
HAL Id: hal-00954570
https://hal.science/hal-00954570v1

Submitted on 3 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interoperability between a dynamic reliability modeling
and a Systems Engineering process: Principles and Case

Study
Gilles Deleuze, Aurélie Léger, Pierre-Yves Piriou, Sylvain Chabroux

To cite this version:
Gilles Deleuze, Aurélie Léger, Pierre-Yves Piriou, Sylvain Chabroux. Interoperability between a dy-
namic reliability modeling and a Systems Engineering process: Principles and Case Study. Embedded
Real Time Software and Systems 2014 (ERTS22014), Feb 2013, Toulouse, France. pp.4B.2. �hal-
00954570�

https://hal.science/hal-00954570v1
https://hal.archives-ouvertes.fr

 Page 1/10

Interoperability between a dynamic reliability mode ling and a
Systems Engineering process – Principles and Case S tudy

Gilles Deleuze1, Aurélie Léger1, Pierre Yves Piriou1, Sylvain Chabroux2
1EDF R&D, Clamart, France, {gilles.deleuze, aurelie.leger}@edf.fr

2 Knowledge Inside, Versailles, France, sylvain.chabroux@k-inside.com

Abstract

Industrial systems are often large, and complex, in terms of structure, dynamic
interactions between subsystems and components, dynamic operational environment,
ageing, etc. The dynamic reliability approach is a convenient framework to model the
behavior of such systems. However, there is a price to pay, e.g. in terms of amount of
data, size of state graphs, volume of reliability calculations, and combination of various
engineering activities. A sound Systems Engineering process, benefiting from the
improvement of most recent tools, may be a fruitful approach to decrease these
difficulties. Although feasibility demonstrations have been done for conventional, static,
approaches of dependability, interoperability between dynamic reliability modeling and
Systems Engineering has not the same maturity level. The article explains how, on the
basis of Systems Engineering (SE) process definitions, a Meta-model defines a
framework for integrating the safety into SE processes. It supports a “hub automaton”,
that is the key element for interoperability with the tools and activities required for a
dynamic reliability assessment. The case study is the dynamic assessment of
availability of a feed-water control system in a power plant steam generator, presented
in previous articles.

Keywords: Systems engineering, systems modeling, RAMS, dynamic dependability
assessment, dynamic reliability, interoperability.

Introduction

Feasibility demonstrations and significant studies
have been done to demonstrate the feasibility and
benefits of an interoperability between System
Engineering frameworks and Reliability, Availability,
Maintainability and Safety (RAMS) activities ([David,
2010], [Aboutaleb, 2012]). However, these studies
considered only so called “static” dependability
approaches, assuming an invariant structure of the
system. It focuses on “events combinations” with
models like FMEA, static Fault Trees and Event
Trees. Considering the system dynamics requires
“dynamic” dependability approaches, focusing on
event sequences with models like Dynamic Fault
Trees, Boolean Driven Markov Processes…, and in
term of Meta-model, a semantic adapted to the
system behavior.

Improvement of the completeness of assessment of
large and complex industrial systems, requires these
“dynamic” dependability approaches, since they
cover a wider range of phenomena. Given this
context, the problematic is to develop meta-models
integrated in a proven Systems Engineering (SE)
process ([SE 2010], [IEEE, 2005], [ISO/CEI 26702,
2007], [ISO/CEI 15288, 2008]), properly combined

with RAMS engineering activities, including dynamic
modeling, and benefiting from recent support tools.

A SE process implemented in a consistent platform
helps the engineer to manage the processes
(description of functional and physical architectures,
allocation of functions, preliminary assessment of
requirements...) which are necessary, upstream of
the dependability study. Then, it is possible to
describe the failure features of the components, to
model realistic failure/repairing scenarios and to
define redundancy policies and dynamical allocation
of functions caused by failure events. To do that, an
idea is to develop a “hub automaton”, that supports
the translation of the dynamic model into specific
dynamic dependability tools.

This article is organized into four main sections:

1. Definitions and theoretical framework. We define
the fundamental concepts for the study, e.g.
System Engineering (SE), RAMS Activities and
Hybrid System.

2. Principles. We present the key elements on
which this demonstration is based: choice of
interoperability vs. integration, System
Engineering process supported by a Meta-model,
Dynamic Reliability approach.

