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ABSTRACT 

The automated construction of discrete event models from observations of external 

system’s behaviour is addressed. This problem, often referred to as system 

identification, allows obtaining models of ill-known (or even unknown) systems. In 

this article an identification method for Discrete Event Systems (DESs) controlled by 

a Programmable Logic Controller is presented. The method allows processing a 

large quantity of observed long sequences of input/output signals generated by the 

controller and yields an interpreted Petri net model describing the closed-loop 

behaviour of the automated DESs. The proposed technique allows the identification 

of actual complex systems because it is sufficiently efficient and well adapted to 

cope with both the technological characteristics of industrial controllers and data 

collection requirements. Based on polynomial-time algorithms, the method is 

implemented as an efficient software tool which constructs and draws the model 

automatically; an overview of this tool is given through a case study dealing with an 

automated manufacturing system. 

Keywords: Automated Modelling, Controlled DES, I-O Identification, Interpreted 

Petri Nets. 

1. Introduction 

1.1 Industrial systems identification 

In automation engineering, the first step of the development life cycle of new systems 

is generally devoted to the modelling of the system’s behaviour. In most cases these models 

are used for functional or performance evaluation by analytical approaches or simulation 

techniques. In this paper, the problem we address is the model discovery of systems whose 

models are not updated or are not available at all. We will see later that this situation occurs 

frequently in industry. Nevertheless, despite the lack of a "reliable" model, performance 

evaluation or redesign is often required. 

Modelling existing systems (natural or manmade) for performance assessment has been 

done in several fields: 

• Natural systems: in [Chang and Hanna, 2004] a model for evaluating the quality of air 

is proposed, • Organizations: Hospital activity management is analysed through workflow models 

[Du, 2009], • Energy production [Connolly, 2010] and industrial systems [Mottershead, 1993] may 

require more detailed and complete models for simulation. 



In industrial systems under intensive workload, initial models are not always updated. In 

[Lanubile, 2002], the authors explain that a typical approach to software maintenance is 

analysing just the source code, applying some patches, releasing the new version, and then 

updating the documentation. This quick-fix approach usually leads to documentation that is 

not aligned with the current system and degrades the original system structure, thus 

rendering the evolution of the system costly and error-prone. 

This last case is representative of automated discrete production systems in which 

Programmable Logic Controller (PLC) code maintenance is often performed without 

updating the documentation nor the control algorithm or model. For such systems, 

identification from observations of external system’s behaviour could be more appropriate, 

since the system is operating most of the time. In this case the main advantage of 

identification is that the obtained model approximates closely the actual system 

functioning. An identified model can be afterwards completed by applying well known 

modelling techniques using the knowledge about the process, for analysis or redesign 

purposes.  

1.2 Identification methods 

1.2.1 Languages inference techniques 

Pioneer works on identification have been developed in computer science, where the 

problem of obtaining a language representation from sets of accepted words has been dealt 

since a long time. Such methods are generally referred as languages inference techniques or 

learning techniques. 

Gold´s method [Gold, 1967] processes positive samples: an infinite sequence of 

examples such that the sequences contain all and only all the strings of the language to 

learn. 

The Probably Approximately Correct (PAC) learning technique proposed in [Valiant, 

1984] learns from random examples and studies the effect of noise on learning from 

queries. 

The query learning model proposed in [Angluin, 1988] considers a learning protocol 

based on a “minimally adequate teacher”; this teacher can answer two types of queries: 

membership query and equivalence query. 

Several works that have adopted state machines as representation model, allow 

describing the observed behaviour. In [Booth, 1967] a method to model a language as 

Moore or Mealy machines is presented. The system under investigation is placed within a 

test bed and connected to a so called experimenter, which generates the input signals and 

records the output signals of the system. The identification can be started considering a 

very few number of states. If, at some point of the experiment, it is impossible to find a 

correct machine with the assumed number of states, the identification is started again 

considering a machine with one more state. 

The method proposed in [Kella, 1971] allows obtaining models representing Mealy 

machines from a single observed input-output sequence. The algorithm lists all reduced 

machines which may produce the given sequence. The construction principle is the merging 

of equivalent states. 



In [Biermann and Feldman, 1972] a method for the identification of non deterministic 

Moore machines based on a set of input output sequences is presented. All the sequences 

start in the same initial state. The identification principle is the reduction of an initial 

machine represented as a tree. 

The method presented in [Veelenturf, 1978] processes simultaneously a sample of 

sequences to produce stepwise convergent series of Mealy machines, such that the 

behaviour of every new machine includes the behaviour of the previous one. At each step, 

the last obtained machine is analysed and completed by adding transitions and possibly new 

states. 

Later, in [Veelenturf, 1981] an algorithm to identify a unique Moore machine 

generating the behaviour observed during m sequences starting at the same initial state is 

proposed. The learning procedure operates in three steps: induction, contradiction, and 

discrimination. A state can never be deleted and only transitions between states can be 

modified. This method is improved in [Richetin, 1984], which proposes two algorithms to 

identify multiple systems as well as systems that may not be initialized between two 

records. 

The identification problem for context free grammars (CFGs) needs, beside given 

examples, some additional structural information for the inference algorithm [Levy and 

Joshi, 1978].  

[Ishizaka, 1990] has investigated a subclass of CFGs called simple deterministic 

grammars. A polynomial time algorithm that allows an exact identification of a simple 

deterministic language is given. 

In [Takada, 1998] it has been shown that the grammatical inference problem for even 

linear languages can be reduced in polynomial time to the inference of regular languages. 

Other works use as description formalism Petri net models. In [Hiraishi, 1992] an 

algorithm for synthesising Petri net models is presented. The proposed algorithm has two 

phases. In the first phase, the language of the target system is identified under the form of a 

DFA. In the second phase, a Petri net that accepts the same language as the DFA is built. 

