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Abstract— This paper deals with black-box identification of 
discrete event manufacturing systems that are automated using a 
programmable logic controller (PLC). The behavior of the system 
is observed during its operation and is represented by a single 
long sequence w of observed input/output (I/O) signals vectors. 
The identification method, conceived for addressing large and 
complex industrial systems, consists of two complementary 
stages; the first one obtains, from w, the observable part of an 
interpreted Petri net (PN) model composed of observable places 
and transitions describing the reactive behavior of the system. 
Afterwards, w is transformed into a sequence S of transition 
firings from which a PN model that reproduces S is inferred. This 
paper focuses on the second stage of the method in which a PN is 
built by adding non-labeled places and arcs that represent the 
non-observed behavior of the whole system by assuring the 
reproduction of w; this technique is based on discovering the 
causal and concurrent relationships between transitions in S.  

Keywords— Black-box identification; Automated manufactu-
ring systems; Interpreted Petri nets; Internal behaviour model. 

I. INTRODUCTION 
Identification methods of discrete event systems (DES) 

allow building systematically a mathematical model (Petri 
nets, automata) that describes the behavior of an unknown or 
ill-known system based on the observation of its evolution. 
Observations consist of data revealing the system activity: 
sequences of operations, events, messages, signals etc., and 
the models allow reproducing the observed behavior.  

DES identification has been first addressed as a problem of 
grammatical inference [1] [2] for obtaining finite automata 
(FA) that represent a given language. Afterwards, Petri net 
(PN) models have been proposed for coping with more 
complex systems exhibiting concurrent behavior [3].  

Three main approaches more specifically conceived for 
identifying discrete event manufacturing systems have been 
proposed in recent literature. 

The incremental synthesis approach, proposed in [4] [5], 
deals with unknown partially measurable DES exhibiting 
cyclic behavior. Several algorithms for building interpreted 
PN (IPN) have been proposed allowing the on-line 
identification of concurrent DES from output sequences. 
Although the techniques are efficient, the obtained models 
may represent more behaviors than those observed. 

Other recent method [6] allows building efficiently a non-

deterministic FA (NFA) from a set of input/output sequences, 
measured from the DES to be identified. The obtained NFA 
generates exactly the same input/output (I/O) sequences of 
given length than the observed ones. The method was 
conceived for fault detection in a model-based approach [7] 
and extended for obtaining an optimal partitioning of 
concurrent subsystems for distributed fault detection [8].  

The off-line approach based on integer linear programming 
(ILP) yield free-labeled PN models representing exactly the 
observed behavior expressed as sequences of events [9]. The 
method is able to handle few short sequences, due to the 
inherent limitations of ILP regarding its computational 
complexity. This approach is being explored for other PN 
classes [10] [11].  

A recent stochastic approach allows obtaining timed PN 
models [12]. Other related works can be found in surveys on 
identification methods in [13] and [14]. Furthermore, recent 
publications on process mining techniques, more suitable for 
event driven organizational systems than for industrial ones, 
can be found in [15]. 

In our approach the problem of identifying partially 
observable discrete manufacturing systems composed by a 
controller (a Programmable Logic Controller: PLC) and a 
plant operating in closed loop is addressed. Both controller’s 
inputs and outputs are sampled for building a single sequence 
of I/O vectors, which is processed yielding an IPN model. 

The aim is to discover, from this observation, how 
operations of the system are interrelated and construct a 
concise model which can explicitly show the discovered 
behavior, in particular, concurrency, synchronization, resource 
sharing, etc. 

Identification of systems in operation involves two 
important aspects to consider: the system operation and the 
observation process. Technological issues of both aspects must 
be considered in the proposed algorithms to construct suitable 
abstractions. In this paper these issues are addressed by 
analyzing the observed sequence in order to establish a clear 
relationship between inputs and outputs of the controller. The 
proposed method allows building a compact and expressive 
IPN that is ordinary and safe. It consists of two 
complementary stages; the first one obtains, from the I/O 
sequence w, the observable subnet composed by places and 
transitions labeled with output and input functions respectively 



[16]; during the construction of the model a transition 
sequence S, which reproduces w, is built.  

The paper focuses on the second stage, which allows 
building efficiently from S, the non-observable part of the 
model including places (and arcs) ensuring the reproduction of 
w. The remainder of the paper includes a brief recall of the 
first stage of the method, and develops the proposed approach 
for building the non-observable part of the identified PN. 