 Page 2/10

3. Method description. This section describes the
processes and data used in the method and the
Meta-model developed to support them.

4. Case Study. The case study is focused on the
availability of a feed-water control system in a
power plant steam generator. The meta-model is
instantiated for specifying a sub-system, a
dynamic model is generated for describing its
behavior and an availability assessment is
performed on it.

1. Definitions and theoretical framework

1.1. Systems Engineering

SE consists in concurrent interdisciplinary
approaches for the design and validation of complex
technical systems. The process proposed by
INCOSE Systems Engineering Handbook [SE,
2010], integrates all the disciplines and specialty
groups, e.g. RAMS, into a team effort that focuses
on defining customer needs and required
functionality early in the development cycle,
documenting requirements, and then proceeding
with design synthesis and system validation.

1.2. RAMS activities

RAMS acronym refers to a set of engineering
activities aiming to perform Reliability, Availability,
Maintainability and Safety assessments, based on
deterministic and probabilistic approaches. INCOSE
Handbook [SE 2010] refers to Availability, Reliability,
Maintainability and Supportability (RAMS), also
known as dependability. The dependability of a
system describes its ability to fulfill the required
functions under given conditions, considering
degradation of performance due to failure and
maintenance. RAMS studies are considered in this
case study, as validations, as defined by [ISO 9000:
2005], based on modeling and focused on
dependability requirements.

1.3. System complexity

A technical system may be considered at the highest
abstraction level, as a structured set of variable
elements, acting in a technical environment for an
explicit purpose. In the RAMS engineering domain, it
is interesting to characterize its complexity by the
combination of two attributes: “interactive
complexity” and “tight coupling” [Perrow, 85].
Interactive complexity results from presence of
dynamic phenomena, occurrence of rare event
sequences and non-linear effects. The consequence
is a risk of incomplete knowledge of the system.
Tight coupling results from strong interdependence
between phenomena. The consequence is a risk of
dependent failures, e.g. common-cause and
cascade failures.

1.4. Hybrid System

System that combines continuous physical
processes, deterministic event sequences (defined
by specifications), random events (that may be
intrinsic, like failures, or extrinsic, like unexpected
context modification).

1.5. Dynamic Dependability, Dynamic Reliability

Dynamic Dependability is a branch of dependability
engineering that deals with "the influence of time,
process dynamics, and human actions, on system
operations and failures, and accidental scenarios."
[Brissaud, 2011]. Discrete Dynamic dependability
approaches rely on models like Dynamic Fault
Trees, Boolean Driven Markov Processes…

Hybrid dependability approaches permit to improve
the modeling of hybrid systems as they consider also
the multiple interactions between deterministic and
random discrete events, and continuous processes.
The mathematical framework derives from
Kolmogorov-Chapman equations [Labeau, Smidts,
2000]. Its applicationconsists basically in the
modeling or the simulation of Piecewise
Deterministic Markov Processes (PDMP) [Dufour,
2002]. Exact analytical solutions of stochastic
differential equations are complex and require,
beyond a small system size, simplifying
assumptions, whereas approximation (using
numerical methods or by Monte Carlo simulations)
allow realistic modeling and provide data for
comprehensive statistical analysis. It is very useful to
apply this framework in the case of software
intensive hybrid systems, as it explicitly considers
the interactions between system states and context
evolutions that may represent the most contributing
risk factor to system failures [Leveson, 2011].

In addition to consideration of hybrid dynamic
dependability, the so called dynamic reliability
assume that some continuous phenomena (like for
example, ageing), are influenced by stochastic
events or drifts. It means that some reliability
characteristics are influenced by the process.

2. Principles

2.1. Interoperability vs. Integration

Designing a complex system require a set of
activities in interaction (Figure 1). This set is
practically an organizational system and its
management has to consider in particular the
exchanges of data between the activities. At this
point, a decision has to be done between
‘knowledge integration’ and ‘knowledge
interoperation’ [Léger, 2009].

 Page 3/10

Figure 1: Activities in interaction for a real
system

Knowledge integration consists in modeling the
different activities of a system through a shared
semantics (Figure 2). As such, the modeling focuses
on knowledge extracted from each of the studied
activities. The difficulty is to limit the loss of
knowledge representation due to a common
semantic.

Figure 2 : An "integrated" model

Knowledge interoperation consists in using neutral
exchange formalism as a “pivot” or “hub” for the
interaction between the different activities (Figure 3).
As such, a large amount of specific knowledge is
kept in each activity.

