
HAL Id: hal-00954589
https://hal.science/hal-00954589

Submitted on 3 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Input-output identification of controlled discrete
manufacturing ystems

Ana Paula Estrada Vargas, Ernesto López-Mellado, Jean-Jacques Lesage

To cite this version:
Ana Paula Estrada Vargas, Ernesto López-Mellado, Jean-Jacques Lesage. Input-output identification
of controlled discrete manufacturing ystems. International Journal of Systems Science, 2014, 45 (3),
pp. 456-471. �hal-00954589�

https://hal.science/hal-00954589
https://hal.archives-ouvertes.fr

INPUT-OUTPUT IDENTIFICATION OF CONTROLLED DISCRETE

MANUFACTURING SYSTEMS

Ana Paula Estrada-Vargas
1,2

, Ernesto López-Mellado
1
, Jean-Jacques Lesage

2

1
CINVESTAV Unidad Guadalajara. Av. Del Bosque 1145, Col. El Bajío, 45019

Zapopan, Mexico

2
 LURPA Ecole Normale Supérieure de Cachan. 61, av du Président Wilson, 94235

Cachan Cedex, France.

ABSTRACT

The automated construction of discrete event models from observations of external

system’s behaviour is addressed. This problem, often referred to as system

identification, allows obtaining models of ill-known (or even unknown) systems. In

this article an identification method for Discrete Event Systems (DESs) controlled by

a Programmable Logic Controller is presented. The method allows processing a

large quantity of observed long sequences of input/output signals generated by the

controller and yields an interpreted Petri net model describing the closed-loop

behaviour of the automated DESs. The proposed technique allows the identification

of actual complex systems because it is sufficiently efficient and well adapted to

cope with both the technological characteristics of industrial controllers and data

collection requirements. Based on polynomial-time algorithms, the method is

implemented as an efficient software tool which constructs and draws the model

automatically; an overview of this tool is given through a case study dealing with an

automated manufacturing system.

Keywords: Automated Modelling, Controlled DES, I-O Identification, Interpreted

Petri Nets.

1. Introduction

1.1 Industrial systems identification

In automation engineering, the first step of the development life cycle of new systems

is generally devoted to the modelling of the system’s behaviour. In most cases these models

are used for functional or performance evaluation by analytical approaches or simulation

techniques. In this paper, the problem we address is the model discovery of systems whose

models are not updated or are not available at all. We will see later that this situation occurs

frequently in industry. Nevertheless, despite the lack of a "reliable" model, performance

evaluation or redesign is often required.

Modelling existing systems (natural or manmade) for performance assessment has been

done in several fields:

• Natural systems: in [Chang and Hanna, 2004] a model for evaluating the quality of air

is proposed, • Organizations: Hospital activity management is analysed through workflow models

[Du, 2009], • Energy production [Connolly, 2010] and industrial systems [Mottershead, 1993] may

require more detailed and complete models for simulation.

In industrial systems under intensive workload, initial models are not always updated. In

[Lanubile, 2002], the authors explain that a typical approach to software maintenance is

analysing just the source code, applying some patches, releasing the new version, and then

updating the documentation. This quick-fix approach usually leads to documentation that is

not aligned with the current system and degrades the original system structure, thus

rendering the evolution of the system costly and error-prone.

This last case is representative of automated discrete production systems in which

Programmable Logic Controller (PLC) code maintenance is often performed without

updating the documentation nor the control algorithm or model. For such systems,

identification from observations of external system’s behaviour could be more appropriate,

since the system is operating most of the time. In this case the main advantage of

identification is that the obtained model approximates closely the actual system

functioning. An identified model can be afterwards completed by applying well known

modelling techniques using the knowledge about the process, for analysis or redesign

purposes.

1.2 Identification methods

1.2.1 Languages inference techniques

Pioneer works on identification have been developed in computer science, where the

problem of obtaining a language representation from sets of accepted words has been dealt

since a long time. Such methods are generally referred as languages inference techniques or

learning techniques.

Gold´s method [Gold, 1967] processes positive samples: an infinite sequence of

examples such that the sequences contain all and only all the strings of the language to

learn.

The Probably Approximately Correct (PAC) learning technique proposed in [Valiant,

1984] learns from random examples and studies the effect of noise on learning from

queries.

The query learning model proposed in [Angluin, 1988] considers a learning protocol

based on a “minimally adequate teacher”; this teacher can answer two types of queries:

membership query and equivalence query.

Several works that have adopted state machines as representation model, allow

describing the observed behaviour. In [Booth, 1967] a method to model a language as

Moore or Mealy machines is presented. The system under investigation is placed within a

test bed and connected to a so called experimenter, which generates the input signals and

records the output signals of the system. The identification can be started considering a

very few number of states. If, at some point of the experiment, it is impossible to find a

correct machine with the assumed number of states, the identification is started again

considering a machine with one more state.

The method proposed in [Kella, 1971] allows obtaining models representing Mealy

machines from a single observed input-output sequence. The algorithm lists all reduced

machines which may produce the given sequence. The construction principle is the merging

of equivalent states.

In [Biermann and Feldman, 1972] a method for the identification of non deterministic

Moore machines based on a set of input output sequences is presented. All the sequences

start in the same initial state. The identification principle is the reduction of an initial

machine represented as a tree.

The method presented in [Veelenturf, 1978] processes simultaneously a sample of

sequences to produce stepwise convergent series of Mealy machines, such that the

behaviour of every new machine includes the behaviour of the previous one. At each step,

the last obtained machine is analysed and completed by adding transitions and possibly new

states.

Later, in [Veelenturf, 1981] an algorithm to identify a unique Moore machine

generating the behaviour observed during m sequences starting at the same initial state is

proposed. The learning procedure operates in three steps: induction, contradiction, and

discrimination. A state can never be deleted and only transitions between states can be

modified. This method is improved in [Richetin, 1984], which proposes two algorithms to

identify multiple systems as well as systems that may not be initialized between two

records.

The identification problem for context free grammars (CFGs) needs, beside given

examples, some additional structural information for the inference algorithm [Levy and

Joshi, 1978].

[Ishizaka, 1990] has investigated a subclass of CFGs called simple deterministic

grammars. A polynomial time algorithm that allows an exact identification of a simple

deterministic language is given.

In [Takada, 1998] it has been shown that the grammatical inference problem for even

linear languages can be reduced in polynomial time to the inference of regular languages.

Other works use as description formalism Petri net models. In [Hiraishi, 1992] an

algorithm for synthesising Petri net models is presented. The proposed algorithm has two

phases. In the first phase, the language of the target system is identified under the form of a

DFA. In the second phase, a Petri net that accepts the same language as the DFA is built.

1.2.2 Recent DESs identification methods

In recent years, the scientific community has proposed identification approaches (based

on Petri net or automata) for obtaining approximated models of DESs whose behaviour is

unknown or ill-known. In the context of automated DESs, identification methods can be

complementary to established modelling techniques; identification builds a closed-loop

controller-plant model, which is more classically obtained by a composition of models of

controller and plant. Three main approaches for identifying DESs have been proposed in

literature [Estrada, 2010a].

The incremental synthesis approach, proposed in [Meda, 2000], [Meda, 2001], [Meda,

2003], deals with unknown partially measurable concurrent DESs exhibiting cyclic

behaviour. Several algorithms have been proposed allowing the on-line building of

interpreted Petri net (PN) models from the DES outputs. Although the techniques are

efficient, the obtained models may represent more sequences than those observed.

