proposition 5.1 with B = 〈x〉−δ
(1 − ∆x)

1
4 . In fact,

we first obtain an estimate on the resolvent (H̃a − z)−1, but this proves that the operator

〈x〉−δ
(1−∆x)

1
4 (Ha − z)−1(1−∆x)

1
4 〈x〉−δ

extends to a bounded operator on L2(Ω), and then
the same estimate holds for the corresponding closure. �

Proof of Theorem 1.3. With the second estimate of Proposition 5.2, we can apply the theory of
relatively smooth operators (see §XIII.7 in [RS79]). However, since Ha is not self-adjoint but
only maximal dissipative, we have to use a self-adjoint dilation (see [NF10]) of Ha, as is done in
the proof of [Roy10b, Proposition 5.6] (see also Proposition 2.24 in [Roy10a]). �

6. Time decay for the Schrödinger equation

In this section we prove Theorem 1.1. Let u0 ∈ D(Ha) and let u be the solution of the
problem (1.1). We know that ‖u(t)‖L2(Ω) 6 ‖u0‖L2(Ω) for all t > 0, so the result only concerns

large times. Let γ > 0 be given by Theorem 1.2. Let χ ∈ C∞(R) be equal to 0 on ]−∞, 1] and
equal to 1 on [2,+∞[. For t ∈ R we set

uχ(t) = χ(t)u(t),

and for z ∈ C+:

v(z) =

∫

R

eitzuχ(t) dt.
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The map t 7→ e−γtuχ(t) belongs to L1(R) ∩ L2(R) ∩ C1(R) and its derivative is in L1(R) so

τ 7→ v(τ + iγ) is bounded and decays at least like 〈τ〉−1
. In particular it is in L2(R). For R > 0

we set

uR(t) =
1

2π

∫ R

−R

e−it(τ+iγ)v(τ + iγ) dτ.

Then ∥∥e−tγ(uχ − uR)
∥∥
L2(Rt,L2(Ω))

−−−−−→
R→+∞

0.

Since uχ is continuous, Theorem 1.1 will be proved if we can show that there exists C > 0 which
does not depend on u0 and such that for all t > 0 we have

lim sup
R→∞

‖uR(t)‖L2(Ω) 6 Ce−γt ‖u0‖L2(Ω) . (6.1)

For z ∈ C we set

θ(z) = −i
∫

R

eitzχ′(t)u(t) dt = −i
∫ 2

1

eitzχ′(t)u(t) dt.

Let z ∈ C+. We multiply (1.1) by χ(t)eitz and integrate over t ∈ R. After partial integration
we obtain

v(z) = (Ha − z)−1θ(z).

Then v extends to a holomorphic function on C3γ , taking this equality as a definition. According
to the Cauchy Theorem we have in L2(Rt)

lim
R→∞

uR(t) =
1

2π
lim

R→∞

∫ R

−R

e−it(τ−2iγ)v(τ − 2iγ) dτ = e−2γt lim
R→∞

ũR(t), (6.2)

where for t ∈ R we have set

ũR(t) =

∫ R

−R

e−itτv(τ − 2iγ) dτ.

According to Plancherel’s equality and Theorem 1.2 we have uniformly in R > 0:
∫

R

‖ũR(t)‖2L2(Ω) dt =

∫ R

−R

∥∥∥
(
Ha − (τ − 2iγ)

)−1
θ(τ − 2iγ)

∥∥∥
2

L2(Ω)
dτ

.

∫

R

‖θ(τ − 2iγ)‖2L2(Ω) dτ

.

∫

R

e2γt |χ′(t)| ‖u(t)‖2L2(Ω) dt

. ‖u0‖2L2(Ω) .

In particular there exists C > 0 such that for u0 ∈ D(Ha) and R > 0 we can find T (u0, R) ∈ [0, 1]
which satisfies

‖ũR(T (u0, R))‖L2(Ω) 6 C ‖u0‖L2(Ω) .