Figure 3: An "interoperable" model

For the case study presented here, the choice is to
move towards an interoperation of the models
through a dedicated Systems Engineering platform.

2.2. Choice of a Meta-model as a framework

In software engineering and systems engineering, a
Data Model, or Meta-model, is a structured collection
of "concepts" (things, terms, etc.) within a given

knowledge domain. A model complies with a Meta-
model in the way that a computer program complies
with the grammar of the programming language in
which it is written. The modeling language is used to
manage diversity of objects types and their
relationship, such as hierarchical,
production/consumption... The properties of each
type of object are defined by attributes. In this
demonstration, the Meta-model allows to manage a
large quantity of heterogeneous data.
In order to implement and support an innovative
Meta-model for dynamic reliability, we used arKItect
Designer, a Commercial Off-The-Shelf (COTS) tool
having relevant capabilities for this demonstration:
1. Ready to use. As the SE framework is

predefined, it was easy to design a Meta-model
from scratch, estimated in the range of 10 to 30
times faster that with classical Object-Oriented
(OO) approaches.

2. Interpretation. The Meta-model and the model
can be modified dynamically, both are displayed
in parallel in real time. This enables a fast
prototyping of the Meta-model that seems more
questionable, with other platforms where
recompilation is needed after each modification of
the Meta-model.

3. Generation of customizable building block
diagrams. It allows getting immediately graphical
editing views for all the artifacts needed in the
design.

4. Easy to use. This tool does not require a high
level of competence in Object Oriented
approaches and programming to design a
specific Meta-model. The rules for using the tool
are rather simple and an engineer can build his
data model and concentrate fairly on his own
domain of activity.

5. Completeness. It is possible to represent in the
meta-model all the artifacts needed to describe
the system, as for example, stochastic automata.

2.3. Choice of a dynamic model

In a previous study, modeling the availability of a
feed-water control system (considered as hybrid) in
a power plant steam generator, the feasibility of two
complementary approaches has been demonstrated
[Aubry et al., 2012].

One approach models the system with Stochastic
Hybrid Automaton (SHA) presented in [Babykina,
2011] and [Castaneda, 2011]. Analysis of the model
may be quantitative, with Monte Carlo Simulations,
to make dependability assessments; or qualitative,
with technique of sequence exploration, to find
sequences having a length inferior to a given criteria.
The other approach, presented in [Zhang, 2012],
models the system with State Charts and a
dedicated COTS (Matlab/Simulink). The analysis of
the model is quantitative, with Monte Carlo
simulations

Activity A Activity B

Activity C

REAL SYSTEM

Activity A

Activity B

Activity C

AN INTEGRATED MODEL OF THE SYSTEM

Shared semantics

Activity A
Activity B

Activity C

AN INTEROPERABLE MODEL OF THE SYSTEM

Neutral exchange

formalism

 Page 4/10

Both approaches require a combination of various
engineering activities, the use of computational
power, a large volume of data, component level
models, and exchange between various tools
(Matlab, Scilab…).
This demonstration focuses on the interoperability
between SE process and a dynamic modeling based
on SHA. SHA allow the exploration of event
sequences and model checking, which is an
interesting feature for dependability studies.
Furthermore, EDF R&D has the disposition of an
internally developed open source tool, Pycatshoo,
also based on SHA [Chraïbi, 2013].

3. Method description

3.1. Specification of RAMS/SE interoperability

Dependability assessment requires a coupling
between SE and the various RAMS activities.
However, there is in practice sometimes a
discontinuity between the system design and the
dependability studies because they are considered
lately in the project development. Functional analysis
has to be performed during the system design
phase, but it has also sometimes to be performed
again during the dependability analysis, especially if
the engineering framework does not consider
RAMS/SE interoperability. Moreover, SE and RAMS
teams often use tools that are not interoperating.
This may lead to incoherence between the functional
analysis and the failure analysis.

In a context of hybrid systems, interoperability
between SE and RAMS engineering processes, is
critical and must start early in the system life cycle.
Their interoperability deserves particular attention all
over the development process. Thus, it is needed to
clearly specify the RAMS/SE interoperability on
following points:

• Stages of the SE process,
• Stages of the RAMS process,
• Relations between the processes,
• Documentation to be generated. A tool such

as ArKItect facilitates the production of
systems and dependability studies. It can
easily be used to provide diverse
customizable views on the system and its
dependability aspects.

