
HAL Id: hal-00954548
https://hal.science/hal-00954548

Submitted on 3 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identification of Partially Observable Discrete Event
Manufacturing Systems

Ana-Paula Estrada-Vargas, Ernesto López-Mellado, Jean-Jacques Lesage

To cite this version:
Ana-Paula Estrada-Vargas, Ernesto López-Mellado, Jean-Jacques Lesage. Identification of Partially
Observable Discrete Event Manufacturing Systems. 18th IEEE Int. Conf. on Emerging Technologies
and Factory Automation (ETFA2013), Sep 2013, Cagliari, Italy. 7 p. �hal-00954548�

https://hal.science/hal-00954548
https://hal.archives-ouvertes.fr

Identification of Partially Observable Discrete Event
Manufacturing Systems

Ana Paula Estrada-Vargas*,♦, Ernesto López-Mellado*, and Jean-Jacques Lesage♦
*CINVESTAV Unidad Guadalajara. Zapopan, México. {aestrada, elopez}@gdl.cinvestav.mx

♦LURPA Ecole Normale Supérieure de Cachan. Cachan, France. Jean-Jacques.lesage@lurpa.ens-cachan.fr

Abstract— This paper deals with black-box identification of
discrete event manufacturing systems that are automated using a
programmable logic controller (PLC). The behavior of the system
is observed during its operation and is represented by a single
long sequence w of observed input/output (I/O) signals vectors.
The identification method, conceived for addressing large and
complex industrial systems, consists of two complementary
stages; the first one obtains, from w, the observable part of an
interpreted Petri net (PN) model composed of observable places
and transitions describing the reactive behavior of the system.
Afterwards, w is transformed into a sequence S of transition
firings from which a PN model that reproduces S is inferred. This
paper focuses on the second stage of the method in which a PN is
built by adding non-labeled places and arcs that represent the
non-observed behavior of the whole system by assuring the
reproduction of w; this technique is based on discovering the
causal and concurrent relationships between transitions in S.

Keywords— Black-box identification; Automated manufactu-
ring systems; Interpreted Petri nets; Internal behaviour model.

I. INTRODUCTION
Identification methods of discrete event systems (DES)

allow building systematically a mathematical model (Petri
nets, automata) that describes the behavior of an unknown or
ill-known system based on the observation of its evolution.
Observations consist of data revealing the system activity:
sequences of operations, events, messages, signals etc., and
the models allow reproducing the observed behavior.

DES identification has been first addressed as a problem of
grammatical inference [1] [2] for obtaining finite automata
(FA) that represent a given language. Afterwards, Petri net
(PN) models have been proposed for coping with more
complex systems exhibiting concurrent behavior [3].

Three main approaches more specifically conceived for
identifying discrete event manufacturing systems have been
proposed in recent literature.

The incremental synthesis approach, proposed in [4] [5],
deals with unknown partially measurable DES exhibiting
cyclic behavior. Several algorithms for building interpreted
PN (IPN) have been proposed allowing the on-line
identification of concurrent DES from output sequences.
Although the techniques are efficient, the obtained models
may represent more behaviors than those observed.

Other recent method [6] allows building efficiently a non-

deterministic FA (NFA) from a set of input/output sequences,
measured from the DES to be identified. The obtained NFA
generates exactly the same input/output (I/O) sequences of
given length than the observed ones. The method was
conceived for fault detection in a model-based approach [7]
and extended for obtaining an optimal partitioning of
concurrent subsystems for distributed fault detection [8].

The off-line approach based on integer linear programming
(ILP) yield free-labeled PN models representing exactly the
observed behavior expressed as sequences of events [9]. The
method is able to handle few short sequences, due to the
inherent limitations of ILP regarding its computational
complexity. This approach is being explored for other PN
classes [10] [11].

A recent stochastic approach allows obtaining timed PN
models [12]. Other related works can be found in surveys on
identification methods in [13] and [14]. Furthermore, recent
publications on process mining techniques, more suitable for
event driven organizational systems than for industrial ones,
can be found in [15].

In our approach the problem of identifying partially
observable discrete manufacturing systems composed by a
controller (a Programmable Logic Controller: PLC) and a
plant operating in closed loop is addressed. Both controller’s
inputs and outputs are sampled for building a single sequence
of I/O vectors, which is processed yielding an IPN model.

The aim is to discover, from this observation, how
operations of the system are interrelated and construct a
concise model which can explicitly show the discovered
behavior, in particular, concurrency, synchronization, resource
sharing, etc.

Identification of systems in operation involves two
important aspects to consider: the system operation and the
observation process. Technological issues of both aspects must
be considered in the proposed algorithms to construct suitable
abstractions. In this paper these issues are addressed by
analyzing the observed sequence in order to establish a clear
relationship between inputs and outputs of the controller. The
proposed method allows building a compact and expressive
IPN that is ordinary and safe. It consists of two
complementary stages; the first one obtains, from the I/O
sequence w, the observable subnet composed by places and
transitions labeled with output and input functions respectively

[16]; during the construction of the model a transition
sequence S, which reproduces w, is built.

