
Strategic Port Graph Rewriting : An Interactive
Modeling and Analysis Framework

 Maribel Fernández Hélène Kirchner Bruno Pinaud

King's College London, UK Inria, France Bordeaux University,
France

GRAPHITE 2014, April 4, 2014

2

Motivation and approach

In the context of software development and analysis, we address two challenges :

3

Motivation and approach

In the context of software development and analysis, we address two challenges :

● Provide a modeling framework for complex systems

Complex Systems

<State, Evolution Step, Control>

4

Motivation and approach

In the context of software development and analysis, we address two challenges :

● Provide a modeling framework for complex systems

Complex Systems

<State, Evolution Step, Control>

<Graph, Set of Rules, Strategy>

Strategic Graph Program

5

Motivation and approach

In the context of software development and analysis, we address two challenges :

● Provide a modeling framework for complex systems

● Preserve all computations and provide interactive visualisation tools to help
analysis and debugging

Complex Systems

<State, Evolution Step, Control>

<Graph, Set of Rules, Strategy>

Strategic Graph Program

Derivation tree analysis

6

Rewriting ingredients

In general, a rewriting process is:
Non terminating,
Non confluent,
Highly concurrent

7

Rewriting ingredients

In general, a rewriting process is:
Non terminating,
Non confluent,
Highly concurrent

A strategy language
Some steps may be correlated (one followed by another),
Iterated until some condition is met,
or may occur only in some parts of the graph.
Non-deterministic choices: for simultaneous exploration of multiple rewriting scenarios
and backtrack to test alternate strategies

A derivation tree
History mechanism to record evolutions and choice points
Track properties along different scenarios

8

Porgy Overview

The PORGY environment features:

Design port graphs and port rules and visualise them.

Interactive application of a rule on a port graph.

Creating and running a strategy.

Exploration and analysis of a derivation tree.
Tooltips (get information)
Small multiples and animation (show the evolution of the graph)
Histograms (to follow graph parameter over rewriting operations)

9

Porgy Overview

10

Port Graphs

[IbanescuBK03], [AndreiK07], κ-calculus [DanosL04], BioNetGen [BlinovYFH05]}

Inspired by protein-protein interactions;
Port graphs are graphs with multiple edges and loops, where:

Nodes have explicit connection points, called ports.
The edges attach only to ports of nodes.
Nodes, ports and edges have properties (ex: color, arity, boolean value, string, ...).

Actually equivalent to usual labeled graphs, but with more structure.

11

Notion of position: where to apply a rule in a graph?

Top-down or bottom-up traversals do not make sense.

PORGY's solution is located graphs along with located rewrite rules.

A rule called « newrule »

: position subgraph

: ban subgraph

Goal : compute a morphism g of
the left-hand side inside the graph

12

Notion of position: where to apply a rule in a graph?

Top-down or bottom-up traversals do not make sense.

PORGY's solution is located graphs along with located rewrite rules.

A rule called « newrule »

: position subgraph

: ban subgraph

NOK! There is no A or B nodes
in the position subgraph

Goal : compute a morphism g of
the left-hand side inside the graph

13

Notion of position: where to apply a rule in a graph?

Top-down or bottom-up traversals do not make sense.

PORGY's solution is located graphs along with located rewrite rules.

A rule called « newrule »

: position subgraph

: ban subgraph

OK! The matching will only be
possible with the B node of the

position subgraph

Goal : compute a morphism g of
the left-hand side inside the graph

14

Notion of position: where to apply a rule in a graph?

Top-down or bottom-up traversals do not make sense.

PORGY's solution is located graphs along with located rewrite rules.

A rule called « newrule »

: position subgraph

: ban subgraph

NOK! All A nodes are banned

Goal : compute a morphism g of
the left-hand side inside the graph

15

Located Graph and Located Rules

A located graph consists of a port graph G and two distinguished
subgraphs P and Q of G, called resp. the position subgraph, or simply
position, and the banned subgraph.

GQ
P

A located rewrite rule consists of a port graph rewrite rule and two
disjoints subgraphs M and N of R. It is denoted .

L⇒R
L⇒RM

N

Rewriting must take place at least partially in P and not in Q.

