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This paper deals with black-box identification of discrete event manufacturing systems that are automated using a programmable logic controller (PLC). The behavior of the system is observed during its operation and is represented by a single long sequence w of observed input/output (I/O) signals vectors. The identification method, conceived for addressing large and complex industrial systems, consists of two complementary stages; the first one obtains, from w, the observable part of an interpreted Petri net (PN) model composed of observable places and transitions describing the reactive behavior of the system. Afterwards, w is transformed into a sequence S of transition firings from which a PN model that reproduces S is inferred. This paper focuses on the second stage of the method in which a PN is built by adding non-labeled places and arcs that represent the non-observed behavior of the whole system by assuring the reproduction of w; this technique is based on discovering the causal and concurrent relationships between transitions in S.

INTRODUCTION

Identification methods of discrete event systems (DES) allow building systematically a mathematical model (Petri nets, automata) that describes the behavior of an unknown or ill-known system based on the observation of its evolution. Observations consist of data revealing the system activity: sequences of operations, events, messages, signals etc., and the models allow reproducing the observed behavior.

DES identification has been first addressed as a problem of grammatical inference [START_REF] Gold | Language Identification in the Limit[END_REF] [START_REF] Angluin | Queries and Concept Learning[END_REF] for obtaining finite automata (FA) that represent a given language. Afterwards, Petri net (PN) models have been proposed for coping with more complex systems exhibiting concurrent behavior [START_REF] Hiraishi | Construction of Safe Petri Nets by Presenting Firing Sequences[END_REF].

Three main approaches more specifically conceived for identifying discrete event manufacturing systems have been proposed in recent literature.

The incremental synthesis approach, proposed in [START_REF] Meda-Campaña | A passive method for on-line identification of discrete event systems[END_REF] [5], deals with unknown partially measurable DES exhibiting cyclic behavior. Several algorithms for building interpreted PN (IPN) have been proposed allowing the on-line identification of concurrent DES from output sequences. Although the techniques are efficient, the obtained models may represent more behaviors than those observed.

Other recent method [START_REF] Klein | Fault detection of Discrete Event Systems using an identification approach[END_REF] allows building efficiently a non-deterministic FA (NFA) from a set of input/output sequences, measured from the DES to be identified. The obtained NFA generates exactly the same input/output (I/O) sequences of given length than the observed ones. The method was conceived for fault detection in a model-based approach [START_REF] Roth | An FDI Method for Manufacturing Systems Based on an Identified Model[END_REF] and extended for obtaining an optimal partitioning of concurrent subsystems for distributed fault detection [START_REF] Roth | Black-box identification of discrete event systems with optimal partitioning of concurrent subsystems[END_REF]. The off-line approach based on integer linear programming (ILP) yield free-labeled PN models representing exactly the observed behavior expressed as sequences of events [START_REF] Giua | Identification of free-labeled Petri nets via integer programming[END_REF]. The method is able to handle few short sequences, due to the inherent limitations of ILP regarding its computational complexity. This approach is being explored for other PN classes [START_REF] Cabasino | Identification of Petri Nets from Knowledge of Their Language[END_REF] [START_REF] Dotoli | Real time identification of discrete event systems using Petri nets[END_REF]. A recent stochastic approach allows obtaining timed PN models [START_REF] El Mehdi | Design and identification of Stochastic and Deterministic-Stochastic Petri Nets[END_REF]. Other related works can be found in surveys on identification methods in [START_REF] Estrada-Vargas | A Comparative Analysis of Recent Identification Approaches for Discrete-Event Systems[END_REF] and [START_REF] Cabasino | Model identification and synthesis of discrete-event systems[END_REF]. Furthermore, recent publications on process mining techniques, more suitable for event driven organizational systems than for industrial ones, can be found in [START_REF] Van Der Aalst | Process Mining: Discovery, Conformance and Enhancement of Business Processes[END_REF].

In our approach the problem of identifying partially observable discrete manufacturing systems composed by a controller (a Programmable Logic Controller: PLC) and a plant operating in closed loop is addressed. Both controller's inputs and outputs are sampled for building a single sequence of I/O vectors, which is processed yielding an IPN model.