In [Giua, 2005] a method to build a free labelled PN from a finite set of transitions

strings is presented. This method is based on the resolution of an Integer Linear

Programming (ILP) problem; the obtained PN generates exactly the observed language.

Both the ILP statement and its solution are computational demanding. This approach has

been extended to other PN classes [Cabasino, 2007], [Dotoli, 2008], [Fanti, 2008] [Dotoli,

2011]; however, issues regarding applications to actual industrial DESs have not yet been

addressed in these works.

Another recent off-line method [Klein, 2005] allows building a non-deterministic finite

automaton (FA) from a set of input/output (I/O) sequences, experimentally measured from

the DES to be identified. Under several hypotheses, the constructed FA generates exactly

the same I/O sequences of given length than observed ones. The method was conceived for

fault detection in a model-based approach [Roth, 2012]. Extensions to this work propose an

identification method performing optimal partitioning of concurrent subsystems for

distributed fault detection purposes [Roth, 2010].

Other works on the matter, based on different approaches have been proposed. The

techniques for workflow mining, published by van der Aalst and co-workers [Cook,

2004][van der Aalst, 2004], allows building Petri net models of workflow processes in

which all the activities are observable. Other works pursue the construction of a stochastic

PN from recorded event sequences [Ould El Medhi, 2006] [Ould El Medhi, 2012] for

reliability analysis.

1.3 Approach

Our approach is oriented towards the identification of actual industrial automated

DESs, such as discrete manufacturing systems in which concurrent repetitive tasks are

performed. We focus on closed loop controlled systems whose only available knowledge is

the observed behaviour in the form of many long cyclic sequences of input-output vectors

measured from a PLC. The aim of this research is to define an efficient identification

method, able to build a comprehensible IPN model that describes closely the actual

behaviour of the system.

In a first paper we proposed a method for synthesizing interpreted PN (IPN) for coping

with concurrent partially observable DESs [Estrada, 2009]; it processes a set of cyclic

sequences of binary output signals yielding models including silent transitions and non-

labelled places. Afterwards the method has been extended for dealing with sequences of I/O

signals captured during the closed-loop operation of PLC-based controlled DESs [Estrada,

2010b]. Fundamental technological characteristics of industrial controllers are taken into

account in data collection and processing. The obtained model is a safe (1-bounded) IPN

describing the controller-plant concurrent behaviour, including that non observable directly

from the PLC. The present paper gathers and details the results of these papers; it presents a

global and coherent view of these results, includes a wider literature review, and extends

them with important application issues. For that, we describe an operational software tool

which implements the proposed identification method, which builds and draws by building

and drawing the IPN model automatically.

The paper is organized as follows. In section 2 the background on Petri nets and

languages is summarised. Based on these definitions the problem of DESs identification is

stated in section 3 in terms of language associated to an IPN. Several constraints inherent to

real controlled DESs are analysed in section 4. The identification algorithm is given in

section 5. Then, a software tool implementing the proposed method is outlined and a case

study is included in section 6.

2. Basics on Petri nets and languages

This section presents the basic concepts and notation of PN and IPN used in this paper.

Definition 1: An ordinary Petri Net structure G is a bipartite digraph represented by the

4-tuple G = (P, T, I, O) where: P = {p1, p2, ..., p|P|} and T = {t1, t2, ..., t|T|} are finite sets of

vertices named places and transitions respectively; I(O) : P × T → {0, 1} is a function

representing the arcs going from places to transitions (from transitions to places).

The symbol
•
tj (tj

•
) denotes the set of all places pi such that I(pi, tj) ≠ 0 (O(pi, tj) ≠ 0).

Such places are called input (output) places of tj. Analogously,
•
pi (pi

•
) denotes the set of

input (output) transitions of pi.

The incidence matrix of G is C = C
+
 − C

−
, where C

−
 = [cij

−
]; cij

−
 = I(pi, tj); and

C
+
 = [cij

+
]; cij

+
 = O(pi, tj) are the pre-incidence and post-incidence matrices respectively.

A marking function M : P→Z
 +

 represents the number of tokens residing inside each

place; it is usually expressed as an |P|-entry vector. Z
 +

is the set of nonnegative integers.

Definition 2: A Petri Net system or Petri Net (PN) is the pair N = (G,M0), where G is a

PN structure and M0 is an initial marking.

In a PN system, a transition tj is enabled at marking Mk if ∀pi ∈ P, Mk(pi) ≥ I(pi, tj); an

enabled transition tj can be fired reaching a new marking Mk+1 which can be computed as

Mk+1 = Mk + Cvk, where vk(i) = 0, i≠j, vk(j) = 1, this equation is called the PN state

equation. The reachability set of a PN is the set of all possible reachable markings from M0

firing only enabled transitions; this set is denoted by R(G, M0). A PN is called safe (or 1-

bounded) if∀Mk ∈ R(G, M0), ∀pi ∈ P, Mk(pi) ≤ 1. Now it is defined IPN, an extension to

PN that allows associating input and output signals to PN models.

Definition 3 : An IPN (Q, M0) is a net structure Q = (G, Σ, Φ, λ, ϕ) with an initial

marking M0 where:

G is a PN structure, Σ = {α1, α2, ..., αr} is the input alphabet, and Φ = {φ1, φ2,..., φq} is

the output alphabet.

λ : T→ g(Σ)∪{ε} is a labeling function of transitions, where g(Σ) is a conjunction of

input changes (rising and falling edges), ε represents a system internal event externally

uncontrollable.

ϕ : R(Q,M0)→(Z
 +

)
q
 is an output function, that associates to each marking in R(Q, M0)

a q-entry output vector; q=|Φ| is the number of outputs. ϕ is represented by a q×|P| matrix,

such that if the output symbol φi is present (turned on) every time that M(pj) ≥ 1, thenϕ (i,

j) = 1, otherwise ϕ(i, j) = 0.

When an enabled transition tj is fired in a marking Mk, then a new marking Mk+1 is

reached. This behaviour is represented as
1+→ k

j
t

k MM ; the state equation is completed with

the marking projection yk = ϕ Mk, where yk ∈ (ℤ +
)
q
 is the k-th output vector of the IPN.

According to functions λ and ϕ, transitions and places of an IPN (Q,M0) can be

classified as follows.

Definition 4: If λ(ti) ≠ ε the transition ti is said to be controllable (ti can be fired when

the associated input symbol is presented). Otherwise it is uncontrollable (ti is autonomously

fired). A place pi∈P is said to be measurable if the i-th column vector of ϕ is not null, i.e. ϕ(•,i) ≠ 0. Otherwise it is non-measurable. P = P
m
 ∪ P

u
 where P

m
 is the set of measurable

places and P
u
 is the set of non-measurable places.

Definition 5: The l-length I/O language L
l
(Q, M0) of an IPN (Q, M0) contains words

of length l formed by pairs (λ(tk), yk), where yk = ϕ Mk.

L
l
(Q, M0) ={(λ(ti+1),ϕ(Mi+1))(λ(ti+2),ϕ(Mi+2))…(λ(ti+l),ϕ(Mi+l))

| 1
1 +→ +

i

t

i MM i and),(0MQRM i ∈ }

3. Controlled discrete event systems

The systems considered in this work are closed loop controlled DESs (Figure 1); they

consist of a plant and its industrial controller (in many cases a Programmable Logic

Controller: PLC). The behaviour of such systems (i.e. the PLC-plant compound system

behaviour) can be observed by collecting the signals exchanged between controller and

plant.