II. BACKGROUND 
This section presents the basic concepts and notation of PN 

and IPN used in this paper.  
Definition 1: An ordinary Petri Net structure G is a bipartite 

digraph represented by the 4-tuple G = (P, T, I, O) where: 
P = {p1, p2, ..., p|P|} and T = {t1, t2, ..., t|T|} are finite sets of 
vertices named places and transitions respectively; 
I(O) : P × T → {0,1} is a function representing the arcs going 
from places to transitions (from transitions to places). 

The incidence matrix of G is C = C+ − C−, where 
C− = [cij

−]; cij
− = I(pi, tj); and C+ = [cij

+]; cij
+ = O(pi, tj) are the 

pre-incidence and post-incidence matrices respectively.   
A marking function M : P→ Z+ represents the number of 

tokens residing inside each place; it is usually expressed as an 
|P|-entry vector. Z+ is the set of nonnegative integers. 

Definition 2: A Petri Net system or Petri Net (PN) is the 
pair N = (G,M0), where G is a PN structure and M0 is an initial 
marking. 

In a PN system, a transition tj is enabled at marking Mk if 
∀pi ∈ P, Mk(pi) ≥ I(pi, tj); an enabled transition tj can be fired 
reaching a new marking Mk+1 . This behavior is represented as 
Mk ⎯→⎯ jt Mk+1. The new marking can be computed as 
Mk+1 = Mk + Cuk, where uk(i) = 0, i≠j, uk(j) = 1; this equation is 
called the PN state equation. The reachability set, denoted by 
R(G,M0), of a PN contains all possible reachable markings 
from M0 firing only enabled transitions. A PN is said to be 1-
bounded or safe when ∀Mk∈R(G,M0), ∀pi∈P, Mk(pi)≤1.  

Now it is defined IPN [17], an extension to PN that allows 
associating input and output signals to PN models. 

Definition 3 : An IPN (Q, M0) is a net structure Q = (G, V, 
Σ, Φ, λ, ϕ) with an initial marking M0 where: G is a PN 
structure, V = {v1, v2, ..., vr} is the set of variables, Σ = {α1, α2, 
..., αs} is the set of events, and Φ = {φ1, φ2,..., φq} is the output 
alphabet. λ : T→ C × E is a labeling function of transitions, 
where C={C1, C2,…} is the set of variable conditions and 
E={E1, E2,…} is the set of events.  

In an IPN, a transition tj can be fired if tj is enabled, and if 
condition C(Tj) is true, when the event in E(Tj) occurs. 
ϕ : R(Q,M0)→(Z+)q is an output function, that associates to 

each marking in R(Q,M0) a q-entry output vector; q=|Φ| is the 
number of outputs. ϕ is represented by a q×|P| matrix, such 
that if the output symbol φi is present (turned on) every time 
that M(pj) ≥ 1, thenϕ (i, j) = 1, otherwise ϕ(i, j) = 0. 

The state equation is completed with the marking projection 
Yk = ϕMk, where Yk ∈ (Z+)q is the k-th output vector of the IPN. 

Definition 4: A place pi∈P is said to be observable if the i-
th column vector of ϕ  is not null, i.e. ϕ(•,i) ≠ 0. Otherwise it 
is non-observable. P = Po ∪ Pu where Po is the set of 
observable places and Pu is the set of non-observable places. 

III. INPUT-OUTPUT IDENTIFICATION 
The problem statement and the main features of the 
identification method we propose are briefly described. A 
more detailed presentation can be found in [16]. 

A.  Identification of automated DES 
In this work we consider systems composed by a Controller 

(a PLC) and a Plant, denoted as {PLC + Plant}, working in a 
closed loop. The input signals of the PLC (outputs of the 
Plant) are generated by the sensors of the Plant. The output 
signals of the PLC (inputs of the Plant) control the actuators of 
the Plant. 

The identification is made from the point of view of the 
PLC (Fig. 1). A PLC cyclically performs three main steps: 
a) Input reading, where signals are read from the sensors; 
b) Program execution, to determine the new outputs values for 
the actuators; and c) Output writing, where the control signals 
to the actuators are set. At each end of the Program execution 
step, the current value of all Inputs and Outputs (called I/O 
vector) is captured and, if it is different from the previous one,   
recorded in a data base.  