The aim is to discover, from this observation, how operations of the system are interrelated and construct a concise model which can explicitly show the discovered behavior, in particular, concurrency, synchronization, resource sharing, etc.

Identification of systems in operation involves two important aspects to consider: the system operation and the observation process. Technological issues of both aspects must be considered in the proposed algorithms to construct suitable abstractions. In this paper these issues are addressed by analyzing the observed sequence in order to establish a clear relationship between inputs and outputs of the controller. The proposed method allows building a compact and expressive IPN that is ordinary and safe. It consists of two complementary stages; the first one obtains, from the I/O sequence w, the observable subnet composed by places and transitions labeled with output and input functions respectively [START_REF] Estrada-Vargas | Identification of Industrial Automation Systems: Building Compact and Expressive Petri Net Models from Observable Behavior[END_REF]; during the construction of the model a transition sequence S, which reproduces w, is built.

The paper focuses on the second stage, which allows building efficiently from S, the non-observable part of the model including places (and arcs) ensuring the reproduction of w. The remainder of the paper includes a brief recall of the first stage of the method, and develops the proposed approach for building the non-observable part of the identified PN.

II. BACKGROUND

This section presents the basic concepts and notation of PN and IPN used in this paper. The incidence matrix of

G is C = C + -C -, where C -= [c ij - ]; c ij -= I(p i , t j ); and C + = [c ij + ]; c ij + = O(p i , t j
) are the pre-incidence and post-incidence matrices respectively.

A marking function M : P→ Z + represents the number of tokens residing inside each place; it is usually expressed as an |P|-entry vector. Z + is the set of nonnegative integers.

Definition 2: A Petri Net system or Petri Net (PN) is the pair N = (G,M 0 ), where G is a PN structure and M 0 is an initial marking.

In a PN system, a transition t j is enabled at marking M k if ∀p i ∈ P, M k (p i ) ≥ I(p i , t j ); an enabled transition t j can be fired reaching a new marking M k+1 . This behavior is represented as M k ⎯→ ⎯ j t M k+1 . The new marking can be computed as M k+1 = M k + Cu k , where u k (i) = 0, i≠j, u k (j) = 1; this equation is called the PN state equation. The reachability set, denoted by R(G,M 0 ), of a PN contains all possible reachable markings from M 0 firing only enabled transitions. A PN is said to be 1bounded or safe when

∀M k ∈R(G,M 0 ), ∀p i ∈P, M k (p i )≤1.
Now it is defined IPN [START_REF] David | Petri Nets for Modeling of Dynamic Systems-A Survey[END_REF], an extension to PN that allows associating input and output signals to PN models.

Definition 3 : An IPN (Q, M 0 ) is a net structure Q = (G, V, Σ, Φ, λ, ϕ) with an initial marking M 0 where: G is a PN structure, V = {v 1 , v 2 , ..., v r } is the set of variables, Σ = {α 1 , α 2 ,
..., α s } is the set of events, and Φ = {φ 1 , φ 2 ,..., φ q } is the output alphabet. λ : T→ C × E is a labeling function of transitions, where C={C 1 , C 2 ,…} is the set of variable conditions and E={E 1 , E 2 ,…} is the set of events. In an IPN, a transition t j can be fired if t j is enabled, and if condition C(T j ) is true, when the event in E(T j ) occurs.

ϕ : R(Q,M 0 )→(Z + ) q is an output function, that associates to each marking in R(Q,M 0 ) a q-entry output vector; q=|Φ| is the number of outputs. ϕ is represented by a q×|P| matrix, such that if the output symbol φ i is present (turned on) every time that M(p j ) ≥ 1, thenϕ (i, j) = 1, otherwise ϕ(i, j) = 0.

The state equation is completed with the marking projection Y k = ϕM k , where Y k ∈ (Z + ) q is the k-th output vector of the IPN. Definition 4: A place p i ∈P is said to be observable if the ith column vector of ϕ is not null, i.e. ϕ(•,i) ≠ 0. Otherwise it is non-observable. P = P o ∪ P u where P o is the set of observable places and P u is the set of non-observable places.