To apply a rule, and

G is updated to

P is updated to

Q is updated to

g(L)∩P≠∅ g(L)∩Q=∅

(G∖ g(L))∪g(R)

(P ∖g(L))∪g(M)

Q∪g(N)

16

Grammar: rule applications and strategies

 Let L, R be port graphs; M, N positions;

 (Transformations) T ::=

 (Applications) A ::= Id | Fail | all(T) | one(T)

 (Strategies) S ::= A | S ; S | repeat(S) | while(S) do (S)
 | (S)orelse(S) | if(S) then (S) else (S)

| ppick(S
1
, p

1
, …, S

n
, p

n
)

| U

n∈ℕ; pi=1...n∈[0,1];∑
i=1

n

pi=1

L⇒RM
N

17

Grammar 2/2: position updates

Let attribute be an attribute label;
n a valid value for the given attribute label;
function-name the name of a built-in or user-defined function.

(Position Update) U ::= setPos(F) | setBan(F) | isEmpty(F)

(Focusing) F::= CrtGraph | CrtPos | CrtBan | AllNgb(F)
| OneNgb(F) | NextNgb(F)
| F ∪ F | F ∩ F | F \ F | ∅
| Property(ρ, F)

(Properties) ρ := (Elem, Expr) | (Function,function-name)
Elem := Node | Edge | Port
Expr := Label == n | Label ! = n | attribute Relop attribute

| attribute Relop n
Relop := == | ! = | > | < | >= | <=

Other constructs : not(S):= if(S)then(Fail)else(Id)
 try(S):= (S) orelse (Id)

18

Examples : spanning tree computation

19

Examples : spanning tree computation

Very simple strategy for one solution: one(start);repeat(LC0)
Strategy to find all solutions (all() not fully implemented yet) : all(start);repeat(LC0)

20

Examples: simple connectivity test

setPos(CrtGraph);
one(newrule);

setPos(Property(Node, "state"=="true", CrtGraph));
setPos(AllNgb(CrtPos));

while(not(isEmpty(CrtPos))) do (
if(newrule) then (
newrule
) else (
setPos(AllNgb(CrtPos)\Property(Node, "state"=="true", CrtGraph))
)
);

setPos(CrtGraph);
not(newrule)

The strategy code with only one rule which mark a visited node :

21

Examples: simple connectivity test

22

Examples: simple connectivity test

23

Semantics and Properties 1/2

In the paper, we give rule based semantics of the strategy language: small step
operational semantics, specified using transition rules on configurations (multisets of
strategic graph programs)

Some properties:
 is terminating (Id or Fail) if there is no infinite transition sequence from
the initial configuration .

The sublanguage that excludes the while and repeat constructs is terminating.

A strategic graph program is given by a set of port graph rewrite rules , a strategy
expression S (built from) and a located graph . We denote it , or simply
 when is clear from the context.

ℜ
ℜ GP

Q [Sℜ ,GP
Q
]

[S ,GP
Q
] ℜ

[S ,GP
Q
]

[S ,GP
Q
]

24

Semantics and Properties 2/2

Characterisation of Terminal Configurations:
For every strategic graph program where and , there
exists a configuration C such that .

 , if terminating, reduces to configurations that contain graph programs
of the form or (called values).

Each strategic graph program in the sublanguage that excludes non-
deterministic operators (OneNgb, one, ppick, orelse) and repeat has at most
one program result which is a set of values (Id / Fail).

[S ,GP
Q
]→C

[S ,GP
Q
]

[S ,GP
Q
] S≠Id S≠Fail

[Fail ,G ' P '
Q '
][Id ,G 'P '

Q'
]

25

Conclusion

PORGY, an interactive visual environment for port graph transformation.
Programming with rules and strategies, including focusing capabilities.
Simple and intuitive visualisation and interaction.

Porgy is a set of Tulip plugins, about 20 000 lines of C++ code (with Qt library
for GUI).
Tulip is a graph visualisation and manipulation framework (see
http://tulip.labri.fr)

Strategy developed with the Boost Spirit library (only 1 500 lines of code).

26

Conclusion

PORGY, an interactive visual environment for port graph transformation.
Programming with rules and strategies, including focusing capabilities.
Simple and intuitive visualisations and interactions.

Porgy is a set of Tulip plugins, about 20 000 lines of C++ code (with Qt library
for GUI).
Tulip is a graph visualisation and manipulation framework (see
http://tulip.labri.fr)

Strategy developed with the Boost Spirit library (only 1 500 lines of code).

Other on-going applications:

Encoding Interaction Nets [laffont:90] programs

Specification/modelling biochemical systems and other complex systems.

Social Network Analysis (SNA, propagation models)

Strategic Port Graph Rewriting : An Interactive
Modeling and Analysis Framework

GRAPHITE 2014, April 4, 2014

QUESTIONS????

Feel free to ask for a live demo!!!

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27