The paper focuses on the second stage, which allows
building efficiently from S, the non-observable part of the
model including places (and arcs) ensuring the reproduction of
w. The remainder of the paper includes a brief recall of the
first stage of the method, and develops the proposed approach
for building the non-observable part of the identified PN.

II. BACKGROUND
This section presents the basic concepts and notation of PN

and IPN used in this paper.
Definition 1: An ordinary Petri Net structure G is a bipartite

digraph represented by the 4-tuple G = (P, T, I, O) where:
P = {p1, p2, ..., p|P|} and T = {t1, t2, ..., t|T|} are finite sets of
vertices named places and transitions respectively;
I(O) : P × T → {0,1} is a function representing the arcs going
from places to transitions (from transitions to places).

The incidence matrix of G is C = C+ − C−, where
C− = [cij

−]; cij
− = I(pi, tj); and C+ = [cij

+]; cij
+ = O(pi, tj) are the

pre-incidence and post-incidence matrices respectively.
A marking function M : P→ Z+ represents the number of

tokens residing inside each place; it is usually expressed as an
|P|-entry vector. Z+ is the set of nonnegative integers.

Definition 2: A Petri Net system or Petri Net (PN) is the
pair N = (G,M0), where G is a PN structure and M0 is an initial
marking.

In a PN system, a transition tj is enabled at marking Mk if
∀pi ∈ P, Mk(pi) ≥ I(pi, tj); an enabled transition tj can be fired
reaching a new marking Mk+1 . This behavior is represented as
Mk ⎯→⎯ jt Mk+1. The new marking can be computed as
Mk+1 = Mk + Cuk, where uk(i) = 0, i≠j, uk(j) = 1; this equation is
called the PN state equation. The reachability set, denoted by
R(G,M0), of a PN contains all possible reachable markings
from M0 firing only enabled transitions. A PN is said to be 1-
bounded or safe when ∀Mk∈R(G,M0), ∀pi∈P, Mk(pi)≤1.

Now it is defined IPN [17], an extension to PN that allows
associating input and output signals to PN models.

Definition 3 : An IPN (Q, M0) is a net structure Q = (G, V,
Σ, Φ, λ, ϕ) with an initial marking M0 where: G is a PN
structure, V = {v1, v2, ..., vr} is the set of variables, Σ = {α1, α2,
..., αs} is the set of events, and Φ = {φ1, φ2,..., φq} is the output
alphabet. λ : T→ C × E is a labeling function of transitions,
where C={C1, C2,…} is the set of variable conditions and
E={E1, E2,…} is the set of events.

In an IPN, a transition tj can be fired if tj is enabled, and if
condition C(Tj) is true, when the event in E(Tj) occurs.
ϕ : R(Q,M0)→(Z+)q is an output function, that associates to

each marking in R(Q,M0) a q-entry output vector; q=|Φ| is the
number of outputs. ϕ is represented by a q×|P| matrix, such
that if the output symbol φi is present (turned on) every time
that M(pj) ≥ 1, thenϕ (i, j) = 1, otherwise ϕ(i, j) = 0.

The state equation is completed with the marking projection
Yk = ϕMk, where Yk ∈ (Z+)q is the k-th output vector of the IPN.

Definition 4: A place pi∈P is said to be observable if the i-
th column vector of ϕ is not null, i.e. ϕ(•,i) ≠ 0. Otherwise it
is non-observable. P = Po ∪ Pu where Po is the set of
observable places and Pu is the set of non-observable places.

III. INPUT-OUTPUT IDENTIFICATION
The problem statement and the main features of the
identification method we propose are briefly described. A
more detailed presentation can be found in [16].

A. Identification of automated DES
In this work we consider systems composed by a Controller

(a PLC) and a Plant, denoted as {PLC + Plant}, working in a
closed loop. The input signals of the PLC (outputs of the
Plant) are generated by the sensors of the Plant. The output
signals of the PLC (inputs of the Plant) control the actuators of
the Plant.

The identification is made from the point of view of the
PLC (Fig. 1). A PLC cyclically performs three main steps:
a) Input reading, where signals are read from the sensors;
b) Program execution, to determine the new outputs values for
the actuators; and c) Output writing, where the control signals
to the actuators are set. At each end of the Program execution
step, the current value of all Inputs and Outputs (called I/O
vector) is captured and, if it is different from the previous one,
recorded in a data base.

Fig. 1. {PLC + Plant} compound and identification procedure.

Besides the number of inputs and outputs, the only available
data for the identification procedure is a single I/O vector
sequence, in which two consecutive vectors are different,
whose length depends on the observation duration:

,...
)3(
)3(,

)2(
)2(,

)1(
)1(

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

O
I

O
I

O
Iw

where I(j) and O(j) are respectively the values of the r inputs
and q outputs at the j-th PLC cycle.

In order to analyze signals evolution, we compute event
vectors, i.e., the difference between two consecutive I/O
vectors: E(k) = w(k + 1) − w(k) ≠ 0. Each event vector can be
decomposed into input and output event vectors:

⎥
⎦

⎤
⎢
⎣

⎡
=

)(
)()(

kOE
kIEkE

in which there are three possible observable situations:

Input Reading

Output Writing

End of I/O calculation

| |

| | ()

| |
.
.
.

