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Abstract

R2* plays an important role in the quantitative evaluation of the brain function
and tissue iron content. Unfortunately, susceptibility induced macroscopic field inho-
mogeneities B0macro across an image voxel act to increase the R2∗ in a gradient echo
image. If these B0macro are measurable [17] their influence can be removed in post
processing. Conventionally, these algorithms assume the phase evolves linearly with
time ; however, in the presence of a large B0macro, e.g. near the edge of the brain,
this is assumption is broken [27], .The phase evolution appears random. In this work,
we hypothesize that the phase evolution in the presence of large B0macro, can be
modeled and corrected using 1D-random-walk theory.

MRI ; gradient echo ; EPI ; magnetic susceptibility ; magnetic field inhomogeneities

1 Introduction

Quantitative magnetic resonance (MR) imaging by means of T2∗ relaxometry is beco-
ming an increasingly requested tool in many areas of MR imaging. The effective transverse
relaxation rate R2∗(1/T2∗) characterizes static magnetic field variation on the macrosco-
pic and mesoscopic level[4], which is quantitatively associated with local concentrations
of paramagnetic macromolecules that can reveal the physiology of disordered brain func-
tion [20]. It is applied for BOLD contrast studies[23, 14] as well as for the assessment
of iron content in the brain [6], heart [5], and liver [22], dynamic susceptibility contrast
MRI [2, 18], cerebral venous blood volume measurement [9] and brain abnormalities de-
tection like MS (Multiple Sclerosis) [16]. However it is well known that the presence of
the macroscopic field inhomogeneities B0macro increases the intravoxel dephasing in gra-
dient echo (GRE) MR imaging. This leads to an apparent increase in the signal decay
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resulting in regions of no or low signal. In quantitative GRE MR imaging, the presence
of theB0macro leads to inaccurate R2∗ quantification, consequently an erroneous diagnostic
and interpretation of the fast signal decay may occur. Over the past few years, numerous
preprocessing and post-processing methods have been proposed to correct for the suscep-
tibility induced B0macrointravoxel dephasing. Preprocessing techniques aim to manipulate
the slice selection gradient [13] or radiofrequency pulses which is based on field gradient
compensation technique [19]. Post-processing techniques aim to remove the influence of
the B0macro by measuring or estimating the extent of intravoxel dephasing. For 2D GRE
imaging, Fernandez-seara and Wehrli [17] proposed an iterative postprocessing technique
to correct from the Sinc modulation generated by a linear gradient in the slice direction.
Their method was later optimized by Dahnke et al [10]. Huairen Zeng et al [27] introdu-
ced a Point Spread Function (PSF) method to correct the EPI image distortion ; however,
this technique needs an additional phase encoding acquisition. More complex signal be-
havior generated by nonlinear macroscopic B0macro inhomogeneities has been investigated
by Xiangyu Yang et al [25]. They derived an analytical solution to correct for a quadratic
gradient through the slice ; it was shown to be of particular importance for low resolution
imaging (slice thickness greater than the inplane resolution).Diego Hernando et al [3] in-
troduced a method to correct from the macroscopic field inhomogeneties in the presence of
fat ; they used a third-order polynomial to model the field variations and the modulation
term is calculated numerically. Lastly, Yablonskiy et al [26] introduced the Voxel spread
function (VSF), based on a linear gradient evolution across the voxel to correct for the
magnetic field inhomogeneity in quantitative GRE imaging. The basic theory has recently
been extended to 3D [4]. In region with high SNR and low susceptibility like the center
of the brain ; the mentioned algorithms remove successfully the field inhomogeneities va-
riation artifacts from the R2* maps ; but in region with low SNR and high susceptibility
artifact like near the paranasal sinus, most of the algorithms fail. This could be caused by
two most important issues : the choice of the field variation model across the image voxel
and the phase evolution as function of echo times. Concerning the first problem, the ideal
combination of the polynomial fit order and the number of the voxel neighbors reduces
the fitting noise and consequently increases the accuracy of the correction ; some previous
studies show that choice of voxel neighbors and fit order are strongly depending on image
resolution. Thus increasing blindly these parameters may lead to noise fitting rather than
increasing accuracy. Regarding the phase evolution, all of these methods assume that the
phase evolves linearly as function of time. However in 2005, Huair.Zeng et al [27] demons-
trated by simulation and from invivo DATA that the linear assumption is broken in the
presence of a large field gradient, which is in agreement with what we have observed with
3T data, where the effect of susceptibility induces B0macro is expected to be worse. To
the best of our knowledge no model currently tries account for non-linearity of the phases
evolution with time. We hypothesize that the overcorrection observed e.g in the paranasal
sinus, is due to the linear phase evolution assumption being broken. Herein we propose an
analytical solution for the phase dispersion over the echo time based on the principles of 1D
random walk theory [15, 21]. This approach called Non Linear Sinc Correction combines
the linear gradient behavior across an image voxel and the probabilistic phase behavior as
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function of echo time. The new method is validated with simulations and tested on phan-
tom and invivo DATA, then compared with the non-iterative 3D Linear Sinc Correction
LSC described in [17, 10].

