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Abstract. The slow flow of amorphous solids exhibits striking heterogeneities: swift localised particle rear-
rangements take place in the midst of a more or less homogeneously deforming medium. Recently, experi-
mental as well as numerical work has revealed spatial correlations between these flow heterogeneities. Here,
we use molecular dynamics (MD) simulations to characterise the rearrangements and systematically probe
their correlations both in time and in space. In particular, these correlations display a four-fold azimuthal
symmetry characteristic of shear stress redistribution in an elastic medium and we unambiguously detect
their increase in range with time. With increasing shear rate, correlations become shorter-ranged and more
isotropic. In addition, we study a coarse-grained model motivated by the observed flow characteristics and
challenge its predictions directly with the MD simulations. While the model captures both macroscopic
and local properties rather satisfactorily, the agreement with respect to the spatiotemporal correlations is
at most qualitative. The discrepancies provide important insight into relevant physics that is missing in all
related coarse-grained models that have been developed for the flow of amorphous materials so far, namely
the finite shear wave velocity and the impact of elastic heterogeneities on stress redistribution.

PACS. 83.60.La Viscoplasticity; yield stress – 83.10.Bb Kinematics of deformation and flow – 83.10.Rs
Computer simulation of molecular and particle dynamics

1 Introduction

When a simple liquid is sheared, it flows homogeneously,
and its flow is traditionally viewed as a uniform slide of
vanishingly thin layers of fluids past each other. On the
other hand, if shear is applied to an amorphous solid, the
response of the material is highly heterogeneous, in that
small regions rearrange rapidly while the rest of the ma-
terial responds elastically, in a more or less affine way
[1,2]. In extreme cases, the material may fracture [3–6];
the shear strain is then entirely borne by a thin layer of
matter which has lost its internal cohesion. Material frac-
ture is the most acute case of shear localisation, whereby
the deformation is localised in one region of the system.
The occurrence of this phenomenon rules out the study
of the flow from a homogeneous perspective. But, even
when sheared amorphous solids do not exhibit permanent
shear localisation, there is growing evidence of the exis-
tence of correlations between the localised rearranging re-
gions (referred to as plastic events in the following), that
is, of a spatial organisation of the flow at intermediate
time scales: In Ref.[7], Chikkadi and co-workers observed
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a colloidal glass with confocal microscopy and demon-
strated that the non-affine displacements in the material
were spatially correlated, prior to any shear-banding in-
stability, while Mandal, Varnik, and colleagues [8,9] sup-
ported such experimental findings with numerical simula-
tions. The observed correlations are interpreted as the ef-
fect of the long-range elastic deformation field induced by
a plastic event in the material, at the origin of avalanches
of plastic events. In a uniform linear elastic medium, this
field is quadrupolar[10,11], viz., G (r) ∼ cos (4θ) /r2 for a
plastic event occurring at the origin, in two dimensions.

Predicting exactly where the next plastic event will oc-
cur in the material is an intricate task that is bound to
depend sensitively on detailed knowledge of the current,
static configuration of the system[12–16]. Alternatively,
one may choose to investigate to what extent the position
of the next plastic event is influenced by that of its prede-
cessors, in the hope that extensive information about the
dynamical organization of the flow will thus be revealed.
The characterisation of such correlations between plastic
events is the objective of this work. Although our tools
will be slightly different, we note that similar studies have
appeared in two recent publications. In [17], long-lived
correlations of the local strain field observed in molecular
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dynamics (MD) simulations were taken as evidence of the
importance of localised plastic events in a flowing liquid.
In [18], similar correlations were observed in a numerical
model of a dense emulsion undergoing shear flow between
solid plates.

In this work, we will concentrate on a numerical study
of the flow of a very simple amorphous solid in the ather-
mal limit. We will propose a detailed description of the
plastic events and their dynamical correlations, resolved
both in space and time. The influence of the applied shear
rate is studied. In order to ascertain the origin of the
prominent features of the correlations, we investigate a
coarse-grained model closely connected to the observed
flow phenomenology in complement to the atomistic sim-
ulations.

The article is structured as follows: In Section 2, we
provide the reader with the technical details pertaining
to the MD simulations, and present the observable that
will be used to measure the local rearrangements. In Sec-
tion 3, we report the general properties of the simulated
flow, with a particular focus on the statistics of individual
plastic events. On the basis of these observations, a coarse-
grained model is presented in Section 4 and the general
agreement of the model with the atomistic simulations
is immediately assessed. Finally, Section 5 is dedicated to
our main contribution, namely, a detailed study of the spa-
tiotemporal correlations between successive plastic events
and the interpretation of their salient features.