Let R > 0. Then ũR ∈ C1(R) and for t > 1 we have

ũR(t) = e−i(t−T (u0,R))Ha ũR(T (u0, R)) +

∫ t

T (u0,R)

∂

∂s

(
e−i(t−s)Ha ũR(s)

)
ds,

where

∂

∂s

(
e−i(t−s)Ha ũR(s)

)
=

∂

∂s

∫ R

−R

e−isτe−i(t−s)Ha
(
Ha − (τ − 2iγ)

)−1
θ(τ − 2iγ) dτ

= i

∫ R

−R

e−i(t−s)Hae−isτ (Ha − τ)
(
Ha − (τ − 2iγ)

)−1
θ(τ − 2iγ) dτ

= 2γe−i(t−s)Ha ũR(s) + ie−i(t−s)Ha

∫ R

−R

e−isτθ(τ − 2iγ) dτ.

This proves that the map s 7→ ∂
∂s

(
e−i(t−s)Ha ũR(s)

)
belongs to L2([0, t], L2(Ω)) uniformly in t

and R > 0, and its L2([0, t], L2(Ω)) norm is controlled by the norm of u0 in L2(Ω). We finally
obtain C > 0 such that for all t ∈ R and R > 0 we have

‖ũR(t)‖L2(Ω) 6 C 〈t〉
1
2 ‖u0‖L2(Ω) .
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With (6.2) this proves (6.1) and concludes the proof of Theorem 1.1.

7. The case of a weakly dissipative boundary condition

In this section we prove Theorem 1.4 about the problem (1.5). The absorption index a now
takes the value al on R

d−1 × {l} and a0 on R
d−1 × {0}.

The proof follows the same lines as in the dissipative case, except that well-posedness of the
problem is not an easy consequence of the general dissipative theory. We will use the separation
of variables as in Section 4 instead. Once we have a decomposition as in Proposition 4.2 for the
initial datum, we can propagate each term by means of the unitary group generated by −∆x

and define the solution of (1.5) as a series of solutions on R
d−1.

Let us first look at the transverse problem. The transverse operator on L2(0, l) corresponding

to the problem (1.5) is now given by Tal,a0
= − d2

dy2 with domain

D(Tal,a0) =
{
u ∈ H2(0, l) : u′(0) = −ia0u(0), u′(l) = ialu(l)

}
.

If al > 0 and a0 > 0 (or if one of them vanishes) then we can reproduce exactly the same analysis
as in Section 3. In particular, there is no restriction on the sizes of these coefficients. The results
we give here to handle the weakly dissipative case are also valid in this situation.

The strategy will be the same as in Section 3, so we will only emphasize the differences. We
first remark that 0 is an eigenvalue of Tal,a0

if and only if al = a0 = 0. Otherwise, λ2 ∈ C
∗ is an

eigenvalue of Tal,a0
if and only if

(λ− al)(λ− a0)e
2iλl = (λ+ al)(λ+ a0). (7.1)

We recover (3.3) when al = a0.

Lemma 7.1. Let al, a0 ∈ R and λ ∈ C
∗ be such that al + a0 6= 0 and λ2 is an eigenvalue of

Tal,a0 . Then Re(λ) /∈ νN.

We recall from [KBZ06] that if al + a0 = 0 (PT -symmectric case) then n2ν2 ∈ σ(Tal,a0
) for

all n ∈ N
∗ (see also Figure 1 for al + a0 > 0 small).

Proof. • We assume by contradiction that Re(λ) ∈ νN. According to (7.1) we have

(λ+ al)(λ+ a0)

(λ− al)(λ− a0)
= e2ilλ = e−2l Im(λ) ∈ R

∗
+.

After multiplication by |λ− al|2 |λ− a0|2 ∈ R
∗
+ we obtain

(
|λ|2 − 2ial Im(λ)− a2l

)(
|λ|2 − 2ia0 Im(λ)− a20

)
∈ R

∗
+.

