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ABSTRACT

Automatic object recognition plays a central role in nu-
merous applications, such as image retrieval and robot
navigation. A now classical strategy consists to compute
a bag of features within a sliding window and to com-
pare this bag with precomputed models. One main draw-
back of this approach is the use of an unstructured bag
of features which do not allow to take into account re-
lationships which may be defined on structured objects.
Graphs are natural data structures to model such rela-
tionships with nodes representing features and edges en-
coding relationships between them. However, usual dis-
tances between graphs such as the graph edit distance
do not satisfy all the properties of a metric and classi-
fiers defined on these distances are mainly restricted to
the K nearest neighbors method. This article describes
an image object classification method based on a definite
positive graph kernel inducing a metric between graphs.
This kernel may thus be combined with numerous classi-
fication algorithms.
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1. INTRODUCTION

One now classical [2] strategy to recognize objects con-
sists to compute a bag of features from a sliding win-
dow and to compare this bag to a model using scoring
functions. Features of the bag may be deduced from
boundary segments or SIFT points [2] defined at mul-
tiple scales.

However, such methods usually resume the image infor-
mation to histograms hereby loosing any structural prop-
erty of the object. Recent algorithms [10] have proposed
to overcome this drawback by encoding the objects by
graphs using a heuristic graph matching algorithm to
classify objects. Indeed, graphs provide a natural frame-
work to capture the structure of objects. Classical dis-
tances between graphs are either based on the computa-
tion of the maximum common sub-graph [6] or on graph
edit distances [7] both problems being related and both
nearlyNP complete. The computation of a distance be-

tween graphs using this approach requires thus either the
use of an appropriate heuristic to compute efficiently an
approximation of the distance on general graphs or a sim-
plification of the graphs in order to apply more robust
algorithms. Both solutions have been used. For exam-
ple, Bunke [7] proposed an efficient heuristic to approxi-
mate the edit distance between two graphs. On the other
hand Pelillo [6] transforms shock graphs into shock tree
in order to apply an efficient maximal clique detection
algorithm.

Neglecting the complexity issue one additional drawback
of graph matching or graph edit distances is the lack of
properties of the resulting similarity or distance mea-
sures. Indeed, such measures do not usually provide a
metric. As a consequence, usual graph distances can-
not be readily combined with usual classification or re-
gression algorithms coming from the statistical machine
learning framework.

Definite positive graph kernels may be understood as a
measure of similarity between graphs. Using Mercer’s
theorem such kernels are associated to a mapping func-
tion of graphs onto an Hilbert space such that the kernel
between two graphs corresponds to the scalar product be-
tween their mapping within the Hilbert space. Using the
famous “Kernel trick” many usual tools defined within
the statistical machine learning framework may be used
by using only kernels between graphs hereby avoiding
the explicit computation of the mapping function which
is usually unknown.

Several graph kernels have been proposed by Neuhauss
and Bunke [8] based on the edit distance. However
such kernels are usually not definite positive. Dupé and
Brun [1] have proposed several kernels based on the no-
tion of bag of paths. Outside the pattern recognition
framework, many graph kernels have been proposed in
the bioinformatic community [9]. Most of these kernels
are based on kernels between bags of paths.

This paper aims to define a kernel between graphs de-
duced from points of interest detected in two image to
be compared. Within such a framework the main fea-
ture of both graphs is the point of interest together with



its neighborhood. The notion of path is thus less rele-
vant and we propose to associate to each graph a bag of
vertices encoding the points of interest. The structure of
the graph is captured by adding to each vertex the or-
dered sequence of its neighbors. Our graph construction
scheme together with our new graph kernel are presented
in Section . The proposed approach is validated through
experiments in section .