2 Atomistic simulations at zero temperature

To probe the flow properties of amorphous solids, we re-
sort to MD simulations of an amorphous system under
shear. More precisely, we simulate a binary mixture of A
and B particles, with NA = 32500 and NB = 17500, of
respective diameters σAA = 1.0 and σBB = 0.88, confined
in a square box of dimensions 205σAA × 205σAA, with
periodic boundary conditions. The system is at reduced
density 1.2. The particles, of mass m = 1, interact via a
pairwise Lennard-Jones potential,

Vαβ (r) = 4ǫαβ

[

(σαβ

r

)12

−
(σαβ

r

)6
]

, (1)

where α, β = A, B, σAB = 0.8,ǫAA = 1.0, ǫAB = 1.5, and
ǫBB = 0.5. The potential is truncated at r = 2.5σAA and
shifted for continuity. Simple shear γ is imposed at rate
γ̇ by deforming the box dimensions and remapping the
particle positions.

We conduct our study in the athermal limit, by ther-
mostating the system to a zero-temperature, so that no
fluctuating force appears in the equations of motion, viz.,

dri
dt

= pi/m

dpi

dt
= −

∑

i 6=j

∂V (rij)
∂rij

− pi/τd (2)

where (pi, ri) are the momentum and position of particle
i in the deforming frame.

Besides the interparticle forces, the motion of particle i
is subject to a damping force −pi/τd, that models friction
against solvent molecules in a mean-field way. Here, τd =
1 is the Langevin damping time. The relevance of this
specific implementation of friction shall be discussed in
Section 5.4. Equations 2 are integrated with the velocity
Verlet algorithm with δt = 0.005. In all the following, we
use τLJ ≡

√

mσ2
AA/ǫ as the unit of time and σAA as the

unit of length.
To obtain the initial glassy states, we quenched the

system at constant volume from the liquid state down to
zero temperature at a fast rate. Note that, before any
data were collected, the system was always pre-sheared for
γ = 0.2 to ensure that the steady state had been reached.

3 Macroscopic rheology & Statistics of
plastic events

In this section, we analyse the global rheology of the sys-
tem and collect evidence in support of the general scenario
of plastic events embedded in an elastic medium outlined
in the introduction. We will also characterize plastic events
at a statistical level.

3.1 Flow curve

The dependence of the macroscopic shear stress Σ on the
applied shear rate is shown in Fig.1; it is well described by
the Herschel-Bulkley law Σ = 0.73 + 2.9γ̇0.48. Regarding
the bulk mechanical properties of the system, plotting the
stress as a function of strain at a given shear rate yields
a shear modulus µ ≃ 17 for the system (prior to deforma-
tion) and a macroscopic yield strain γy of order 5-10%.
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Fig. 1. Dependence of the macroscopic shear stress Σ on the
applied shear rate γ̇. (Black stars) MD simulation; (blue tri-

angles) coarse-grained model, with N = 64 × 64 blocks. The
dashed black line is a fit to the Herschel-Bulkley equation,
Σ = 0.73 + 2.9γ̇0.48.
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3.2 Stress autocorrelation function

Turning to more local quantities, in Fig.2(top panel) we
plot the autocorrelation function

Cσ (∆γ) ≡
〈δσxy (γ) δσxy (γ +∆γ)〉

〈

δσ2
xy

〉 (3)

of the local shear stress fluctuations δσxy ≡ σxy − 〈σxy〉
experienced by each particle. The averages are performed
over time. We observe a nice collapse of the data for the
different shear rates. This confirms that the applied strain
∆γ, and not the absolute time t, causes the decorrelation
in this driven athermal system, in line with the idea of
periods of elastic accumulation of stress interspersed with
shear-induced plastic events. The master curve is fairly

well fit by a stretched exponential exp

[

−
(

∆γ
∆γ⋆

)β
]

, with

an exponent β = 0.68 and a characteristic strain ∆γ⋆ =
0.11 close to the macroscopic yield strain.
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Fig. 2. Autocorrelation function Cσ (∆γ) of the local shear
stress fluctuations at applied shear rates (red dots) γ̇ =
10−5, (blue triangles) γ̇ = 10−4, and (green stars) γ̇ =
10−3. Top panel: results from MD simulations. Bottom panel:
results from the coarse-grained model. The dashed lines
represent a fitting to a stretched exponential Cσ (∆γ) =

exp

[

(

−∆γ
∆γ⋆

)β
]

, with (β = 0.68, ∆γ⋆ = 0.11) for the MD data

and (β = 0.65, ∆γ⋆ = 0.07) for the coarse-grained results.