1.2.2 Recent DESs identification methods 

In recent years, the scientific community has proposed identification approaches (based 

on Petri net or automata) for obtaining approximated models of DESs whose behaviour is 

unknown or ill-known. In the context of automated DESs, identification methods can be 

complementary to established modelling techniques; identification builds a closed-loop 

controller-plant model, which is more classically obtained by a composition of models of 

controller and plant. Three main approaches for identifying DESs have been proposed in 

literature [Estrada, 2010a]. 

The incremental synthesis approach, proposed in [Meda, 2000], [Meda, 2001], [Meda, 

2003], deals with unknown partially measurable concurrent DESs exhibiting cyclic 

behaviour. Several algorithms have been proposed allowing the on-line building of 

interpreted Petri net (PN) models from the DES outputs. Although the techniques are 

efficient, the obtained models may represent more sequences than those observed. 



In [Giua, 2005] a method to build a free labelled PN from a finite set of transitions 

strings is presented. This method is based on the resolution of an Integer Linear 

Programming (ILP) problem; the obtained PN generates exactly the observed language. 

Both the ILP statement and its solution are computational demanding. This approach has 

been extended to other PN classes [Cabasino, 2007], [Dotoli, 2008], [Fanti, 2008] [Dotoli, 

2011]; however, issues regarding applications to actual industrial DESs have not yet been 

addressed in these works. 

Another recent off-line method [Klein, 2005] allows building a non-deterministic finite 

automaton (FA) from a set of input/output (I/O) sequences, experimentally measured from 

the DES to be identified. Under several hypotheses, the constructed FA generates exactly 

the same I/O sequences of given length than observed ones. The method was conceived for 

fault detection in a model-based approach [Roth, 2012]. Extensions to this work propose an 

identification method performing optimal partitioning of concurrent subsystems for 

distributed fault detection purposes [Roth, 2010].  

Other works on the matter, based on different approaches have been proposed. The 

techniques for workflow mining, published by van der Aalst and co-workers [Cook, 

2004][van der Aalst, 2004], allows building Petri net models of workflow processes in 

which all the activities are observable. Other works pursue the construction of a stochastic 

PN from recorded event sequences [Ould El Medhi, 2006] [Ould El Medhi, 2012] for 

reliability analysis. 

1.3 Approach 

Our approach is oriented towards the identification of actual industrial automated 

DESs, such as discrete manufacturing systems in which concurrent repetitive tasks are 

performed. We focus on closed loop controlled systems whose only available knowledge is 

the observed behaviour in the form of many long cyclic sequences of input-output vectors 

measured from a PLC. The aim of this research is to define an efficient identification 

method, able to build a comprehensible IPN model that describes closely the actual 

behaviour of the system. 

In a first paper we proposed a method for synthesizing interpreted PN (IPN) for coping 

with concurrent partially observable DESs [Estrada, 2009]; it processes a set of cyclic 

sequences of binary output signals yielding models including silent transitions and non-

labelled places. Afterwards the method has been extended for dealing with sequences of I/O 

signals captured during the closed-loop operation of PLC-based controlled DESs [Estrada, 

2010b]. Fundamental technological characteristics of industrial controllers are taken into 

account in data collection and processing. The obtained model is a safe (1-bounded) IPN 

describing the controller-plant concurrent behaviour, including that non observable directly 

from the PLC. The present paper gathers and details the results of these papers; it presents a 

global and coherent view of these results, includes a wider literature review, and extends 

them with important application issues. For that, we describe an operational software tool 

which implements the proposed identification method, which builds and draws by building 

and drawing the IPN model automatically. 

The paper is organized as follows. In section 2 the background on Petri nets and 

languages is summarised. Based on these definitions the problem of DESs identification is 

stated in section 3 in terms of language associated to an IPN. Several constraints inherent to 



real controlled DESs are analysed in section 4. The identification algorithm is given in 

section 5. Then, a software tool implementing the proposed method is outlined and a case 

study is included in section 6. 

2. Basics on Petri nets and languages 

This section presents the basic concepts and notation of PN and IPN used in this paper. 

Definition 1: An ordinary Petri Net structure G is a bipartite digraph represented by the 

4-tuple G = (P, T, I, O) where: P = {p1, p2, ..., p|P|} and T = {t1, t2, ..., t|T|} are finite sets of 

vertices named places and transitions respectively; I(O) : P × T → {0, 1} is a function 

representing the arcs going from places to transitions (from transitions to places). 

The symbol 
•
tj (tj

•
) denotes the set of all places pi such that I(pi, tj) ≠ 0 (O(pi, tj) ≠ 0). 

Such places are called input (output) places of tj. Analogously, 
•
pi (pi

•
) denotes the set of 

input (output) transitions of pi. 

The incidence matrix of G is C = C
+
 − C

−
, where C

−
 = [cij

−
]; cij

−
 = I(pi, tj); and  

C
+
 = [cij

+
]; cij

+
 = O(pi, tj) are the pre-incidence and post-incidence matrices respectively. 

A marking function M : P→Z
 +

 represents the number of tokens residing inside each 

place; it is usually expressed as an |P|-entry vector. Z
 + 

is the set of nonnegative integers. 

Definition 2: A Petri Net system or Petri Net (PN) is the pair N = (G,M0), where G is a 

PN structure and M0 is an initial marking. 

In a PN system, a transition tj is enabled at marking Mk if ∀pi ∈ P, Mk(pi) ≥ I(pi, tj); an 

enabled transition tj can be fired reaching a new marking Mk+1 which can be computed as 

Mk+1 = Mk + Cvk, where vk(i) = 0, i≠j, vk(j) = 1, this equation is called the PN state 

equation. The reachability set of a PN is the set of all possible reachable markings from M0 

firing only enabled transitions; this set is denoted by R(G, M0). A PN is called safe (or 1-

bounded) if∀Mk ∈ R(G, M0), ∀pi ∈ P, Mk(pi) ≤ 1. Now it is defined IPN, an extension to 

PN that allows associating input and output signals to PN models. 

