
�An early and shorter version of this paper by the authors, entitled

`Identi"cation of fuzzy relational models for fault detectiona was pre-

sented at the 1999 IFAC World Congress in Beijing, P.R. China, July

1999.

*Corresponding author. Tel.: #49-203-379-3387; fax: #49-203-

379-2928.

E-mail addresses: g.gissinger@univ-mulhouse.fr (G.L. Gissinger),

p.m.frank@uni-duisburg.de (P.M. Frank).

Control Engineering Practice 9 (2001) 555}562

Identi"cation of fuzzy relational models for fault detection�

P. Amann���, J.M. Perronne�, G.L. Gissinger�, P.M. Frank��*

�ESSAIM, Laboratoire MIAM, Universite& de Haute Alsace, 12, rue des Fre% res Lumie% re, F-68093 Mulhouse Cedex, France

�Fachgebiet Me}- und Regelungstechnik, Gerhard-Mercator-Universita( t -GH Duisburg, Bismarckstra}e 81 BB, D-47048 Duisburg, Germany

Received 6 October 1999; accepted 11 August 2000

Abstract

This paper presents the concept of fuzzy relational models for use in a fuzzy output estimator. A suitable "eld of application is in

fault diagnosis, where output observation rather than state observation is needed for the generation of fault re#ecting residual signals.

Due to their non-linear structure, fuzzy relational models can be used appropriately for building models of non-linear dynamic

systems. In this paper, the identi"cation of fuzzy models for residual generation is discussed. Emphasis is placed upon the

model-building procedure including the identi"cation of the model structure and of the parameters. As an application example, a real

technical system is considered. The case study presents the detection of oversteering of a passenger car. The results of the application

to residual generation are discussed. � 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

As mentioned by Frank (1996), there are several di!er-

ent approaches to fault detection. One of the most

powerful is the model-based method, where a model is

used to estimate the nominal output signals, appearing

under error-free process conditions. This approach allows

one to de"ne the residuals as the di!erence between

measurements and estimations. For this purpose, an out-

put observer or an output estimator is required. In fact,

the mismatch between measured and estimated output

signals is considered to be caused by the e!ects of faults

that have occurred in the process. This assumption is not

exact, because there are always disturbances, e.g. due to

measurement noise and modelling uncertainties. For ef-

fective fault detection, the in#uence of such disturbances

on the residuals must be small in comparison with the

e!ects of the faults.

The estimation of the error-free process outputs re-

quires a model that describes the dynamic behaviour of

the process. Here, a distinction may be made between

di!erent kinds of models. The model can be given ana-

lytically by di!erential equations or qualitatively in the

form of linguistic rules or in the form of a neural net-

work-based or fuzzy-based parametric model whose

parameters are identi"ed through a set of measured

input}output data.

The use of the "rst approach will be preferred, if

a mathematical model of the system is available. Other-

wise, if knowledge about the process is quite poor, one of

the other methods should be applied. Either way, the

dynamic behaviour of the system has to be described by

linguistic rules that are based on the knowledge of human

experts, or a set of measured data must be used to deter-

mine a data-based model in input}output description.

In this paper, a possible way of identifying a paramet-

ric model is presented. The model is based on fuzzy

relational equations and is used to set up a fuzzy output

estimator for residual generation.

2. Model-building

2.1. Structure of fuzzy relational models

The relational matrix is the kernel of a fuzzy relational

model. This matrix describes the relationship between
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Fig. 1. Application of the fuzzy output observer to residual generation.

input and output variables (see Fig. 4). Its elements are

the degrees to which the rules describing the dynamic

behaviour of the system are possible. These parameters

have to be identi"ed according to the nominal process

behaviour, re#ected in the measured input}output data

set. This stage provides the identi"cation of the model

and must be done with a set of measurements, which

de"ne the complete nominal behaviour under error-free

process conditions. Otherwise, faults cannot be detected

or fault alarms may arise, respectively.

The model is used in the second stage as an output

estimator for the one-step-ahead prediction of the nom-

inal output values and for the generation of the residuals.

Details concerning the internal functionality of the rela-

tional model can be found in the paper from Amann,

Perronne, Gissinger, and Frank (1999). If the process

under consideration has more than one output, several

relational models are needed, each of them dedicated to

the estimation of one output signal. The resulting struc-

ture is depicted in Fig. 1.