Program execution

Controller

l1 r1

r2

R1L1

R2L2

s

l2

Plant

s R1

R1 r1
Data
link

(UDP)

l1_1

I/O sequence

Identification
algorithm

⎥
⎦

⎤
⎢
⎣

⎡
)(
)(

kO
kI

Data collection and
IPN identification

s1
r1_1

r2_1

R1

R2 L2

L1

l2_1

a) IE(j) ≠ 0 and OE(j) ≠ 0: An input change has provoked
directly an output change; consequently, a state evolution.
The I/O causality is observed at the same PLC cycle.

b) IE(j) ≠ 0 and OE(j) = 0: Only the input change is observed
in the PLC cycle. It could mean that either i) The output
change will appear in the next cycle, or ii) The controller is
not sensitive to the input change, or iii) It provoked a change
of state that is not observable through a change of output.

c) IE(j) = 0 and OE(j) ≠ 0: Only the input change is observed
in the PLC cycle. It could be a consequence of the previous
situation (case i) or a programmed behavior considering only
input levels or timers from the state reached at the event j-1.

B. Identification of Partially observable DES
All of the above situations must be taken into account to

represent the system dynamics in the model. Besides
representing the system’s behavior from the I/O vector
sequence as an IPN, our purpose in this research is also to
provide an identified model as expressive and compact as
possible, allowing to represent causal relationships and
concurrency of the involved operations. For this purpose we
have conceived a two-step method based on the analysis of the
relationships between inputs and outputs along the observed
behavior represented by the I/O-sequence w. The two steps of
the method are the following:

Step1. Discovering the input-output reactive behavior. The
observable part of the IPN is built, consisting of sub-graphs
named “IPN fragments”, composed by observable places and
transitions labeled with algebraic expressions onto the set of
input variables. Figure 2 shows an IPN model including four
fragments.

Step2. Inferring the non-observable part of the IPN. All the
observable behaviors being captured in IPN fragments
previously built, the sequence w is transformed into a firing
sequence S of observable transitions. Non-observable places
and arcs, representing an abstraction of the internal and non-
observable behavior of the identified system, are added in such
a manner that S (thus w) can be reproduced in the final IPN. In
Fig. 2 the non observable part is depicted with dashed lines.

Fig. 2 IPN model including four fragments and non observable nodes

Notice that IPN fragments can be connected, through non-
observable places, only sequentially or in parallel. That’s why
in section III we will present a technique for discovering
causal and concurrency relationships between transitions in S.

The outcome of the first stage of the method is now briefly
recalled with the help of a small example in next section.

C. Example 1
The purpose of this example is to show the outputs of the step
1 of the method when a sequence w is processed; it is fully
developed in [16]. Consider the manufacturing system shown
in figure 3 whose function is to sort parcels according to their
size. The PLC has 9 inputs, that are signals generated by the
sensors of the plant for detecting positions of cylinders (a0, a1,
a2, b0, b1, c0, c1) and presence of parcels (k1, k2), and 4
outputs, that are signals controlling the actuators of the plant
(cylinders A+, A-, B, C). The vector entries correspond to the
following distribution: [A+ A- B C k1 k2 a0 a1 a2 b0 b1 c0 c1]T.

Figure 3. System’s layout

A sequence of 216 observed I/O vectors has been

processed (only the twenty first vectors are shown below). The
IPN fragment, the transition labeling functions, and the
transition sequence S shown in figure 4 are obtained. Notice
that in this example only one fragment is found.

0
0
0
0

0
0
1
0
0
1
0
1
0

0
0
0
0

1
0
1
0
0
1
0
1
0

1
0
0
0

1
0
1
0
0
1
0
1
0

1
0
0
0

1
0
0
0
0
1
0
1
0

1
0
0
0

1
0
0
0
0
1
0
1
0

0
1
1
0

0
0
0
0
0
1
0
1
0

0
1
1
0

0
0
0
1
0
0
0
1
0

0
1
1
0

0
0
0
0
0
0
0
1
0

0
0
1
0

0
0
1
0
0
0
0
1
0

0
0
0
0

0
0
1
0
0
0
1
1
0

0
0
0
0

0
0
1
0
0
0
0
1
0

0
0
0
0

0
0
1
0
0
1
0
1
0

0
0
0
0

1
0
1
0
0
1
0
1
0

1
0
0
0

1
0
1
0
0
1
0
1
0

1
0
0
0

1
0
0
0
0
1
0
1
0

1
0
0
0

0
0
0
0
0
1
0
1
0

0
1
1
0

0
0
0
1
0
1
0
1
0

0
1
1
0

0
0
0
1
0
0
0
1
0

0
1
1
0

0
0
0
0
0
0
0
1
0

0
0
1
0

0
0
1
0
0
0
0
1
0

…

Figure 4. IPN fragment, transition labeling, and sequence of transitions
resulting from the first stage of the identification method.