Definition 3 : An IPN (Q, M0) is a net structure Q = (G, Σ, Φ, λ, ϕ) with an initial 

marking M0 where: 

G is a PN structure, Σ = {α1, α2, ..., αr} is the input alphabet, and Φ = {φ1, φ2,..., φq} is 

the output alphabet. 

λ : T→ g(Σ)∪{ε} is a labeling function of transitions, where g(Σ) is a conjunction of 

input changes (rising and falling edges), ε represents a system internal event externally 

uncontrollable.  

ϕ : R(Q,M0)→( Z
 +

)
q
 is an output function, that associates to each marking in R(Q, M0) 

a q-entry output vector; q=|Φ| is the number of outputs. ϕ is represented by a q×|P| matrix, 

such that if the output symbol φi is present (turned on) every time that M(pj) ≥ 1, thenϕ (i, 

j) = 1, otherwise ϕ(i, j) = 0. 

When an enabled transition tj is fired in a marking Mk, then a new marking Mk+1 is 

reached. This behaviour is represented as
1+→ k

j
t

k MM ; the state equation is completed with 

the marking projection yk = ϕ Mk, where yk ∈ (ℤ +
)
q
 is the k-th output vector of the IPN. 



According to functions λ and ϕ, transitions and places of an IPN (Q,M0) can be 

classified as follows. 

Definition 4:  If λ(ti) ≠ ε the transition ti is said to be controllable (ti can be fired when 

the associated input symbol is presented). Otherwise it is uncontrollable (ti is autonomously 

fired). A place pi∈P is said to be measurable if the i-th column vector of ϕ  is not null, i.e. ϕ(•,i) ≠ 0. Otherwise it is non-measurable. P = P
m
 ∪ P

u
 where P

m
 is the set of measurable 

places and P
u
 is the set of non-measurable places. 

Definition 5: The l-length I/O language L
l
(Q, M0) of an IPN (Q, M0) contains words 

of length l formed by pairs (λ(tk), yk), where yk = ϕ Mk. 

L
l
(Q, M0) ={(λ(ti+1),ϕ(Mi+1))(λ(ti+2),ϕ(Mi+2))…(λ(ti+l),ϕ(Mi+l))  

| 1
1 +→ +

i

t

i MM i  and ),( 0MQRM i ∈ } 

3.  Controlled discrete event systems 

The systems considered in this work are closed loop controlled DESs (Figure 1); they 

consist of a plant and its industrial controller (in many cases a Programmable Logic 

Controller: PLC). The behaviour of such systems (i.e. the PLC-plant compound system 

behaviour) can be observed by collecting the signals exchanged between controller and 

plant. 

 

Figure 1. Closed loop controller-plant DES 

Several phenomena, due to the interaction between plant and controller, increase the 

complexity of the identification process; they must be taken into account when real 

controlled DESs have to be identified: 

• An input evolution (signal emitted by the plant through a sensor) does not always 

provoke an output evolution (signal emitted by the PLC to an actuator). In practice, 

few input changes provoke output evolutions; 

• Non simultaneous I/O events are often simultaneously observed; 

• When output changes are provoked by input changes, this causal relationship is not 

necessarily captured simultaneously. 

Now, we are going to explain these phenomena. 

  

Plant

Controller
I (j) O(j)

I/O(j)



3.1 PLC treatment cycle 

A PLC cyclically performs three main steps: “input reading” (I) where it reads the 

signals from the sensors, “program execution” (PEX) to determine the new outputs values 

for the actuators, and “output writing” (O) where the newly determined commands are sent 

to the plant actuators [Bel Mokadem, 2010]. 

 

Figure 2. PLC cycle and data collection 

At the end of the PEX phase the current values of inputs and outputs (I/O) are sent 

from the PLC to a computer and stored for a later treatment by the identification algorithm. 

In this paper we consider that the PLC operates cycle driven, i.e. the cycle is executed 

periodically [Lohmann, 2007].  

3.2 Experimental constraints 

In the identification problem we are addressing, the PLC program is assumed to be 

unknown. Sequential Function Charts (SFC) are used in this paper only for describing the 

diverse situations addressed by the proposed method.  

SFC is a graphical programming language used for PLCs. It is one of the five languages 

defined by IEC 61131-3 standard. Main components of SFC are: Steps with associated 

actions, Transitions with associated logic conditions, Directed links between steps and 

transitions. Steps in an SFC diagram can be active or inactive.  Steps are activated when all 

steps above it are active and the connecting transition is validated (i.e. its associated 

condition is true). When a transition is fired, all steps above are deactivated and 

simultaneously all steps below are activated. Actions associated with steps can be of several 

types, the most relevant ones being Continuous (N), Set (S) and Reset (R). Apart from the 

obvious meaning of Set and Reset, an N action ensures that its target variable is set to 1 as 

long as the step is active. 

 Due to the PLC cycle, some situations between inputs and outputs could arise. 

Consider a situation described in Figure 3 (current active step is #10; a and b are two input 

signals to the PLC; A and B are two output signals).  

 

Figure 3. A single input is the condition for state evolution 
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Changes in the state and outputs will occur when signal b is active; however other 

input signals may evolve without consequence in the outputs. This must be considered in 

the identification algorithm.  

Consider now the time diagram in Figure 4. Two signals are asynchronously emitted 

by sensors of the plant between two successive “input reading” phases (I) of the PLC cycle; 

such signals will be read during the next I phase and observed as a simultaneous change in 

the corresponding event vector in the identification data base; in general several 

input/output changes may be represented in an event vector. Therefore the events are 

defined when any change of value in at least one entry is detected between two consecutive 

I/O vectors.  