As the fuzzy relational model is a black-box model, the

task of model-building does not consist in "nding `cor-

recta physical parameters, whose values can be veri"ed,

but deals with matching a model to the measured input}

output data. Hence, the best "tting model (matching to

the complete nominal process behaviour) with the simple-

st structure and the smallest number of parameters must

be found. It is evident, that several convenient models

might exist. The selection criteria for the model to be

used are complex and depend clearly on the application.

In general, a human expert has to be consulted for this

task. Special attention must be paid to the risk of choos-

ing a local minimum. Although the model may achieve

a very small estimation error in the case of the identi"ca-

tion data, its performance might not be satisfactory dur-

ing the evaluation stage with a di!erent data set. In this

case, the model is not able to predict the system behav-

iour correctly.

The core problem in fuzzy relational model-building is

the search for the best-matching relational matrix. The

result of this search depends on several parameters:

� The external data processing (sampling rate, "ltering

algorithms).

� The linguistic variables of all signals which are in-

#uencing the respective output signal (number, shape,

position of the fuzzy sets).

� The structure of the model (input time delays, transfer

orders).

� The identi"cation data set (relevance and complete-

ness of the measured data).

Thus, the complete procedure of system identi"cation

may be separated into three main tasks that will be

discussed in the following: In the "rst step, the prede"ni-

tions to be given comprise the choice of sampling rate as

well as the de"nition of the linguistic variables. In the

second step, the structures of the submodels must be

determined, which means that their input delays and

orders must be chosen. In the third step, the parameters

of the fuzzy relations have to be identi"ed by the minim-

isation of an error criterion. In this procedure, the second

step cannot be separated from the third one, because only

the estimation error that has been achieved during model

validation can be considered as a criterion for the perfor-

mance of the respective model structure. Unfortunately,

this estimation error depends on both previous tasks, so

that the search for an optimised model is an iterative

procedure.

2.2. A-priori knowledge and predexnitions

The design of a fuzzy relational model requires the

availability of a-priori knowledge. As the model shall

describe the input}output behaviour of the system in

discrete time, the "rst de"nition to be given consists of

determining the measurement "lters. This includes the

choice of the sample time as well as the design of any

"ltering algorithm for noise reduction or smoothing.

Afterwards, the linguistic variables have to be de"ned

properly, which means that the universes of discourse

have to be determined as well as the number and shapes

of the linguistic terms. Here, the application of a

clustering algorithm may be useful, such as, for

example, the fuzzy clustering algorithm proposed by

Kroll (1997).

2.3. Structure identixcation

The second stage of model-building consists of the

choice of the model structure. For this purpose, a-priori

knowledge from a human expert may be used. Otherwise,

a structure identi"cation algorithm as described in the

following must be applied.

The task of structure identi"cation concerns the de"ni-

tion of the multiple input-single output (MISO) sub-

models, that are needed to describe the behaviour of all

process output signals. For each of these submodels, the
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Fig. 2. Parameter identi"cation structure of the fuzzy output observer.

relevant input signals have to be determined. Further-

more, it is necessary to know which samples of each

signal have a direct in#uence on the actual output value.

In fact, this information is related to knowledge of the

input delays and the orders of the (non-linear) functions

de"ning the system's behaviour. The knowledge of all

required samples implies that delay and order are known,

but not vice versa. However, the information about the

input delays and the transfer order gives an idea of the

relevant samples.

If no knowledge is available, each submodel comprises

all process input signals as inputs and one process output

signal as output. Of course, all previous samples up to the

maximum delayed term have to be used for the estima-

tion of the actual output value in this case. This leads to

oversized fuzzy models and, thus, causes problems during

the parameter identi"cation.

� The choice of the input signals in#uencing a certain

output, can be done by observation of the behaviour of

the output signal relative to the changes of the inputs.

This can give at least an idea of which input signals

in#uence the respective output.

� The input delays can be determined by observation of

the time delay occurring between a change in the input

signal and the related reaction of the output. However,

the exact measurement of the delay time may be di$-

cult, especially in the presence of noise.

