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Motivation and approach

In the context of software development and analysis, we address two challenges :

● Provide a modeling framework for complex systems

● Preserve all computations and provide interactive visualisation tools to help 
analysis and debugging

Complex Systems

<State, Evolution Step, Control>

<Graph, Set of Rules, Strategy>

Strategic Graph Program

Derivation tree analysis
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Rewriting ingredients

In general, a rewriting process is:
Non terminating,
Non confluent,
Highly concurrent
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Rewriting ingredients

In general, a rewriting process is:
Non terminating,
Non confluent,
Highly concurrent

A strategy language
Some steps may be correlated (one followed by another),
Iterated until some condition is met,
or may occur only in some parts of the graph.
Non-deterministic choices: for simultaneous exploration of multiple rewriting scenarios 
and backtrack to test alternate strategies

A derivation tree
History mechanism to record evolutions and choice points
Track properties along different scenarios
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Porgy Overview

The PORGY environment features:

Design port graphs and port rules and visualise them.

Interactive application of a rule on a port graph.

Creating and running a strategy.

Exploration and analysis of a derivation tree.
Tooltips (get information)
Small multiples and animation (show the evolution of the graph)
Histograms (to follow graph parameter over rewriting operations)
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Porgy Overview
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Port Graphs

[IbanescuBK03], [AndreiK07], κ-calculus [DanosL04], BioNetGen [BlinovYFH05]}

Inspired by protein-protein interactions;
Port graphs are graphs with multiple edges and loops, where:

Nodes have explicit connection points, called ports.
The edges attach only to ports of nodes.
Nodes, ports and edges have properties (ex: color, arity, boolean value, string, ...).

Actually equivalent to usual labeled graphs, but with more structure.
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Notion of position: where to apply a rule in a graph?

Top-down or bottom-up traversals do not make sense.

PORGY's solution is located graphs along with located rewrite rules.

A rule called « newrule »

: position subgraph

: ban subgraph

Goal : compute a morphism g of 
the left-hand side inside the graph
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Notion of position: where to apply a rule in a graph?

Top-down or bottom-up traversals do not make sense.

PORGY's solution is located graphs along with located rewrite rules.

A rule called « newrule »

: position subgraph

: ban subgraph

NOK! There is no A or B nodes 
in the position subgraph

Goal : compute a morphism g of 
the left-hand side inside the graph



13

Notion of position: where to apply a rule in a graph?

Top-down or bottom-up traversals do not make sense.

PORGY's solution is located graphs along with located rewrite rules.

A rule called « newrule »

: position subgraph

: ban subgraph

OK! The matching will only be 
possible with the B node of the 

position subgraph

Goal : compute a morphism g of 
the left-hand side inside the graph
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Notion of position: where to apply a rule in a graph?

Top-down or bottom-up traversals do not make sense.

PORGY's solution is located graphs along with located rewrite rules.

A rule called « newrule »

: position subgraph

: ban subgraph

NOK! All A nodes are banned

Goal : compute a morphism g of 
the left-hand side inside the graph
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Located Graph and Located Rules

A located graph    consists of a port graph G and two distinguished 
subgraphs P and Q of G, called resp. the position subgraph, or simply 
position, and the banned subgraph.

GQ
P

A located rewrite rule consists of a port graph rewrite rule       and two 
disjoints subgraphs M and N of R. It is denoted              .

L⇒R
L⇒RM

N

Rewriting must take place at least partially in P and not in Q.

To apply a rule,                     and 

G is updated to  

P is updated to 

Q is updated to 

g(L)∩P≠∅ g(L)∩Q=∅

(G∖ g(L))∪g(R)

(P ∖g(L))∪g(M )

Q∪g(N )
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Grammar: rule applications and strategies

  Let L, R be port graphs; M, N positions;

 (Transformations)  T ::=  

 (Applications)  A ::= Id | Fail | all(T) | one(T) 

 (Strategies) S ::= A | S ; S | repeat(S) | while(S) do (S)
 | (S)orelse(S) | if(S) then (S) else (S)

| ppick(S
1
, p

1
, …, S

n
, p

n
)

| U

n∈ℕ; pi=1...n∈[0,1 ];∑
i=1

n

pi=1

L⇒RM
N
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Grammar 2/2: position updates

Let attribute be an attribute label;
n a valid value for the given attribute label; 
function-name the name of a built-in or user-defined function.