Figure 1. Closed loop controller-plant DES

Several phenomena, due to the interaction between plant and controller, increase the

complexity of the identification process; they must be taken into account when real

controlled DESs have to be identified:

• An input evolution (signal emitted by the plant through a sensor) does not always

provoke an output evolution (signal emitted by the PLC to an actuator). In practice,

few input changes provoke output evolutions;

• Non simultaneous I/O events are often simultaneously observed;

• When output changes are provoked by input changes, this causal relationship is not

necessarily captured simultaneously.

Now, we are going to explain these phenomena.

Plant

Controller
I (j) O(j)

I/O(j)

3.1 PLC treatment cycle

A PLC cyclically performs three main steps: “input reading” (I) where it reads the

signals from the sensors, “program execution” (PEX) to determine the new outputs values

for the actuators, and “output writing” (O) where the newly determined commands are sent

to the plant actuators [Bel Mokadem, 2010].

Figure 2. PLC cycle and data collection

At the end of the PEX phase the current values of inputs and outputs (I/O) are sent

from the PLC to a computer and stored for a later treatment by the identification algorithm.

In this paper we consider that the PLC operates cycle driven, i.e. the cycle is executed

periodically [Lohmann, 2007].

3.2 Experimental constraints

In the identification problem we are addressing, the PLC program is assumed to be

unknown. Sequential Function Charts (SFC) are used in this paper only for describing the

diverse situations addressed by the proposed method.

SFC is a graphical programming language used for PLCs. It is one of the five languages

defined by IEC 61131-3 standard. Main components of SFC are: Steps with associated

actions, Transitions with associated logic conditions, Directed links between steps and

transitions. Steps in an SFC diagram can be active or inactive. Steps are activated when all

steps above it are active and the connecting transition is validated (i.e. its associated

condition is true). When a transition is fired, all steps above are deactivated and

simultaneously all steps below are activated. Actions associated with steps can be of several

types, the most relevant ones being Continuous (N), Set (S) and Reset (R). Apart from the

obvious meaning of Set and Reset, an N action ensures that its target variable is set to 1 as

long as the step is active.

 Due to the PLC cycle, some situations between inputs and outputs could arise.

Consider a situation described in Figure 3 (current active step is #10; a and b are two input

signals to the PLC; A and B are two output signals).

Figure 3. A single input is the condition for state evolution

Input Reading

Program execution

Output Writing

End of I/O calculation
Identification data base /

Identification algorithm

data

link

(UDP)

10

11

b

a

AN

BN

Changes in the state and outputs will occur when signal b is active; however other

input signals may evolve without consequence in the outputs. This must be considered in

the identification algorithm.

Consider now the time diagram in Figure 4. Two signals are asynchronously emitted

by sensors of the plant between two successive “input reading” phases (I) of the PLC cycle;

such signals will be read during the next I phase and observed as a simultaneous change in

the corresponding event vector in the identification data base; in general several

input/output changes may be represented in an event vector. Therefore the events are

defined when any change of value in at least one entry is detected between two consecutive

I/O vectors.

Figure 4. Apparent simultaneous evolution of several inputs

Let us now consider the specification described in Figure 5(a) in which the effect of

input b is considered when the step 11 is active. Now consider the situation shown in the

time diagram in Figure 5(b) in which input b changes its value from 0 to 1 before the

change in a and then in A; after that b is taken into account to produce B. In this case the

relationship cause-effect specified to activate step 11 cannot be captured simultaneously;

however it will be detected only if we observe a sequence of 4 consecutive events.

(a) (b)

Figure 5. I/O causality and sequences of events

These three specific scenarios, among numerous possible others, show that the

implementation of a controller and its interaction with the plant introduces phenomena that

must be taken into account by the identification algorithm.

11

12

b

a

10

x

XN

AS

BS a

t

b

A

B

4. Problem statement

Consider the following language definitions used in the statement and solution of the

identification problem.

Definition 6: The set of observed input/output (I/O) words of a DES S with r inputs

and q outputs is ,...},{)(21 wwS =Γ , such that 








=
)(

)(
,...,

)2(

)2(

)1(

)1(

ii

ii

i

i

i

i
i

wO

wI

O

I

O

I
w , where





)(

)(

jO

jI

i

i is the j-th observed I/O vector of size r + q in sequence wi and
iw is the length of

the I/O word wi.

Definition 7: The observed k-length I/O language of a DES S is defined as

 L
κ { }klwljSwljwjwjwS iiiii ≤≤+Γ∈+++= ,),(|)()...2()1()(.

Now the identification problem can be defined as follows: given a set of observed I/O

words Γ(S) generated by a real DES during its operation, the aim of our identification

approach is to construct a safe (or 1-bounded) IPN model (Q, M0) such that L
κ
(Q, M0) = ℒκ(S).

Since Γ(S) does not provide any information related to the state evolution of the

observed DES, these states will be inferred in the identified IPN from ℒκ (S), where each

word of length κ is part of the history (of length κ) of the system. The I/O language

generated by the identified IPN is therefore inevitably an approximation of the actual

behaviour of the DES. In our approach, the parameter κ is used to adjust the accuracy of the

identified model, similarly as proposed in [Klein, 2005].

5. Identification algorithm

The identification method consists of several steps (Algorithm 1) that build

systematically a safe IPN representing exactly the sampled output language of length κ+1

of the DES from the observed I/O vectors sequence Γ(S).

Algorithm 1. Global identification procedure

Inputs: Γ(S) and the parameter κ

Output: (Q,M0): an IPN model

1. Compute event vector sequences τi and symbolic input events λ’ from the

observed vectors Γ(S).

2. For every sequence of event vectors τi, create event vector traces τi
κ
 of length κ.

3. Create the non-observable behaviour of the IPN and simplify it.

4. Complete the IPN adding the observed behaviour and deleting implicit places.

The steps of this procedure are described below.

4.1 Sample processing

4.1.1 Event sequences

As stated before, the data obtained by observing the system to be identified is a set of

sequences of I/O vectors w1, w2,… such that wi = wi(1)wi(2)… where wi(j) refers to the j-th

observed vector in sequence wi. Such sequences may have different length. From these

sequences, strings of observed event vectors are first computed.

Definition 8: An observed event vector τi(j) is the variation between two consecutive

I/O vectors wi(j), wi(j + 1); it is computed as)()1()(jwjwj iii −+=τ . An input event

vector λ(τi(j)) is the variation between two consecutive input vectors Ii(j), Ii(j + 1); it is

computed as)()1())((jIjIj iii −+=τλ .

An input event vector can be represented in a compact way by specifying only the

input symbols that changed in the event. Ii_1 denotes the change from 0 to 1 of the input Ii;

similarly Ii_0 denotes the change from 1 to 0 of the input Ii. Then the symbolic input event λ’(τi(j)) is a string composed by the representation of the inputs changed in the event

vector.

∏== m

i

ii xIj
1

_))((' τλ

where





=−+
−=−+

=−+
=

0)()1(

1)()1(0_

1)()1(1_

_

jIjIif

jIjIifI

jIjIifI

xI

ii

iii

iii

i ε

Then for every sequence wi, a sequence of observed event vectors τi = τi(1) τi(2)… τi(iw −1) is obtained. The maximum number of possible event vectors is

3
(r + q)

 − 1. However, in practice, only a small subset of them is observed.