 
 
Fig. 1. {PLC + Plant} compound and identification procedure.  
 
Besides the number of inputs and outputs, the only available 
data for the identification procedure is a single I/O vector 
sequence, in which two consecutive vectors are different, 
whose length depends on the observation duration: 
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where I(j) and O(j) are respectively the values of the r inputs 
and q outputs at the j-th PLC cycle. 

In order to analyze signals evolution, we compute event 
vectors, i.e., the difference between two consecutive I/O 
vectors: E(k) = w(k + 1) − w(k) ≠ 0. Each event vector can be 
decomposed into input and output event vectors: 
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in which there are three possible observable situations: 
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a) IE(j) ≠ 0 and OE(j)  ≠ 0: An input change has provoked 
directly an output change; consequently, a state evolution. 
The I/O causality is observed at the same PLC cycle.  

b) IE(j) ≠ 0 and OE(j)  = 0: Only the input change is observed 
in the PLC cycle. It could mean that either i) The output 
change will appear in the next cycle, or ii) The controller is 
not sensitive to the input change, or iii) It provoked a change 
of state that is not observable through a change of output. 

c) IE(j) = 0 and OE(j)  ≠ 0: Only the input change is observed 
in the PLC cycle. It could be a consequence of the previous 
situation (case i) or a programmed behavior considering only 
input levels or timers from the state reached at the event j-1. 

B. Identification of Partially observable DES 
All of the above situations must be taken into account to 

represent the system dynamics in the model. Besides 
representing the system’s behavior from the I/O vector 
sequence as an IPN, our purpose in this research is also to 
provide an identified model as expressive and compact as 
possible, allowing to represent causal relationships and 
concurrency of the involved operations. For this purpose we 
have conceived a two-step method based on the analysis of the 
relationships between inputs and outputs along the observed 
behavior represented by the I/O-sequence w. The two steps of 
the method are the following:  

Step1. Discovering the input-output reactive behavior. The 
observable part of the IPN is built, consisting of sub-graphs 
named “IPN fragments”, composed by observable places and 
transitions labeled with algebraic expressions onto the set of 
input variables. Figure 2 shows an IPN model including four 
fragments. 

Step2. Inferring the non-observable part of the IPN. All the 
observable behaviors being captured in IPN fragments 
previously built, the sequence w is transformed into a firing 
sequence S of observable transitions. Non-observable places 
and arcs, representing an abstraction of the internal and non-
observable behavior of the identified system, are added in such 
a manner that S (thus w) can be reproduced in the final IPN. In 
Fig. 2 the non observable part is depicted with dashed lines.  

 

 
Fig. 2 IPN model including four fragments and non observable nodes 

Notice that IPN fragments can be connected, through non-
observable places, only sequentially or in parallel. That’s why 
in section III we will present a technique for discovering 
causal and concurrency relationships between transitions in S. 

The outcome of the first stage of the method is now briefly 
recalled with the help of a small example in next section. 

C. Example 1 
The purpose of this example is to show the outputs of the step 
1 of the method when a sequence w is processed; it is fully 
developed in [16]. Consider the manufacturing system shown 
in figure 3 whose function is to sort parcels according to their 
size. The PLC has 9  inputs, that are signals generated by the 
sensors of the plant for detecting positions of cylinders (a0, a1, 
a2, b0, b1, c0, c1) and presence of parcels (k1, k2),  and 4 
outputs, that are signals controlling the actuators of the plant 
(cylinders A+, A-, B, C). The vector entries correspond to the 
following distribution: [A+ A- B C k1 k2 a0 a1 a2 b0 b1 c0 c1]T. 
 

 
Figure 3. System’s layout 

 
A sequence of 216 observed I/O vectors has been 

processed (only the twenty first vectors are shown below). The 
IPN fragment, the transition labeling functions, and the 
transition sequence S shown in figure 4 are obtained. Notice 
that in this example only one fragment is found. 