 

Figure 4. Apparent simultaneous evolution of several inputs 

Let us now consider the specification described in Figure 5(a) in which the effect of 

input b is considered when the step 11 is active. Now consider the situation shown in the 

time diagram in Figure 5(b) in which input b changes its value from 0 to 1 before the 

change in a and then in A; after that b is taken into account to produce B. In this case the 

relationship cause-effect specified to activate step 11 cannot be captured simultaneously; 

however it will be detected only if we observe a sequence of 4 consecutive events. 

(a)                (b)  

Figure 5. I/O causality and sequences of events 

 

These three specific scenarios, among numerous possible others, show that the 

implementation of a controller and its interaction with the plant introduces phenomena that 

must be taken into account by the identification algorithm. 
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4.  Problem statement 

Consider the following language definitions used in the statement and solution of the 

identification problem. 

Definition 6: The set of observed input/output (I/O) words of a DES S with r inputs 

and q outputs is ,...},{)( 21 wwS =Γ , such that 








=
)(

)(
,...,

)2(

)2(

)1(

)1(

ii

ii

i

i

i

i
i

wO

wI

O

I

O

I
w , where 





)(

)(

jO

jI

i

i  is the j-th observed I/O vector of size r + q in sequence wi and 
iw  is the length of 

the I/O word wi. 

Definition 7: The observed k-length I/O language of a DES S is defined as 

 L
κ { }klwljSwljwjwjwS iiiii ≤≤+Γ∈+++= ,),(|)()...2()1()( . 

Now the identification problem can be defined as follows: given a set of observed I/O 

words Γ(S) generated by a real DES during its operation, the aim of our identification 

approach is to construct a safe (or 1-bounded) IPN model (Q, M0) such that L
κ
(Q, M0) = ℒκ(S). 

Since Γ(S) does not provide any information related to the state evolution of the 

observed DES, these states will be inferred in the identified IPN from ℒκ (S), where each 

word of length κ is part of the history (of length κ) of the system. The I/O language 

generated by the identified IPN is therefore inevitably an approximation of the actual 

behaviour of the DES. In our approach, the parameter κ is used to adjust the accuracy of the 

identified model, similarly as proposed in [Klein, 2005]. 

 

5.  Identification algorithm 

The identification method consists of several steps (Algorithm 1) that build 

systematically a safe IPN representing exactly the sampled output language of length κ+1 

of the DES from the observed I/O vectors sequence Γ(S).  

Algorithm 1. Global identification procedure 

Inputs: Γ(S) and the parameter κ 

Output: (Q,M0): an IPN model 

 

1. Compute event vector sequences τi and symbolic input events λ’ from the 

observed vectors Γ(S). 

2. For every sequence of event vectors τi, create event vector traces τi
κ
 of length κ. 

3. Create the non-observable behaviour of the IPN and simplify it. 

4. Complete the IPN adding the observed behaviour and deleting implicit places.  

 

 

The steps of this procedure are described below. 



4.1 Sample processing 

4.1.1 Event sequences  

As stated before, the data obtained by observing the system to be identified is a set of 

sequences of I/O vectors w1, w2,… such that wi = wi(1)wi(2)… where wi(j) refers to the j-th 

observed vector in sequence wi. Such sequences may have different length. From these 

sequences, strings of observed event vectors are first computed. 

Definition 8: An observed event vector τi(j) is the variation between two consecutive 

I/O vectors wi(j), wi(j + 1); it is computed as )()1()( jwjwj iii −+=τ . An input event 

vector λ(τi(j)) is the variation between two consecutive input vectors Ii(j), Ii(j + 1); it is 

computed as )()1())(( jIjIj iii −+=τλ .  

An input event vector can be represented in a compact way by specifying only the 

input symbols that changed in the event. Ii_1 denotes the change from 0 to 1 of the input Ii; 

similarly Ii_0 denotes the change from 1 to 0 of the input Ii. Then the symbolic input event λ’(τi(j)) is a string composed by the representation of the inputs changed in the event 

vector.  
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Then for every sequence wi, a sequence of observed event vectors τi = τi(1) τi(2)… τi( iw −1) is obtained. The maximum number of possible event vectors is 

3
(r + q)

 − 1. However, in practice, only a small subset of them is observed. 

Example 1. Consider a DES with q = 4 output signals, Φ = {A, B, C, D}, and r = 3 input 

signals Σ = {a, b, c}. Three I/O sequences have been observed; vector entries correspond to 

distribution [a  b  c | A  B  C  D]
T 
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According to Definition 8, for every sequence wi, a sequence of observed event vectors τi = τi(1) τi(2)… τi( iw −1) is computed. During the process, if the difference has not been 

observed before, a new event vector ej is created and stored (τi(j) = ej). 

For the Example 1, sequences τi of the detected event vectors ej associated to I/O 

changes are obtained: 
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4.1.2 Sequences of κ-length event vector traces 

In order to distinguish sub-sequences including the same events, event traces of length 

κ are used. From every sequence τi = τi(1) τi(2)… τi( iw −1) we compute sequences of 

event vector traces τi
κ 

= τi
κ
(1)τi

κ
(2)… τi

κ
 (

iw −1)  such that every τi
κ
(j) is the κ-length 

substring of τi that finishes with τi
κ
(j). For the first κ − 1 elements of the trace sequence the 

event vector ε (zero vector) is used. Such traces are used to determine equivalent states, 

according to the following equivalence notion.  

Definition 9: Two states of the identified system are κ-equivalent if their I/O vectors 

are the same and if the κ last observed event vectors that lead to these states are the same. 

Following with the Example 1, the sequences of traces using κ = 2 are: 
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2

1 , eeeετ =  for τ1 

655443311

2

2 ,,,, eeeeeeeeeετ =  for τ2 

644553311

2

3 ,,,, eeeeeeeeeετ =  for τ3 



4.2 Building the basic structure 

4.2.1 Representing event traces 

Once the sequences of event vector traces have been obtained, every trace τi
κ
(j) is 

related to a transition in the IPN through a function γ:T→{τi
κ
(j)}; the firing of a transition 

implies that κ consecutive event vectors related to such a transition have been observed. 