Taking the real and imaginary parts gives

|λ|4 − (a2l + a20) |λ|2 + a2l a
2
0 − 4ala0 Im(λ)2 > 0 (7.2)

and
2 Im(λ)(al + a0)

(
|λ|2 − ala0

)
= 0. (7.3)

• Assume that ala0 > 0. In this case Im(λ) 6= 0 (for the same reason as in the proof of

Proposition 2.6), so (7.3) implies |λ|2 = ala0. Then (7.2) reads

−ala0(al − a0)
2 − 4ala0 Im(λ)2 > 0,

which gives a contradiction.
• Now assume that ala0 < 0. Then (7.3) implies Im(λ) = 0 and hence e2ilλ = 1. From (7.1)
we now obtain

(λ− al)(λ− a0) = (λ+ al)(λ+ a0),

which is impossible since λ(al + a0) 6= 0. This concludes the proof. �

Proposition 7.2. There exists ρ > 0 such that if |al|+|a0| 6 ρ and al+a0 > 0 then the spectrum
of Tal,a0

is given by a sequence (λn(al, a0)
2)n∈N of algebraically simple eigenvalues such that

sup
n∈N

Im
(
λn(al, a0)

2
)
< 0.

Moreover, any sequence of normalized eigenfunctions corresponding to these eigenvalues forms
a Riesz basis.
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Figure 1. λn(al, a0) for n ∈ {0, . . . , 30} and l = π.

Proof. As in the proof of Proposition 3.1 we can see that for any R > 0 there exists CR > 0
such that if λ2 ∈ C

∗ is an eigenvalue of Tal,a0 we have

|Reλ| 6 R =⇒ |Imλ| 6 CR. (7.4)

The operator Tal,a0
depends analytically on the parameters al and a0, and we know that when

al = a0 = 0 the eigenvalues n2ν2 for n ∈ N are algebraically simple. With the restrictions given
by (7.4) and Lemma 7.1, we obtain as in Section 3 a sequence of maps (al, a0) 7→ λn(al, a0) such
that the eigenvalues of Tal,a0 are λn(al, a0)

2 for n ∈ N. Let n ∈ N
∗. We have

λn(al, a0) = nν − i

nπ
(al + a0) + γ(al + a0)

2 +O
(
|al|3 , |a0|3

)
, (7.5)

with Re(γ) = l/(nπ)3 > 0. As in the dissipative case, we obtain that for any al, a0 with
al + a0 > 0 these eigenvalues λn(al, a0) are simple. If moreover al and a0 are small enough, the
eigenvalue λn(al, a0)

2 is close to (nν)2 and away from the real axis uniformly in n ∈ N
∗ (the first

two terms in (7.5) are also the first two terms of the asymptotic expansion for large n and fixed
al and a0). It remains to check that we also have Im(λ0(al, a0)

2) < 0. For small al, a0 we denote
by ϕal,a0

(0) a normalized eigenvector corresponding to the eigenvalue λ0(al, a0)
2 and depending

analytically on al and a0. For all ψ ∈ H1(0, l) we have
〈
ϕ′
al,a0

, ψ′
〉
L2(0,l)

− ialϕal,a0
(l)ψ(l)− ia0ϕal,a0(0)ψ(0) = λ0(al, a0)

2 〈ϕal,a0 , ψ〉L2(0,l)

We apply this with ψ = ϕal,a0 , take the derivatives with respect to al and a0 at point (al, a0) =
(0, 0), and use the facts that ϕ0,0 is constant and λ0(0, 0) = 0. We obtain

∇al,a0

(
λ20
)
= − i

l

(
1, 1
)
.

This proves that Im
(
λ0(al, a0)

2
)
< 0 if al and a0 are small enough with al + a0 > 0. The Riesz

basis property relies as before on the fact that

|λn(al, a0)− nν| = O(n−1).