F2

F3
F4

F1

t1:d_1 AND p=1

t2:f_0

t3:e_1

t4:b=0 and f=1

t5:i_1
t6:d_0

t7:d_1

t9:c=0

t8:f_0

t10:a_1 AND b=1

t11:c_1

t12:d_0

t13:b=0 and e=1

t14:s_0

t15:s_1

t16:d_1 AND g=1

t17:h_0

Conveyor1

Conveyor2 (small parcels)

Conveyor3 (large parcels)

A+

A-
a0

a1

a2

k2

k1

B

C

c0

b0 b1

c1

1t 5t

2t 6t

−A

4t

B C

3t

+A

7t

)1_1()1()(
)1_2()1()(

)()0002()(
)1_0()1()(

)1_1()1()(
)1_1()1()(

)()0001()(

7

6

5

4

3

2

1

ct
at

cbakt
at
bt
at

cbakt

•==
•==

•∧∧∧=
•==
•==
•==

•∧∧∧=

λ
λ

ελ
λ
λ
λ

ελ

S = t1 t2 t3 t4 t1 t2 t3 t4 t1 t2 t3 t4 t5 t6 t7 t4 t1 t2 t3 t4 t5 t6 t7 t4 t1 t2 t3
t4 t1 t2 t3 t4 t5 t6 t7 t4 t5 t6 t7 t4 t1 t2 t3 t4 t5 t6 t7 t4 t5 t6 t7 t4 t5 t6 t7 t4
t5 t6 t7 t4 t5 t6 t7 t4 t1 t2 t4 t3 t1 t2 t3 t4 t1 t2 t3 t4 t1 t2 t4 t3 t1 t2 t3 t4 t1

IV. IDENTIFICATION OF THE NON-OBSERVABLE BEHAVIOR

A. Problem (re)statement
The second stage of the method determines the non-observable
part of the model consisting of pertinent unlabeled places (and
arcs) that rely the fragments and assures that the sequence S
(consequently w, which is the actual observed behavior) can
be reproduced.

This problem can be stated as follows: given an observable
IPN model whose structure is (Pobs, T, Preobs, Postobs) and a
transitions sequence S = t1 t2 … tj … ∈ T* reproducing the I/O
sequence w, a PN structure (Pnobs, T, Prenobs, Postnobs) that
reproduces S and an initial marking M0 enabling S must be
found. The new PN structure is G=(P, T, I, O) with P= Pobs ∪
Pnobs, Pre= Preobs ∪ Prenobs, Post= Postobs ∪ Postnobs. The PN
must be ordinary and safe.

The method proposed herein extracts, from S, precedence
and concurrency relations among transitions, which will
determine univocally the final structure of the identified
model. First, some properties derived from the sequence S are
introduced. Afterwards, based on such properties, a technique
allowing determining sequential and concurrency relationships
among the transitions in S is proposed. Then, the rules for
building a net structure rendering the sequential and
concurrency relationships are presented.
B. Behavioural properties

Since our construction method is based on the discovering
of sequential and concurrency relationships into S, some
notions must be defined before introducing the construction
procedure of the non-observable behavior.

Definition 5. The relationship between transitions in S that
are observed consecutively is expressed in a relation Seq ⊆ T ×
T which is defined as Seq ={(tj, tj+1)| 1 ≤ j < |S| }. If (ta, tb) ∈
Seq, this is denoted by ta<tb.

In a PN model every pair in Seq may in fact be represented
differently. If ta<tb, this behavior could be issued from one of
two situations in N described in the following definition.

Definition 6. Every couple of consecutive transitions ta, tb
in Seq can be classified in one of the following situations:
- Causal relationship. If the occurrence of ta enables tb. In a
PN structure, this implies that there must be at least one place
from ta to tb.
- Concurrent relationship. If both ta and tb are simultaneously
enabled, but ta occurs first and its firing does not disable tb. In
a PN structure, this implies that it is impossible the existence
of a place from ta to tb. In this case, ta and tb are said to be
concurrent, denoted as ta||tb.

The following notion is the systematic precedence of a
transition tj with respect to another transition tk; it establishes a
necessary condition for tj to occur repeatedly.

Definition 7. A transition tj is preceded systematically by tk,
denoted as tk∠tj iff tk is always observed between two
apparitions of tj in S. By convention, we say that tj∠tj if tj was
observed at least twice in S. The Systematic Precedence Set of
tj is a the function SP: T→2T, that indicates which transitions

must be fired to re-enable the firing of tj, i.e. SP(tj)={tk |tk∠tj}.
If tj was observed only once in S, then SP(tj) = ∅.

The following notion determines straightforward a
particular structure from S.

Definition 8. Two transitions ta, tb are called transitions in a
two-cycle if S contains the subsequence tatbta or the
subsequence tbtatb. The two-cycle transitions set TC of S is
given by TC={(ta,tb)|ta, tb are in a two-cycle}.