In order to preserve the firing order between transitions, dependencies are created 

between them and associated with an observed marking through the function 

)},(|{: 0MGRMMP ii

u ∈→ ϕµ , which relates every non-measurable place with an 

observed marking, such that every transition has only one input place and one output place ( )1, ==∈∀ ••
rrr ttTt . Notice that the number of non-measurable places is not predefined. 

When an event vector trace τi
κ
(j) is found again in a τi

κ
, the associated dependency must be 

used if it leads to the same observed marking.  

Let ej be the last event vector in the trace τi
κ
(j); the associated transition will be 

denoted as j
e

rt (more than one transition may have associated the same ej). This strategy can 

be systematically performed following the next procedure. 

Algorithm 2. Building the basic IPN structure 

Input: The set Γκ
 = {τi

κ
}  

Output: A PN structure G composed by p∈P
u 

1. T ←∅; ET ←∅; P←{pini}; M0(pini)←1;µ(pini)←τi(1); //Initialise the net 

2. ∀τi
κ
 ∈ Γκ

 

2.1. current ← pini; //Keep track of the current place 

2.2. ∀τi
κ
(j) ∈τi

κ
, 1 ≤ j ≤ |τi 

κ 
|  //Analyse every event trace 

2.2.1. If τi
κ
(j) ∉ ET //The trace is new 

Then 

ET ← ET ∪ {τi
κ
(j) }; //Create a new transition label 

T ← T ∪ {tr
ej
}; γ(tr

ej
) ←τi

κ
(j); //Create a new transition labelled with the trace ∀pa ∈ P 

I(pa, tr
ej
)←0; O(pa, tr

ej
)←0; 

I(current, tr
ej
) ← 1; //Create an arc from current place to the new transition 

If j = |τi 
κ 

| and µ(current) + ej = µ(pini) //The trace is the last one 

Then O(pini, tr
ej
) ← 1; //Create an arc from the transition to the initial place 

 Else 

P ← P ∪ {pout}; //Create a new place ∀tb ∈ T 

I(pout, tb)←0; O(pout, tb)←0; µ(pout) = µ(current) + ej ; O(pout, tr
ej
)←1; //Relate such a place with observed 

marking and add an arc from the transition to such a place 

current ← pout //Take such a place as current 

2.2.2. If τi
κ
(j) ∈ ET //The trace is not new 

Then 



If ∃pin | pin = 
•
(tr

ej
), tr

ej∈ T, γ(tr
ej
) = τi

κ
(j) and µ(pin) = µ(current) //If there is a place 

  with the same observed marking preceding a transition with the same label 

Then merge(current, pin); current ← (tr
ej
)
•
; //Merge such a place with current 

Else Go to step 2.2.1 // τi
κ
(j) ∈ ET is not considered 

If j = |τi 
κ 

| and µ(current) + = µ(pini) //The trace is the last one 

Then merge(current, pini); 

 

Properties of Algorithm 2 

• Characteristics of G. The obtained model is a PN state machine (PNSM). After 

processing the first sequence, the PN graph yield is a circuit; afterwards, when 

previously created transitions whose associated traces have been found, such a 

transition and its input place are merged (step 2.2.2); thus the fusion preserves the 

structural nature of a PNSM.  Since M0(pini)=1, (G, M0) is 1-bounded. 

• Complexity. Since search operation has linear-time complexity and the algorithm 

performs the addition of a transition for every computed trace that has not been yet 

observed, Algorithm 2 is executed in polynomial-time on the number of observed 

input/output sequences and their maximum length. 

• Completeness. The IPN G built through Algorithm 2 represents all and only all the 

trace sequences (sub-sequences) in Γκ
. In fact, by construction, every sequence τi

κ
 is 

represented in G by a circuit starting from pini including the sequence of tr
ej
; this 

circuit represents also the sequence τi of events. Furthermore, the reuse of computed 

transitions having associated the same event traces, during the processing of 

subsequent τi
κ
, is done only when common paths of length κ are built, that does not 

introduce other sequences. 

Using the previous algorithm, the obtained PN corresponding to the three sequences of 

event vector traces of the Example 1 is showed in Figure 6. Notice that one of the 

sequences is not cyclic. 

 

Figure 6. Basic model with sequences of event vector traces 

 

4.2.2 Simplifying the basic structure 

Additional node merging operations can be performed on the basic structure in order to 

obtain a simpler equivalent trace model. Now we can take into account the event vector ej 

associated to transitions. Consider the following transformation rules. 

 

1

1

e
t 3

3

e
t

2

2

e
t

4

4

e
t

5

7

e
t

5

5

e
t

4

8

e
t

6

6

e
t

6

9

e
t



Algorithm 3. Simplifying the basic structure. 

Input: G 

Output: G’, an equivalent IPN 

Apply the following rules on the initial place and iteratively on the merged places 

Rule 1:  ∀ ta
ej
, tb

ej∈ pini
•
| a ≠ b // Common prefixes 

  merge(ta
ej
 ,tb

ej
); merge((ta

ej
)
•
, (tb

ej
)
•
) //Merging of transitions and their output places 

Rule 2:  ∀ta
ej
, tb

ej∈ 
•
pini| a ≠ b // Common suffixes 

  merge(ta
ej
, tb

ej
); merge(

•
(ta

ej
), 

•
(tb

ej
)) //Merging of transitions and their input places 

 

 

Properties of Algorithm 3  

• G’ is a safe PNSM. The node fusions are performed similarly as in Algorithm 2, thus 

the structure remains as a PNSM. 