2 Theory

In the following section we will briefly review the fundamental steps to linear correction
models [ref] which assume a linear evolution of phase with time. For a more complete
description we refer the reader to [4]. The theory will then be expanded to consider a
non-linear phase evolution with time, introduce a new method to calculate the field map
and Linear phase evolution. The MR signal in a 3D gradient echo experiment for given nth
voxel acquired in the presence of inhomogeneous magnetic field ∆Bn(r) which is assumed
equivalent through all vector position directions r can be written as : :

Sn(K;TEN) = γ

∞
∫

−∞

drρn(r;TEN)e
−i2πKrFn(r;TEN) (1)

Where ρn(r;TEN) is the ideal signal decay in the absence of the field inhomogeneities,

F (r;TEN) = e−i∆φ(r;TEN )? (2)

eq.2 describes the signal loss due to the macroscopic ∆Bn(r) inhomogeneities. And the
k-space is defined conventionally as :

2πkx = γGxtx; 2πky = γGyty; 2πkz = γGztz (3)

where Gx, Gy are the phase encoding and Gz the read-out, tx,y,z are the duration of the
gradients. Assuming a linear phase evolution as function of time, the phase shift ∆φn can
be described by λth order function across an image voxel as follow :

∆φn(TEN) = γ∆TEN

λ
∑

k=0

aλ−k r
λ−k (4)

Where a is the field map fit coefficients, n is the fit order and r is the 3D spatial resolution
X, Y and Z. N is the echo time difference between the N th echo and the first echo. In the
case where the echo time spacing is fixed, we substitute ∆TEN by N∆TE, where ∆TE is
the echo time spacing. The MR signal can then be rewritten as follows :

Sn(k;TEN) =

∞
∫

−∞

drρn(r;TEN)e
−i2πkr+iγNTE1

∑λ
j=0

aλ−j rλ−j
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2.1 Nonlinear phase evolution

To extend the model further let us consider that the phase evolution can be described as
combination of a linear ∆φn(TEN) and an error component ǫ :

φn(TEN) = φ0n(TEN) + ∆φn(TEN) + ǫn(TEN) (6)

When the B0macro inhomogeneites are small then the linear term, ∆φn(TEN) ≫ ǫn(TEN),
dominates the phase evolution and Fn(r;TEN) is well approximated using a linear re-
lationship [5, 22]. However as the B0macro inhomogeneties become larger the linear term
no longer dominates the phase evolution ∆φn(TEN) ≃ ǫn(TEN). The linear relationship
no longer holds [27] and the evolution appears non-linear, until eventually the error term
dominates ∆φn(TEN) ≪ ǫn(TEN) and the phase evolution appears like noise.

If instead of the conventional assumption of phase evolving linearly with time we consider
that the phase evolves using the principles of Gaussian Random walk theory we can gene-
rate a model to describe the intravoxel dephasing based on the expected variance of the
phase dispersion σn(TEN). The expected variance of the phase dispersion can be described
as follows :

σn(TEN)
2 = < φn(TEN)

2 > =
N
∑

i=1

N
∑

j=1

< ωi · ωj > δφn(∆TE)
2 (7)

Where ωi,j determines the phase variations in time relative to the mean phase value <
φn(TEN)

2 > , δφ is the mean phase step over time and i, j = 1, 2, 3...N is the echo number.
∆TE denotes the echo time spacing. To simplify further the theory, the coefficients ωi,j

are defined as :