3.2. Detailed Description of RAMS/SE
interoperability

For this case study, [SE 2010] interpretation in the
arKItect environment has led to the definition of a
process divided into two sub-processes (see Figure
10, in appendix): (1) System Specifications (SS) and
(2) System Design (SD).

The SS sub-process contains:

- Analysis of customer needs, detailed in terms of
system lifecycle and mission phases,
requirements statement, functions identification
and context contributions definition tasks.

- Functional Architecture stage. It consists of
requirements and functions refinement, definition
of sub-functional flow exchanges. During this
stage, the specification activity is iterative;
allocating requirements upon functions allows
the emergence of system sub-functions and
requires the refining of requirements into sub-
requirements.

The system Design (SD) sub-process contains:

- System Architecture (SA) stage. It consists in
defining system components, functions
allocation to components, definition of physical
interfaces allocation of flows, and allocation of
requirements to components.
Refinement Feedback. Based on the
requirements allocation upon systems, it insures
with reasonable certainty, that the selected
system architecture is adequate, given a
“reasonable certainty” , with the requirements
produced from the Customer Needs Analysis
stage. The allocation of design requirements to
the system components can lead to the
generation of further functional requirements.
The assessment of the “reasonable certainty” is
the purpose of the risk assessment processes
done in parallel.

The arKItect environment also covers Dependability
studies and is divided into two sub-processes: (3)
Preliminary Risk Analysis (PRA) and (4) System
Risk Analysis (SRA). PRA is linked to the functions
definition in the System Specifications stage. It
includes:

- System state definition
- System risk event identification
- Undesired Customer Event (UCE) identification

the preliminary risk analysis, where risks are
linked to functions and priorized.

SRA is linked to the internal functional analysis from
the SE process. It includes:

- ”Static” analysis such as Failure Modes and
Effects Analysis (FMEA)

- Fault Tree Analysis (FTA). FTA risk events and
basic risk events are identified in the System
Architecture resulting from the SE process.

- For this case study, dynamic assessments
capabilities have been added, through
interoperability.

Results are capitalized into the arKItect project
database and they are compared with safety and
reliability requirements elicited previously in System
Specification phase. ArKItect includes Python
scripting language that ensures interfacing between

 Page 5/10

System Engineering platform and analysis tools, like
for example, Fault trees analyzing tools and
availability estimation tools. Another scripting
application is the report generation for project
deliveries.

3.3. Data and data management for dependability
study

The Approdyn case study [Deleuze, 2011], deals
with data relevant for Dependability studies, like
system states, failure modes, availability,
reparability, reliability …

The various data required for the dependability
studies may be structured as follows:

• Functional description of the system
(elements, context, operating conditions,
states…).

• Qualitative and quantitative reliability data at
element level, including failure modes, wear
out and dynamic phenomena, state graphs
(figure 4)…

• Models of the physical phenomena of
interest for the RAMS studies of the system
(including normal and possible abnormal
conditions) and relevant control logic.

• Fault Tolerance Features (redundancy
policy, defense in depth…).

• Qualitative and quantitative RAMS data at
system level, including Operation and
Maintenance procedures, Periodic Testing.

The challenge is to manage object relationships
(like allocation, production, consumption, etc.) in
interoperable SE and RAMS processes.

Figure 4: Example of state graph for one element
of the steam generator

The SE process implementation requires managing
project data relating to requirements, functional and
physical architecture.

A graphical representation tool like arKItect proposes
a solution for both efficient and seamless SE and
RAMS processes. Indeed, the model is based on the
system architecture, that means all activities related
to the system design and to the dependability
analysis are gathered in the same representation
space.

3.4. The Meta-model for interoperability

Existing meta-models for SE, like [Pfister, 2012],
organize the data and support the SE processes
defined by INCOSE standard. However, they
consider only the normal, faultless, operation of the
system, whereas for critical systems safety and
dependability matter too. Thus, the Meta-model
defined by [Pfister, 2012], has been extended to be
able to represent Dependability into SE processes.
[Piriou, 2013] and [Piriou, 2014] describe in detail the
design of this extension.
The meta-model proposed in this study adds the
semantics required to perform dependability
analyses on phased mission systems with repairable
multistate components. The meta-model is
represented by an UML class diagram [SysML,
2007].
It supports the development of a “hub automaton” or
”pivotal automaton”, comparable to a Guarded
Transition System [Rauzy, 2008], which is the key
element for interoperability between the tools and
activities needed for dynamic reliability assessment.
Figure 5 presents the meta-model.