� The function orders can be approximated through

the design of linear auto-regressive (ARX) models

(Isermann, 1988). Here, the assumption must be made

that the optimal order of the linear ARXmodels is also

the optimum for the non-linear fuzzy relational model.

This may hold if the ARX model achieves a good

approximation of the system. Therefore, the validation

of the ARX model is indispensable. Another possible

way of determining the order of the system is given by

computing the condition number of covariance matrices

as proposed by Ljung (1987) and Isermann (1988).

If the methods mentioned above are applicable, the

input delay and the order are known, so that only rel-

evant samples have to be chosen in the last step. This can

be done easily by checking all samples against their

in#uence on the output signal. However, the results are

not satisfactory sometimes. In this case, another system-

atic method must be applied:

� The easiest way to determine the sample points that

are needed for the computation of the one step ahead

prediction is to compare the estimation error achieved

by all possible models. In this case, the maximum

number of samples per variable � is increased starting
from �"1. For each �, all possible combinations are
evaluated and � is increased until the minimal estima-
tion error �

���
(�) increases. Here, the big variety of

di!erent models may lead to problems.

� This variety can be decreased by restricting to the

choice of certain types of model. For instance, the

evaluation may be limited to speci"c models that are

de"ned through the input delay and the transfer order.

Of course, this approach leads to problems, if the

system cannot be described by this type of function.

� Another method makes use of the analysis of a data

gradient vector. Schultz and Hillenbrand (1997) have

proposed a method for the determination of the rel-

evant samples by examining the data gradient vector.

This method can be extended in the case of noisy

measurements, captured on real systems (Schultz

& Krebs, 1997), but it does not allow a comparison of

the relevance of di!erent signals.

A comparison between the results provided by these

methods is necessary in order that a suitable model is

chosen. If the system structure is unknown, the choice of

the model's structure is not evident. All methods may

lead to local minima, which means, that the obtained

model structure is satisfactory for the identi"cation data,

but does not describe the system's behaviour correctly in

other nominal operational modes. The risk of choosing

such a local model is minimised by a model validation. At

this time, an expert is needed for the choice of the best

solution.

2.4. Parameter identixcation

After having de"ned the structure of the model, the

model parameters must be determined. In this stage, one

looks for the parameter values that best "t the input}

output data that has been measured at the process. The

principle of the identi"cation procedure is shown in

Fig. 2.

In general, the parameter identi"cation task is done by

minimisation of a cost criteria, as for example the

squared error, or by maximisation of the likelihood func-

tion. In this work, the least squares estimator (LSE)

has been chosen, because it best "ts to the problem

studied and because it is easy to implement. Indeed, the
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Fig. 3. Estimation error for di!erent algorithms (vehicle subsystem

�
�

P�
�
).

�See application, Section 5.

maximum likelihood criteria is equivalent to the least

squares method, if the residuals are assumed to be Gaus-

sian with zero mean values and known constant

covariances (Ljung, 1987). The minimisation of the least

squares criteria can be achieved by several di!erent algo-

rithms.

The method of Dubois (1992) allows the parameters

for generalised norm and co-norm operators to be identi-

"ed through an iterative search. It is based on the prin-

ciple that the derivative of the (squared) error criterion

J equals zero for the optimal matrix:

�J(R)

�R
"0 N R"R

���
.

The use of generalised norm operators leads in general to

robust models, but unfortunately, this iteration algo-

rithm provides only a slow convergence.

The second method is the one that has been proposed

by Jang, Sun, and Mizutani (1997) in the framework of

adaptive neuro-fuzzy inference systems (ANFIS). It is

based on a recursive LSE with e$cient matrix inversion,

as described by Ljung (1987). Here, the use of product

and (bounded) sum as norm and co-norm operators is

required. These operators lead to the most exact, but not

to the most robust models. The identi"cation algorithm

is an iterative search for the best "tting parameters as

well, but the convergence is much faster than with the one

from Dubois'. The algorithm proceeds as follows:

S
���

"S
�
!

S
�
X

���
X�

���
S
�

1#[X�
���

S
�
X

���
]
,

R
���

"R
�
#�S

���
X

���
[>�

���
!X�

���
R

�
]��.