III. INPUT-OUTPUT IDENTIFICATION

The problem statement and the main features of the identification method we propose are briefly described. A more detailed presentation can be found in [START_REF] Estrada-Vargas | Identification of Industrial Automation Systems: Building Compact and Expressive Petri Net Models from Observable Behavior[END_REF].

A. Identification of automated DES

In this work we consider systems composed by a Controller (a PLC) and a Plant, denoted as {PLC + Plant}, working in a closed loop. The input signals of the PLC (outputs of the Plant) are generated by the sensors of the Plant. The output signals of the PLC (inputs of the Plant) control the actuators of the Plant.

The identification is made from the point of view of the PLC (Fig. 1). A PLC cyclically performs three main steps: a) Input reading, where signals are read from the sensors; b) Program execution, to determine the new outputs values for the actuators; and c) Output writing, where the control signals to the actuators are set. At each end of the Program execution step, the current value of all Inputs and Outputs (called I/O vector) is captured and, if it is different from the previous one, recorded in a data base. Besides the number of inputs and outputs, the only available data for the identification procedure is a single I/O vector sequence, in which two consecutive vectors are different, whose length depends on the observation duration:
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where I(j) and O(j) are respectively the values of the r inputs and q outputs at the j-th PLC cycle.

In order to analyze signals evolution, we compute event vectors, i.e., the difference between two consecutive I/O vectors: E(k) = w(k + 1)w(k) ≠ 0. Each event vector can be decomposed into input and output event vectors: 
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B. Identification of Partially observable DES

All of the above situations must be taken into account to represent the system dynamics in the model. Besides representing the system's behavior from the I/O vector sequence as an IPN, our purpose in this research is also to provide an identified model as expressive and compact as possible, allowing to represent causal relationships and concurrency of the involved operations. For this purpose we have conceived a two-step method based on the analysis of the relationships between inputs and outputs along the observed behavior represented by the I/O-sequence w. The two steps of the method are the following:

Step1. Discovering the input-output reactive behavior. The observable part of the IPN is built, consisting of sub-graphs named "IPN fragments", composed by observable places and transitions labeled with algebraic expressions onto the set of input variables. Figure 2 shows an IPN model including four fragments.

Step2. Inferring the non-observable part of the IPN. All the observable behaviors being captured in IPN fragments previously built, the sequence w is transformed into a firing sequence S of observable transitions. Non-observable places and arcs, representing an abstraction of the internal and nonobservable behavior of the identified system, are added in such a manner that S (thus w) can be reproduced in the final IPN. In Fig. 2 the non observable part is depicted with dashed lines.

Fig. 2 IPN model including four fragments and non observable nodes

Notice that IPN fragments can be connected, through nonobservable places, only sequentially or in parallel. That's why in section III we will present a technique for discovering causal and concurrency relationships between transitions in S.

The outcome of the first stage of the method is now briefly recalled with the help of a small example in next section.

C. Example 1

The purpose of this example is to show the outputs of the step 1 of the method when a sequence w is processed; it is fully developed in [START_REF] Estrada-Vargas | Identification of Industrial Automation Systems: Building Compact and Expressive Petri Net Models from Observable Behavior[END_REF]. Consider the manufacturing system shown in figure 3 whose function is to sort parcels according to their size. The PLC has 9 inputs, that are signals generated by the sensors of the plant for detecting positions of cylinders (a 0 , a 1 , a 2 , b 0 , b 1 , c 0 , c 1 ) and presence of parcels (k 1 , k 2 ), and 4 outputs, that are signals controlling the actuators of the plant (cylinders A+, A-, B, C). The vector entries correspond to the following distribution: Conveyor 2 (small parcels)
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IV. IDENTIFICATION OF THE NON-OBSERVABLE BEHAVIOR

A. Problem (re)statement

The second stage of the method determines the non-observable part of the model consisting of pertinent unlabeled places (and arcs) that rely the fragments and assures that the sequence S (consequently w, which is the actual observed behavior) can be reproduced.