3.3 Indicator of plastic activity

Let us now focus on plastic events. In order to detect them,
we make use of the D2

min quantity presented by Falk and
Langer in Ref. [19], which evaluates deviations from an
affine deformation on a local scale. This quantity has been
used with noted success to characterize plasticity [19,20,
7,21,8,9,22]; in particular, it was shown to yield results
consistent with other measures of nonaffinity in Ref. [21].
D2

min is defined locally, around a particle labelled i, as the
minimum over all possible linear deformation tensors ǫ of

D2 (i; t, δt) =
∑

j

[rij (t+ δt)− (I+ ǫ) · rij (t)]
2
,

where the sum runs over all neighbours j of i, and I de-
notes the identity matrix. The value of the time lag δt
was fine-tuned to provide a good signal over noise ratio
while still being short enough to allow a temporal resolu-
tion of the plastic events. Figure 3 presents a snapshot of
D2

min values in the system: one clearly sees localised plas-
tic regions embedded in an affinely-deforming medium. To
provide a more dynamical view of the flow, short movies
are available as Supplementary Material [23], along with
their counterparts for the coarse-grained model presented
in the next section.

Fig. 3. Snapshot of the D2

min field at an applied shear rate
γ̇ = 10−4.

Interestingly, the regions with large D2
min systemati-

cally coincide with the regions exhibiting large velocities
relative to the average solvent flow. This coincidence be-
tween the non-locally-affine displacement field and the sin-
gular velocity confirms that large local energy dissipation
is the hallmark of a plastic event.

3.4 Distribution of durations, magnitudes, and sizes of
individual plastic events

We now study the properties of individual plastic events
in more detail. First, by scrutinising a number of D2

min
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Fig. 4. Histograms of D2

min values at shear rates (dotted red

line)γ̇ = 10−5, (dashdotted blue line)γ̇ = 10−4, and (solid green

line)γ̇ = 10−3. The histograms collapse upon rescaling with the
inverse shear rate.
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Fig. 5. D2

min autocorrelation function C(∆t) ≡
〈

D2

min(r, t)D
2

min(r + ǫ, t+∆t)
〉

/
〈

(

D2

min(r, t)
)2
〉

as a func-

tion of the time lag ∆t, where ǫ ≃ 0.005L has only been added
to avoid numerical artifacts. The dashed black line represents
exp (−∆t/3.0).

snapshots such as the image presented in Fig.3, we observe
that the size of plastic regions is typically a few particle
diameters; this size does not depend dramatically on the
shear rate. This point will be confirmed in Section 5 by
a detailed analysis of the spatial correlations of the D2

min

field.

Further insight is gained by computing the overall dis-
tribution of the measured D2

min values in Fig.4. All distri-
butions exhibit an exponential tail, and they furthermore
collapse upon rescaling with the inverse shear rate.

Finally, the typical lifetime of a plastic event can be
extracted from the temporal decay of the D2

min autocor-
relation function plotted in Fig.5. For the value of the
damping time τd used in this study, it is of the order of 3
time units regardless of the shear rate.

4 Generic coarse-grained model

4.1 Description of the model

The numerical observations reported above all support the
flow scenario based on short-lived, localised, and strongly
dissipative plastic events embedded in an elastic matrix.
Accordingly, we shall now introduce a simple, 2D coarse-
grained model for the rheology of athermal amorphous
solids that is motivated by these observations.

To start with, we discretise space into a lattice {(i, j)}
of N = 128× 128 square-shaped elastoplastic blocks, each
of the size of a rearranging region. By default, blocks
are elastic, in which case the (tensorial) deviatoric stress
σ (i, j) and strain ǫ (i, j) tensors carried by each block
obey Hooke’s law, viz.,

(

σxx (i, j)
σxy (i, j)

)

= 2µ

(

ǫxx (i, j)
ǫxy (i, j)

)

, (4)

where µ is the shear modulus. Here, we have postulated
incompressibility, i.e., ǫyy (i, j) = −ǫxx (i, j). Plasticity is
incorporated into the model by allowing blocks to yield
(i.e., switch to the plastic state) as soon as the following
yield criterion is fulfilled,

‖σ (i, j)‖ ≡
√

σ2
xx (i, j) + σ2

xy (i, j) > σy (i, j) , (5)

where σy (i, j) is a fixed local yield stress, associated to an
energy barrier Ey (i, j) = σ2

y(i,j)/4µ. Equation 5 is simply
the well-known von Mises yield criterion1. Every time a
block yields, the value of Ey (i, j) is renewed; it is ran-
domly selected from a truncated exponential distribution,

P (Ey) = Θ
(

Ey − Emin
y

)

exp
(

λ
(

Emin
y − Ey

))

, (6)

where Θ is the Heaviside function. The coefficient λ
is chosen such that the average of the yield strain γy =

2
√

Ey/µ over P coincides with the MD macroscopic yield
strain, 〈γy〉 ≈ 0.1. The introduction of a lower thresh-
old Emin

y in Eq.6 comes down to discarding too shallow
metabasins in the potential energy landscape (PEL) of the
subsystem modelled as an elastoplastic block.