2. GRAPH KERNEL CONSTRUCTION
SCHEME

2.1. Graph Construction

As in the usual bag of word model, the first step of our
method consists to extract a set of features from an im-
age. The Scale Invariant Feature Transform (SIFT) [5]
provides a list of key points robust to changes in image
scale, noise, illumination and local geometric distortion.
Each key point is expressed by itsx andy coordinates,
the scale, the orientation and 128 numbers (in the range
0-255) representing the descriptor. Figure 1 illustrates a
key point detection by the SIFT method on a face image.
This unstructured set of points is then organized into a
graph in order to take into account spatial relationships
between key points. Given an image, we build a labeled
graphG = (V,E, µ,F , w) whereV,E andF respec-
tively denote the set of vertices, edge and vertex’s fea-
tures whileµ andw respectively correspond to a vertex
labelling function fromV to F and a weighing function
from V to R+. Each key point is associated to a ver-
tex v ∈ V , while its featuresµ(v) ∈ F are stored as a
label of this vertex. The weighing functionw encodes
the relevance of each vertex within the graph. Within
our framework, this weigh is defined for each vertex as
the scale of its associated key point. This choice corre-
sponds to the usual assumption that relevant and stable
key points should be detected at large scales. Note how-
ever, that any relevant measure of the relevance of key
points may be used as weigh. The setE of edges is de-
fined from thek mutual nearest neighbors based on the
x, y coordinates of key points: One edge(v, v′) belongs
to E if v belongs to thek nearest neighbors ofv′ while
v′ belongs to thek nearest neighbors ofv. The degree of
each vertex is thus bounded byk.

In order to take into account the local arrangement of ver-
tices incident to a given vertex we explicitly encode for
each vertexv the sequence of its neighbors encountered
when turning counter-clockwise aroundv. The neigh-
borhoodN (v) of vertexv is thus defined as anordered
set (a sequence)(v1, . . . , vn) of vertices. The first ver-
tex of this sequence is arbitrary chosen as the upper right
vertex (minimum of the sum of both coordinates).

Figure 1. SIFT Feature Points

2.2. Graph Kernel Construction

One classical way to define a kernel between graphs is
to consider finite [1] or infinite [4] bags of paths. Such
kernels allow to consider global or semi global proper-
ties of graphs using walks traversing large part of them.
However, using SIFT key point detector the information
is mainly local and is thus essentially captured by graph’s
vertices and their immediate neighborhoods.

We thus define our kernel between graphs as a kernel
between bags of oriented neighborhoods. The design of
such a kernel implies the definition of a basic kernel be-
tween oriented neighborhoods. Considering the oriented
neighborhoodsN (u) andN (v) of two verticesu andv,
with lu = |N (u)| andlv = |N (v)| , one straightforward
solution consists to use a kernel between vectored data
hereby considering each sequence as a vector:

Kseq(u, v) =

{
0 if lu 6= lv∏lu

i=1
Kg(ui, vi) otherwise

(1)

whereKg(u, v) is a RBF kernel between the features of

input vertices:Kg(u, v) = e−
d(µ(u),µ(v))

σ , σ denoting a
tuning parameter whiled(., .) is the Euclidean distance,
between the featuresµ(u) andµ(v) of verticesu andv.
Sequences(ui)i∈{1,...,lu} and (vi)i∈{1,...,lv} denote re-
spectively the oriented neighborhoodsN (u) andN (v).

The kernel between oriented neighborhood defined by
equation 1 compares the features of two oriented neigh-
borhood ofequal length. However due to acquisition
noise or small changes between two images some SIFT
points may be added or removed between two similar
images. Such addition or removal of SIFT points may
modify the neighbourhood of vertices belonging to the k
nearest neighbors of the added or removed points. Using
equation 1 such vertices become incomparable with their
original version in the initial graph.

In order to overcome this drawback we introduce a
rewriting rule on oriented neighborhood, which removes
the vertex of lower weight of an oriented neighborhood.
Given one vertexv, the rewriting of its oriented neigh-
borhoodN (v), denotedκ(v) is defined as:

κ(v) = (v1, ..., v̂i, ..., vlv ) (2)



wherev̂i = argminj∈{1,...,lv}w(vj) is the neighbor of
v with lowest weight. Note that, using a more rigor-
ous notation, the rewriting ofN (v) should be denoted
κ(N (v)). We nonetheless use the simplified notation
κ(v) in order to avoid cumbersome notations.