For this point we can follow what is done in Section 3 for the dissipative case. �

For n ∈ N and al, a0 ∈ R with al + a0 > 0 we consider a normalized eigenvector ϕn(al, a0) ∈
L2(0, l) corresponding to the eigenvalue λn(al, a0)

2 of Tal,a0 . We denote by (ϕ∗
n(al, a0))n∈N the

dual basis.

Proposition 7.3. Let u0 ∈ D(Ha). Then the problem (1.5) has a unique solution u ∈ C1(R, L2(Ω))∩
C0(R,D(Ha)). Moreover if we write

u0 =
∑

n∈N

u0,n ⊗ ϕn(al, a0)
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where u0,n ∈ L2(Rd−1), then u is given by

u(t) =
∑

n∈N

(
e−it(−∆x+λn(al,a0)

2)u0,n

)
⊗ ϕn(al, a0).

Proof. • Assume that u ∈ C0(R+,D(Ha)) ∩ C1(R∗
+, L

2(Ω)) is a solution of (1.5). Let t ∈ R
∗
+.

For all n ∈ N and almost all x ∈ R
d−1 we can define un(t, x) = 〈u(t;x, ·), ϕ∗

n(al, a0)〉L2(0,l), so

that in L2(Ω)

u(t) =
∑

n∈N

un(t)⊗ ϕn(al, a0).

According to Proposition 4.3 (which can be proved exactly the same way in this context) we
have un(t) ∈ H2(Rd−1) for all t ∈ R

∗
+ and n ∈ N, and for s ∈ R

∗ we have

i
u(t+ s)− u(t)

s
−Hau(t) =

∑

n∈N

(
i
un(t+ s)− un(t)

s
−
(
−∆x + λn(al, a0)

2
)
un(t)

)
⊗ϕn(al, a0).

Let n ∈ N. According to Proposition 3.2 we have
∥∥∥∥i
un(t+ s)− un(t)

s
−
(
−∆x + λn(al, a0)

2
)
u(t)

∥∥∥∥
L2(Rd−1)

.

∥∥∥∥i
u(t+ s)− u(t)

s
−Hau(t)

∥∥∥∥
L2(Ω)

−−−→
s→0

0.

This proves that un is differentiable and for all t > 0

iu′n(t) =
(
−∆x + λn(al, a0)

2
)
un(t).

Then for all t > 0

un(t) = e−it(−∆x+λn(al,a0)
2)un(0) = e−it(−∆x+λn(al,a0)

2)u0,n.

• Conversely, let us prove that the function u defined by the statement of the proposition
is indeed a solution of (1.5). Let t ∈ R. According to Proposition 4.3, u0,n and hence

e−it(−∆x+λn(al,a0)
2)u0,n belong to H2(Rd−1) for all n ∈ N. Therefore u(t) ∈ D(Ha). Then

for all s ∈ R
∗ we have

∑

n∈N

∥∥∥∥∥

(
i
e−is(−∆x+λn(al,a0)

2) − 1

s
−
(
−∆x + λn(al, a0)

2
)
)
e−it(−∆x+λn(al,a0)

2)u0,n

∥∥∥∥∥

2

L(Rd−1)

.t

∑

n∈N

∥∥∥∥
1

s

∫ s

0

(
e−is(−∆x+λn(al,a0)

2) − 1
) (

−∆x + λn(al, a0)
2
)
u0,n ds

∥∥∥∥
2

L(Rd−1)

.t

∑

n∈N

∥∥(−∆x + λn(al, a0)
2
)
u0,n ds

∥∥2
L(Rd−1)

.t ‖Hau0‖2L2(Ω)

This series of functions converges uniformly in s so we can take the limit, which proves that for
any t ∈ R ∥∥∥∥i

u(t+ s)− u(t)

s
−Hau(t)

∥∥∥∥
2

−−−→
s→0

0.