The initial values are R
�
"0 and S

�
"g ) I. For this

method, the initialisation of the so-called covariance

matrix S plays an important role. A small value of g leads

to a very slow convergence. An increase of this initial

value leads to a faster convergence, but, if the value of g is

too big, the algorithm skips the optimal parameters and

does not reach the minimum error.

Another possibility is the use of gradient methods for

the computation of optimal parameters (Isermann, 1988).

These algorithms allow a recursive search for the para-

meters in the case of generalised operators. The "rst-order

gradient method proceeds as follows:

R(i#1)"R(i)!k
�J(R)

�R
.

The in#uence of the step size k on the estimation error is

similar to that of the value g on the recursive LS algo-

rithm. In this work, a variable step size has been chosen,

where k is increased to 200% if the estimation error

decreases during two following steps, otherwise it is de-

creased to 50%. The "rst-order gradient method does

not reach a very fast convergence.

The second-order gradient provides a faster conver-

gence, but in this case, the inversion of the Hesse matrix

may cause problems:

R(i#1)"R(i)!�
��J(R)

�R� �
���J(R)

�R
.

This matrix will be ill conditioned or singular if not all of

the modes of the system are excited by the measured

input}output data. In this case, the second-order gradi-

ent algorithm cannot be applied.

The same problem arises for direct resolution. This

method provides the direct (non-recursive) computation

of the least squares estimate of the given input}output

data and was described by Ljung (1987):

R"��
1

N

�
�
���

X(k)X�(k)�
�� 1

N

�
�
���

X(k)>�(k)�
�
.

It requires the choice of product and bounded sum as

norm and co-norm operators and the excitation of all

modes of the system.

In general, each of the di!erent methods has its

advantages and its inconveniences. If a generalised norm

operator is required, the algorithm Jang and the second-

order gradient method cannot be used. Fig. 3 shows the

estimation errors for the vehicle subsystem �
�

P�
�
.�

Here, the covariance matrix has been initialised with

g"10 and a variable step size has been chosen for the

"rst-order gradient algorithm.

3. Residual generations

The fuzzy relational model whose set-up procedure is

described in the previous section is used on-line for the

residual generation at real or simulated processes. The

structure of the fuzzy output estimator is depicted in

Figs. 1 and 4.

In order to reinforce the e!ects of faults appearing in

the process, a gain factor � is introduced, which enables
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Fig. 4. Structure of fuzzy relational model.

switching between the operational modes `observera (or

`one-step-ahead predictora more precisely) at �"0 and

`parallel modela at �"1. During error-free process con-

ditions (r(k),0), the gain is set equal to 0, so that the

model runs in observer mode. After the occurrence of an

error (r(k
�
)O0), the gain will be increased, so that the

model does not adapt immediately to the e!ect of the

fault, because it now runs in the parallel model mode. In

fact, the switch will not be set equal to 1, but to a value

between 0.8 and 0.9. Otherwise, it is not possible to detect

further faults.

As the magnitude of the peak in the residuals is used to

decide whether a situation will be considered as `normala

or `erroneousa, the residuals must be normalised. The

normalisation of the residual values can be done as

proposed for example by Querelle, Mary, Kiupel, and

Frank (1996). For this purpose, the mean value and the

standard deviation are taken into consideration. The

normalisation is done according to the equation

r
�
(k)"(r(k)!�

���
)/3	

���
, where �

���
and 	

���
are

mean value and standard deviation of the nominal resid-

ual values. Here, only residual values that appear under

error-free conditions should be used.

4. Implementation

The realisation of the residual generator-cell by fuzzy

output estimation has been carried out in the framework

of a European project. The goal of the respective project

was the development of a software tool for fault diagnosis

in industrial processes. The fuzzy cell has been imple-

mented under C## and provides a general con"gurabil-

ity to di!erent systems. The complete algorithm of the

fuzzy output observer is divided into the two main tasks

of con"guration and residual generation.

The con"guration procedure o!ers the possibility of

easily designing a fuzzy output-observer module for al-

most every technical process. Therefore, at least one data

set, containing measured input}output data and de"ning

the dynamic behaviour of the system completely, is re-

quired. Some additional knowledge about the internal

submodels (input delays, model orders and relevant sam-

ples) is recommended, but it can be replaced by auto-

matic determination of the best-"tting model structure.