0
0
0
0

0
0
1
0
0
1
0
1
0

0
0
0
0

1
0
1
0
0
1
0
1
0

1
0
0
0

1
0
1
0
0
1
0
1
0

1
0
0
0

1
0
0
0
0
1
0
1
0

1
0
0
0

1
0
0
0
0
1
0
1
0

0
1
1
0

0
0
0
0
0
1
0
1
0

0
1
1
0

0
0
0
1
0
0
0
1
0

0
1
1
0

0
0
0
0
0
0
0
1
0

0
0
1
0

0
0
1
0
0
0
0
1
0

0
0
0
0

0
0
1
0
0
0
1
1
0

0
0
0
0

0
0
1
0
0
0
0
1
0

0
0
0
0

0
0
1
0
0
1
0
1
0

0
0
0
0

1
0
1
0
0
1
0
1
0

1
0
0
0

1
0
1
0
0
1
0
1
0

1
0
0
0

1
0
0
0
0
1
0
1
0

1
0
0
0

0
0
0
0
0
1
0
1
0

0
1
1
0

0
0
0
1
0
1
0
1
0

0
1
1
0

0
0
0
1
0
0
0
1
0

0
1
1
0

0
0
0
0
0
0
0
1
0

0
0
1
0

0
0
1
0
0
0
0
1
0

… 

        

 
Figure 4. IPN fragment, transition labeling, and sequence of transitions 
resulting from the first stage of the identification method.  
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IV. IDENTIFICATION OF THE NON-OBSERVABLE BEHAVIOR 

A. Problem (re)statement 
The second stage of the method determines the non-observable 
part of the model consisting of pertinent unlabeled places (and 
arcs) that rely the fragments and assures that the sequence S 
(consequently w, which is the actual observed behavior) can 
be reproduced. 

This problem can be stated as follows: given an observable 
IPN model whose structure is (Pobs, T, Preobs, Postobs) and a 
transitions sequence S = t1 t2 … tj …  ∈ T* reproducing the I/O 
sequence w, a PN structure  (Pnobs, T, Prenobs, Postnobs) that 
reproduces S and an initial marking M0 enabling S must be 
found. The new PN structure is G=(P, T, I, O) with P= Pobs ∪ 
Pnobs, Pre= Preobs ∪ Prenobs, Post= Postobs ∪ Postnobs. The PN 
must be ordinary and safe. 

The method proposed herein extracts, from S, precedence 
and concurrency relations among transitions, which will 
determine univocally the final structure of the identified 
model. First, some properties derived from the sequence S are 
introduced. Afterwards, based on such properties, a technique 
allowing determining sequential and concurrency relationships 
among the transitions in S is proposed. Then, the rules for 
building a net structure rendering the sequential and 
concurrency relationships are presented. 
B. Behavioural properties 

Since our construction method is based on the discovering 
of sequential and concurrency relationships into S, some 
notions must be defined before introducing the construction 
procedure of the non-observable behavior. 

Definition 5. The relationship between transitions in S that 
are observed consecutively is expressed in a relation Seq ⊆ T × 
T which is defined as Seq ={(tj, tj+1)| 1 ≤ j < |S| }. If (ta, tb) ∈ 
Seq, this is denoted by ta<tb. 

In a PN model every pair in Seq may in fact be represented 
differently. If ta<tb, this behavior could be issued from one of 
two situations in N described in the following definition. 

Definition 6. Every couple of consecutive transitions ta, tb 
in Seq can be classified in one of the following situations: 
- Causal relationship. If the occurrence of ta enables tb. In a 
PN structure, this implies that there must be at least one place 
from ta to tb.  
- Concurrent relationship. If both ta and tb are simultaneously 
enabled, but ta occurs first and its firing does not disable tb. In 
a PN structure, this implies that it is impossible the existence 
of a place from ta to tb. In this case, ta and tb are said to be 
concurrent, denoted as ta||tb. 

The following notion is the systematic precedence of a 
transition tj with respect to another transition tk; it establishes a 
necessary condition for tj to occur repeatedly. 

Definition 7. A transition tj is preceded systematically by tk, 
denoted as tk∠tj iff tk is always observed between two 
apparitions of tj in S. By convention, we say that tj∠tj if tj was 
observed at least twice in S. The Systematic Precedence Set of 
tj is a the function SP: T→2T, that indicates which transitions 

must be fired to re-enable the firing of tj, i.e. SP(tj)={tk |tk∠tj}. 
If tj was observed only once in S, then SP(tj) = ∅. 

The following notion determines straightforward a 
particular structure from S. 