Example 2. In the sequence S = t1 t2 t3 t4 t1 t2 t4 t3 t5 t6 t7 t4 t1
t2 t3 t4 t5 t6 t7 t4 t1 t2 t3 t4 t1 t2 t3 t4 t5 t6 t7 t4 t5 t6 t7 t4 t1 t2 t3 t4 t5 t6
t7 t4 t5 t6 t7 t4 t5 t6 t7 t4 t5 t6 t7 t4 t5 t6 t7 t4 t1 t2 t4 t3 t1 t2 t3 t4 t1 t2 t3
t4 t1 t2 t4 t3 t1 t2 t3 t4 t1 from Example 1, it can be easily
determined Seq={(t1,t2), (t2,t3), (t3,t4), (t4,t1), (t4,t5), (t5,t6),
(t6,t7), (t7,t4), (t2,t4), (t4,t3), (t3,t1)}. Also, the following
precedence relationships are found t2∠t1, t3∠t1, t4∠t1, thus
SP(t1)={t1, t2, t3, t4}. Notice that SP(tj) is the set of transitions
that must invariantly occur to fire tj repeatedly. The rest of the
SP sets are SP(t2)={t1, t2, t3, t4}, SP(t3) = {t1, t2, t3}, SP(t4) =
{t4}, SP(t5) = {t4, t5, t6, t7}, SP(t6) = {t4, t5, t6, t7}, SP(t7) = {t4,
t5, t6, t7}. The set of transitions in a two-cycle is TC= ∅.

C. Causal and concurrency relationships
Based on the previous definitions we can now determine,

for every pair of consecutively observed transitions in S, if the
causality or concurrence property is verified. We will
therefore deduce some structural properties regarding N.

Definition 9. A PN circuit is a path starting and ending in
the same node. A circuit is said to be simple if it does not use
the same transition more than once, and elementary if it does
not use the same place more than once.

Relations between transitions in S can be determined. Proofs
are omitted for the sake of brevity; they can be found in [18].

C.1Causal relationship
Proposition 1. If ta∠tb (ta∈SP(tb)) then, there exist in N a

simple elementary (SE) circuit to which both ta and tb belong.
Proposition 2. If ta < tb and either ta∠tb or tb∠ta then there

must exist in N a place from ta to tb.
Proposition 3. If (ta,tb) ∈TC, then there must exist in N a

place from ta to tb and a place from tb to ta.
Notice that when two transitions are observed consecutively

and one is systematically preceded by the other, a causal
relationship is found. Also, when two transitions are involved
in a two-cycle relation, they are in a causal relationship each
other. Observe that all of these relationships are structural, and
thus do not depend of the initial marking of the net.

Definition 10. The causal relationship set CausalR keeps
track of all the causal relationships between transitions in S.
CausalR ={(ta,tb) | (ta<tb) and (ta∠tb or tb∠ta or (ta,tb)∈TC)}.

Example 3. From the SP and Seq sets of Example 2, we
compute (t1,t2)∈CausalR because t1<t2 and t1∠t2 (Proposition
2). So, CausalR={(t1,t2), (t2,t3), (t4,t1), (t4,t5), (t5,t6), (t6,t7),
(t7,t4), (t2,t4), (t3,t1)}.

If a couple of transitions (ta,tb) in Seq belongs also to
CausalR, there must be a place from ta to tb in order to

preserve the observed firing order. For the rest of the transition
pairs in Seq, we must decide if a place should exist to relate
them. Below, we will discuss some cases where the existence
of a place can be discarded.

C.2 Concurrency relationship
If two transitions ta and tb are concurrent, there must not

exist a place neither from ta to tb nor from tb to ta; otherwise,
the firing of one would constrain the firing of the other one.

Definition 11. The set of all pairs of concurrent transitions
is called ConcR={(ta,tb)| ta||tb}.

If the sequence w is complete, (consequently, S) i.e., if it
shows all of the possible behavior of the observed system, we
can find concurrency between transitions that are not in a
causal relation, as showed in the next proposition.

Proposition 4. Let ta, tb be two transitions which have been
observed consecutively in a complete sequence S in both
orders, i.e. (ta, tb)∈Seq, (tb, ta)∈Seq. Then (ta, tb)∉CausalR and
(tb, ta)∉CausalR if and only if ta||tb.

In the sequence of Example 2, t3 and t4 fulfill the conditions
to be concurrent. They are the only concurrent transitions
ConcR={(t3,t4)}.

It is well known that, in practice, the sequence w is not
complete since it is not possible to assure that the whole
behavior of a system has been observed in a finite time. The
condition of Proposition 5 is therefore very restrictive, since it
requires the observation of all possible behaviors; it could lead
to the construction of incorrect models in case of incomplete
sequences. Then, less constraining rules to find concurrence
must be considered. Next, we present several properties which
allow us to identify pairs of transitions which must be
concurrent in the identified net N.

First, the notion of Sequential Independence, which is a
characteristic of concurrent transitions, is introduced. Later,
the propositions to find concurrency will be presented.

Definition 11. Two transitions ta and tb are Sequentially
Independent if (ta,tb) ∉ CausalR and (tb,ta) ∉ CausalR.

By inspection of the set CausalR of Example 3, it can be
found that t1 and t5 are sequentially independent, as well as t2
and t6, and t3 and t4.