Example 1. Consider a DES with q = 4 output signals, Φ = {A, B, C, D}, and r = 3 input

signals Σ = {a, b, c}. Three I/O sequences have been observed; vector entries correspond to

distribution [a b c | A B C D]
T





























































=

0

0

1

0

0

0

1

0

0

0

0

0

0

1

0

0

0

1

0

0

0

1w

























































































































=

0

0

0

1

0

0

0

1

0

0

0

0

0

1

1

1

0

0

1

0

1

0

1

0

0

1

1

1

0

0

0

0

0

0

1

0

0

0

1

0

0

0

2w

























































































































=

0

0

0

1

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

1

0

1

0

0

1

1

1

0

0

0

0

0

0

1

0

0

0

1

0

0

0

3w

According to Definition 8, for every sequence wi, a sequence of observed event vectors τi = τi(1) τi(2)… τi(iw −1) is computed. During the process, if the difference has not been

observed before, a new event vector ej is created and stored (τi(j) = ej).

For the Example 1, sequences τi of the detected event vectors ej associated to I/O

changes are obtained:







































→









































−

→





















=

0

0

1

0

0

0

1

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

1

0

0

0

1

0

0

0
21

1

ee

w
,

211 ee=τ

ελλ ==)(',1_)(' 21 eae









































−

−→









































−

−

→








































−
→







































→









































−

→





















=

0

0

0

1

0

0

0

1

0

0

1

0

0

1

1

0

0

0

0

0

1

0

1

0

0

1

0

0

1

1

0

0

1

0

1

1

0

0

0

0

1

0

0

1

0

0

1

1

1

0

1

0

0

1

1

0

0

0

0

0

0

0

1

0

0

0

1

0

0

1

0

0

0

1

0

0

0
65431

2

eeeee

w
, 654312 eeeee=τ

0_)(',0_)(',0_)(',1_1_)(' 6543 aecebecbe ==== λλλλ









































−

−→








































−
→









































−

−

→







































→









































−

→





















=

0

0

0

1

0

0

0

1

0

0

1

0

0

1

1

0

0

0

0

0

1

1

0

0

0

0

1

0

0

0

0

0

0

1

1

0

1

0

0

1

0

0

0

1

0

0

1

1

1

0

1

0

0

1

1

0

0

0

0

0

0

0

1

0

0

0

1

0

0

1

0

0

0

1

0

0

0
64531

3

eeeee

w
, 645313 eeeee=τ

4.1.2 Sequences of κ-length event vector traces

In order to distinguish sub-sequences including the same events, event traces of length

κ are used. From every sequence τi = τi(1) τi(2)… τi(iw −1) we compute sequences of

event vector traces τi
κ

= τi
κ
(1)τi

κ
(2)… τi

κ
 (

iw −1) such that every τi
κ
(j) is the κ-length

substring of τi that finishes with τi
κ
(j). For the first κ − 1 elements of the trace sequence the

event vector ε (zero vector) is used. Such traces are used to determine equivalent states,

according to the following equivalence notion.

Definition 9: Two states of the identified system are κ-equivalent if their I/O vectors

are the same and if the κ last observed event vectors that lead to these states are the same.

Following with the Example 1, the sequences of traces using κ = 2 are:

211

2

1 , eeeετ = for τ1

655443311

2

2 ,,,, eeeeeeeeeετ = for τ2

644553311

2

3 ,,,, eeeeeeeeeετ = for τ3

4.2 Building the basic structure

4.2.1 Representing event traces

Once the sequences of event vector traces have been obtained, every trace τi
κ
(j) is

related to a transition in the IPN through a function γ:T→{τi
κ
(j)}; the firing of a transition

implies that κ consecutive event vectors related to such a transition have been observed.

In order to preserve the firing order between transitions, dependencies are created

between them and associated with an observed marking through the function

)},(|{: 0MGRMMP ii

u ∈→ ϕµ , which relates every non-measurable place with an

observed marking, such that every transition has only one input place and one output place ()1, ==∈∀ ••
rrr ttTt . Notice that the number of non-measurable places is not predefined.

When an event vector trace τi
κ
(j) is found again in a τi

κ
, the associated dependency must be

used if it leads to the same observed marking.

Let ej be the last event vector in the trace τi
κ
(j); the associated transition will be

denoted as j
e

rt (more than one transition may have associated the same ej). This strategy can

be systematically performed following the next procedure.

Algorithm 2. Building the basic IPN structure

Input: The set Γκ
 = {τi

κ
}

Output: A PN structure G composed by p∈P
u

1. T ←∅; ET ←∅; P←{pini}; M0(pini)←1;µ(pini)←τi(1); //Initialise the net

2. ∀τi
κ
 ∈ Γκ

2.1. current ← pini; //Keep track of the current place

2.2. ∀τi
κ
(j) ∈τi

κ
, 1 ≤ j ≤ |τi

κ
| //Analyse every event trace

2.2.1. If τi
κ
(j) ∉ ET //The trace is new

Then

ET ← ET ∪ {τi
κ
(j) }; //Create a new transition label

T ← T ∪ {tr
ej
}; γ(tr

ej
) ←τi

κ
(j); //Create a new transition labelled with the trace ∀pa ∈ P

I(pa, tr
ej
)←0; O(pa, tr

ej
)←0;

I(current, tr
ej
) ← 1; //Create an arc from current place to the new transition

If j = |τi
κ

| and µ(current) + ej = µ(pini) //The trace is the last one

Then O(pini, tr
ej
) ← 1; //Create an arc from the transition to the initial place

 Else

P ← P ∪ {pout}; //Create a new place ∀tb ∈ T

I(pout, tb)←0; O(pout, tb)←0; µ(pout) = µ(current) + ej ; O(pout, tr
ej
)←1; //Relate such a place with observed

marking and add an arc from the transition to such a place

current ← pout //Take such a place as current

2.2.2. If τi
κ
(j) ∈ ET //The trace is not new

Then

If ∃pin | pin =
•
(tr

ej
), tr

ej∈ T, γ(tr
ej
) = τi

κ
(j) and µ(pin) = µ(current) //If there is a place

 with the same observed marking preceding a transition with the same label

Then merge(current, pin); current ← (tr
ej
)
•
; //Merge such a place with current

Else Go to step 2.2.1 // τi
κ
(j) ∈ ET is not considered

If j = |τi
κ

| and µ(current) + = µ(pini) //The trace is the last one

Then merge(current, pini);

Properties of Algorithm 2

• Characteristics of G. The obtained model is a PN state machine (PNSM). After

processing the first sequence, the PN graph yield is a circuit; afterwards, when

previously created transitions whose associated traces have been found, such a

transition and its input place are merged (step 2.2.2); thus the fusion preserves the

structural nature of a PNSM. Since M0(pini)=1, (G, M0) is 1-bounded.

• Complexity. Since search operation has linear-time complexity and the algorithm

performs the addition of a transition for every computed trace that has not been yet

observed, Algorithm 2 is executed in polynomial-time on the number of observed

input/output sequences and their maximum length.

• Completeness. The IPN G built through Algorithm 2 represents all and only all the

trace sequences (sub-sequences) in Γκ
. In fact, by construction, every sequence τi

κ
 is

represented in G by a circuit starting from pini including the sequence of tr
ej
; this

circuit represents also the sequence τi of events. Furthermore, the reuse of computed

transitions having associated the same event traces, during the processing of

subsequent τi
κ
, is done only when common paths of length κ are built, that does not

introduce other sequences.

Using the previous algorithm, the obtained PN corresponding to the three sequences of

event vector traces of the Example 1 is showed in Figure 6. Notice that one of the

sequences is not cyclic.

Figure 6. Basic model with sequences of event vector traces

4.2.2 Simplifying the basic structure

Additional node merging operations can be performed on the basic structure in order to

obtain a simpler equivalent trace model. Now we can take into account the event vector ej

associated to transitions. Consider the following transformation rules.