Figure 5: Complete meta-model for the
integration of dependability analyzes into SE

processes [Piriou, 2013]

It includes the following aspects:

Phased missions . A phased mission system is
characterized by a structure, failure and recovery

 Page 6/10

processes, and success criteria that can change
from one phase to another.
Component States. Each component can be
activated and can fail according to several operation
and failure modes. These modes represent
respectively the functional and dysfunctional
properties of the component. A component state is a
pair built with one operation mode and one failure
mode. Thus, possible states of a component are
defined by instantiating its failure and operation
modes.
The resulting class diagram enables to model the
stochastic evolutions of the component in the form of
transitions from a state to another. These transitions
are due to failure or repair events that occur with a
probability law depending on rates defined for the
considered state.
It is assumed here that these rates do not depend on
time. Thus the scope of the model to represent
dynamic aspects of dependability is not fulfilled and
will require further developments.

Effects of component states on function
achievement. It is assumed, that the achievement of
a function is quantifiable. This means that the
achievement percentage can be computed for every
function from the knowledge of the current states of
its allocated component. For instance, the
achievement percentage of a function whose aim is
to fill in a tank and for which two identical pumps are
allocated is equal to 100% when the two pumps are
faultless and 60% when one pump is leaking.

Redundancy policies. The set of components
allocated to a function can changes during
operation; redundancy policies specify these
changes. The “Redundancy policy” class and its
relations are introduced in the meta-model. Also, two
methods are added to the “Function” class that
updates the allocation attribute of the “Function”
class. The “Redundancy policy” class permits to
specify how the faulty components are replaced by
redundant components.

3.5. Systematic generation of a dynamic model

For describing the dysfunctional behavior of the
system, we have developed an algorithm for building
a dynamic model from an instance of this meta-
model, in a generic way. Since the Stochastic
Guarded Transition System (SGTS), defined by
[Rauzy, 2008], allows a permissive and compact
description of the system, we chose it as the
formalism for representing this dynamic model.
Moreover, the respect of best practices for using this
formalism leads to constructions which preserve the
structure aspect of the system. This conservation of
data complies relevantly with the interoperability
purpose.

A SGTS is defined as a 7-uplet <V,E,π,T,i,H,B>
where:

• V is a set of variables
• E is a set of symbols called avents
• π is a priority function (a mapping of events to

non-negative integers)
• T is a set of transitions, i.e. of triple <G,e,P>,

where:
o G is a guard (a Boolean expression built over V)
o E is an event
o P is a post-condition (an instruction built over V)

• i is an assignment called the initial assignment (a
mapping from the set of variables to the set of
values).

• H and B are two possibly empty instructions
called respectively the head and body parts of the
assertion.

The instructions can be seen as a mapping from
assignments to assignments.

A transition �
�
→� is fireable in a state (an

assignment) �, if it validates the guard � and if the fix
point ��((�(�))) exists, i.e. there is an integer �
such that ��
�((�(�))) = ��((�(�))). The firing
of this transition consists in three steps:
• First, the post-condition � of the transition is

performed.
• Second, the head part of the assertion 	 is

performed
• Finally, the body part of the assertion � is

iterated until a fixpoint is reached.
Hence, the state ��((�(�))) is called the

successor of � by the transition �
�
→�.

4. Case Study

4.1. Description

The case study is focused on the availability of a
feed-water control system used in a power plant
steam generator. It is described in [Deleuze, 2011].
The case is a classical problem of hybrid
dependability with dynamic reliability issue. It has
been studied e.g in France [Aubry et al., 2012],
[Zhang, 2012], [Deleuze et al., 2011] and USA
[NUREG 6942].

4.2. Instantiation of the meta-model

In this article, only the sub-system composed of the
two feeding turbo pumps (TPA, in Figure 9), are
considered. This sub-system has to perform only
one function F: “Supply enough water to the steam
generator”. The pumps may fail and be repaired. To
increase dependability of the function, the operation
mode of each pump must be managed dynamically
according to redundancy policies.