For the parameter identi"cation stage, several di!erent

methods can be chosen, depending on the norm oper-

ators and on the excitation of the system.

The data-#ow in the run-time part is shown in Fig. 5,

where s
�
is the number of fuzzy sets of the linguistic

variable;
�
and �

�
is the maximum delayed sample of the

respective variable. In this part, the algorithm uses a pre-

viously generated relational model to estimate the sys-

tem's output values and to derive the residual signals.

This algorithm includes the normalisation of the residual

values as well as switching between the functional modes

`observera and `parallel modela (given for each sub-

model through the gain factors �
�
).

5. Application example: the automotive vehicle

5.1. System description

The system under consideration is an automotive

vehicle, and more precisely, its lateral dynamics during

cornering. The goal of this application is to detect the

oversteering of the vehicle (erroneous vehicle behaviour)

before the driving situation gets critical. This early detec-

tion of oversteering should enable a driving assistance

algorithm to avoid the dangerous situation or at least to

reduce the risks. The data used for model identi"cation

has been measured directly at the test vehicle of the

MIAM laboratory (ModeH lisation et Identi"cation en

Automatique et MeH canique) of the University of

Mulhouse (France).

Fig. 6 shows a simpli"ed description of a driven car:

the driver de"nes a desirable trajectory to be followed.

Therefore, he takes into consideration the actual position

of the car on the road as well as external restrictions
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Fig. 5. Data #ow in run-time algorithm.

Fig. 6. Simpli"ed system &Driver-car-road'.

Fig. 7. Sensors and measurements in the test car.

Fig. 8. Oversteering of a vehicle.

(tra$c, obstacles etc.). Additionally, he is a!ected by the

transversal acceleration �
�
, the longitudinal acceleration

�
	
and the yaw rate �Q . This perception enables him to

manipulate the steering wheel angle �
�
, to choose the

engine order 

���

and the braking power P
�
���

. The car

(consisting of engine, tyres and other subsystems) reacts

accordingly. Here, several non-linearities play an impor-

tant role. Further details about the vehicle dynamics can

be found in the books of Mitschke (1990) and Gillespie

(1992).

To reproduce critical situations with a front-wheel

driven vehicle, di!erent experiments have been carried

out. The di!erent sensors and measurement parameters

needed in the test car for these trials are shown in Fig. 7.

The longitudinal and lateral velocities are measured by

an optical cross-correlation sensor located at the rear

centre of the vehicle, whereas the gyro and acceleration

sensors are located near the centre of gravity. All the

signals are digitised by a data acquisition card inside

a PC at the back of the test car.

While a vehicle is cornering regularly (stage 1 in Fig. 8),

the steering wheel's angle causes a side-slip angle at the

front tyres, which appears after a small time delay, due to

the positioning of the tyres. Furthermore, a side-slip

angle at the rear tyres is induced, which results in a side-

slip of the centre of gravity, in the lateral acceleration of

the car and in the yaw rate of the vehicle:

�
�

P�


�

�


�N�

�
	
P�

�

�Q
.

If the driver exceeds the limits of stable cornering, the

lateral acceleration �
�
and the yaw rate �Q increase, al-

though the steering wheel angle �
�
remains constant: The

back of the car breaks out and the car begins to oversteer

(stage 2 in Fig. 8). As this situation is very dangerous, it

should be avoided, because the driver risks losing control

of his vehicle. The oversteering of the car can be pro-

voked by suddenly taking the foot o! the accelerator

while cornering at the limit, or by cornering a curve too

sharply relative to the actual speed (e.g. on a wet road).

5.2. Model-building

As mentioned above, oversteering of the vehicle will

e!ect the time behaviour of the transversal acceleration

�
�
and of the yaw rate �Q . Therefore, two models have
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Fig. 9. Model 1: >K (k)"R
�
�[;(k!4)�>(k!1)�>(k!4)].

Fig. 10. Model 2: >K (k)"R
�
�[;(k!7)�>(k!1)].

Fig. 11. Model 3: >K (k)"R


�[;(k)�;(k!1)�;(k!2)�>(k!1)�

>(k!2)].