1

1

e
t 3

3

e
t

2

2

e
t

4

4

e
t

5

7

e
t

5

5

e
t

4

8

e
t

6

6

e
t

6

9

e
t

Algorithm 3. Simplifying the basic structure.

Input: G

Output: G’, an equivalent IPN

Apply the following rules on the initial place and iteratively on the merged places

Rule 1: ∀ ta
ej
, tb

ej∈ pini
•
| a ≠ b // Common prefixes

 merge(ta
ej
 ,tb

ej
); merge((ta

ej
)
•
, (tb

ej
)
•
) //Merging of transitions and their output places

Rule 2: ∀ta
ej
, tb

ej∈
•
pini| a ≠ b // Common suffixes

 merge(ta
ej
, tb

ej
); merge(

•
(ta

ej
),

•
(tb

ej
)) //Merging of transitions and their input places

Properties of Algorithm 3

• G’ is a safe PNSM. The node fusions are performed similarly as in Algorithm 2, thus

the structure remains as a PNSM.

• G’ preserves the trace sequences in G. Let us analyse the effect of Rule 1; let Lfpi =

{λ(t1)λ(t2)... λ(tr)|t1 ∈ pi
•
, ti+1 ∈ (ti

•
)
•
} be the set of observable sequences from place

pi. Consider ta
ej
, tb

ej
 ∈ pini

•
|a ≠ b; before applying Rule 1, Lfpini = ejLpa ∪ ejLpb ∪

(∪λ(ti)Lpi), with pa = (ta
ej
)
•
, pb = (tb

ej
)
•
; ti∈ pini

•
|ti ≠ ta

ej
, ti≠ tb

ej
, pi = (ti)

•
. After applying

Rule 1, Lfpini = ej(Lpa ∪ Lpb) ∪ (∪λ(ti)Lpi); thus the language of G is not changed by

the application of Rule 1. A similar reasoning can be done for Rule 2.

In the example, the application of the rules leads to the model of Figure 7a. Since the

initial place has two input transitions associated to e6, they can merge and their input places

can too.

4.2.3 Concurrent transitions

Other transformations may be performed when some events associated to transitions

appear in different order in different sequences, describing their interleaved firing; this

behaviour is exhibited by concurrent transitions in parallel paths in the model. The analysis

can be performed on a model component comprised between two transitions tf and tj, which

have respectively a single output place tf
•
 and tj

•
, which are relied by several paths

containing the concurrent transitions. If there are m! paths, we can explore if there exists m

different transitions in each path and the events sequence in every path appear as a

permutation from each other. When it is verified, the subnet can be transformed into a

component formed by m concurrent paths from tf and tj containing each one a transition

related to one of the concurrent events. This transformation of G’ preserves the same

behaviour.

In Figure 7a, notice that between the transition associated to e3 and the new transition

associated to e6 there are paths with all possible permutations of e4 and e5; then, we can

transform this into a concurrent component and we obtain the net showed in Figure 7b.

(a)

(b)

(c)

Figure 7. (a) Model after merging (b) Simplified basic model

(c) IPN model including measurable places

Notice that this model preserves the same event vector sequences of the previous one.

The equivalent fork-join structure obtained by this transformation is composed by m

elementary paths composed by two places and one transition between the fork an join

transitions. Each path will contain one token in one of its places; this substructure is 1-

bounded, the transformed PN is also 1-bounded.

The simplification by analysis of concurrency is not strictly necessary for representing

the event vector sequences; however the equivalent model with concurrent transitions may

be simpler. Although the analysis could be inefficient when the number of paths in the

subnet is large, usually this number is reduced.

The aim of the simplification strategies given above is obtaining fairly reduced models

useful for analyzing the DES behaviour, rather than minimizing the number of nodes in the

obtained models.

4.3 Adding interpretation to the PN model
4.3.1 Representing outputs changes

Once the event vector sequences are represented in the basic model, it must be

completed by adding the output and input changes. Recall that event vectors are computed

from the difference of consecutive I/O vectors; thus an ej relates measurable places

representing the outputs changes. This procedure is detailed in Algorithm 4.

Algorithm 4. Representing outputs changes

Input: G’, {ei(j)}

Output: H, the IPN including measurable places

Step 1. P ← P ∪ {p1, p2,...,pq}.

Step 2.∀tr
ej
 ∈ T:

If ej(i) = −1 Then I(pi, tr
ej
) = 1 and O(pi, tr

ej
) = 0;

If ej(i) = 1 Then I(pi, tr
ej
) = 0 and O(pi, tr

ej
) = 1;

If ej(i) = 0 Then I(pi, tr
ej
) = 0 and O(pi, tr

ej
) = 0;

Step 3. If component i of vector wj(1) is 1 Then M0(pi) = 1 Else M0(pi) = 0

1

1

e
t 3

3

e
t

2

2

e
t

4

4

e
t

5

7

e
t

5

5

e
t

4

8

e
t

6

6

e
t

1

1

e
t 3

3

e
t

2

2

e
t

4

4

e
t

5

7

e
t

6

6

e
t 1

1

e
t 3

3

e
t

2

2

e
t

4

4

e
t

5

7

e
t

6

6

e
t

A

B C

D

The number of measurable places is then equal to the number of outputs. The net with

measurable places for the example is showed in Figure 7c.

4.3.2 Model simplifying

Implicit non-measurable places can be removed; if there is a non-measurable place pk

whose input and output transitions are exactly the same than any measurable place, then pk

is deleted and its input and output arcs.

4.3.3 Representing input changes

Once the output adding and implicit places deleting has been performed, it only

remains to add input information to complete the IPN model. Input information is

associated with labels for transitions in a natural way given by the symbolic event input

function.

Algorithm 5 describes a systematic way to do it.

Algorithm 5. Representing input changes

Input: H, λ’(ej)

Output: (Q,M0) the final model of the identification process

Step 1.∀tr
ej
 ∈ T, λ(tr

ej
) ← λ’(ej)

The final model for the illustrative example is showed in Figure 8. The associated

inputs for transitions are given by: λ(t1)=a_1, λ(t2)= ε, λ(t3)=b_1 c_1, λ(t4)=b_0, λ(t5)=c_0, λ(t6)=a_0.

Figure 8. Simplified IPN model

5.4 Completeness of the identified model

Since every one of the transitions in the net actually represents a sub-sequence of event

vectors of length κ, the input-output language of length κ + 1 of the net is equal to the

observed I/O language. Even, for the above example, the I/O language of the IPN is equal

to the observed I/O language, i.e. only the observed cyclic I/O sequences are represented by

the evolution of the net.

Proposition 1. For a DES S and an identification parameter κ, Algorithm 1 yields an

IPN model (Q, M0) which represents exactly L
κ+1

(S).

1_a 1_,1_ cb

ε
0_b

0_c
0_a

A

B

C

D

Proof. Since the deletion of implicit places does not change L
κ+1

(Q,M0), the proof is

made with the model obtained before this procedure. The firing of a transition t in the

system is not affected by the addition of arcs to and from t, since these arcs have been

computed from output events (differences of output vectors) in Γ(S). Then, also in this

model, every event vector sequence σ of length less or equal than κ belongs to the language

of the net if and only if it has been observed.

The sequences of transitions of length less or equal than κ that can be fired, lead to

markings in the measurable places that also belong to Γ(S) (since the marking change

provoked in the measurable places was obtained from the difference of observed vectors).