 Page 7/10

Defining Mission Phases
A first step is to build object diagrams on the basis of
the meta-model. The main mission contains three
phases (Table I). The function is mandatory in all
phases but only one pump is needed to perform this
function during the first and third phase.

Table I: Phases Description

Defining Component States
Instance diagrams are used to model the
combination of operation modes and failure modes
(see figure 6).

Figure 6. Example of Instance Diagrams

Figure 7 presents the quantification of the attributes
of the State class instances. The first value (e.g.
0.01 for the state Run-Leak) is the failure rate of the
transition that leads to this state and the second one
(0.1 for the same state), is the repair rate to leave
this state. As the pumps are identical, their states
description are similar.

The contribution of one pump to the function
depends on its state. For example, When the pump
is disabled (operation mode OFF), this contribution is
obviously equal to zero. This is also the case when
the Rupture failure mode has occurred. The analysis
is not easier for the remaining four states, especially
as they suppose leaks, with no complete loss of
function. Thus values of the attribute
“achievementRate” for every state of a pump have to
be defined (see Figure 8).

Figure 7. States description

Description of the effects of component states

Figure 8: Description of the achievement rates of

the pumps

Definition of redundancy policies
Two instance diagrams are also needed to describe
the redundancy policy in the multiple phases.

4.3. Building the dynamic model

This subsection presents a large part of the SGTS
which models the dysfunctional behavior of the
pumps. It is built on the basis of the instance given in
the last subsection.

Defining and initializing variables
The variables of the models are listed below:

• Phase = P1;
• F.goal = 60; F.isSatisfied = True;
• TPA1.OM = Run ; TPA1.FM = OK
• TPA2.OM = OFF ; TPA2.FM = OK
• R1.called = False; R2.called = False

Defining the transitions
There are three transitions for changing the current
mission phase, whose priority is 0:

����� = �1
��→�
���� ����� = �2	 ∧ �. � �! = 100

����� = �2
��→#
��������� = �3	 ∧ �. � �! = 60

����� = �3
�#→�
��������� = �1	 ∧ �. � �! = 60

 Page 8/10

There are seven stochastic transitions (not priority)
by pump which model failure and repair occurrences.
The values of probability rates are given by the
Table II. Since the pumps are identical, only the
transitions defined for the pump TPA1 are given
below:

&�'1.() = *+� ∧

&�'1.�) = (,

-./�.0�12
3.3�

������� &�'1.�) = 4��5

&�'1.() = *+� ∧

&�'1.�) = (,

-./�.678976�
3.33�

����������
&�'1.() = (�� ∧
&�'1.�) = *+:;+<�

&�'1.() = (=�<�:��> ∧

&�'1.�) = (,

-./�.0�12
3.3?

������� &�'1.�) = 4��5

&�'1.() = (=�<�: ∧

&�'1.�) = (,

-./�.6789
3.33@

��������
&�'1.() = (�� ∧
&�'1.�) = *+:;+<�

&�'1.() = (�� ∧
&�'1.�) = 4��5

-./�.6�81A6
3.@

��������� &�'1.�) = (,

&�'1.() = *+� ∧
&�'1.�) = 4��5

-./�.6�81A6
3.�

��������� &�'1.�) = (,

&�'1.() = (�� ∧

&�'1.�) = *+:;+<�

-./�.6�81A6
3.�

��������� &�'1.�) = (,

Finally, there are four priority (immediate) transitions
by pump, which is fired for forcing one of its
operation modes, due to a redundancy policy
request:

&�'1.() = (�� ∧
&�'1.�) = (, ∧
*1.B�!!�> = &<+�

-./�.67�
������� &�'1.() = *+�

&�'1.() = *+� ∧
&�'1.�) = (, ∧
*2.B�!!�> = &<+�

-./�.CD�6
�������� &�'1.() = (=�<�:��>

&�'1.() = *+� ∧
*1. B�!!�> = ��!��

-./�.EFF
������� &�'1.() = (��

&�'1.() = (=�<�:��> ∧

*2. B�!!�> = ��!��

-./�.67�
������� &�'1.() = *+�

Defining the assertion
The assertion aim is to compute if the function is
satisfied and if the redundancy policies must be
called. The head part of the assertion is sufficient,
and the body part is reduced to the identity.