< ωi · ωj >=

{

0 i 6= j
βn i = j

thus

N
∑

i=1

N
∑

j=1

< ωi · ωj > = N · βn (8)

Finally we can describe the phase shift over the echo time in the presence of large ∆B(r)
inhomogeneities as function of the echo number and βn as follows :

φn(TEN)− φn(TE1) = ǫn(TEn) = (N · βn)
1/2δφn(∆TE) (9)

The coefficient β can be described using different approaches. In 1D random walk theory,
β calculation is based on the values that ωi,j can take. Conventionally ωi,j ∈ [−1, 1],
consequently β will tend to 1. But from our simulation, phantom and in-vivo DATA, the
phase variations over the echo time are larger and consequently ωi,j interval can become
wider. Therefore ωi,j coefficients are defined as :







ωi = [−α;α] andα = abs[
Max(φn(TEN))

φn(TE1)
]

ωj = ωi

thus βn = < [−α; ...;α]2 > (10)
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2.2 Signal correction

The MR image signal can be computed as the IFT (inverse Fourier Transform) of the signal
Sn(TEN) :

Sn(TEN) =
1

Vnḱ

∫

k

∫

r

Sn(K;TEN) · e
−i2πkrdk ; ḱx,y,z =

2π

γGx,y,z

(11)

where L is the voxel dimension ,Vn = LxLyLz is the voxel volume.in order to obtain the
analytical IFT expression of the k-space signal, we use some approximations which are
valid in high MR image resolution . The first approximation considers that the signal is
described by rectangular function across the voxel dimensions which limit the integral in
eq.1 :

Sn(TEN) =
1

Vn

Lr
2

∫

−Lr
2

drρn(r;TEN) · e
−i2πkr · Fn(r;TEN) (12)

where Lr is the image spatial resolutions. The signal IFT of the signal Sn(K;TEN)after
the mentioned approximation can be written as :

Sn(TEN) =
1

Vn
ρn(r;TEN)

Lr
2

∫

−Lr
2

dr · e−i(N · βn)
1/2δφn(∆TE) (13)

So :

Sn(TEN) =
1

Vn
ρn(r;TEN)

Lr
2

∫

−Lr
2

dr · e−iγ(N ·βn)1/2∆TEN
∑λ

j=0
aλ−j rλ−j

(14)

The second approximation considers that the distribution of the field inhomogeneities
evolves slowly through the image voxel ; therefore the field gradient which is in our approach
the coefficient aλ−k in eq.3 can be computed from the field map, setting λ = 1(first order
fit) and using the central difference approximation as follows :

an,r =
(∆Bn+1,r −∆Bn−1,r)

2Lr

(15)

Therefore the MR signal with the linear approximation of the field gradient across the
voxel can be described as :

Sn(TEN) =
1

Vn
ρn(r;TEN)

∏

r

Lrsinc(
γ

2
(N · βn)

1

2∆TE a1,n,rLr) (16)

To limit the noisy phase effect which becomes large when the echo time tends to increase,
also the field gradient over estimation in regions with low signal to noise ratio e.g. paranasal
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sinus region and near the brain edges, which lead to artificial over correction, we introduce
a normalized weighting factor ψ(TEN) (similar to the field map weighting factor) that
limit the correction of the signal decay as follows :

ψ(TEN) =
Sn(TEN)− Sn(TE1)

Sn(TEN)
(17)

where
{

ψ(TEN) → 1 artifactual signal decay
ψ(TEN) → 0 normal signal decay

(18)

An additional complication arises because the macroscopic field gradient ∆Bn(r) can cause
voxel dimensions distortion (unless the imaging gradient G(x, y, z) is much stronger) [23,
14].In this case, the voxel dimensions need to be modified, since the true voxel dimensions
are no longer Lr, but λnLr [5, 13], where :

λn =
Gr

Gr +∆Bn(r)
(19)

Finally, we can describe the MR signal decay modulated with the 3D sinc function using
the random walk theory to calculate the analytical phase dispersions over the echo time
as :

Sn(TEN) =
1

Vn
ρn(TEN)

∏

r

Lrsinc(
γ

2
ψ(TEN)(N · βn)

1

2∆TE a1,n,rLr) (20)

To solve this equation and correct from the signal decay caused by the 3D sinc function
modulation and nonlinear phase evolution as function of echo time, we determine from the
DATA the sinc function parameters and we divide the image signal by the proposed analy-
tical modulation. We should keep in mind that this approach doesnt take in consideration
the signal phase shift at TE = 0, resulting from the RF field inhomogeneities which is
negligible and not essential for correction.