Then, we have that sequences of observed output vectors of length less or equal than κ + 1

correspond to sequences of marking vectors in the net and L
 κ + 1

(Q) =L
κ + 1

(S). ■

5.5 Further simplifications

The identification procedure takes into account any change in the inputs or outputs and

represents it in the identified model; in such a model we often find consecutive input events

that do not provoke output changes. This situation is due to variations in some inputs,

during the system operation, which are not directly related with the outputs changes.

In systems where the number of inputs/outputs and the length of the sequences are large,

the identified model size may grow because of this reason. Thus further reductions to the

model can be done about the above mentioned sub-sequences of input events, allowing a

more compact representation of the system’s behaviour. For instance, consider the

following I/O vector sequence w involving one input x and two outputs A, B:















=





1
0

1

0
1

1

0
1

0

w

B
A

x

In this sequence the event x_1 appears first, and later an output change is produced; it

can be represented as: A → 1_x A →ε B. This behaviour can be represented in a more

compact way: BA x→ 1_ . In general, this transformation including several input events

can be represented as:

B
eee

AB
e

A
e

A
e

A
kjikji  →≅→→→ ...

...

This transformation is applied to paths in the PN model that do not include decision

places. This is going to be illustrated on the case study included in Section 6.

6 Method implementation and application

This section presents a software tool for DESs identification and its application to a

case study.

6.1 An operational identification tool

Based on the algorithms presented above, a software tool has been developed using

Java (JDK 6 Update 11 for compiling and JRE 6 Update 26 for executing) to automate the

IPN model synthesis. The architecture of the tool is showed in Figure 9.

The user interface allows capturing the input-output sequences and shows the obtained

model graphically. Several data is provided to the tool in text files: the sequences, the

parameter κ, the names of the input and output signals, and the output file name.

Additionally it is specified the order in which inputs and outputs appear in the txt files and

the index numbers of the signals to take into account if a mask is going to be applied.

Figure 9. Software architecture

Later, an input reader component processes these input files and transforms every

input-output sequence into a vector. These vectors will be delivered to a component called

Algorithm in which the identification algorithm is implemented. The output of this

component is a dot file that can be treat by Graphviz (an open source graph visualization

software: http://www.graphviz.org/) to generate an image file jpg.

The presented identification tool has been tested on many examples of diverse size and

complexity, which have been previously solved following the identification procedures. For

better understanding, we develop below a small size case of study.

6.2 Case study

We illustrate the use of the software tool through the identification of a small size

manufacturing system obtained from [Roth, 2009] described on Figure 10. The purpose of

such a system is to sort parcels according to their size. It has 9 PLC inputs, that are signals

generated by the sensors of the plant for detecting positions (a0, a1, a2, b0, b1, c0, c1) and

presence of parcels detection (k1, k2), and 4 PLC outputs, that are signals controlling

the actuators of the plant (A+, A-, B, C).

Figure 10. Case study layout

User
interface

Input
Reader

Memory

Algorithm Graphviz

Options

I-O vectors

Input files

dot file

IPN (jpg file)

Memory

Conveyor1

Conveyor2 (small parcels)

Conveyor3 (large parcels)

A+

A-

a0

a1

a2

k2

k1

B

C

c0

b0 b1

c1

For space considerations we show the processing by the identification tool of nine cyclic

I/O sequences; the text files including these sequences are showed in Figure 11. The vector

entries correspond to the following distribution: [A+ A- B C k1 k2 a0 a1 a2 b0 b1 c0 c1].

Figure 11. Input-output cyclic sequences of the case study

After the execution of the identification process using κ=1, and before concurrence

transformations, the model showed in Figure 12 is obtained; the identified model using κ=2

is showed in Figure 13. After some transformations of the model in figure 12 considering

the phenomena described in section 6, the net in Figure 14 is obtained.

From the obtained model, we can infer the following behaviour:

-When a large parcel arrives (k1 and k2 rise), cylinder A is extended (A+ rise). After

cylinder A pushes the parcel to the conveyor 3 (a0 falls, k1 falls, k2 falls, a1 rises, a1 falls

and a2 rises), cylinder C extends (C rises) and cylinder A retracts to its initial position (A-

falls). When parcel is completely pushed, cylinders retract to their initial position.

-When a short parcel arrives (only k1 rise), cylinder A is extended (A+ rise) until

conveyor 2 is reached (a0 falls, k1 falls and a1 rises). Then, cylinder B extends (B rises)

and cylinder A retracts (A- falls). When parcel is completely pushed, cylinder B retracts

until its initial position.

This interpretation is valid only for the observed behaviour. If the data collection has

been made for a long time, we can state that the model is almost exact.

Cycle01.txt:

0000 001001010

0000 101001010

1000 101001010

1000 100001010
1000 000001010

0110 000101010

0110 000001010

0110 000000010

0010 001000010
0000 001000110

0000 001000010

0000 001001010

Cycle02.txt

0000 001001010

0000 101001010

1000 101001010

1000 100001010
1000 000001010

0110 000101010

0110 000100010

0110 000000010

0100 000000110
0000 001000110

0000 001000010

0000 001001010

Cycle03.txt

0000 001001010

0000 101001010

1000 101001010

1000 100001010
1000 000001010

0110 000101010

0110 000100010

0110 000000010

0100 000000110
0000 001000010

0000 001001010

Cycle04.txt

0000 001001010

0000 101001010

1000 111001010

1000 110001010
1000 010001010

1000 000001010

1000 000101010

1000 000001010

0101 000011010
0101 000011000

0101 000001000

0100 000001001

0100 000001000

0100 000101000
0100 000001000

0100 000001010

0000 001001010

Cycle05.txt

0000 001001010

0000 101001010

1000 111001010

1000 110001010
1000 010001010

1000 000001010

1000 000101010

1000 000001010

0101 000011010
0101 000001010

0101 000001000

0100 000001001

0100 000001000

0100 000101000
0100 000001000

0100 000001010

0000 001001010

Cycle06.txt

0000 001001010

0000 101001010

1000 111001010

1000 110001010
1000 010001010

1000 000001010

1000 000101010

1000 000001010

0101 000011010
0101 000001010

0101 000001000

0100 000001001

0100 000101000

0100 000001010
0000 001001010

Cycle07.txt

0000 001001010

0000 101001010

1000 111001010

1000 110001010
1000 010001010

1000 000001010

1000 000101010

1000 000001010

0101 000011010
0101 000001000

0100 000001001

0100 000101000

0100 000001010

0000 001001010

Cycle08.txt

0000 001001010

0000 101001010

1000 111001010

1000 110001010
1000 100001010

1000 000001010

1000 000101010

1000 000001010

0101 000011010
0101 000001010

0101 000001000

0100 000001001

0100 000101000

0100 000001010
0000 001001010

Cycle09.txt

0000 001001010

0000 101001010

1000 101001010

1000 100001010
1000 000001010

0110 000101010

0110 000100010

0110 000000010

0010 001000010
0000 001000110

0000 001000010

0000 001001010

Figure 12. Identified IPN model (κ=1) Figure 13. Identified IPN model (κ=2)

Figure 14. Reduced model for the case study (κ=1)

6.3 Tuning the parameter κ

 The parameter κ helps to distinguish sequences of events that look similar during the

construction of the basic internal model; its value indicates the history of past events that

have to be considered for deciding the state equivalence. On the one hand, high values of κ

imply distinguishing more sequences avoiding path fusion during the model construction;

thus the obtained models are more accurate but less compact. On the other hand low values

of κ allow more state fusions; the obtained model are more compact but more paths can be

created yielding an overrepresentation of the observed behaviour.