• G’ preserves the trace sequences in G. Let us analyse the effect of Rule 1; let Lfpi = 

{λ(t1)λ(t2)... λ(tr)|t1 ∈ pi
•
, ti+1 ∈ (ti

•
)
•
} be the set of observable sequences from place 

pi. Consider ta
ej
, tb

ej
 ∈ pini

•
|a ≠ b; before applying Rule 1, Lfpini = ejLpa ∪ ejLpb ∪ 

(∪λ(ti)Lpi), with pa = (ta
ej
)
•
, pb = (tb

ej
)
•
; ti∈ pini

•
|ti ≠ ta

ej
, ti≠ tb

ej
, pi = (ti)

•
. After applying 

Rule 1, Lfpini = ej(Lpa ∪ Lpb) ∪ (∪λ(ti)Lpi); thus the language of G is not changed by 

the application of Rule 1. A similar reasoning can be done for Rule 2.  

In the example, the application of the rules leads to the model of Figure 7a. Since the 

initial place has two input transitions associated to e6, they can merge and their input places 

can too.  

 

4.2.3 Concurrent transitions 

Other transformations may be performed when some events associated to transitions 

appear in different order in different sequences, describing their interleaved firing; this 

behaviour is exhibited by concurrent transitions in parallel paths in the model. The analysis 

can be performed on a model component comprised between two transitions tf and tj, which 

have respectively a single output place tf
•
 and tj

•
, which are relied by several paths 

containing the concurrent transitions. If there are m! paths, we can explore if there exists m 

different transitions in each path and the events sequence in every path appear as a 

permutation from each other. When it is verified, the subnet can be transformed into a 

component formed by m concurrent paths from tf and tj containing each one a transition 

related to one of the concurrent events. This transformation of G’ preserves the same 

behaviour. 

In Figure 7a, notice that between the transition associated to e3 and the new transition 

associated to e6 there are paths with all possible permutations of e4 and e5; then, we can 

transform this into a concurrent component and we obtain the net showed in Figure 7b.  

 



(a)  

 

(b) 
 

(c) 

Figure 7. (a) Model after merging (b) Simplified basic model 

(c) IPN model including measurable places 

 

Notice that this model preserves the same event vector sequences of the previous one. 

The equivalent fork-join structure obtained by this transformation is composed by m 

elementary paths composed by two places and one transition between the fork an join 

transitions. Each path will contain one token in one of its places; this substructure is 1-

bounded, the transformed PN is also 1-bounded. 

The simplification by analysis of concurrency is not strictly necessary for representing 

the event vector sequences; however the equivalent model with concurrent transitions may 

be simpler. Although the analysis could be inefficient when the number of paths in the 

subnet is large, usually this number is reduced. 

The aim of the simplification strategies given above is obtaining fairly reduced models 

useful for analyzing the DES behaviour, rather than minimizing the number of nodes in the 

obtained models. 

4.3 Adding interpretation to the PN model 
4.3.1 Representing outputs changes 

Once the event vector sequences are represented in the basic model, it must be 

completed by adding the output and input changes. Recall that event vectors are computed 

from the difference of consecutive I/O vectors; thus an ej relates measurable places 

representing the outputs changes. This procedure is detailed in Algorithm 4. 

Algorithm 4. Representing outputs changes 

Input: G’, {ei(j)} 

Output: H, the IPN including measurable places  

Step 1. P ← P ∪ {p1, p2,...,pq}. 

Step 2.∀tr
ej
 ∈ T: 

If ej(i) = −1 Then I(pi, tr
ej
) = 1 and O(pi, tr

ej
) = 0; 

If ej(i) = 1 Then I(pi, tr
ej
) = 0 and O(pi, tr

ej
) = 1; 

If ej(i) = 0 Then I(pi, tr
ej
) = 0 and O(pi, tr

ej
) = 0; 

Step 3. If component i of vector wj(1) is 1 Then M0(pi) = 1 Else M0(pi) = 0 
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The number of measurable places is then equal to the number of outputs. The net with 

measurable places for the example is showed in Figure 7c. 

 

4.3.2 Model simplifying 

Implicit non-measurable places can be removed; if there is a non-measurable place pk 

whose input and output transitions are exactly the same than any measurable place, then pk 

is deleted and its input and output arcs. 

 

4.3.3 Representing input changes 

Once the output adding and implicit places deleting has been performed, it only 

remains to add input information to complete the IPN model. Input information is 

associated with labels for transitions in a natural way given by the symbolic event input 

function.  

Algorithm 5 describes a systematic way to do it. 

 

Algorithm 5. Representing input changes 

Input: H, λ’(ej) 

Output: (Q,M0) the final model of the identification process 

Step 1.∀tr
ej
 ∈ T, λ(tr

ej
) ← λ’(ej) 

 

The final model for the illustrative example is showed in Figure 8. The associated 

inputs for transitions are given by: λ(t1)=a_1, λ(t2)= ε, λ(t3)=b_1 c_1, λ(t4)=b_0, λ(t5)=c_0, λ(t6)=a_0. 

 

 

Figure 8. Simplified IPN model 

5.4 Completeness of the identified model 

Since every one of the transitions in the net actually represents a sub-sequence of event 

vectors of length κ, the input-output language of length κ + 1 of the net is equal to the 

observed I/O language. Even, for the above example, the I/O language of the IPN is equal 

to the observed I/O language, i.e. only the observed cyclic I/O sequences are represented by 

the evolution of the net. 

Proposition 1. For a DES S and an identification parameter κ, Algorithm 1 yields an 

IPN model (Q, M0) which represents exactly L
κ+1

(S). 

1_a 1_,1_ cb

ε
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0_c
0_a

A

B

C

D



Proof. Since the deletion of implicit places does not change L
κ+1

(Q,M0), the proof is 

made with the model obtained before this procedure. The firing of a transition t in the 

system is not affected by the addition of arcs to and from t, since these arcs have been 

computed from output events (differences of output vectors) in Γ(S). Then, also in this 

model, every event vector sequence σ of length less or equal than κ belongs to the language 

of the net if and only if it has been observed.  