This proves that u is differentiable and iu′(t)+Hau(t) = 0, so u is indeed a solution of (1.5). �

Now we can prove Theorem 1.4:

Proof of Theorem 1.4. According to Proposition 7.3 we have existence and uniqueness for the
solution u of the problem 1.5. Then with Proposition 3.2 we have

‖u(t)‖2L2(Ω) .
∑

n∈N

∥∥∥e−it(−∆x+λn(al,a0)
2)u0,n

∥∥∥
2

L2(Rd−1)

.
∑

n∈N

et Im(λn(al,a0)
2) ‖u0,n‖2L2(Rd−1) .
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Proposition 7.2 gives γal,a0 > 0 such that

‖u(t)‖2L2(Ω) . e−tγal,a0

∑

n∈N

‖u0,n‖2L2(Rd−1) . e−tγal,a0 ‖u0‖2L2(Ω) ,

which concludes the proof. �

In the end of this section we show that the smallness assumption on |al|+ |a0| is necessary in
Theorem 1.4. More precisely, if |al| and |a0| are too large, then the transverse operator Tal,a0

has eigenvalues with positive imaginary parts and hence the solution of the Schrödinger equation
grows exponentially.

Proposition 7.4. Let al, a0 ∈ R with al + a0 > 0 and ala0 < 0. Let n ∈ N. If s > 0 is large
enough, we have Im

(
λn(sal, sa0)

2
)
> 0.

Proof. We know that the curves s 7→ λn(sal, sa0) for n ∈ N are defined for all s ∈ R and remain
bounded. Moreover we have chosen the square root λn(sal, sa0) of λn(sal, sa0)

2 which has a
non-negative real part, so the imaginary parts of λn(sal, sa0) and λn(sal, sa0)

2 have the same
signs. Assume that ala0 < 0, and let n ∈ N

∗ be fixed. We have

(λn(sal, sa0) + sal)(λn(sal, sa0) + sa0)

(λn(sal, sa0)− sal)(λn(sal, sa0)− sa0)
= 1 +

2λn(al, a0)

s

(
1

al
+

1

a0

)
+ O

s→+∞

(
s−2
)
. (7.6)

Since Re(λn(sal, sa0)) > nν and Im(λn(sal, sa0)) is bounded, this quantity is of norm less than
1 when s > 0 is large enough, so

e−2l Im(λn(sal,sa0)) =
∣∣∣e2ilλn(sal,sa0)

∣∣∣ < 1,

and hence Im(λn(sal, sa0)) > 0. When n = 0, the same holds if we can prove that λ0(sal, sa0)
does not go to 0 for large s. Indeed, in this case the only possibility to have

e2ilλ0(sal,sa0) → 1

is that λ0(sal, sa0) goes to ν, and then Re(λ0(sal, sa0)) is bounded by below by a positive
constant, and we can conclude as before. So assume by contradiction that λ0(sal, sa0) goes to 0
as s goes to +∞. Then we have

e2ilλ0(sal,sa0) = 1 + 2ilλ0(sal, sa0) + O
s→+∞

(
|λ0(sal, sa0))|2

)
,

which gives a contradiction with (7.6), where the rest O(s−2) has to be replaced by O
(
λ20s

−2
)
.

This concludes the proof. �

Remark 7.5. We remark from (7.5) (see also Figure 1) that given al, a0 ∈ R such that al+a0 > 0
we always have Im(λn(al, a0)) < 0 if n is large enough. By duality, this means that there is
always an eigenvalue with positive imaginary part when al + a0 < 0, and hence the norm of the
solution of (1.5) is always exponentially increasing in this case.
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[KT08] D. Krejčǐŕık and M. Tater. Non-Hermitian spectral effects in a PT -symmetric waveguide. J. Phys. A,

Math. Theor., 41(24):14, 2008.
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