Proposition 5. Let ta and tb be two transitions in S which
have been observed consecutively in both orders (ta<tb and
tb<ta). ta||tb if:

a) ta and tb are Sequentially Independent
b) |SP(ta)| >1 and |SP(tb)| >1

In the example, we know that t3||t4, however, condition b) of
Proposition 5 is not fulfilled because SP(t4) = {t4}. The SP(tj)
is a singleton, meaning that tj belongs to more than one
elementary circuits and then Proposition 5 does not allow to
find concurrent transitions to tj. But if tj is included in the SP
of other transitions, we can find some concurrency relations,
as shown in the next proposition.

Proposition 6. Let ta and tb be two transitions in S that have
been observed consecutively in both orders (ta < tb and tb < ta).
ta||tb if ta and tb

a) are Sequentially Independent, and
b) there exists a transition tk such that ta∠tk (ta∈SP(tk))

and tb∠tk (tb∈SP(tk))
In the current example t3 and t4 fulfill the conditions of this

proposition, i.e. t3<t4, t4<t3, both transitions are sequentially
independent and belong to SP(t2).

If concurrent transitions do not belong to synchronized
threads, conditions of the next propositions help us to find a
subset of concurrent transitions in which their firings do not
depend from the occurrence of another transition tk.

Proposition 7. Let be two transitions ta and tb which have
been observed consecutively in both orders (ta < tb and tb < ta).
ta||tb if ta and tb are:

a) Sequentially Independent, and
b) ∃ tk such that tk∈SP(tb), tk∉SP(ta), and (ta,tk)∈Seq
Definition 12. The Inverse Systematic Precedence set of a

transition SP-1:T → 2T contains the transitions which are
dependent of a common transition to re-enable their firing:

)}(|{)(1
kjjkkj tSPtandttttSP ∈≠=−

Proposition 8. Let be ta and tb two transitions which have
been observed consecutively in both orders (ta < tb and tb < ta).
ta||tb if ta and tb are:

a) Sequentially Independent, and
b) SP-1(ta) ≠ ∅, ∀tj∈SP-1(ta), tj || tb.

D. Building the non-observable PN
The computed causal and concurrency relations from

sequence S are used to infer internal evolutions of the system
by computing non-observable places of the net.

Definition 13. The set Seq’= (Seq \ CausalR) \ ConcR
contains the set of transition pairs (ta,tb) which have been
observed consecutively, but are not in a causal relationship or
in a concurrency relationship. If Seq’ ≠ ∅, there are two
possibilities for the remaining transition pairs (ta,tb) in Seq’:
a) They are input and output transitions respectively of a

place with several input and output transitions.
b) They are concurrent, but w (thus, S) is not complete

enough to find such a relationship.
Since our goal is to approximate as much as possible the

language generated by the net N to the observed sequence S,
we assume that if we have observed two transitions
consecutively (ta<tb) but none of the previous propositions
have determined that they are concurrent, thus the firing of ta
has enabled tb. This is made in order to preserve in N the firing
order observed in S. Then, a place will be added from ta to tb;
this is denoted by [ta, tb].

In general a place p can be denoted as [ta1 ta2… tal, tb1 tb2… tbh],
where tai are the input transitions of p and tbi are the output
transitions of p, and l=|•p|, h=|p•|.

The same place could be used to relate several consecutive
transitions. If a transition tk has been observed followed by
two transitions tai, taj in S (tk<tai and tk<taj), there are two cases
to represent such observations into the PN model:

a) the case of selection, where tai, taj are neither concurrent nor
consecutive; thus they are represented with the same place
[tk, taitaj], or

b) the case of concurrency, where tai, taj are concurrent or
consecutive and thus they are represented with different
places [tk, tai] [tk, taj].

The same reasoning can be applied to couples of places
sharing the same output transition [tai, tk] and [taj, tk].

In the current example, from CausalR, the causal
dependencies [t4, t1] and [t4, t5] can be represented by a single
place [t4, t1t5] in a selection structure, and [t2, t3] and [t2, t4] are
represented by two places with a single input transition t2.

For the parcels sorting system of Fig. 1, the PN structure as
well as the computed initial marking (which is computed by
allocating tokens enabling the sequence S) is shown in Fig.
5.a. Observe that in Fig. 4 observable places [t2, t3] and [t6, t7]
already exist. By adding non-observable places to such a
model and deleting implicit places [t2, t3] and [t6, t7], we obtain
the IPN model shown in Fig. 5.b, which reproduces w.

Fig. 5. a) Non observable model; b) Final identified IPN model

E. Token flow verification

The sequence w may not have shown enough combinations
allowing determining concurrency. If w were complete, all the
concurrent and sequential behavior could be found and
represented, according to Proposition 5. However, since we
know that w could not be complete, in order to approximate
the language of N to S as much as we can, we have considered
that if two transitions have not been declared as concurrent,
they must be in a sequential relationship. However, if the

transitions are actually concurrent, the sequential
consideration could lead us to create arcs or places in the
model constraining too much the behavior of the system and
do not allow the firing of S. Now, we present some notions to
verify if added places do not interfere in the correct
reproduction of S.