Definition 8. Two transitions ta, tb are called transitions in a 
two-cycle if S contains the subsequence tatbta or the 
subsequence tbtatb. The two-cycle transitions set TC of S is 
given by TC={(ta,tb)|ta, tb are in a two-cycle}. 

Example 2. In the sequence S = t1 t2 t3 t4 t1 t2 t4 t3 t5 t6 t7 t4 t1 
t2 t3 t4 t5 t6 t7 t4 t1 t2 t3 t4 t1 t2 t3 t4 t5 t6 t7 t4 t5 t6 t7 t4 t1 t2 t3 t4 t5 t6 
t7 t4 t5 t6 t7 t4 t5 t6 t7 t4 t5 t6 t7 t4 t5 t6 t7 t4 t1 t2 t4 t3 t1 t2 t3 t4 t1 t2 t3 
t4 t1 t2 t4 t3 t1 t2 t3 t4 t1 from Example 1, it can be easily 
determined  Seq={(t1,t2), (t2,t3), (t3,t4), (t4,t1), (t4,t5), (t5,t6), 
(t6,t7), (t7,t4), (t2,t4), (t4,t3), (t3,t1)}. Also, the following 
precedence relationships are found t2∠t1, t3∠t1, t4∠t1, thus 
SP(t1)={t1, t2, t3, t4}. Notice that SP(tj) is the set of transitions 
that must invariantly occur to fire tj repeatedly. The rest of the 
SP sets are SP(t2)={t1, t2, t3, t4}, SP(t3) = {t1,  t2,  t3}, SP(t4) = 
{t4}, SP(t5) = {t4, t5, t6, t7},  SP(t6) = {t4,  t5,  t6, t7}, SP(t7) = {t4,  
t5,  t6,  t7}. The set of transitions in a two-cycle is TC= ∅. 

C. Causal and concurrency relationships 
Based on the previous definitions we can now determine, 

for every pair of consecutively observed transitions in S, if the 
causality or concurrence property is verified. We will 
therefore deduce some structural properties regarding N. 

Definition 9. A PN circuit is a path starting and ending in 
the same node. A circuit is said to be simple if it does not use 
the same transition more than once, and elementary if it does 
not use the same place more than once. 

Relations between transitions in S can be determined. Proofs 
are omitted for the sake of brevity; they can be found in [18]. 

C.1Causal relationship 
Proposition 1. If ta∠tb (ta∈SP(tb)) then, there exist in N a 

simple elementary (SE) circuit to which both ta and tb belong. 
Proposition 2. If ta < tb and either ta∠tb or tb∠ta then there 

must exist in N a place from ta to tb. 
Proposition 3.  If (ta,tb) ∈TC, then there must exist in N a 

place from ta to tb and a place from tb to ta. 
Notice that when two transitions are observed consecutively 

and one is systematically preceded by the other, a causal 
relationship is found. Also, when two transitions are involved 
in a two-cycle relation, they are in a causal relationship each 
other. Observe that all of these relationships are structural, and 
thus do not depend of the initial marking of the net. 

Definition 10. The causal relationship set CausalR keeps 
track of all the causal relationships between transitions in S. 
CausalR ={(ta,tb) | (ta<tb) and (ta∠tb or tb∠ta  or (ta,tb)∈TC)}. 

Example 3. From the SP and Seq sets of Example 2, we 
compute (t1,t2)∈CausalR because t1<t2 and t1∠t2 (Proposition 
2). So,  CausalR={(t1,t2), (t2,t3), (t4,t1), (t4,t5), (t5,t6), (t6,t7), 
(t7,t4), (t2,t4), (t3,t1)}. 

If a couple of transitions (ta,tb) in Seq belongs also to 
CausalR, there must be a place from ta to tb in order to 



preserve the observed firing order. For the rest of the transition 
pairs in Seq, we must decide if a place should exist to relate 
them. Below, we will discuss some cases where the existence 
of a place can be discarded. 

C.2  Concurrency relationship 
If two transitions ta and tb are concurrent, there must not 

exist a place neither from ta to tb nor from tb to ta; otherwise, 
the firing of one would constrain the firing of the other one. 

Definition 11. The set of all pairs of concurrent transitions 
is called ConcR={(ta,tb)| ta||tb}. 

If the sequence w is complete, (consequently, S) i.e., if it 
shows all of the possible behavior of the observed system, we 
can find concurrency between transitions that are not in a 
causal relation, as showed in the next proposition. 