 In general it is not possible to establish a priori the value of κ, since it is assumed that

the system is unknown. However, in practice the identification procedure can be applied

using several values of κ (because it is not time consuming). Compact models allow a first

approximation to the understanding of the system functioning, whilst larger models provide

a more precise description. For small examples, such as that included in this section, κ=1 or κ=2 allows distinguishing event sequences whilst compact models are built.

 In actual industrial systems the difference can be more drastic. Results in testing the

algorithm on an industrial flexible manufacturing line called “Fischertechnik” [Roth, 2009]

showed a more remarkable difference between the obtained models for several values of κ.

The manufacturing line consists of three machines and three conveyors connecting them.

The plant has 30 binary I/Os. During one production cycle, three work pieces are treated.

The test has been performed using a Siemens PLC (CPU 315-2 DP); a database has been

built using a reliable and efficient UDP (User Datagram Protocol) connection.

The database containing 100 input-output sequences whose length varies from 178 to

186, has been processed by the identification procedure using different values of κ from 1

to 6. Since the obtained models are huge, they are not showed herein; instead, the size of

the identified models are summarised in table 1. The execution time of the identification

procedure is also included to provide an idea of the performance of the algorithm. The tests

have been performed in a Laptop computer based on an Intel Core 2 Duo T7300 processor

at 2.00 GHz with 2.00 GB of RAM under Windows XP Professional 2002 Service Pack 3.

The time has been measured excluding the execution of the Graphviz visualisation

software.

κ Transitions Places Total of nodes ∆ Processing time

1 541 375 916 516 ms

2 748 580 1328 412 547 ms

3 958 783 1741 413 547 ms

4 1175 996 2171 430 562 ms

5 1399 1212 2611 440 578 ms

6 1623 1443 3066 455 609 ms

Table 1. Size of identified models for different values of κ.

7 Concluding remarks

Identification of automated concurrent Discrete Event Systems (DESs) has been

addressed. The method herein proposed allows dealing with complex actual automated

DESs because it takes into account technological characteristics of actual industrial

controlled systems, and because it is based on efficient algorithms. This feature is not still

addressed in current literature on the matter in which several features considered in the

current stated problem have not been dealt.

Although in [Meda, 2000] and subsequent works the proposed algorithms are efficient,

the identified models represent also non observed behaviour, due to the fact that the state

equivalence is based on the observation of the same observed outputs vector, which is not

very often the case for real systems; besides system’s inputs are not taken into account. The

Techniques based on ILP derived from [Giua 2005] yield models representing exactly the

event sequences regardless how the events are obtained from I/O data; however, they are

limited to deal with few short event sequences. In [Klein 2005] and subsequent papers, both

inputs and outputs are considered, however obtained FA models do not describe explicitly

the input-output reactive behaviour nor output concurrent evolutions.

The black-box approach proposed herein allows obtaining IPN models from cyclic

input/output vector sequences that represent the closed loop behaviour of PLC-based

controlled plants. The proposed technique builds the IPN that is a close approximation of

the compound controller-plant behaviour, which can be detailed later for controller redesign

or model-based diagnosis purposes.

Current research deals with inference of cyclic sequences from a single long sequence

and with the reduction of the obtained model by the analysis of the ulterior influence of

inputs that apparently do not provoke changes in the outputs. Also, the inference of non-

observed behaviour regarding concurrent sub-processes is an issue to deal with.

8 References

[Angluin, 1988] D. Angluin, Queries and Concept Learning, Machine Learning, Vol. 2, No.4 pp.

319-342, 1988.

[Bel Mokadem, 2010] H. Bel Mokadem, B. Bérard, V. Gourcuff, J.M. Roussel, O. De Smet,

Verification of a timed multitask system with UPPAAL, IEEE Trans. on Automation Science

and Engineering, Vol. 7, No. 4, pp. 921-932, October 2010

[Biermann and Feldman, 1972] A.W. Biermann and J.A. Feldman, On the Synthesis of Finite-State

Machines from Samples of Their Behavior, IEEE Trans. on Computers, Vol. 21, No. 6, pp.

592-597, 1972

[Booth, 1967] T.L. Booth, Sequential Machines and Automata Theory, John Wiley and Sons, Inc.

New York, London, Sidney, 1967

[Cabasino, 2007] M. P. Cabasino, A. Giua, C. Seatzu, Identification of Petri Nets from

Knowledge of Their Language, Discrete Event Dynamic Systems Vol. 17, No. 4, pp. 447-474,

2007

[Chang and Hanna, 2004] J. C. Chang and S. R. Hanna, Air quality model performance

evaluation, Meteorology and Atmospheric Physics, Vol. 87, pp. 167–196, 2004

[Conolly, 2010] D. Connolly, H. Lund, B.V. Mathiesen, M. Leahy, Modelling the existing Irish

energy system to identify future energy costs and the maximum wind penetration feasible,

Energy, Vol. 35, pp. 2164–2173, 2010

[Cook, 2004] J. E. Cook, Z. Du, C. Liu, A. Wolf, Discovering models of behavior for concurrent

workflows, Computers in Industry, Vol. 53, No. 3, pp. 297 – 319, doi:

10.1016/j.compind.2003.10.005.

[Dotoli, 2008] M. Dotoli, M. P. Fanti, A. M. Mangini, Real time identification of discrete event

systems using Petri nets, Automatica, Vol. 44, No. 5, pp. 1209-1219, 2008

[Dotoli, 2011] M. Dotoli, M. P. Fanti, A. M. Mangini, W. Ukovich, Identification of the

unobservable behaviour of industrial automation systems by Petri nets, Control Engineering

Practice, Vol. 19, Issue 9, September 2011, pp. 958-966

[Du, 2009] G. Du and al., A dynamic workflow modelling and performance analysis

methodology for complicated clinical pathway with variations, Proc. Of the 2nd
 IFAC

workshop on Dependable Control of Discrete Systems (DCDS’09), Bari, Italy, pp. 205-210,

2009

[Estrada, 2009] A.P. Estrada-Vargas, E. López-Mellado, J.J. Lesage, Off-line Identification of

Concurrent Discrete Event Systems Exhibiting Cyclic Behavior. Proc. of IEEE Int. Conf. on

Systems Man and Cybernetics, San Antonio Tx, USA, pp.181-186, Oct 2009

[Estrada, 2010a] A.P. Estrada-Vargas, E. López-Mellado, J.J. Lesage. A Comparative

Analysis of Recent Identification Approaches for Discrete-Event Systems, Mathematical

Problems in Engineering, Vol. 2010, Hindawi. doi:10.1155/2010/453254

[Estrada, 2010b] A.P. Estrada-Vargas, E. Lopez-Mellado , J-J. Lesage. "An Identification

Method for PLC-based Automated Discrete Event Systems". IEEE Int. Conference on

Decision and Control, pp.6740-6746. Atlanta, USA, December 2010.