A plastic block is a fluid-like inclusion embedded in an
elastic region. The implications of this fact are twofold.
First, the plastic rearrangement occurs, not instantaneously,
but over a finite time scale τ , because viscous forces op-
pose it[24]. Second, the associated distortion of the plas-
tic region induces an additional stress in the surrounding
elastic medium[10]. The combination of these two effects
occurring in plastic blocks, along with Eq.4 for the elastic
regions, leads to,

∂tσ (i, j) = µγ̇ + 2µ
∑

i′,j′

G (i− i′, j − j′) ǫ̇pl (i′, j′) . (7)

Here, ǫ̇pl (i′, j′) = σ (i′, j′) /2µτ if the block (i′, j′) is plas-
tic, 0 otherwise. τ is the local viscous time, and the prop-
agator G is such that 2µG (i− i′, j − j′) ǫpl is the stress

1 Note that the von Mises and the Tresca yield criteria are
equivalent in two dimensions.
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increment received by block (i, j) if the block (i′, j′) en-
dures a plastic strain ǫ

pl. Note in particular that G (0, 0)
has negative eigenvalues, because plastic blocks relax the
stress they bear. More generally, the propagator G was
calculated rigorously in the limit of a pointwise inclusion
in a perfectly homogeneous elastic medium. Its expression
and the way it must be altered when simulation cell is
deformed are specified elsewhere[25]. Obviously, the first
term on the right hand side of Eq.7 contains the elastic
response to the macroscopic driving and follows directly
from Eq.4, while the second term deals with the effects of
plasticity.

The swift rearrangement of particles that characterises
a plastic event corresponds to a jump between metabasins
in the PEL[26]. In our model, it shall come to an end when
a given strain γc has been cumulated locally in the plastic
phase, i.e., when

ˆ

‖ǫ̇ (t′)‖ dt′ > γc, (8)

where the total local deformation reads, ǫ̇ = ∂tσ
2µ + ǫ̇

pl. γc
represents the typical distance between metabasins, which
clearly depends on how much the PEL has been coarse-
grained, that is, on Emin

y . For simplicity, we arbitrarily

take γc = 2
√

Emin
y /µ. Following this simplification, Emin

y

is the only free parameter in the model, if one excepts the
time and stress units τ and µ.

To sum up, the transitions between the elastic and
plastic regimes obey,

elastic
‖σ‖>σy

⇋
´

pl
dt‖ǫ̇‖>γc

plastic (9)

Finally, a coarse-grained version of convection is in-
troduced in the system by incrementally shifting lines of
blocks in the flow direction. For this purpose, we keep
track of the exact average displacement of each of these
’streamlines’ along the flow direction, and shift the whole
line once the displacement gets larger than the size of one
block. The implementation of convection also requires to
compute the elastic propagator in a deformed frame[25].

4.2 Comparison of general features with the atomistic
simulations

Figure 1 presents a comparison of the flow curves obtained
with the coarse-grained model and with the atomistic sim-
ulations. Note that, to allow direct comparison, the time
and stress units in the model must be specified. A reason-
ably good agreement between the flow curves is obtained
by setting the shear modulus to 12.5, a value compara-
ble to the shear modulus of the atomistic system prior to
deformation (µMD = 17), and τ = 1.5, which will lead
to similar plastic event life times in the MD and coarse-
grained simulations. The best fits of the flow curves with
Herschel-Bulkley equations have very similar exponents
n ≃ 0.5.

To quantify the global plasticity of the system, we com-
pute the instantaneous surface density of plastic events,
i.e., the fraction of blocks which are plastic at a given
time. In the absence of thermally-activated plastic events,
this quantity increases linearly with the shear rate, from
0.05% at γ̇ = 10−5 to 0.36% at γ̇ = 10−4 and 2.8% at
γ̇ = 10−3. These values are similar to those obtained from
the atomistic simulations by integrating the tails of the
D2

min distributions, in Fig.4, down to a reasonable (but
arbitrary) lower threshold: 0.07%, 0.3%, and 0.8%, respec-
tively.

Turning to a more local viewpoint, the autocorrelation
function of the stress fluctuations on a given block are
shown in panel (b) of Fig.2. As in the MD simulations, the
autocorrelations at different strain rates collapse onto a
master curve. Interestingly, this master curve is fitted by a

stretched exponential, exp

[

−
(

∆γ
∆γ⋆

)β
]

, with a stretching

exponent β = 0.65 very close to the one used to fit the
MD data (β = 0.68), although the precise value of the
characteristic strain obtained here, ∆γ⋆ = 0.07, differs by
50%.