(Position Update) U ::= setPos(F) | setBan(F) | isEmpty(F)

(Focusing) F::= CrtGraph |  CrtPos | CrtBan | AllNgb(F) 
| OneNgb(F) | NextNgb(F) 
|  F ∪ F |  F ∩ F |  F \ F | ∅
| Property(ρ, F) 

(Properties) ρ := (Elem, Expr) | (Function,function-name)
Elem := Node | Edge | Port
Expr := Label == n  | Label ! = n | attribute Relop attribute 

| attribute Relop n
Relop :=  == | ! = | > | < | >= | <= 

Other constructs : not(S):= if(S)then(Fail)else(Id)
       try(S):= (S) orelse (Id)
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Examples : spanning tree computation
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Examples : spanning tree computation

Very simple strategy for one solution: one(start);repeat(LC0)
Strategy to find all solutions (all() not fully implemented yet) : all(start);repeat(LC0)
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Examples: simple connectivity test

setPos(CrtGraph);
one(newrule);

setPos(Property(Node, "state"=="true", CrtGraph));
setPos(AllNgb(CrtPos));

while(not(isEmpty(CrtPos))) do (
if(newrule) then (
newrule 
) else (
setPos(AllNgb(CrtPos)\Property(Node, "state"=="true", CrtGraph))
)
);

setPos(CrtGraph);
not(newrule)

The strategy code with only one rule which mark a visited node :
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Examples: simple connectivity test
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Examples: simple connectivity test
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Semantics and Properties 1/2

In the paper, we give rule based semantics of the strategy language: small step 
operational semantics, specified using transition rules on configurations (multisets of 
strategic graph programs)

Some properties:
              is terminating (Id or Fail) if there is no infinite transition sequence from 
the initial configuration           .

The sublanguage that excludes the while and repeat constructs is  terminating.

A strategic graph program is given by a set of port graph rewrite rules    , a strategy 
expression S (built from   ) and a located graph     . We denote it              , or simply          
             when      is clear from the context.

ℜ
ℜ GP

Q [Sℜ ,GP
Q
]

[S ,GP
Q
] ℜ

[S ,GP
Q
]

[S ,GP
Q
]
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Semantics and Properties 2/2

Characterisation of Terminal Configurations:
For every strategic graph program            where           and            , there 
exists a configuration C such that                 .

           , if terminating, reduces to configurations that contain graph programs 
of the form                or                   (called values).

Each strategic graph program in the sublanguage that excludes non-
deterministic operators (OneNgb, one, ppick, orelse) and repeat has at most 
one program result which is a set of values (Id / Fail).

[S ,GP
Q
]→C

[S ,GP
Q
]

[S ,GP
Q
] S≠Id S≠Fail

[Fail ,G ' P '
Q '
][Id ,G 'P '

Q'
]
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Conclusion

PORGY, an interactive visual environment for port graph transformation.
Programming with rules and strategies, including focusing capabilities.
Simple and intuitive visualisation and interaction.

Porgy is a set of Tulip plugins, about 20 000 lines of C++ code (with Qt library 
for GUI). 
Tulip is a graph visualisation and manipulation framework (see 
http://tulip.labri.fr)

Strategy developed with the Boost Spirit library (only 1 500 lines of code).
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Conclusion

PORGY, an interactive visual environment for port graph transformation.
Programming with rules and strategies, including focusing capabilities.
Simple and intuitive visualisations and interactions.

Porgy is a set of Tulip plugins, about 20 000 lines of C++ code (with Qt library 
for GUI). 
Tulip is a graph visualisation and manipulation framework (see 
http://tulip.labri.fr)

Strategy developed with the Boost Spirit library (only 1 500 lines of code).

Other on-going applications:

Encoding Interaction Nets [laffont:90] programs

Specification/modelling biochemical systems and other complex systems.

Social Network Analysis (SNA, propagation models)
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QUESTIONS????

Feel free to ask for a live demo!!!
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