This problem can be stated as follows: given an observable IPN model whose structure is (P obs , T, Pre obs , Post obs ) and a transitions sequence S = t 1 t 2 … t j … ∈ T* reproducing the I/O sequence w, a PN structure (P nobs , T, Pre nobs , Post nobs ) that reproduces S and an initial marking M 0 enabling S must be found. The new PN structure is G=(P, T, I, O) with P= P obs ∪ P nobs , Pre= Pre obs ∪ Pre nobs , Post= Post obs ∪ Post nobs . The PN must be ordinary and safe.

The method proposed herein extracts, from S, precedence and concurrency relations among transitions, which will determine univocally the final structure of the identified model. First, some properties derived from the sequence S are introduced. Afterwards, based on such properties, a technique allowing determining sequential and concurrency relationships among the transitions in S is proposed. Then, the rules for building a net structure rendering the sequential and concurrency relationships are presented.

B. Behavioural properties

Since our construction method is based on the discovering of sequential and concurrency relationships into S, some notions must be defined before introducing the construction procedure of the non-observable behavior.

Definition 5. The relationship between transitions in S that are observed consecutively is expressed in a relation Seq ⊆ T × T which is defined as Seq ={(t j , t j+1 )| 1 ≤ j < |S| }. If (t a , t b ) ∈ Seq, this is denoted by t a <t b .

In a PN model every pair in Seq may in fact be represented differently. If t a <t b , this behavior could be issued from one of two situations in N described in the following definition. Definition 6. Every couple of consecutive transitions t a , t b in Seq can be classified in one of the following situations: -Causal relationship. If the occurrence of t a enables t b . In a PN structure, this implies that there must be at least one place from t a to t b . -Concurrent relationship. If both t a and t b are simultaneously enabled, but t a occurs first and its firing does not disable t b . In a PN structure, this implies that it is impossible the existence of a place from t a to t b . In this case, t a and t b are said to be concurrent, denoted as t a ||t b .

The following notion is the systematic precedence of a transition t j with respect to another transition t k ; it establishes a necessary condition for t j to occur repeatedly. Definition 7. A transition t j is preceded systematically by t k , denoted as t k ∠t j iff t k is always observed between two apparitions of t j in S. By convention, we say that t j ∠t j if t j was observed at least twice in S. The Systematic Precedence Set of t j is a the function SP: T→2 T , that indicates which transitions must be fired to re-enable the firing of t j , i.e. SP(t j )={t k |t k ∠t j }. If t j was observed only once in S, then SP(t j ) = ∅.

The following notion determines straightforward a particular structure from S. 

C. Causal and concurrency relationships

Based on the previous definitions we can now determine, for every pair of consecutively observed transitions in S, if the causality or concurrence property is verified. We will therefore deduce some structural properties regarding N. Definition 9. A PN circuit is a path starting and ending in the same node. A circuit is said to be simple if it does not use the same transition more than once, and elementary if it does not use the same place more than once.

Relations between transitions in S can be determined. Proofs are omitted for the sake of brevity; they can be found in [START_REF] Estrada-Vargas | Black-box Identification of Automated Discrete Event Systems[END_REF]. If a couple of transitions (t a ,t b ) in Seq belongs also to CausalR, there must be a place from t a to t b in order to preserve the observed firing order. For the rest of the transition pairs in Seq, we must decide if a place should exist to relate them. Below, we will discuss some cases where the existence of a place can be discarded.

C.1Causal relationship

C.2 Concurrency relationship

If two transitions t a and t b are concurrent, there must not exist a place neither from t a to t b nor from t b to t a ; otherwise, the firing of one would constrain the firing of the other one.

Definition 11. The set of all pairs of concurrent transitions is called

ConcR={(t a ,t b )| t a ||t b }.
If the sequence w is complete, (consequently, S) i.e., if it shows all of the possible behavior of the observed system, we can find concurrency between transitions that are not in a causal relation, as showed in the next proposition. In the sequence of Example 2, t 3 and t 4 fulfill the conditions to be concurrent. They are the only concurrent transitions ConcR={(t 3 ,t 4 )}.