The functionκ may be iterated thus leading to a se-
quence of successively simplified oriented neighbor-
hoods: (κ1(v), κ2(v), ..., κD(v)) where D is fixed to
50% of the maximal vertex’s degree k (Section ). Each
oriented neighborhood of such a sequence is obtained
from the previous oriented neighborhood by removing
one vertex. the dissimilarity with the initial neighbor-
hoodN (v) increases thus along the sequence. In order
to quantify such a dissimilarity we associate a cumula-
tive weigh to each element of this sequence of rewritings.
The cumulative weigh of theith rewriting of the initial
oriented neighborhoodN (v), denotedCw(κi(v)) corre-
sponds to the sum of the weigh of the vertices removed
to obtainκi(v) fromN (v) and is formally defined as:

Cw(v) = 0
Cw(κi(v)) = w(vi) + Cw(κi−1(v))

(3)

where vi is the vertex removed betweenκi−1(v) and
κi(v).
Based on these rewriting rules, we extend the initial ver-
tex’s kernel defined by equation 1 to a convolution ker-
nel [3] between two sets of rewrote oriented neighbor-
hoods:

Krewriting(u, v) =
∑D

i=1

∑D

j=1

W (κi(u), κj(v)) ∗ Kseq(κ
i(u), κj(v))

(4)

where the kernelW penalizes costly rewritings corre-
sponding to the removal of important key points. This
kernel is defined as a kernel between the cumulative
weighs of both rewritings:

W (κi(u), κj(v)) = e−
Cw(κi(u))+Cw(κj(v))

σ′ (5)

whereσ′ is a tuning variable.
Our final kernel between vertices combinesKrewriting

with one kernel between the features of the two central
vertices defining both oriented neighborhoods:

K(u, v) = Kg(u, v)Krewriting(u, v) (6)

Our final kernel between both graphs corresponds to a
kernel between both bags of oriented neighborhoods us-
ing equation 6. One usual design of such a kernel [1]
would consist to perform a sum of kernels between all
couples of oriented neighborhoods belonging to both
bags. However, such a solution do not take into ac-
count the relevance of vertices within both graphs. In
order to take such a relevance into account we intro-
duce a functionϕ from V to R+ which increases with

respect to vertex’s weigh and is formally defined as:

ϕ(v) = e
− 1

σ′(1+w(v)) .

Our final graph kernel is thus defined as a weighed sum
of kernels between oriented neighborhoods:

Kgraph(G1, G2) =
∑

u∈V1

∑

v∈V2

ϕ(u)ϕ(v)K(u, v) (7)

3. EXPERIMENTS

3.1. Dataset

We choose to test our kernel against a database of41
faces composed of11 females and30 males, extracted
from the FERET face database1. Each of the 41 subject
of the database is associated with5 images: one regular
facial expression, an alternative facial expression, two
half left and half right rotations of−67.5 degrees and
one right profile with a rotation of+90 degrees. The im-
age is fixed to256 × 384 pixels. Some images from the
database are displayed in Figure 2.

Regular expr. Alternative expr. Profile image

Figure 2. FERET Database

3.2. Experimental Setup

Our first experiment illustrates the importance of the
rewriting step within our kernel computation scheme.
To this end, we randomly select 5 images among our
database and corrupt them by an additive Gaussian noise
with increasing standard deviationσ. The similarity be-
tween each original image and its corrupted version is
measured both with our kernelKgraph (equation 7) and
by a kernel without any rewritings denotedKgraphSeq

. This last kernel is defined from equation 7 by setting
K(u, v) = Kg(u, v).Kseq(u, v) (equation 1).
In order to compare both kernels we normalize them us-
ing the following formula [3]:

K̃(G,G′) =
K(G,G′)√

K(G,G)K(G′, G′)
(8)

whereK̃ represent the normalized version of a kernel
K. Using such a normalisation step, both kernelsK̃graph

andK̃graphSeq vary between0 and1. Fig. 3 represents
the mean values of̃Kgraph andK̃graphSeq for increas-
ing noise levels. Vertical bars on each curve represent

1http://www.itl.nist.gov/iad/humanid/feret/feretmaster.html
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Figure 3. Normalized KernelsK̃graph and K̃graphSeq.

the standard deviations of kernel values computed on the
5 images for each noise levels. As shown by Fig. 3, the
curve representing̃KgraphSeq quickly drops to 0. This
results means that even for low noise level, any SIFT
point in a corrupted image has in its neighborhood at
least one added or removed point compared to the same
SIFT point in the original image. Using equation 1, the
similarity between the oriented neighborhoods of both
SIFT points is equal to 0. On the other hand, the curve
associated tõKgraph quickly drops to 0.2 for a value of
σ equal to1, and then softly decreases as the noise level
increases hereby showing the resistance to noise bring by
our rewriting step.