The sequences of transitions of length less or equal than κ that can be fired, lead to 

markings in the measurable places that also belong to Γ(S) (since the marking change 

provoked in the measurable places was obtained from the difference of observed vectors). 

Then, we have that sequences of observed output vectors of length less or equal than κ + 1 

correspond to sequences of marking vectors in the net and   L
 κ + 1

(Q) =L 
κ + 1

(S). ■ 

5.5 Further simplifications 

The identification procedure takes into account any change in the inputs or outputs and 

represents it in the identified model; in such a model we often find consecutive input events 

that do not provoke output changes. This situation is due to variations in some inputs, 

during the system operation, which are not directly related with the outputs changes. 

In systems where the number of inputs/outputs and the length of the sequences are large, 

the identified model size may grow because of this reason. Thus further reductions to the 

model can be done about the above mentioned sub-sequences of input events, allowing a 

more compact representation of the system’s behaviour. For instance, consider the 

following I/O vector sequence w involving one input x and two outputs A, B: 















=





1
0

1

0
1

1

0
1

0

w

B
A

x

 

In this sequence the event x_1 appears first, and later an output change is produced; it 

can be represented as: A → 1_x A →ε B. This behaviour can be represented in a more 

compact way: BA x→ 1_ .  In general, this transformation including several input events 

can be represented as: 

B
eee

AB
e

A
e

A
e

A
kjikji  →≅→→→ ...

...  

This transformation is applied to paths in the PN model that do not include decision 

places. This is going to be illustrated on the case study included in Section 6. 

 

6 Method implementation and application 

This section presents a software tool for DESs identification and its application to a 

case study. 

6.1 An operational identification tool 

Based on the algorithms presented above, a software tool has been developed using 

Java (JDK 6 Update 11 for compiling and JRE 6 Update 26 for executing) to automate the 

IPN model synthesis. The architecture of the tool is showed in Figure 9.  



The user interface allows capturing the input-output sequences and shows the obtained 

model graphically. Several data is provided to the tool in text files: the sequences, the 

parameter κ, the names of the input and output signals, and the output file name. 

Additionally it is specified the order in which inputs and outputs appear in the txt files and 

the index numbers of the signals to take into account if a mask is going to be applied.  

 

 

Figure 9. Software architecture 

Later, an input reader component processes these input files and transforms every 

input-output sequence into a vector. These vectors will be delivered to a component called 

Algorithm in which the identification algorithm is implemented. The output of this 

component is a dot file that can be treat by Graphviz (an open source graph visualization 

software: http://www.graphviz.org/) to generate an image file jpg. 

The presented identification tool has been tested on many examples of diverse size and 

complexity, which have been previously solved following the identification procedures. For 

better understanding, we develop below a small size case of study.  

 

6.2 Case study 

We illustrate the use of the software tool through the identification of a small size 

manufacturing system obtained from [Roth, 2009] described on Figure 10. The purpose of 

such a system is to sort parcels according to their size. It has 9 PLC inputs, that are signals 

generated by the sensors of the plant for detecting positions (a0, a1, a2, b0, b1, c0, c1) and 

presence of parcels detection (k1, k2),  and 4 PLC outputs, that are signals controlling 

the actuators of the plant (A+, A-, B, C). 

 

Figure 10. Case study layout 

User 
interface

Input
Reader

Memory

Algorithm Graphviz

Options

I-O vectors

Input files

dot file

IPN (jpg file)

Memory

Conveyor1

Conveyor2 (small parcels)

Conveyor3 (large parcels)

A+

A-

a0

a1

a2

k2

k1

B

C

c0

b0 b1

c1



 

For space considerations we show the processing by the identification tool of nine cyclic 

I/O sequences; the text files including these sequences are showed in Figure 11. The vector 

entries correspond to the following distribution: [A+ A- B C k1 k2 a0 a1 a2 b0 b1 c0 c1]. 

 

 

Figure 11. Input-output cyclic sequences of the case study 

After the execution of the identification process using κ=1, and before concurrence 

transformations, the model showed in Figure 12 is obtained; the identified model using κ=2 

is showed in Figure 13. After some transformations of the model in figure 12 considering 

the phenomena described in section 6, the net in Figure 14 is obtained. 

From the obtained model, we can infer the following behaviour: 

-When a large parcel arrives (k1 and k2 rise), cylinder A is extended (A+ rise). After 

cylinder A pushes the parcel to the conveyor 3 (a0 falls, k1 falls, k2 falls, a1 rises, a1 falls 

and a2 rises), cylinder C extends (C rises) and cylinder A retracts to its initial position (A- 

falls). When parcel is completely pushed, cylinders retract to their initial position. 

-When a short parcel arrives (only k1 rise), cylinder A is extended (A+ rise) until 

conveyor 2 is reached (a0 falls, k1 falls and a1 rises). Then, cylinder B extends (B rises) 

and cylinder A retracts (A- falls). When parcel is completely pushed, cylinder B retracts 

until its initial position. 

This interpretation is valid only for the observed behaviour. If the data collection has 

been made for a long time, we can state that the model is almost exact. 