The average life time of a single plastic event in the
model is of order a few τ (remember that we set τ to 1.5)
at all shear rates. More precisely, a noticeable decrease
of the average life time is observed as the shear rate is
increased, from 8.4 at γ̇ = 10−5 to 4.2 at γ̇ = 10−3. This
is not unexpected, because the criterion determining the
duration of a plastic event, Eq.8, involves the total local
deformation rate. Indeed, the distributions of plastic event
life times, shown in Fig.6, undergo a small, but noticeable
shift to shorter times at higher shear rates.

Fig. 6. Histogram of the durations ∆tpl of plastic events, at
(blue)γ̇ = 10−5, (green)γ̇ = 10−4, and (red)γ̇ = 10−3 .

Since we introduced a cut-off in the yield stress distri-
bution (see Eq.6), the distribution of plastic event mag-
nitudes will naturally differ from that observed in the
atomistic simulations. Nevertheless, this distribution is
still roughly independent of the applied shear rate (data
not shown).
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5 Correlations between plastic events

Having verified the agreement of the coarse-grained model
with the atomistic simulations with regard to the general
flow properties, we can now move on to the study of the
correlations in the flow.

5.1 Plastic correlator

The individual localised rearrangements identified in Sec-
tion 3.3 are not random isolated events: in the athermal,
quasi-static limit, Maloney and Lemaître [27] showed nu-
merically that they are essentially organised in strongly
correlated avalanches. By investigating the transverse par-
ticle diffusivity, Lemaître and colleagues then showed that
these correlations persist at finite shear rates [28] and at
finite temperatures [29,30]. The spatial structure of these
correlations was revealed by Chikkadi, Mandal, Varnik,
et al. [7,8]; these researchers provided convincing exper-
imental and numerical evidence that the correlations be-
tween flow heterogeneities, quantified by D2

min, are long-
ranged and all the more anisotropic as shear prevails over
thermal effects, i.e., at larger Peclet numbers. To do so,
they monitored particle displacements in a driven “hard
sphere” colloidal glass with confocal microscopy and were
able to reproduce their experimental observations qualita-
tively with MD simulations. Quantitatively, some discrep-
ancies were found between simulations and experiments,
the latter displaying longer correlations, with a power law
decay in space.

Here, we purport to extend these studies and unveil
the full dynamical picture by resolving correlations be-
tween the plastic events both in time and in space, for
different shear rates, in the athermal regime. The empha-
sis shall then be put on the causal links that exist between
successive plastic events. To this end, we use the following
two-time, two-point plastic correlator,

C2 (∆r,∆t) ≡ α
(〈

D2
min (r, t)D

2
min (r +∆r, t+∆t)

〉

(10)

−
〈

D2
min (r, t) ·D

2
min (r, t+∆t)

〉)

,

where the brackets denote an average over time t, the
bars represent an average over spatial coordinate r, and

the prefactor α ≡
[ 〈

(D2
min(r, t))

2
〉

−
〈

(D2
min(r, t))

2
〉 ]−1

is chosen such that C2 (∆r = 0, ∆t = 0) = 1. Clearly, C2
measures the (enhanced or reduced) likelihood that a plas-
tic event occurs at r +∆r if a plastic event was active at
position r some prescribed time ∆t ago. In the coarse-
grained simulations, a sensible equivalent is,

C2 (∆r,∆t) ≡ α′
(〈

n (r, t)n (r +∆r, t+∆t)
〉

−
〈

n (r, t) · n (r, t+∆t)
〉)

, (11)

where n (r, t) = 1 if the block at position r is plastic at

time t, n (r, t) = 0 otherwise, and α′ ≡
[ 〈

n(r, t)2
〉

−
〈

n(r, t)
2
〉 ]−1

is, again, a normalisation prefactor.

5.2 Decay of the intensity of the correlation with time

Plastic correlations naturally fade away with time, but one
may wonder whether their decay is more appropriately
described in terms of the absolute time t or the strain γ.
Quite interestingly, in the atomistic simulations as well
as in the coarse-grained model, absolute time turns out
to be the adequate unit of measurement, as evidenced by
comparing the evolution of the correlations at different
shear rates.

It should be pointed out that this does not conflict
with the decay of stress correlations as a function of the
strain. Stress correlations exist during the loading phase
preceding the shear transformation, whose duration is typ-
ically determined by the yield strain. On the other hand,
the duration of the plastic activity phase is mostly de-
termined by the local damping time, and is only weakly
dependent on strain rate. Correlations in plastic activity
are therefore expected on the time scale on a single event,
or on somewhat longer time scales in the event of cor-
related avalanches, but they will remain limited to finite
times even for vanishingly small applied strain rates.