It is well known that, in practice, the sequence w is not complete since it is not possible to assure that the whole behavior of a system has been observed in a finite time. The condition of Proposition 5 is therefore very restrictive, since it requires the observation of all possible behaviors; it could lead to the construction of incorrect models in case of incomplete sequences. Then, less constraining rules to find concurrence must be considered. Next, we present several properties which allow us to identify pairs of transitions which must be concurrent in the identified net N.

First, the notion of Sequential Independence, which is a characteristic of concurrent transitions, is introduced. Later, the propositions to find concurrency will be presented. In the example, we know that t 3 ||t 4 , however, condition b) of Proposition 5 is not fulfilled because SP(t 4 ) = {t 4 }. The SP(t j ) is a singleton, meaning that t j belongs to more than one elementary circuits and then Proposition 5 does not allow to find concurrent transitions to t j . But if t j is included in the SP of other transitions, we can find some concurrency relations, as shown in the next proposition. Proposition 6. Let t a and t b be two transitions in S that have been observed consecutively in both orders (t a < t b and t b < t a ). t a ||t b if t a and t b a) are Sequentially Independent, and b) there exists a transition t k such that t a ∠t k (t a ∈SP(t k ))

and t b ∠t k (t b ∈SP(t k )) In the current example t3 and t4 fulfill the conditions of this proposition, i.e. t 3 <t 4, t 4 <t 3, both transitions are sequentially independent and belong to SP(t 2 ).

If concurrent transitions do not belong to synchronized threads, conditions of the next propositions help us to find a subset of concurrent transitions in which their firings do not depend from the occurrence of another transition t k .

Proposition 

) SP -1 (t a ) ≠ ∅, ∀t j ∈SP -1 (t a ), t j || t b .

D. Building the non-observable PN

The computed causal and concurrency relations from sequence S are used to infer internal evolutions of the system by computing non-observable places of the net. Definition 13. The set Seq'= (Seq \ CausalR) \ ConcR contains the set of transition pairs (t a ,t b ) which have been observed consecutively, but are not in a causal relationship or in a concurrency relationship. If Seq' ≠ ∅, there are two possibilities for the remaining transition pairs (t a ,t b ) in Seq': a) They are input and output transitions respectively of a place with several input and output transitions. b) They are concurrent, but w (thus, S) is not complete enough to find such a relationship. Since our goal is to approximate as much as possible the language generated by the net N to the observed sequence S, we assume that if we have observed two transitions consecutively (t a <t b ) but none of the previous propositions have determined that they are concurrent, thus the firing of t a has enabled t b . This is made in order to preserve in N the firing order observed in S. Then, a place will be added from t a to t b ; this is denoted by [ For the parcels sorting system of Fig. 1, the PN structure as well as the computed initial marking (which is computed by allocating tokens enabling the sequence S) is shown in Fig. 5.a. Observe that in Fig. 4 observable places [t 2 , t 3 ] and [t 6 , t 7 ] already exist. By adding non-observable places to such a model and deleting implicit places [t 2 , t 3 ] and [t 6 , t 7 ], we obtain the IPN model shown in Fig. 5.b, which reproduces w. 

E. Token flow verification

The sequence w may not have shown enough combinations allowing determining concurrency. If w were complete, all the concurrent and sequential behavior could be found and represented, according to Proposition 5. However, since we know that w could not be complete, in order to approximate the language of N to S as much as we can, we have considered that if two transitions have not been declared as concurrent, they must be in a sequential relationship. However, if the transitions are actually concurrent, the sequential consideration could lead us to create arcs or places in the model constraining too much the behavior of the system and do not allow the firing of S. Now, we present some notions to verify if added places do not interfere in the correct reproduction of S. 

F. Summary of the method

All the algorithms described in this section to construct the non-observable part of the IPN are summarized in the following polynomial-time procedure. 