H:
�. G�H�;G�IG�> ← KII�B;(&�'1.(), &�'1.�))

M KII�B;(&�'2.(),&�'2.�))

N �. � �!
*1. B�!!�> ← (����� = �1 ∨ ����� = �3)

∧ � ;	�. G�H�;G�IG�>
*2. B�!!�> ← ����� = �2 ∧ � ;	�. G�H�;G�IG�>

4.4. Contribution to System validation

The last stage we performed on this case study, is
the assessment of the availability of the pumps for
realistic scenarios. To do this, the SGTS described
above, has been fully implemented using the tool
PyCATSHOO [Chraïbi, 2013]. At this step, expert
knowledge had been integrated to the model for
filling the lack of knowledge due to the semantic
used for interoperability. Finally, the availability is
assessed with a Monte Carlo simulation (figure 9).
The result is obtained for a sequence of twelve
identical missions where the first phase lasts 1 day,
the second 28 days and the third 1 day. The average
unavailability is equal to 0.62%.

Figure 9: Unavailability of the pumps
(x-axis : time in hours, y-axis : unavailability)

Traceability is maintained throughout all levels of
system model, since the early Customer Needs
Analysis phase, that provides functional and
dependability requirements:

1. Allocation of System Requirements to hardware,
software, or manual actions.

2. Allocation of all functional and performance
requirements or design constraints, either
derived from or flowed down directly to
components.

3. Traceability of requirements from source
documentation through the whole project life
cycle.

4. Traceability of the history of each requirement
on the system is maintained and is retrievable.

To bridge functional and failure analysis, the SE
framework used, as a starting point, the recent ISO
26262 safety standard. It specifies how to ensure
traceability between specification activities and those
of validation. System validation ensures that
requirements and system implementation provide
the right solution to the customer needs in terms of
functionality and dependability.

 Page 9/10

Conclusions

With the extension of SE Meta-model presented in
[Piriou, 2013], this case study describes how, from
outputs of a SE process, a RAMS engineer can
model realistic failure/repairing scenarios, define
redundancy policies and dynamical allocation of
functions caused by failure events.
A sound SE process, supported by a tool like
arKItect, can support the RAMS engineer to get data
and models from the upstream processes (functional
and physical architectures, allocation of functions,
requirements...). It is especially helpful to manage
the amount of data and the concurrent engineering
activities required to assess dependability of hybrid
systems, e.g. through traceability and capabilities to
reconsider efficiently upstream stages of the design
process with the output the RAMS studies.
 A “hub automaton” support the translation of the
dynamic dependability model into dedicated RAMS
tools like Pycatshoo.
This case study is a first step towards interoperability
of Systems Engineering and dynamic RAMS studies

Complementary studies have to be done at the hub
automaton level to represent more hybrid aspects,
and at RAMS models level, to improve the dynamic
reliability modeling aspects.

References

[Aboutaleb, 2012] H. Aboutaleb, M. Bouali, M. Adedjouma, and E.
Suomalainen, An integrated approach to implement system
engineering and safety engineering processes: Sasha project.
ERTS 2012, Toulouse, France, February 2012.

[Aubry et al., 2012] J.F. Aubry, G. Babykina, N. Brinzei, S.
Medjaher, A. Barros, C. Berenguer, A. Grall, Y. Langeron, D. N.
Nguyen, G. Deleuze, B. de Saporta, F. Dufour, H. Zhang, The
APPRODYN project: dynamic reliability approaches to modeling
critical systems. In: Supervision and Safety of Complex Systems,
pp. 181–222, Wiley-ISTE editor, 2012.

[Babykina, 2011] G. Babykina, N. Brinzei, J.F. Aubry, G. Perez
Castaneda, Reliability assessment for complex systems operating
in dynamic environment, in European Safety and Reliability
Conference ESREL, Troyes, France, 2011.

[Brissaud, 2011] F. Brissaud, C. Smidts, A. Barros, C. Bérenguer,
Dynamic reliability of digital-based transmitters, Reliability
Engineering & System Safety, Volume 96, Issue 7, July 2011,
Pages 793-813.

[Chraïbi, 2013] H. Chraïbi, Dynamic reliability and assessment
with PyCATSHOO: Application to a test case. PSAM, Tokyo,
Japan, April, 14th-18th 2013.