2.3 Weighted Field Map Computation

Conventionally, the phase DATA is fitted linearly and the field map is calculated by the
slope of the fit. Herein, we propose a new approach to compute the field map. The field
map of nth voxel is represented by the phase step δφn(∆TE), in other words the field map
is computed as the mean standard deviation of the unwrapped phase signal over the echo
times and weighted by the signal intensity ratio Wn where :

Wn =
Sn(TEN)

∑N
i=1 Sn(TEN)

(21)

and

∆Bn =
1

N∆TE
δφ(∆TE) =

N
∑

i=1

1

2πN∆TE
(φn,TE1

− φn,TEN
·Wn) (22)
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where n is the voxel coordinates and N is the echo number, Sn(TEN) is the signal intensity
of the magnitude DATA in the imaging domain. Median and Gaussian filter were applied
on the weighted field map [9] to reduce the nose in regions with low SNR and remove some
phase coil combinations artifacts. Because the field map values are weighted by the signal
intensity ratio Wn at the corresponding location, the field estimation is robust especially
in region with low SNR [12]

3 Methods

3.1 Numerical Phantom

To test our hypothesis and methods we developed a numerical phantom, using customi-
zed Matlab scripts (Mathworks, USA), to simulate the effect of B0macro, Fig.1. First,the
data set used in this simulation is provided by McConnell Brain Imaging Centre, Montral
Neurological Institute. It consists of anatomical images segmented into disjoined special
masks or templates (one per tissue type). The MR brain properties : T1 T2∗PD (grey
matter, white matter, csf,) were set to mimic our real brain DATA and used to simulate
the magnitude signal of multi gradient echo sequence using an analytical solution to the
Bloch equation :

Sn(TEN) =
Mn,oe

−TEN
T∗

2 sin(α)(1− e
−TR
T1 )

1− cos(α)e
−TR
T1

(23)

where Mn,0 is the ideal signal free from the field gradient inhomogeneties and α is the
flip angle. To evaluate the B0macro effects in more detail and in a wider range than the
experimental condition ; a total of 40 echoes were simulated using the following sequence
parameters TR/TE1/∆TE = 47/1.23/1.23ms, flip angle 1̊0 and 1mm2 inplane resolution
to limit the field variation across the pixel to a linear behavior. Different degrees of B0macro

were introduced by taking a typical field map from an invivo experiment on 3.0 T scanner
and scaling it to range between 1-80Hz/cm. Corrupted magnitude data was subsequently
calculated using equation 20 multiplied by the function Fn(r;TEN) which describes the
signal loss due to the macroscopicB0macro . The phase images were then simulated according
to equation 5 using the first phase image of the invivo field map and modeling the error
term as random noise which depends on the simulated magnitude image. The weighted field
map was computed from the simulated phase images according to eq.11 and the 3D LS and
3D NLS corrections were performed on the corrupted magnitude images and compared to
the true R2∗ values used.
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Figure 1: GRE DATA Simulation and correction using LSC and NLSC.

3.2 MRI acquisition

All scans were performed on a 3T (Magnetom Trio, Siemens AG, Healthcare Sector, Er-
langen, Germany) using 32-channel phased-array coil. Phantom and in-vivo data were
acquired with a 3D bi-polar multi gradient echo sequence. 32 echoes were acquired with
TR/TE1/ = 47/1.23/1.23ms, flip angle 8̊, 1.6mm3 isotropic resolution and a matrix size
of 36x136x112, Grappa parallel imaging with acceleration factor of 2 and an asymmetric
echo, and pahse partial Fourier sampling factor of 6/8. The weighted field map was com-
puted from the phase and feed as input into the 3D LS and 3D NLS corrections of the
magnitude images. The performance of the correction algorithms were evaluated with a
cylindrical phantom containing 5 spheres filled with water doped with MnCI2 − 4H2O
with the following concentrations 10-20-40-70-120 mg per lL of distilled water in order to
examine the linearity of the R2* value as function of the manganese concentration [7] . To
assess the accuracy of our method, the GRE images from simulation, phantom and in-vivo
experiments were corrected using our algorithm which is based on the random walk theory
to describe the non-linearity of the phase evolution as function of echo time and the non-
iterative version of a post processing technique, which is based on linear phase evolution
assumption described in [17, 10]. To obtain an equivalent comparison, we also introduced
the weighting factor ψ(TEN) in the second algorithm. In order compute the R2∗ maps, we
introduce a new method similar to the numerical trapezoidal integration described in [11],
but instead using Simpson rule. Thus the R2∗ maps were computed from both corrected
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and non-corrected magnitude DATA as follows :