5.3 Maps of plastic correlations at various shear rates

The plastic correlations obtained in the atomistic simula-
tions are shown in Fig.7, 8, and 9 at different time lags
for three distinct shear rates: γ̇ = 10−5, γ̇ = 10−4, and
γ̇ = 10−3. The counterparts for the coarse-grained sim-
ulations are presented directly opposite to them so as to
allow an easy comparison, but they will only be discussed
below in section 5.4.

The presence of a spatial structure in the correlations is
manifest, which is strong evidence that plastic rearrange-
ments are indeed interdependent, and not fully isolated
events. The positive correlations in the streamwise and
crosswise directions are strongly reminiscent of the pos-
itive lobes of the elastic propagator G, which supports
the idea of interactions via an elastic coupling. In di-
agonal directions, there tend to be anticorrelations. The
(anti)correlations decay gradually, over approximately the
same (absolute) time scale as the autocorrelation function,
i.e., their value at the origin. These features are common
to the various shear rates studied here.

A closer investigation of the plots shows that the decay
time tends to decrease with increasing shear rate, thereby
reflecting the shear-induced decorrelation of the system,
with sequences of correlated events being cutoff by the
deformation. Moreover, while the streamwise and cross-
wise lobes are hardly distinguishable at high shear rates,
at lower shear rates there is clearly an asymmetry between
them. The propensity to shear localisation of the plastic
activity is therefore enhanced at lower shear rates. This is
more visible in Fig.10(top panel), where the correlations
are integrated along the radial direction in different direc-
tions. An enhanced propensity to shear localisation, or,
more generally, flow heterogeneities, with decreasing shear
rates has already been reported in the literature [31–33],
although, here, some artifact associated with the use of
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periodic boundary conditions and finite size effects can-
not be excluded[17]. An additional effect of the shear rate
is that the anticorrelated lobes in the diagonal directions
appear stronger at higher shear rates.

To assess the strength of the correlations, that is, to
what extent they deviate from a random distribution of
plastic events, we compare the probabilities that two plas-
tic events, separated by a distance ∆r and a time lag ∆t,
are aligned, on the one hand, along the velocity gradient
direction e⊥ and, on the other hand, along the diagonal
direction ediag with respect to the macroscopic shear. We
observe an enhancement of the probabilities of streamwise
alignment (versus diagonal alignement) by about 10% to
20%. Details are provided in Fig.12 in the Appendix.

We now turn to the spatial extent of the correlations.
In the top panel of Fig.11, we show how they decay along
the flow direction, for distinct time lags. The decay, which
is not purely exponential, depends only weakly on the
shear rate, except at long time lags. Besides, it spreads
over larger and larger distances as the time lag is in-
creased; it should however be noted that the correlations
have been rescaled so as to be equal to unity close to the
origin at all time lags, so that a slower spatial decay does
not necessarily imply a larger absolute value far from the
origin. This rescaling also entails that small fluctuations
will be magnified when the correlations near the origin are
small, e.g., for the long time lag ∆t = 20, notably in the
moderately high shear rate case.

At this stage, we should mention a very recent study
by Varnik and co-workers [9], who reported that the spa-
tial decay of the D2

min correlations was highly contingent
on the specific implementation of the friction force in the
equations of motion 2. More precisely, only a friction force
based on the relative velocity of a particle with respect to
its neighbours (“contact dynamics”) could reproduce the
power law decay observed in experiments on colloidal sus-
pensions and immersed granular matter, whereas a mean-
field dissipation scheme predicted a faster, exponential de-
cay. The effect of the specific implementation of the fric-
tional force has been the subject of a wider debate: Tighe
et al.[34], for instance, reported that using a friction term
based on relative particle displacements is key to finding
suitable correlation functions in the vicinity of the jam-
ming point, while Vagberg et al.[35] claimed that a critical
behaviour is found with both schemes. Here, we have used
a mean-field friction force; accordingly, some quantitative
discrepancies may be expected between the extent of the
correlations that we have found and those measured in the
experimental setups of Ref. [7,9]. However, our choice of
friction force is, arguably, the more adequate one for con-
fined two-dimensional geometries in which particles slide
along a fixed plate, for instance, bubble rafts confined in
between parallel glass plates [36].

2 Note that, although these researchers have computed nom-
inally “static” correlations, that is to say, at ∆t = 0, the time
δt which they used to compute D2

min is very large, so that
their data actually correspond to an integral of our dynamical
correlations C2 (∆r,∆t) over a wide range of time lags ∆t.)
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Fig. 10. Angular dependence of the correlations C̄2 (θ) ≡

α
´ L/2

0
C2 (r, θ;∆t) dr, where L is the system size and ∆t = 20 is

the time lag, at shear rates (solid green)γ̇ = 10−5, (dashdotted
blue line)γ̇ = 10−4, and (dotted red line)γ̇ = 10−3. The prefac-
tor α is chosen such that C̄2 (θ) has a maximum of 1. Top panel:
results from MD simulations. Bottom panel: results from the
coarse-grained model.