Proposition 9. If the IPN model has been correctly build,
every computed non-observable place p in N must fulfill the
place input/output flow equation:

1)()(±= ∑∑
•∈•∈ pt

i
pt

i
ii

tOcctOcc

where Occ(ti) is the number of occurrences of ti in S.
Proposition 10. If there exists a place p such that |•p|=1, then

∀tj ∈ p•, tk ∈ SP(tj), where tk is the input transition of p. Also,
if there exists a place p such that |p•|=1, then ∀tj ∈ •p, tk ∈
SP(tj), where tk is the output transition of p.

Correction rule. If the input/output flow equation or the
conditions in Proposition 9 are not satisfied by some place, the
arcs relating transitions which are not in CausalR are removed.
If there are not pairs in CausalR representing such a place, it is
deleted.

For the model of fig. 5.b the flow equation is verified for all
the transitions.

F. Summary of the method
All the algorithms described in this section to construct the

non-observable part of the IPN are summarized in the
following polynomial-time procedure.

Algorithm 1. Non-observable behavior construction
Input: The sequence S
Output: Non-observable model representing S
1. Compute Seq, SP and TC from S
2. From Seq, SP and TC compute CausalR
3. From Seq and CausalR, compute ConcR
4. Merge transitions as specified in section IV.D
5. Validate and correct places as specified in section IV.E

Characteristics of Algorithm 1.In step 4 the pairs (ta, tb) ∈
CausalR are represented by places [ta, tb] and then merged to
build the PN structure; this assures that many pairs in Seq are
taken into account. Furthermore, the pairs (ta, tb) ∈ ConcR,
imply that both (ta, tb) and (tb, ta) in Seq are represented in the
behavior of the PN. Therefore, if Seq’=((Seq \ CausalR) \
ConcR) \ ConcR-1 = ∅ then S can be reproduced by the model
built.

If Seq’≠∅, some (tb, ta) in Seq have not been characterized
as concurrent or causal. If they are actually sequential, all the
verification rules are satisfied; otherwise, they are concurrent
and they are corrected in step 5. Once they are corrected, the
remaining places relate sequential transitions and thus the
sequence S is reproducible.

All the procedures and tests derived from the defined sets
and propositions involve simple operations on arrays of size |S|
or |T|×|T|, which are performed efficiently.

1t 5t

2t 6t

4t3t 7t

p1

p2

p3

p4

p5
p6

a)

0001:1 cbakt ∧∧∧ 0002:5 cbakt ∧∧∧

1:2 at ↑ 2:6 at ↑

−A

0:4 at ↑

B C

1:3 bt ↑

+A

0:7 ct ↑
b)

G. Implementation issues
The algorithm has been implemented and tested on many
examples exhibiting diverse situations using the following
scheme: a PN is built with the help of a PN editor (PIPE), and
then S is created by firing (enabled) transitions randomly.
After the processing of S a PN model is identified, and then
coded in XML, to be displayed again with PIPE. As an
example, an interesting feature of the method is showed. The
identification method applied to the following sequence:
S = t4 t1 t2 t3 t1 t5 t6 t7 t2 t3 t4 t5 t6 t1 t2 t3 t7 t1 t4 t2 t5 t4 t3 t5 t1 t4 t5 t2
t6 t3 t1 t7 t6 t7 t6 t2 t3 t1 t2 t3 t7 t1 t4 t5 t2 t4 t5 t3 t4 t5 t4 t5 t1 t6 t7 t4 t2
t3 t1 t5 t6 t7 t6 t2 t3 t7 t4 t1 t5 t2 t4 t5 t6 t7 t3 t1 t6 t2 t7 t6 t7 t6 t7 t6 t3 t7
t4 t1 t2 t3 t5 t1 t4 t5 t6 t7 t2 t6 t3 t1 t7 t4 t2 t3 t5 t6 t1 t2 t3 t1 t7 t4 t5 t6 t7
t4 t2 t3 t1 t5 t4 t2 t5 t6 t3 t7 t6 t1 t7 t4 t2 t3 t5 t4 t5 t1 t6 t2 t7 t4 t5 t6 t3 t7
t1 t6 t7 t2 t3 t1 t2 t6 t7 t4 t5 t4 t5 t3 t4 t5 t4 t1 t5 t4 t5 t4 t5 t2 t6 t3 t1 t2 t3
t1 t7 t2 t3 t1 t4 t5 t6 t2 t3 t1 t2 t3 t1 t2 t3 t1 t7 t2 t6 t7 t3 t1 t2 t4 t5 t4
yields a PN model composed of two independent subnets
shown in Fig. 6.

Fig 6. Two different components running concurrently

The complete method including both stages has been
implemented as a software tool that process a sequence w and
yields an IPN, reproducing exactly w. It has been tested on
sequences obtained from real manufacturing systems. For a
detailed description please consult chapter 5 in [18].

ACKNOWLEDGEMENT
The first author has been supported by CONACYT, Mexico,
Grant No. 50312 and Région Ile de France.

CONCLUSIONS
A novel approach for identifying partially observable DES
systems has been proposed. This method is composed of two
steps: the first one is devoted to build the observable reactive
behavior [16]; the second step, devoted to infer the non-
observable behavior, has been described in this paper.