 

Cycle01.txt:

0000 001001010

0000 101001010

1000 101001010

1000 100001010
1000 000001010

0110 000101010

0110 000001010

0110 000000010

0010 001000010
0000 001000110

0000 001000010

0000 001001010

Cycle02.txt

0000 001001010

0000 101001010

1000 101001010

1000 100001010
1000 000001010

0110 000101010

0110 000100010

0110 000000010

0100 000000110
0000 001000110

0000 001000010

0000 001001010

Cycle03.txt

0000 001001010

0000 101001010

1000 101001010

1000 100001010
1000 000001010

0110 000101010

0110 000100010

0110 000000010

0100 000000110
0000 001000010

0000 001001010

Cycle04.txt

0000 001001010

0000 101001010

1000 111001010

1000 110001010
1000 010001010

1000 000001010

1000 000101010

1000 000001010

0101 000011010
0101 000011000

0101 000001000

0100 000001001

0100 000001000

0100 000101000
0100 000001000

0100 000001010

0000 001001010

Cycle05.txt

0000 001001010

0000 101001010

1000 111001010

1000 110001010
1000 010001010

1000 000001010

1000 000101010

1000 000001010

0101 000011010
0101 000001010

0101 000001000

0100 000001001

0100 000001000

0100 000101000
0100 000001000

0100 000001010

0000 001001010

Cycle06.txt

0000 001001010

0000 101001010

1000 111001010

1000 110001010
1000 010001010

1000 000001010

1000 000101010

1000 000001010

0101 000011010
0101 000001010

0101 000001000

0100 000001001

0100 000101000

0100 000001010
0000 001001010

Cycle07.txt

0000 001001010

0000 101001010

1000 111001010

1000 110001010
1000 010001010

1000 000001010

1000 000101010

1000 000001010

0101 000011010
0101 000001000

0100 000001001

0100 000101000

0100 000001010

0000 001001010

Cycle08.txt

0000 001001010

0000 101001010

1000 111001010

1000 110001010
1000 100001010

1000 000001010

1000 000101010

1000 000001010

0101 000011010
0101 000001010

0101 000001000

0100 000001001

0100 000101000

0100 000001010
0000 001001010

Cycle09.txt

0000 001001010

0000 101001010

1000 101001010

1000 100001010
1000 000001010

0110 000101010

0110 000100010

0110 000000010

0010 001000010
0000 001000110

0000 001000010

0000 001001010



                  

Figure 12. Identified IPN model (κ=1)            Figure 13. Identified IPN model (κ=2) 



 

 

Figure 14. Reduced model for the case study (κ=1) 

6.3 Tuning the parameter κ 

 The parameter κ helps to distinguish sequences of events that look similar during the 

construction of the basic internal model; its value indicates the history of past events that 

have to be considered for deciding the state equivalence. On the one hand, high values of κ 

imply distinguishing more sequences avoiding path fusion during the model construction; 

thus the obtained models are more accurate but less compact. On the other hand low values 

of κ allow more state fusions; the obtained model are more compact but more paths can be 

created yielding an overrepresentation of the observed behaviour. 

 In general it is not possible to establish a priori the value of κ, since it is assumed that 

the system is unknown. However, in practice the identification procedure can be applied 

using several values of κ (because it is not time consuming). Compact models allow a first 

approximation to the understanding of the system functioning, whilst larger models provide 

a more precise description. For small examples, such as that included in this section, κ=1 or κ=2 allows distinguishing event sequences whilst compact models are built.   

 In actual industrial systems the difference can be more drastic. Results in testing the 

algorithm on an industrial flexible manufacturing line called “Fischertechnik” [Roth, 2009] 

showed a more remarkable difference between the obtained models for several values of κ. 

The manufacturing line consists of three machines and three conveyors connecting them. 

The plant has 30 binary I/Os. During one production cycle, three work pieces are treated. 

The test has been performed using a Siemens PLC (CPU 315-2 DP); a database has been 

built using a reliable and efficient UDP (User Datagram Protocol) connection.  

The database containing 100 input-output sequences whose length varies from 178 to 

186, has been processed by the identification procedure using different values of κ from 1 

to 6. Since the obtained models are huge, they are not showed herein; instead, the size of 



the identified models are summarised in table 1. The execution time of the identification 

procedure is also included to provide an idea of the performance of the algorithm. The tests 

have been performed in a Laptop computer based on an Intel Core 2 Duo T7300 processor 

at 2.00 GHz with 2.00 GB of RAM under Windows XP Professional 2002 Service Pack 3. 

The time has been measured excluding the execution of the Graphviz visualisation 

software. 

κ Transitions Places Total of nodes ∆ Processing time 

1 541 375 916  516 ms 

2 748 580 1328 412 547 ms 

3 958 783 1741 413 547 ms 

4 1175 996 2171 430 562 ms 

5 1399 1212 2611 440 578 ms 

6 1623 1443 3066 455 609 ms 

Table 1. Size of identified models for different values of κ. 

7 Concluding remarks 

Identification of automated concurrent Discrete Event Systems (DESs) has been 

addressed. The method herein proposed allows dealing with complex actual automated 

DESs because it takes into account technological characteristics of actual industrial 

controlled systems, and because it is based on efficient algorithms. This feature is not still 

addressed in current literature on the matter in which several features considered in the 

current stated problem have not been dealt. 

Although in [Meda, 2000] and subsequent works the proposed algorithms are efficient, 

the identified models represent also non observed behaviour, due to the fact that the state 

equivalence is based on the observation of the same observed outputs vector, which is not 

very often the case for real systems; besides system’s inputs are not taken into account. The 

Techniques based on ILP derived from [Giua 2005] yield models representing exactly the 

event sequences regardless how the events are obtained from I/O data; however, they are 

limited to deal with few short event sequences. In [Klein 2005] and subsequent papers, both 

inputs and outputs are considered, however obtained FA models do not describe explicitly 

the input-output reactive behaviour nor output concurrent evolutions.  

The black-box approach proposed herein allows obtaining IPN models from cyclic 

input/output vector sequences that represent the closed loop behaviour of PLC-based 

controlled plants. The proposed technique builds the IPN that is a close approximation of 

the compound controller-plant behaviour, which can be detailed later for controller redesign 

or model-based diagnosis purposes.  

Current research deals with inference of cyclic sequences from a single long sequence 

and with the reduction of the obtained model by the analysis of the ulterior influence of 

inputs that apparently do not provoke changes in the outputs. Also, the inference of non-

observed behaviour regarding concurrent sub-processes is an issue to deal with. 
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