5.4 Successes and limitations of the coarse-grained
model

In Section 4.2, we have seen that the coarse-grained model
gives a rather satisfactory description of the macroscopic
properties, as well as the local ones. Here, we enquire how
well it fares with respect to the full set of spatiotemporal
correlations. As shown in Figs.7 through 9, the correlation
maps for the two models do bear some resemblance, but
closer inspection reveals quantitative differences.

Among the satisfactory aspects, the coarse-grained model
also indicates a decay of the correlations with absolute
time and correlations display a four-fold angular symme-
try. By comparing the top and bottom panels of Fig.10,
we find reasonable agreement for the angular dependence
of the correlations. One should however admit that ex-
cessive correlations are predicted along the flow direction,
especially in the near field. This is an artifact associated
with the use of a regular lattice: as the frame is deformed,
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A’ B’ C’

Fig. 7. Colour maps of the plastic correlator C2 at very low shear rate γ̇ = 10−5 for time lags (A) ∆t = 0, (A’ ) ∆t =1, (B and

B’ ) ∆t = 8, (C and C’ ) ∆t = 20 . Top row: MD simulations. Bottom row: coarse-grained model. Note that for the coarse-grained
model, we restrict the view to a region of the size (40x40 blocks) of the MD simulation cell. The colour code ranges from dark
blue, for values below −5 · 10−4, to dark red, for all values > 5 · 10−3. Note that the largest values are considerably greater than
the chosen upper cutoff, 5 · 10−3.

A’ B’ C’

Fig. 8. Colour maps of the plastic correlator C2 at the intermediate shear rate γ̇ = 10−4. Refer to Fig.7 for the rest of the
caption.
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A’ B’ C’

Fig. 9. Colour maps of the plastic correlator C2 at the moderately high shear rate γ̇ = 10−3. Refer to Fig.7 for the rest of the
caption. Note that, for the bottom row, we have used a sightly smaller lower bound for the colour code, −1.5 · 10−3 instead of
−5 · 10−4 in the other cases.

the positive lobe of the elastic propagator in the flow di-
rection remains aligned with one axis of the lattice, while
the alignment of the perpendicular lobe with the other
axis is lost. Moreover, the coarse-grained simulations are
able to describe the anti-correlated lobes in the diagonal
directions and their enhancement at higher shear rates.

On the downside, it is obvious that salient features
of the plastic correlations are amiss. This discrepancy is
interesting, because it is a hint that plastic correlations
reveal some physical processes that may otherwise be left
unnoticed, and that these processes have been omitted
in the model. First, the gradual growth with time of the
correlations observed in MD is in stark contrast with the
maximal extent of the correlations at vanishing time lag in
the coarse-grained model, as can be seen in Fig.11(bottom
panel). Indeed, within a short time lag ∆t < 1, the meso-
scopic model builds up correlations over a characteristic
distance of order 20, while these quasi-instantaneous cor-
relations do not extend beyond a few unit lengths in the
MD simulation. This indicates that the MD correlations
do not grow because more and more shear stress is redis-
tributed as the rearrangement proceeds, but because shear
waves need a finite time to propagate (whereas instanta-
neous equilibration was assumed in the model). In other
words, the acoustic delay for the propagation of strain-
waves within an avalanche slows down the emergence of
spatial correlations. Indeed, the initial growth of the corre-
lations is consistent with the propagation of shear waves
at the transverse sound velocity (of the undamped sys-

tem), viz., ct =
√

µ/ρ ≃ 4. The gradual expansion of the
strain field created by a plastic event is studied in more
details in the companion paper, Ref.[37], and in Ref.[38,
17]. Note that, in this last reference, the authors also ob-
served some advanced frontline moving at the longitudinal
sound velocity cl > ct.