R∗

2,n =
Sn(TE1)− Sn(TEN)

1
6
(TEN − TE1)[Sn(TE1) + Sn(TEN) + 4Sn(

TE1+TEN

2
)]

(24)

To further evaluate our approach in correcting the field inhomogeneities on real DATA, we
chose 14 in vivo DATA which suffer from big signal loss in the paranasal sinus region and
especially in grey-matter/air interfaces, and then we corrected the DATA using LSC and
NLSC ; Fig.8 presents a Boxplot of R2∗ values for the selected 14 in-vivo DATA. VOI drawn
in the paranasal sinus region where the field gradient is large (> 50Hz/cm) after correction
with LSC and NLSC and compared with theR2∗ values of VOI drown in the center of the
brain where the field inhomogeneities are small (artifact free or Ideal R2∗). As mentioned in
the introduction, the macroscopic field inhomogeneities correction can be used in different
applications. Herein we investigated the effect of the field inhomogeneties correction on the
detection of iron deposit. It is well known that the iron deposition (Hemosiderin) can lead
to field distortion around the lesion (Blooming artifact), consequently the bleeding area
appears larger [8]. For this, we use a patient DATA containing a lesion with iron deposit
in the brain ; we overlap the non-corrected and corrected R2∗ map with both NLSC and
LSC on the MP2rage image, then compare the size of the iron deposit lesion, the results
are shown in fig.9 and fig.10.

4 Results

4.1 Simulation

Figure 2: Phase behavior as function of time in the presence of low (blue) and high (red)
field inhomogeneties. Left and middle image : simulated phase before and after
phase unwrapping. Right image : unwrapped phase from phantom DATA.

The simulation results in Fig. 2 illustrate the difficulties in estimating the field map in the
presence of B0macro induced intravoxel dephasing. With small field gradient inhomogenei-
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ties the phase can be reliably unwrapped and a linear regression can be used to effectively
estimate the underlying field inhomogeneity ; however, in cases where the field inhomoge-
neity is large unwrapping the data may not be possible as the noise may mask the phase
jumps. The field map value of the phase in presence of high field inhomogeneties (Fig. 2
middle image) was calculated using the linear fit, the weighted sum method and compared
with the true value introduced in simulation and the results are shown on the Fig. 2. In this
scenario the proposed weighted field map reduces the error by 40% .In addition ; the phase
behaves linearly in the presence of low field gradient (blue line), but as soon as the field
gradient increases, the linearity is lost. Fig. 3 represents the simulated inverse Fn(r;TEN)
in the presence of small (circle) and large (triangle) field gradient, using the LSC (blue line)
and the NLSC (red line). This simulation allows to us the observation of the correction
coefficient (1/F(t)) behave which we use while correcting our magnitude signal. In the pre-
sence of small field gradient (circle). Fig. 4 represents the simulated 2D-GRE DATA .Upper
row : the R2∗ maps ; left image : corrupted R2∗, middle and right images show R2∗ maps
corrected with LSC and NLSC respectively. Middle row : Computed relative difference to
the non-corrupted R2∗ map in order to evaluate the quantitative metric changes. Lower
row : the Structural SIMilarity index (SSIM) is calculated between the threeR2∗ maps and
the original one to assess the visual quality metric [24].