Algorithm 1. Non-observable behavior construction

0 0 0 1 : 1 c b a k t ∧ ∧ ∧ 0 0 0 2 : 5 c b a k t ∧ ∧ ∧ 1 : 2 a t ↑ 2 : 6 a t ↑ - A 0 : 4 a t ↑ B C 1 : 3 b t ↑ + A 0 : 7 c t ↑ b)

G. Implementation issues

The algorithm has been implemented and tested on many examples exhibiting diverse situations using the following scheme: a PN is built with the help of a PN editor (PIPE), and then S is created by firing (enabled) transitions randomly. After the processing of S a PN model is identified, and then coded in XML, to be displayed again with PIPE. As an example, an interesting feature of the method is showed. The identification method applied to the following sequence: The complete method including both stages has been implemented as a software tool that process a sequence w and yields an IPN, reproducing exactly w. It has been tested on sequences obtained from real manufacturing systems. For a detailed description please consult chapter 5 in [START_REF] Estrada-Vargas | Black-box Identification of Automated Discrete Event Systems[END_REF].

S = t
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CONCLUSIONS

A novel approach for identifying partially observable DES systems has been proposed. This method is composed of two steps: the first one is devoted to build the observable reactive behavior [START_REF] Estrada-Vargas | Identification of Industrial Automation Systems: Building Compact and Expressive Petri Net Models from Observable Behavior[END_REF]; the second step, devoted to infer the nonobservable behavior, has been described in this paper.

Although in literature there are techniques addressing the reformulated problem dealing with sequences of transitions, in this paper neither the cycles nor the language generated by the system are known a priori, and this method can handle very long sequences efficiently.

The complete method copes with complex automated DES because it takes into account technological characteristics of both actual controlled systems and the observation process. Implemented as a software tool, the method has been tested on experimental case studies which are very close to actual industrial discrete event processes. The performed tests reveal the efficiency of the methods when sequences formed by thousands of input-output vectors are processed in few seconds [START_REF] Estrada-Vargas | Black-box Identification of Automated Discrete Event Systems[END_REF].

Since the approach is black-box, the obtained models represent the observed behavior; consequently, when the observation is made for a long time, the IPN approximates closely the actual behavior; afterwards the model can be completed using available knowledge on the process.

Current research addresses the problem of discovering indirect causal relationships of transitions that have not been observed consecutively by determining the t-invariants from S. 

Definition 1 :

 1 An ordinary Petri Net structure G is a bipartite digraph represented by the 4-tuple G = (P, T, I, O) where: P = {p 1 , p 2 , ..., p |P| } and T = {t 1 , t 2 , ..., t |T| } are finite sets of vertices named places and transitions respectively; I(O) : P × T → {0,1} is a function representing the arcs going from places to transitions (from transitions to places).

Fig. 1 .

 1 Fig. 1. {PLC + Plant} compound and identification procedure.

  which there are three possible observable situations: (j) ≠ 0 and OE(j) ≠ 0: An input change has provoked directly an output change; consequently, a state evolution. The I/O causality is observed at the same PLC cycle. b) IE(j) ≠ 0 and OE(j) = 0: Only the input change is observed in the PLC cycle. It could mean that either i) The output change will appear in the next cycle, or ii) The controller is not sensitive to the input change, or iii) It provoked a change of state that is not observable through a change of output. c) IE(j) = 0 and OE(j) ≠ 0: Only the input change is observed in the PLC cycle. It could be a consequence of the previous situation (case i) or a programmed behavior considering only input levels or timers from the state reached at the event j-1.

Figure 3 .

 3 Figure 3. System's layout A sequence of 216 observed I/O vectors has been processed (only the twenty first vectors are shown below). The IPN fragment, the transition labeling functions, and the transition sequence S shown in figure 4 are obtained. Notice that in this example only one fragment is found.

Figure 4 .

 4 Figure 4. IPN fragment, transition labeling, and sequence of transitions resulting from the first stage of the identification method.

Fig. 5 .

 5 Fig. 5. a) Non observable model; b) Final identified IPN model

Fig 6 .