The second major difference lies in the spatial extent
of the correlations, which is much larger in the coarse-
grained approach. Had a frictional force based on rela-
tive velocities been used, MD may have yielded larger
correlations, as suggested by ref.[9]. However, the large
deviation between the predictions of the atomistic and
coarse-grained models does point to an additional source
of discrepancy. We believe that the underestimation of
structural disorder in the coarse-grained model is at the
core of the divergence. Indeed, broadening the distribu-
tion of energy barriers in the model results in somewhat
shorter correlations, at the expense of a poorer fitting of
the macroscopic flow properties by our essentially one-
parameter model. Of probably equal relevance is the use
of an ’ideal’ elastic propagator. This propagator describes
stress redistribution in a perfectly uniform elastic medium.
Such a description is justified on average, but is inaccu-
rate for a specific plastic event[37], because elastic het-
erogeneities in the surrounding medium, i.e., the spatial
variations of the local elastic constants, induce deviations
from the ideal case. The insufficient account of structural
disorder in the model is also reflected in the vastly overes-
timated anisotropy of the correlations that it predicts, as
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Fig. 11. Correlations along the stream direction, c
‖
2
(r,∆t) ≡

C2(r,∆t)/C2(ǫ,∆t), where the postfactor rescales the correla-
tions to unity close to the origin, ǫ = 2 (5 for panel (b)). Data
are shown for various time lags: (blue) ∆t = 0 (1 for bottom
panel ), (green) ∆t = 8, (red) ∆t = 16, and for the different
shear rates: (solid line) γ̇ = 10−5, (dash-dotted line) γ̇ = 10−4,
and (dotted line) γ̇ = 10−3. Top panel: results from MD simu-
lations. Bottom panel: results from the coarse-grained model.
To allow direct comparison, we have set the size of one coarse-
grained block to r̃ = 5. To reduce the statistical noise, we have
averaged the correlations over the three streamlines closest to
the origin for the MD simulations.

measured by the directional probability enhancement (see
the bottom panel of Fig.12 in the Appendix).

6 Summary and outlook

In conclusion, we have reported numerical simulations that
confirm the basic flow scenario for amorphous solids, based
on swift localised rearrangements embedded in an elastic
matrix and interacting via an elastic deformation field. A
coarse-grained model based on this simple scenario satis-
factorily reproduces the measured flow curve, the surface
density of simultaneous plastic events, and the decay of
the stress autocorrelation function.

To obtain full insight into the dynamical organisa-
tion of flow heterogeneities, we have probed the spatio-
temporal correlations between plastic events, and their
dependence on the shear rate. As already reported in the

literature, these correlations are perceivably anisotropic
and exhibit the four-fold angular symmetry characteristic
of the elastic propagator. These correlations spread ap-
proximately at the transverse sound velocity before fading
away. Varying the shear rate only brings on small changes
to the general picture: at higher shear rates, the near-field
anticorrelations along the diagonal directions seem to be
slightly more pronounced, and the velocity and velocity
gradient directions are more symmetric. Besides, the spa-
tial extent of the correlations tends to decrease with in-
creasing shear rate.

A coarse-grained model is able to describe the observed
symmetries of the correlations, but fails to reproduce their
emergence in time, owing to the neglect of the finite shear
wave velocity in the model. In addition, the model vastly
overestimates the anisotropy in the correlations, thereby
pointing to the underestimation of structural disorder in
the system, at least partly because of the use of an ideal
elastic propagator. These two flaws are not specific to the
model used here, but a general deficiency of all approaches
of this type[39]. Consequently, should one aim for a proper
description of these correlations, these missing physical
aspects will need to be incorporated into the models. To
what extent they will alter the macroscopic flow properties
predicted by the models, for instance the variable propen-
sity to shear localisation, remains an open question. More
generally, it seems likely that in the future the study of
plastic correlations, as described in Ref. [17,18] or in the
present work, will become a powerful tool for compari-
son between models of various types and between models
and experiments in systems in which the corresponding
observables are experimentally accessible.
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Quantification of the anisotropy of the corre-
lations

To assess the strength of the anisotropy in the plastic cor-
relations, we compute the directional probability enhance-
ment factor α⊥, viz.,

α⊥(∆r,∆t, γ̇) ≡
〈D2

min(r, t) ·D
2
min(r+∆re⊥, t+∆t)〉

〈D2
min(r, t) ·D

2
min(r+∆rediag, t+∆t)〉

,(12)

where e⊥ and ediag are the velocity gradient and diagonal
directions, respectively. This factor measures the ratio of
the probabilities that two plastic events, separated by ∆r
in distance and ∆t in time, will be aligned along the ve-
locity gradient direction versus diagonally. Figure 12 com-
pares this enhancement ratio for the MD model and the
coarse-grained model.
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Fig. 12. Directional probability enhancement
factorα⊥(∆r,∆t, γ̇) for the different shear rates: (solid
line) γ̇ = 10−5, (dash-dotted line) γ̇ = 10−4, and (dotted line)
γ̇ = 10−3, and for various lag times. Top panel : (blue) ∆t = 4
(1 for panel (b)), (green) ∆t = 12, (red) ∆t = 20. Bottom

panel : (blue) ∆t = 0 (1 for panel (b)), (green) ∆t = 8, (red)
∆t = 16. To allow direct comparison, we have set the size of
one coarse-grained block to r̃ = 5.