Proposition 4. Let ta, tb be two transitions which have been 
observed consecutively in a complete sequence S in both 
orders, i.e. (ta, tb)∈Seq, (tb, ta)∈Seq. Then (ta, tb)∉CausalR and 
(tb, ta)∉CausalR if and only if ta||tb. 

In the sequence of Example 2, t3 and t4 fulfill the conditions 
to be concurrent. They are the only concurrent transitions 
ConcR={(t3,t4)}. 

It is well known that, in practice, the sequence w is not 
complete since it is not possible to assure that the whole 
behavior of a system has been observed in a finite time. The 
condition of Proposition 5 is therefore very restrictive, since it 
requires the observation of all possible behaviors; it could lead 
to the construction of incorrect models in case of incomplete 
sequences. Then, less constraining rules to find concurrence 
must be considered. Next, we present several properties which 
allow us to identify pairs of transitions which must be 
concurrent in the identified net N. 

First, the notion of Sequential Independence, which is a 
characteristic of concurrent transitions, is introduced. Later, 
the propositions to find concurrency will be presented.   

Definition 11. Two transitions ta and tb are Sequentially 
Independent if (ta,tb) ∉ CausalR and (tb,ta) ∉ CausalR. 

By inspection of the set CausalR of Example 3, it can be 
found that t1 and t5 are sequentially independent, as well as t2 
and t6, and t3 and t4. 

Proposition 5. Let ta and tb be two transitions in S which 
have been observed consecutively in both orders (ta<tb and 
tb<ta).  ta||tb if: 

a)  ta and tb are Sequentially Independent 
b)  |SP(ta)| >1 and |SP(tb)| >1 

In the example, we know that t3||t4, however, condition b) of 
Proposition 5 is not fulfilled because SP(t4) = {t4}. The SP(tj) 
is a singleton, meaning that tj belongs to more than one 
elementary circuits and then Proposition 5 does not allow to 
find concurrent transitions to tj. But if tj is included in the SP 
of other transitions, we can find some concurrency relations, 
as shown in the next proposition. 

Proposition 6. Let ta and tb be two transitions in S that have 
been observed consecutively in both orders (ta < tb and tb < ta). 
ta||tb if ta and tb  

a) are Sequentially Independent, and  
b) there exists a transition tk such that ta∠tk (ta∈SP(tk)) 

and tb∠tk (tb∈SP(tk)) 
In the current example t3 and t4 fulfill the conditions of this 

proposition, i.e. t3<t4, t4<t3, both transitions are sequentially 
independent and belong to SP(t2). 

If concurrent transitions do not belong to synchronized 
threads, conditions of the next propositions help us to find a 
subset of concurrent transitions in which their firings do not 
depend from the occurrence of another transition tk. 

Proposition 7. Let be two transitions ta and tb which have 
been observed consecutively in both orders (ta < tb and tb < ta). 
ta||tb if ta and tb are: 

a) Sequentially Independent, and 
b)  ∃ tk such that tk∈SP(tb), tk∉SP(ta), and (ta,tk)∈Seq 
Definition 12. The Inverse Systematic Precedence set of a 

transition SP-1:T → 2T contains the transitions which are 
dependent of a common transition to re-enable their firing: 
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Proposition 8. Let be ta and tb two transitions which have 
been observed consecutively in both orders (ta < tb and tb < ta). 
ta||tb if ta and tb are: 

a) Sequentially Independent, and 
b) SP-1(ta) ≠ ∅, ∀tj∈SP-1(ta), tj || tb. 

D. Building the non-observable PN 
The computed causal and concurrency relations from 

sequence S are used to infer internal evolutions of the system 
by computing non-observable places of the net.  

Definition 13. The set Seq’= (Seq \ CausalR) \ ConcR 
contains the set of transition pairs (ta,tb) which have been 
observed consecutively, but are not in a causal relationship or 
in a concurrency relationship. If Seq’ ≠ ∅, there are two 
possibilities for the remaining transition pairs (ta,tb) in Seq’: 
a) They are input and output transitions respectively of a 

place with several input and output transitions. 
b) They are concurrent, but w (thus, S) is not complete 

enough to find such a relationship. 
Since our goal is to approximate as much as possible the 

language generated by the net N to the observed sequence S, 
we assume that if we have observed two transitions 
consecutively (ta<tb) but none of the previous propositions 
have determined that they are concurrent, thus the firing of ta 
has enabled tb. This is made in order to preserve in N the firing 
order observed in S. Then, a place will be added from ta to tb; 
this is denoted by [ta, tb]. 