 [Castaneda, 2011] G. Perez-Castaneda, J.-F. Aubry, N. Brinzei,
Stochastic hybrid automata model for dynamic reliability
assessment, Journal of Risk and Reliability 225 (1) (2011) 28–41.

[David, 2010] P. David, V. Idasiak, and F. Kratz, Reliability study
of complex physical systems using SYSML. International Journal
in Reliability Engineering and System Safety, vol. 95, no. 4, pp.
431-450, 2010.

[Deleuze et al., 2011] Aubry J.-F., Babykina G., Barros A., Brinzei
N., Deleuze G., de Saporta B., Dufour F., Langeron Y., Zhang H.
Rapport final du projet APPRODYN: APPROches de la fiabilité
DYNamique pour modéliser des systèmes critiques. Rapport de
recherche. Ref. hal-00740181.

[Dufour, 2002] Dufour F., Dutuit Y., Dynamic Reliability: a new
model, Lambda-Mu-13, ESREL02, vol. 1, p. 350-353, 2002.

 [IEEE, 2005] IEEE Std 1220TM, Institute of Electrical and
Electronics Engineers (IEEE): IEEE Standard for Application and
Management of the Systems Engineering Process, 2005.

[ISO/CEI 15288, 2008] ISO/CEI 15288: Systems and software
engineering – System life cycle processes. Second edition, 2008.

[ISO/CEI 26702, 2007] ISO/CEI 26702: Systems Engineering -
Application and management of the systems engineering process.
First edition, 2007.

[ISO 9000: 2005] Quality management systems. Fundamentals
and vocabulary. International Electrotechnical Commission,
October 2005.

[NUREG 6942] NUREG/CR-6942, Dynamic Reliability Modeling of
Digital Instrumentation and Control Systems for Nuclear Reactor
Probabilistic Risk Assessments, US Nuclear Regulatory
Commission, Washington DC, 2007.

 [Labeau, Smidts, 2000] P. Labeau, C. Smidts, S. Swaminathan,
Dynamic reliability: towards an integrated platform for probabilistic
risk assessment, Reliability Engineering & System Safety 68 (3)
(2000) 219–254.

 [Léger, 2009] A. Léger. Contribution à la formalisation unifiée des
connaissances fonctionnelles et organisationnelles d’un système
industriel en vue d’une évaluation quantitative des risques et de
l’impact des barrières envisagées. Thèse de l’université Henri
Poincaré – Nancy 1. Réf. tel-00417164.

 [Leveson, 2011] N.G. Leveson. Engineering a Safer World.
Systems thinking applied to safety. The MIT Press. Cambridge,
2011.

[OMG, 2003] OMG, Uml 2.0 OCL specification, Object
Management Group, 2003.

[Perrow 85] Perrow C. Normal accidents: Living with high risk
technologies. New York Basic Books, 1985.

 [Pfister, 2012] F. Pfister, V. Chapurlat, M. Huchard, C. Nebut, and
J.-L. Wippler, A proposed meta-model for formalizing systems
engineering knowledge, based on functional architectural
patterns, Systems Engineering, vol. 15, pp. 321–332, Autumn
2012.

[Piriou, 2013] P.Y. Piriou, J.M. Faure; G. Deleuze. A Meta-model
for Integrating Safety Concerns into Systems Engineering
Processes, SysCon 2013.

[Piriou, 2014] P.Y. Piriou, J.M. Faure, G. Deleuze, A Meta-model
for Integrating Dependability Concerns into Systems Engineering
Processes. Submitted to Systems Journal.

 [Rauzy, 2008]. A. Rauzy. Guarded Transition Systems: a new
States/Events formalism for Reliability studies, Journal of Risk
and Reliability, 222(4), 495–505. 2008.

[SE, 2010] SE Handbook Working Group and International
Council on Systems Engineering, Systems Engineering Handbook
- A guide for system Life Cycle Processes and Activities. V.3.2.
Edited by Cecilia Haskins, 2010.

[SysML 2007] SysML Specification 2007, OMG Systems Modeling
Language (OMG SysML), V1.0 Object management group.

 [Zhang, 2012] H. Zhang, B. de Saporta, F. Dufour, and G.
Deleuze, Dynamic reliability: Towards efficient simulation of the
availability of a feedwater control system, in NPIC-HMIT 2012,
San Diego, USA, July 22-26 2012.

 Page 10/10

Figure 10. Interoperable System Engineering and RAMS processes developed for the test case