Fig. 12. Nominal residual behaviour.

been designed, describing the relations �
�

P�
�
and

�
�

P�Q , respectively. The residuals generated by the two

observers are the normalised di!erences between

measurement and estimation of �
�
and �Q . For the identi-

"cation stage, two di!erent measurement "les have been

used, re#ecting the nominal behaviour of the car. Each of

them contains two laps around the test track, sampled at

25Hz. The "rst "le has been used for model identi"ca-

tion, the second one for validation.

As an example, the model structures that have been

determined by the di!erent methods (see Section 2.3

above) for the subsystem �
�

P�
�
are compared

in the following. The same procedure can be applied

to the determination of the second subsystem �
�

P�Q

as well.

The application of di!erent strategies for determining

relevant samples leads to the following results:

� The complete check of all possible models leads in the

present case to enormous computation times, so that

the algorithm had to be stopped at order four. The

minimum estimation error �"4.37�10�� has been

obtained by a fourth-order model with an input delay

of four samples. Its structure is depicted in Fig. 9.

� Using the second method with a restricted search

algorithm, a model of "rst-order with an input delay of

seven samples has been obtained. The resulting estima-

tion error is �"4.12�10��. The model structure is

shown in Fig. 10.

� The last method is based on the approach of Schultz

and Hillenbrand (1997). In this case, the best model is

of second-order and reaches an error of

�"3.35�10�
. Its structure is shown in Fig. 11.

The choice of model 1 is based on a comparison

between the models mentioned above, although the

estimation error, obtained by model 2 is slightly smaller.

Model 2 is only a "rst-order system with a big input

delay of 280ms. A "rst-order system may describe one

aspect of the car dynamics quite well, but will not be able

to describe the complete behaviour of the system because

it represents only a local minimum.

5.3. Simulation results

The following results have been obtained with the

models in Eq. (1). Figs. 12 and 13 depict the time behav-

iour of the steering wheel angle (�
�
in 3), of the lateral

acceleration (�
�
in m/s�), of the yaw rate (�Q in 3/s) and of

the normalised residual values.

�
�
(k)"f

�
��

�
(k!4); �

�
(k!1), �

�
(k!4),

�Q (k)"f
�
��

�
(k!2), �

�
(k!3), �

�
(k!4);

�Q (k!1),�Q (k!2). (1)

Fig. 12 shows the residuals during nominal vehicle

behaviour. The measured and estimated outputs are

superimposed in the same plot. It reveals that the esti-

mated outputs follow the measurements quite well, as

the respective residuals remain in the nominal interval

[!1; #1].

In order to test the residual's behaviour in the case of

oversteering, the fuzzy observers have been applied to

a test "le, where the driver oversteers his car. The results

are shown in Fig. 13. The fault occurs in a left turn, so

that steering wheel angle and yaw rate take negative

values. The driver steers with an approximately constant

angle between t"42 s and t"47.5 s, but at t"46.5 s,

the vehicle becomes unstable. This reveals by an increase

of the yaw rate and of the lateral acceleration. At
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Fig. 13. Residuals in the presence of faults.

t"47.5 s, the driver tries to control the car by steering it

in the opposite direction. The residuals of �
�
and �Q take

both values greater than 1, but it can be seen that the

residual of �Q behaves more reliably. It remains close to

zero and clearly increases at t"46.5 s, whereas the resid-

ual of �
�
, already near to 1, exceeds the limit very slowly

and increases again after the reaction of the driver at

t"48 s.

Thus, the residual of �
�
should be considered very

carefully in the early detection of oversteering. In con-

trast, the model �
�

P�Q enables a clear detection of the

`erroneousa behaviour of the vehicle.

6. Conclusion

In this paper, an approach for the design of fuzzy

relational models and their application in fuzzy output

estimators for fault detection has been presented. The

principles and di$culties of model-building have been

discussed. Finally, its application to a front-wheel driven

vehicle has been investigated. The results obtained by the

fuzzy output-estimators during the detection of over-

steering show the ability of fuzzy relational models to the

modelling of complex dynamic systems.

However, a human expert is still needed during the

model-building stage, especially for the determination of

the model structure. A completely automatic search algo-

rithm risks ending up in a local minimum, thus providing

a model that is not able to describe the system behaviour

correctly. Here, additional knowledge must be assessed

to decide which model should be chosen.
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