[Fanti, 2008] M. P. Fanti and C. Seatzu, Fault diagnosis and identification of discrete event

systems using Petri nets, Proc. of the 9th Int. Workshop on Discrete Event Systems, Göteborg,

Sweden, pp. 432-435, 2008

[Giua, 2005] A. Giua and C. Seatzu, Identification of free-labeled Petri nets via integer

programming, Proc. of the 44th IEEE Conf. on Decision and Control, and the European

Control Conf., Seville, Spain, 2005

[Gold, 1967] E.M. Gold, Language Identification in the Limit, Information and Control, Vol. 10,

No.5 pp. 447-474, 1967

[Hiraishi, 1992] K. Hiraishi, Construction of Safe Petri Nets by Presenting Firing Sequences,

Lectures Notes in Computer Sciences, Vol. 616, pp. 244-262, 1992

http://www.sciencedirect.com/science/article/pii/S0967066110002017?_alid=1870895445&_rdoc=1&_fmt=high&_origin=search&_docanchor=&_ct=2&_zone=rslt_list_item&md5=130e40f0d75b3b0bca11d1c66e732fe6
http://www.sciencedirect.com/science/article/pii/S0967066110002017?_alid=1870895445&_rdoc=1&_fmt=high&_origin=search&_docanchor=&_ct=2&_zone=rslt_list_item&md5=130e40f0d75b3b0bca11d1c66e732fe6

[Ishizaka, 1990] H. Ishizaka, Polynomial Time Learnability of Simple Deterministic Languages,

Machine Learning, Vol. 5, pp. 151-164, 1990

[Kella, 1971] J. Kella, Sequential Machine Identification, IEEE Trans. on Computers, Vol. 20, No.

3pp. 332-338, 1971

[Klein, 2005] S. Klein, L. Litz, J.-J. Lesage, Fault detection of Discrete Event Systems using an

identification approach, 16th IFAC World Congress, CDROM paper n°02643, Praha (Czech

Republic), 2005

[Lanubile, 2002] F. Lanubile and G. Visaggio, Iterative Re-engineering to compensate for

Quick-Fix Maintenance, Proc. Of IEEE Int. Conf. on Software maintenance, Opio, France, pp.

140-146, 2002

[Levy and Joshi, 1978] L.S. Levy and A.K. Joshi, Skeletal structural descriptions, Information and

Control, Vol. 39, No. 2 pp. 192-211, 1978

[Lohman, 2007] S. Lohmann, O.Stursberg, and S. Engell, Comparison of Event-Triggered and

Cycle-Driven Models for Verifying SFC Programs, Proc. of IEEE American Control

Conference, New York City, USA, pp. 3606-3611, July 11-13, 2007

[Meda, 2000] M. Meda, A. Ramírez, E. López “Asymptotic Identification for DES”, Proc. IEEE

Conf. on Decision and Control, Sydney, Australia, pp. 2266-2271, Dec 2000.

[Meda, 2001] M. Meda-Campaña, E. López-Mellado, A passive method for on-line identification

of discrete event systems, Proc. of the IEEE Int. Conf. on Decision and Control, Orlando,

Florida, USA. pp. 4990-4995, 2001

[Meda, 2003] M. Meda-Campaña, E. López-Mellado, Required Transition Sequences for DES

identification, Proc. of the IEEE Conf. on Decision and Control (CDC 2003), Maui, Hawaii

USA. pp. 3778-3782, 2003

[Mottershead, 1993] J.E. Mottershead and M.I. Friswell, Model updating in structural dynamics:

a survey, Journal of Sound and Vibration, 167(2), pp. 347-375, 1993

[Ould El Medhi, 2006] S. Ould El Medhi, E. Leclercq, D. Lefebvre, Petri nets design and

identification for the diagnosis of discrete event systems, IAR Annual Meeting, Nancy, Nov

2006.

[Ould El Medhi, 2012] S. Ould El Medhi, R. Bekrar, N. Messai, E. Leclercq, D. Lefebvre, B. Riera,

Design and implementation of stochastic and deterministic stochastic Petri nets, IEEE Trans.

on Systems, Man and Cybernetics – Part A, On-line version: DOI:

10.1109/TSMCA.2011.2173798

[Richetin, 1984] M. Richetin, M. Naranjo and P. Luneau, Identification of Automata by Sequential

Learning, Pattern Recognition Letters 2, Vol. 2, No. 6, pp. 379-385, 1984

[Roth, 2009] M. Roth, J.-J. Lesage, L. Litz, Distributed identification of concurrent discrete event

systems for fault detection purposes, Proc. of the European Control Conference (ECC 2009),

pp. 2590-2595

[Roth, 2010] M. Roth, J.-J. Lesage, L. Litz, Black-box identification of discrete event systems

with optimal partitioning of concurrent subsystems, Proc. of the American Control Conference

(ACC 2010), Baltimore, Maryland, USA, pp. 2601-2606, 2010

[Roth, 2012] M. Roth, S. Schneider, J.-J. Lesage, L. Litz, Fault detection and isolation in

manufacturing systems with an identified discrete event model Int. Journal of Systems Science,

DOI:10.1080/00207721.2011.649369, Available online: 21 Feb 2012

[Takada, 1998] Y. Takada, Grammatical Inference for Even Linear Languages Based on Control

Sets, Information Processing Letters, Vol. 28, pp. 193-199, 1998

[Valiant, 1984] L.G. Valiant, A theory of the Learnable, Communications of the ACM, Vol. 27, pp.

1134-1142, 1984

[Van der Aalst, 2004] W. van der Aalst, T. Weijters, L. Maruster, “Workflow Mining:

Discovering Process Models from Event Logs”, IEEE Trans. on Knowledge and Data

Engineering, Vol. 16, No. 9, Sep 2004.

[Veelenturf, 1978] L.P.J. Veelenturf, Inference of Sequential Machines from Sample Computations,

IEEE Trans. on Computers, Vol. 27, No. 2 pp. 167-170, 1978

[Veelenturf, 1981] L.P.J. Veelenturf, An Automata theoretical approach to developing learning

neural networks, Cybernetics and Systems, Vol. 12, No. 1&2 pp. 179-202, 1981

Notes on contributors

Ana-Paula Estrada-Vargas received the B.Sc. degree in computer engineering

from the Universidad de Guadalajara, Guadalajara, Mexico, in 2007, and the M.Sc.

degree from CINVESTAV, Guadalajara, Mexico, in 2009. She is currently a Ph.D.

student in both CINVESTAV in Guadalajara and the ENS de Cachan, in Cachan,

France. Her research interests include identification of Discrete Event Systems and

formal modelling and analysis using Petri nets.

Ernesto López-Mellado received the B.Sc. degree in electrical engineering

from the Instituto Tecnolgico de Cd. Madero, México, in 1977, the M.Sc. degree

from the CINVESTAV, México City, México, in 1979, and the Docteur-Ingnieur

degree in automation from the University of Toulouse, France, in 1986. Currently,

he is Professor of Computer Sciences at CINVESTAV Unidad Guadalajara,

Guadalajara, México. His research interests include discrete event systems, and

distributed intelligent systems.

Jean-Jacques Lesage received the Ph.D. degree from the Ecole Centrale de

Paris and the “Habilitation à diriger des recherches” from the University Nancy 1 in

1989 and 1994 respectively. He is currently Professor of Automatic Control at the

Ecole Normale Supérieure de Cachan, France, where he was head of the Automated

Production Research Laboratory during eight years. His research interests are in the

field of formal methods and models for synthesis, analysis and diagnosis of Discrete

Event Systems (DES), and applications to manufacturing systems, network

automated systems, energy production, and ambient assisted living.

	1. Introduction
	2. Basics on Petri nets and languages
	3. Controlled discrete event systems
	3.2 Experimental constraints

	4. Problem statement
	5. Identification algorithm
	4.1 Sample processing
	4.1.1 Event sequences
	4.1.2 Sequences of κ-length event vector traces

	4.2 Building the basic structure
	4.2.1 Representing event traces
	4.2.2 Simplifying the basic structure
	4.2.3 Concurrent transitions

	4.3 Adding interpretation to the PN model
	4.3.1 Representing outputs changes
	4.3.2 Model simplifying
	4.3.3 Representing input changes

	6 Method implementation and application
	7 Concluding remarks