 6 Fig 6. Two different components running concurrently

  Definition 8. Two transitions t a , t b are called transitions in a two-cycle if S contains the subsequence t a t b t a or the subsequence t b t a t b . The two-cycle transitions set TC of S is given by TC={(t a ,t b )|t a , t b are in a two-cycle}. Example 2. In the sequence S = t 1 t 2 t 3 t 4 t 1 t 2 t 4 t 3 t 5 t 6 t 7 t 4 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 4 t 1 t 2 t 3 t 4 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 4 t 5 t 6 t 7 t 4 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 4 t 5 t 6 t 7 t 4 t 5 t 6 t 7 t 4 t 5 t 6 t 7 t 4 t 5 t 6 t 7 t 4 t 1 t 2 t 4 t 3 t 1 t 2 t 3 t 4 t 1 t 2 t 3 t 4 t 1 t 2 t 4 t 3 t 1 t 2 t 3 t 4 t 1 from Example 1, it can be easily determined Seq={(t 1 ,t 2 ), (t 2 ,t 3 ), (t 3 ,t 4 ), (t 4 ,t 1 ), (t 4 ,t 5 ), (t 5 ,t 6 ), (t 6 ,t 7 ), (t 7 ,t 4 ), (t 2 ,t 4 ), (t 4 ,t 3 ), (t 3 ,t 1 )}. Also, the following precedence relationships are found t 2 ∠t 1 , t 3 ∠t 1 , t 4 ∠t 1 , thus SP(t 1 )={t 1 , t 2 , t 3 , t 4 }. Notice that SP(t j ) is the set of transitions that must invariantly occur to fire t j repeatedly. The rest of the SP sets are SP(t 2 )={t 1 , t 2 , t 3 , t 4 }, SP(t 3 ) = {t 1 , t 2 , t 3 }, SP(t 4 ) = {t 4 }, SP(t 5 ) = {t 4 , t 5 , t 6 , t 7 }, SP(t 6 ) = {t 4 , t 5 , t 6 , t 7 }, SP(t 7 ) = {t 4 , t 5 , t 6 , t 7 }. The set of transitions in a two-cycle is TC= ∅.

  If (t a ,t b ) ∈TC, then there must exist in N a place from t a to t b and a place from t b to t a .Notice that when two transitions are observed consecutively and one is systematically preceded by the other, a causal relationship is found. Also, when two transitions are involved in a two-cycle relation, they are in a causal relationship each other. Observe that all of these relationships are structural, and thus do not depend of the initial marking of the net.Definition 10. The causal relationship set CausalR keeps track of all the causal relationships between transitions in S. CausalR ={(t a ,t b ) | (t a <t b ) and (t a ∠t b or t b ∠t a or (t a ,t b )∈TC)}. From the SP and Seq sets of Example 2, we compute (t 1 ,t 2 )∈CausalR because t 1 <t 2 and t 1 ∠t 2 (Proposition 2). So, CausalR={(t 1 ,t 2 ), (t 2 ,t 3 ), (t 4 ,t 1 ), (t 4 ,t 5 ), (t 5 ,t 6 ), (t 6 ,t 7 ), (t 7 ,t 4 ), (t 2 ,t 4 ), (t 3 ,t 1 )}.

	Example 3.

Proposition 1. If t a ∠t b (t a ∈SP(t b )) then, there exist in N a simple elementary (SE) circuit to which both t a and t b belong. Proposition 2. If t a < t b and either t a ∠t b or t b ∠t a then there must exist in N a place from t a to t b . Proposition 3.

Proposition 4 .

 4 Let t a , t b be two transitions which have been observed consecutively in a complete sequence S in both orders, i.e. (t a , t b )∈Seq, (t b , t a )∈Seq. Then (t a , t b )∉CausalR and (t b , t a )∉CausalR if and only if t a ||t b .

Definition 11.