In general a place p can be denoted as [ta1 ta2… tal, tb1 tb2… tbh], 
where tai are the input transitions of p and tbi are the output 
transitions of p, and l=|•p|, h=|p•|. 

The same place could be used to relate several consecutive 
transitions. If a transition tk has been observed followed by 
two transitions tai, taj in S (tk<tai and tk<taj), there are two cases 
to represent such observations into the PN model:  



a) the case of selection, where tai, taj are neither concurrent nor 
consecutive; thus they are represented with the same place 
[tk, taitaj], or 

b) the case of concurrency, where tai, taj are concurrent or 
consecutive and thus they are represented with different 
places [tk, tai] [tk, taj].  

The same reasoning can be applied to couples of places 
sharing the same output transition [tai, tk] and [taj, tk]. 

In the current example, from CausalR, the causal 
dependencies [t4, t1] and [t4, t5] can be represented by a single 
place  [t4, t1t5] in a selection structure, and [t2, t3] and [t2, t4] are 
represented by two places with a single input transition t2.  

For the parcels sorting system of Fig. 1, the PN structure as 
well as the computed initial marking (which is computed by 
allocating tokens enabling the sequence S) is shown in Fig. 
5.a. Observe that in Fig. 4 observable places [t2, t3] and [t6, t7] 
already exist. By adding non-observable places to such a 
model and deleting implicit places [t2, t3] and [t6, t7], we obtain 
the IPN model shown in Fig. 5.b, which reproduces w. 

 

 
 

 
Fig. 5. a) Non observable model; b) Final identified IPN model 

 
E. Token flow verification 

The sequence w may not have shown enough combinations 
allowing determining concurrency. If w were complete, all the 
concurrent and sequential behavior could be found and 
represented, according to Proposition 5. However, since we 
know that w could not be complete, in order to approximate 
the language of N to S as much as we can, we have considered 
that if two transitions have not been declared as concurrent, 
they must be in a sequential relationship. However, if the 

transitions are actually concurrent, the sequential 
consideration could lead us to create arcs or places in the 
model constraining too much the behavior of the system and 
do not allow the firing of S. Now, we present some notions to 
verify if added places do not interfere in the correct 
reproduction of S. 

Proposition 9. If the IPN model has been correctly build, 
every computed non-observable place p in N must fulfill the 
place input/output flow equation: 
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where Occ(ti) is the number of occurrences of ti in S. 
Proposition 10. If there exists a place p such that |•p|=1, then 

∀tj ∈ p•, tk ∈ SP(tj), where tk is the input transition of p. Also, 
if there exists a place p such that |p•|=1, then ∀tj ∈ •p, tk ∈ 
SP(tj), where tk is the output transition of p. 

Correction rule. If the input/output flow equation or the 
conditions in Proposition 9 are not satisfied by some place, the 
arcs relating transitions which are not in CausalR are removed. 
If there are not pairs in CausalR representing such a place, it is 
deleted. 

For the model of fig. 5.b the flow equation is verified for all 
the transitions. 

F. Summary of the method 
All the algorithms described in this section to construct the 

non-observable part of the IPN are summarized in the 
following polynomial-time procedure. 

Algorithm 1. Non-observable behavior construction 
Input: The sequence S 
Output: Non-observable model representing S 
1. Compute Seq, SP and TC from S 
2. From Seq, SP and TC compute CausalR 
3. From Seq and CausalR, compute ConcR 
4. Merge transitions as specified in section IV.D 
5. Validate and correct places as specified in section IV.E 

Characteristics of Algorithm 1.In step 4 the pairs (ta, tb) ∈ 
CausalR are represented by places [ta, tb] and then merged to 
build the PN structure; this assures that many pairs in Seq are 
taken into account. Furthermore, the pairs (ta, tb) ∈ ConcR, 
imply that both (ta, tb) and (tb, ta) in Seq are represented in the 
behavior of the PN. Therefore, if Seq’=((Seq \ CausalR) \ 
ConcR) \ ConcR-1 = ∅ then S can be reproduced by the model 
built.  