Our second experiment investigates the relationships be-
tween the number of rewritingsD and the maximal size
of the neighborhoodk. To this end, we randomly se-
lected4 images belonging to different classes within the
FERET database. We then iteratively removed each of
the 4 selected images from the FERET database and
computed its4 nearest neighbors among the201 remain-
ing images. For a given choice ofk andD, if our kernel
correctly captures the class of each image, the4 clos-
est neighbors of each query should correspond to the
remaining images of its class. We thus computed for
each of the4 query images the number of images belong-
ing to its class among its4 closest neighbors within the
database. This score computed on each query image is
sum up in order to obtain a global result for each couple
(k,D) which varies between0 and16. Table 1 summa-
rizes this experiment for different choice ofk andD. The
maximal value of each line is highlight by bold fonts.
One can note that for each value ofk the score passes
through a single maximum. This phenomenon may be
interpreted as follows: For low value ofD the number of
rewritings do not compensate small image perturbations
due to noise and view change. Conversely, for high,value
of D, our rewriting step may remove important points
with slightly similar weigh in both neighborhoods. Such
removals may lead to different neighborhoods with a low
similarity according toKseq (equation 1). The weighted
sum of this low values ofKseq leads to a low overall
value ofKrewriting (equation 4). The optimal value of

1 2 3 4 5
1 3 1 1 0 0
2 0 5 0 0 0
3 0 0 5 0 0
4 0 1 2 2 0
5 0 0 2 0 3

(a) K=1

1 2 3 4 5
1 2 2 0 0 1
2 0 4 1 0 0
3 0 0 5 0 0
4 0 1 3 1 0
5 0 0 2 0 3

(b) K=4

Figure 4. Confusion Matrices Using The KNN
Classification Algorithm, 5 Classes Of The FERET

Database And Two Values OfK.

D is equal to50% of k for k = 10 andk = 15. This
optimal value remains equal to5 for k = 7 and13 hence
representing respectively71% and38% of k. Therefore,
as expected, the heuristic settingD = K

2
made in Sec-

tion does not provide the optimal value ofD in all cases.
This choice provides however results close to the optimal
solution and may be used as an alternative to an explicit
estimation of the optimal value ofD using a cross vali-
dation step.

Table 1. Classification Scores Obtained On The
FERET Database For Various Values Ofk And D.

D=1 D=3 D=4 D=5 D=6 D=7 D=12
k=7 3 5 5 7 6 - -
k=10 3 5 5 6 5 6 -
k=13 3 5 5 7 5 6 6
k=15 6 5 5 5 5 7 6

3.3. Object Classification

Given a query image of an object of interest, object clas-
sification consists to retrieve its class from a set of ob-
jects already classified called a training set. Our graph
kernel has been tested within this framework on 5 classes
of the FERET database using the classical KNN clas-
sification algorithm. Figure 4 represents the confusion
matrices obtained on these five classes forK = 1 and
K = 4. As illustrated by Figure 4 both matrices have
only few out diagonal values, the best results being ob-
tained forK = 1. An example of the 5 nearest neighbors
of a query image is represented in Fig. 5. Three of the
four images belonging to the same class as the query and
encoding the same person in different views are correctly
retrieved. The missing image corresponds to the profile
view which induces a very different graph.

4. CONCLUSION

In this study, a graph kernel method for object retrieval
has been proposed with an application to face recogni-
tion. We defined a graph kernel based on bags of oriented



Query Position 1 Position 2

Position 3 Position 4 position 5

Figure 5. Ranked Five Closest Images From the
Query

neighborhoods. Our first results are promising. Further
work will be devoted to further improvements of kernels
between oriented neighborhoods.
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