  Two transitions t a and t b are Sequentially Independent if (t a ,t b ) ∉ CausalR and (t b ,t a ) ∉ CausalR. By inspection of the set CausalR of Example 3, it can be found that t 1 and t 5 are sequentially independent, as well as t 2 and t 6 , and t 3 and t 4 . Proposition 5. Let t a and t b be two transitions in S which have been observed consecutively in both orders (t a <t b and t b <t a ). t a ||t b if: a) t a and t b are Sequentially Independent b) |SP(t a )| >1 and |SP(t b )| >1

  7. Let be two transitions t a and t b which have been observed consecutively in both orders (t a < t b and t b < t a ). t a ||t b if t a and t b are: a) Sequentially Independent, and b) ∃ t k such that t k ∈SP(t b ), t k ∉SP(t a ), and (t a, t k )∈Seq Let be t a and t b two transitions which have been observed consecutively in both orders (t a < t b and t b < t a ). t a ||t b if t a and t b are: a) Sequentially Independent, and b

	Definition 12. The Inverse Systematic Precedence set of a transition SP -1 :T → 2 T contains the transitions which are
	dependent of a common transition to re-enable their firing:
	SP	1	( t	j	)	=	{ t	k	|	t	k	≠	t	j	and	t	j	∈	( t SP	k	)}

-Proposition 8.

  t a , t b ]. In general a place p can be denoted as [t a1 t a2… t al , t b1 t b2… t bh ], where t ai are the input transitions of p and t bi are the output transitions of p, and l=| • p|, h=|p • |. The same place could be used to relate several consecutive transitions. If a transition t k has been observed followed by two transitions t ai , t aj in S (t k <t ai and t k <t aj ), there are two cases to represent such observations into the PN model: a) the case of selection, where t ai , t aj are neither concurrent nor consecutive; thus they are represented with the same place [t k , t ai t aj ], or b) the case of concurrency, where t ai , t aj are concurrent or consecutive and thus they are represented with different places [t k , t ai ] [t k , t aj ]. The same reasoning can be applied to couples of places sharing the same output transition [t ai , t k ] and [t aj , t k ]. In the current example, from CausalR, the causal dependencies [t 4 , t 1 ] and [t 4 , t 5 ] can be represented by a single place [t 4 , t 1 t 5 ] in a selection structure, and [t 2 , t 3 ] and [t 2 , t 4 ] are represented by two places with a single input transition t 2 .

Proposition 9 .

 9 If the IPN model has been correctly build, every computed non-observable place p in N must fulfill the place input/output flow equation: ) is the number of occurrences of t i in S. If there exists a place p such that | • p|=1, then ∀t j ∈ p • , t k ∈ SP(t j ), where t k is the input transition of p. Also, if there exists a place p such that |p • |=1, then ∀t j ∈ • p, t k ∈ SP(t j ), where t k is the output transition of p. Correction rule. If the input/output flow equation or the conditions in Proposition 9 are not satisfied by some place, the arcs relating transitions which are not in CausalR are removed. If there are not pairs in CausalR representing such a place, it is deleted. For the model of fig. 5.b the flow equation is verified for all the transitions.

	( t Occ p ∑ • t i ∈	i	)	( t i Occ • = ∑ ∈ p t i	)	±	1
	where Occ(t i Proposition 10.			

Characteristics of Algorithm 1.In step

  Input: The sequence S Output: Non-observable model representing S 1. Compute Seq, SP and TC from S 2. From Seq, SP and TC compute CausalR 3. From Seq and CausalR, compute ConcR 4. Merge transitions as specified in section IV.D 5. Validate and correct places as specified in section IV.E 4 the pairs (t a , t b ) ∈ CausalR are represented by places [t a , t b ] and then merged to build the PN structure; this assures that many pairs in Seq are taken into account. Furthermore, the pairs (t a , t b ) ∈ ConcR, imply that both (t a , t b ) and (t b , t a ) in Seq are represented in the behavior of the PN. Therefore, if Seq'=((Seq \ CausalR) \ ConcR) \ ConcR -1 = ∅ then S can be reproduced by the model built.If Seq'≠∅, some (t b , t a ) in Seq have not been characterized as concurrent or causal. If they are actually sequential, all the verification rules are satisfied; otherwise, they are concurrent and they are corrected in step 5. Once they are corrected, the remaining places relate sequential transitions and thus the sequence S is reproducible.All the procedures and tests derived from the defined sets and propositions involve simple operations on arrays of size |S| or |T|×|T|, which are performed efficiently.
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