If Seq’≠∅, some (tb, ta) in Seq have not been characterized 
as concurrent or causal. If they are actually sequential, all the 
verification rules are satisfied; otherwise, they are concurrent 
and they are corrected in step 5. Once they are corrected, the 
remaining places relate sequential transitions and thus the 
sequence S is reproducible. 

All the procedures and tests derived from the defined sets 
and propositions involve simple operations on arrays of size |S| 
or |T|×|T|, which are performed efficiently.  

1t 5t

2t 6t

4t3t 7t

p1

p2

p3

p4

p5
p6

a)

0001:1 cbakt ∧∧∧ 0002:5 cbakt ∧∧∧

1:2 at ↑ 2:6 at ↑

−A

0:4 at ↑

B C

1:3 bt ↑

+A

0:7 ct ↑
b)



G. Implementation issues 
The algorithm has been implemented and tested on many 
examples exhibiting diverse situations using the following 
scheme: a PN is built with the help of a PN editor (PIPE), and 
then S is created by firing (enabled) transitions randomly. 
After the processing of S a PN model is identified, and then 
coded in XML, to be displayed again with PIPE. As an 
example, an interesting feature of the method is showed. The 
identification method applied to the following sequence: 
S = t4 t1 t2 t3 t1 t5 t6 t7 t2 t3 t4 t5 t6 t1 t2 t3 t7 t1 t4 t2 t5 t4 t3 t5 t1 t4 t5 t2 
t6 t3 t1 t7 t6 t7 t6 t2 t3 t1 t2 t3 t7 t1 t4 t5 t2 t4 t5 t3 t4 t5 t4 t5 t1 t6 t7 t4 t2 
t3 t1 t5 t6 t7 t6 t2 t3 t7 t4 t1 t5 t2 t4 t5 t6 t7 t3 t1 t6 t2 t7 t6 t7 t6 t7 t6 t3 t7 
t4 t1 t2 t3 t5 t1 t4 t5 t6 t7 t2 t6 t3 t1 t7 t4 t2 t3 t5 t6 t1 t2 t3 t1 t7 t4 t5 t6 t7 
t4 t2 t3 t1 t5 t4 t2 t5 t6 t3 t7 t6 t1 t7 t4 t2 t3 t5 t4 t5 t1 t6 t2 t7 t4 t5 t6 t3 t7 
t1 t6 t7 t2 t3 t1 t2 t6 t7 t4 t5 t4 t5 t3 t4 t5 t4 t1 t5 t4 t5 t4 t5 t2 t6 t3 t1 t2 t3 
t1 t7 t2 t3 t1 t4 t5 t6 t2 t3 t1 t2 t3 t1 t2 t3 t1 t7 t2 t6 t7 t3 t1 t2 t4 t5 t4 
yields a PN model composed of two independent subnets 
shown in Fig. 6. 

 
Fig 6. Two different components running concurrently 
 
The complete method including both stages has been 
implemented as a software tool that process a sequence w and 
yields an IPN, reproducing exactly w. It has been tested on 
sequences obtained from real manufacturing systems. For a 
detailed description please consult chapter 5 in [18]. 
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CONCLUSIONS 
A novel approach for identifying partially observable DES 
systems has been proposed. This method is composed of two 
steps: the first one is devoted to build the observable reactive 
behavior [16]; the second step, devoted to infer the non-
observable behavior, has been described in this paper.  

Although in literature there are techniques addressing the 
reformulated problem dealing with sequences of transitions, in 
this paper neither the cycles nor the language generated by the 
system are known a priori, and this method can handle very 
long sequences efficiently. 

The complete method copes with complex automated DES 
because it takes into account technological characteristics of 
both actual controlled systems and the observation process. 
Implemented as a software tool, the method has been tested on 
experimental case studies which are very close to actual 
industrial discrete event processes. The performed tests reveal 
the efficiency of the methods when sequences formed by 
thousands of input-output vectors are processed in few 
seconds [18]. 

Since the approach is black-box, the obtained models 
represent the observed behavior; consequently, when the 
observation is made for a long time, the IPN approximates 
closely the actual behavior; afterwards the model can be 
completed using available knowledge on the process. 

Current research addresses the problem of discovering 
indirect causal relationships of transitions that have not been 
observed consecutively by determining the t-invariants from S.  
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