Although in literature there are techniques addressing the
reformulated problem dealing with sequences of transitions, in
this paper neither the cycles nor the language generated by the
system are known a priori, and this method can handle very
long sequences efficiently.

The complete method copes with complex automated DES
because it takes into account technological characteristics of
both actual controlled systems and the observation process.
Implemented as a software tool, the method has been tested on
experimental case studies which are very close to actual
industrial discrete event processes. The performed tests reveal
the efficiency of the methods when sequences formed by
thousands of input-output vectors are processed in few
seconds [18].

Since the approach is black-box, the obtained models
represent the observed behavior; consequently, when the
observation is made for a long time, the IPN approximates
closely the actual behavior; afterwards the model can be
completed using available knowledge on the process.

Current research addresses the problem of discovering
indirect causal relationships of transitions that have not been
observed consecutively by determining the t-invariants from S.

REFERENCES
[1] E.M. Gold, “Language Identification in the Limit”, Information and

Control, 10(5), pp. 447-474, 1967
[2] D. Angluin, “Queries and Concept Learning”, Machine Learning, 2(4),

pp. 319-342, 1988
[3] K. Hiraishi, “Construction of Safe Petri Nets by Presenting Firing

Sequences”, Lectures Notes in Computer Sciences, Vol. 616, pp. 244-
262, 1992

[4] M. Meda-Campaña, E. López-Mellado, “A passive method for on-line
identification of discrete event systems”, Proc. of the IEEE Int. Conf. on
Decision and Control, Orlando, FL, USA. pp. 4990-4995, Dec. 2001

[5] M. Meda-Campaña, E. López-Mellado, “Identification of Concurrent
Discrete Event Systems Using Petri Nets”, Proc. of the IMACS 2005
World Congress, Paris, France, pp.1-7, July 2005

[6] S. Klein, L. Litz, J.-J. Lesage, “Fault detection of Discrete Event
Systems using an identification approach”, Proc. of 16th IFAC World
Congress, Paper n°02643, 6 pages, Praha (Czech Republic), July 2005

[7] M. Roth, J.-J. Lesage, L. Litz, “An FDI Method for Manufacturing
Systems Based on an Identified Model”, Proc. of IFAC Symposium on
Information Control Problems in Manufacturing (INCOM 2009),
Moscow, Russia, pp. 1389-1394, June 2009

[8] M. Roth, J.-J. Lesage, L. Litz, “Black-box identification of discrete
event systems with optimal partitioning of concurrent subsystems”, Proc.
of the American Control Conf. (ACC 2010), Baltimore, Maryland, USA,
pp. 2601-2606, June 2010

[9] A. Giua and C. Seatzu, “Identification of free-labeled Petri nets via
integer programming”, Proc. of the 44th IEEE Conf. on Decision and
Control, Seville, Spain, Dec. 2005

[10] M.P. Cabasino, A. Giua and C. Seatzu, “Identification of Petri Nets from
Knowledge of Their Language”, Discrete Event Dynamic Systems,
17(4), pp. 447-474, 2007

[11] M. Dotoli, M. P. Fanti, A. M. Mangini, “Real time identification of
discrete event systems using Petri nets”, Automatica, 44(5), pp. 1209-
1219, May 2008

[12] Ould El Mehdi S., Bekrar R., Messai N., Leclercq E., Lefebvre D., Riera
B., Design and identification of Stochastic and Deterministic-Stochastic
Petri Nets, Trans. IEEE-SMCA, Part A, 42(4), pp.931-946, July 2012

[13] A.P. Estrada-Vargas, E. López-Mellado, J.-J. Lesage. “A Comparative
Analysis of Recent Identification Approaches for Discrete-Event
Systems”, Mathematical Problems in Engineering, Vol. 2010, Hindawi.
doi:10.1155/2010/453254

[14] M. P. Cabasino, P. Darondeau, M. P. Fanti, C. Seatzu, “Model
identification and synthesis of discrete-event systems”, Contemporary
Issues in System Science and Engineering, IEEE/Wiley Press Book
Series, M. Zhou, H.-X. Lim M. Weijnen (Eds), 2013.

[15] W.Van der Aalst, “Process Mining: Discovery, Conformance and
Enhancement of Business Processes”. Springer-Verlag, Berlin 2011.

[16] A. P. Estrada-Vargas, J.-J. Lesage, E. López-Mellado, “Identification of
Industrial Automation Systems: Building Compact and Expressive Petri
Net Models from Observable Behavior”, Proc. of American Control
Conference, pp. 6095 - 6101, Montréal (Canada), June 2012.

[17] R. David and H. Alla, “Petri Nets for Modeling of Dynamic Systems−A
Survey”, Automatica, 30(2), pp. 175-202, 1994

[18] A. P. Estrada-Vargas, “Black-box Identification of Automated Discrete
Event Systems”, Ph.D. Thesis, CINVESTAV Unidad Guadalajara,
Guadalajara, Mexico. http://www.gdl.cinvestav.mx/dehs-2013/tae.pdf

t1 t2 t3

t5 t7

t4 t6