Figure 3: Simulated inverse Fn(r;TEN) in the presence of small (circle) and large (tri-
angle) field gradient, using the LSC (blue line) and the NLSC (red line).
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4.2 Phantom

Results of phantom study are presented in Fig. 5. As described in method section, the
phantom consisted of cylinder containing 5 spheres filled with different concentration of
MnCI2 − 4H2O.The phantom was oriented parallel to the main magnetic field B0. The
presence of air bubble inside the spheres and near the phantom edges creates strong ma-
gnetic field inhomogeneities and leads to signal drop over time and Consequently R2* over-
estimation. In Fig. 6, we demonstrate the accuracy of the tow correction methods where
the R2∗ values are plotted against the MnCI2 − 4H2O concentrations .As known from
literatures,R2∗ values increase linearly with the increasing MnCI2 − 4H2Oconcentration
within the phantom spheres [7] ; this linear relationship allows us to assess the performance
of our algorithm on real DATA.

4.3 Invivo

Results of in-vivo DATA obtained from a human subject were presented in Fig. 7. Left
image presents the R2∗ map without any corrections form the macroscopic field inhomoge-
neity in which we can clearly observe theR2∗ overestimation in the paranasal sinus region
where the field gradient is high and also near the brain edges ; middle and right image
images show the R2∗ maps corrected with LSC and NLSC respectively. Fig. 8 presents a
Boxplot of R2∗ values for 14 in-vivo DATA. VOI drawn in the paranasal sinus region where
the field gradient is large (> 50Hz/cm) after correction with LSC and NLSC and compared
with the R2* values of VOI drown in the center of the brain where the field inhomogenei-
ties are small (artifact free or Ideal R2∗) .Figure 9 shows the MP2rage of MS (Multiple
Sclerosis) patient with iron deposit lesion which appears as a hyperintensity surrounded by
a hypointense signal (left image).Upper row presents a GRE images in different echo times
showing the increasing blooming artifact around the iron deposit lesion (red arrows). Lower
row shows the overlapped lesion mask which delineated manually from the non-corrected
and corrected R2∗ maps with LSC and NLSC. The figures show that in the absence of
correction, the lesion size can be overestimated by including the blooming artifact while
delineating the lesions. Although, after correction with LSC and NLSC, the lesion size the
blooming artifact is partially or totally removed and the measured size matches with the
that in MP2rage.

5 Discussion

5.1 Nonlinear phase evolution as function of echo time

As shown in Fig. 2 , in the presence of large macroscopic field gradient (> 15Hz/cm),
the linear assumption of the phase evolution as function of echo offsets is broken. The
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phase behavior becomes masked by noise which interferes with the temporal unwrapping.
The phantom DATA also shows the same phase behavior in the presence of low and high
field gradient inhomogeneties. These results are in agreement with those found in [2].In
this case it is difficult to expect the true phase dispersion across the time if we use the
linear phase evolution assumption and thus, a signal over estimation correction may occur.
The nonlinear phase behavior model is also an issue to consider ; because of the nonlinear
phase evolution, no polynomial model can be used to fit the phase in time and measure the
phase dispersion except the random walk model. In Fig. 3 , we can observe the correction
coefficient (1/F(t)) that we use while correcting our magnitude signal. In the presence of
small field gradient (circle), both the LSC (blue line) and the NLSC (red line) provide
approximately the same solution, that means in region with high signal to noise ratio like
the center of phantom or brain and far from the edges, the R2∗ map correction is small and
can be achieved by the two methods ; on the other hand, we can conclude that no benefits
from correcting in such region and any applied correction may introduce an additional error.
On the other side, when the field gradient is large (triangle), the correction coefficient
drops abruptly when using the LSC showing a large Sinc modulation, which in reality
doesnt appears on the magnitude signal decay ; Consequently the signal correction is over-
estimated and the R2∗ values are under-estimated. The correction coefficient computed
using the NLSC represents a moderated and uniform exponential decay which reflecting
the true artificial signal drop seen in the GRE DATA.

Figure 4: Simulation results of R2* maps correction with LSC and NLSC .Upper row : left
image shows the original R2∗[Hz] map without correction ; Middle image shows
R2∗ map after LSC correction and right image shows the R2∗ map corrected
with the NLSC. Middle row : images represent the respective relative difference
(%). Lower row : the Structural Similarity index (SSIM) maps.
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Fig. 4 demonstrate the main features of the proposed Non Linear Sinc correction based on
the random walk theory. The corrupted R2∗ map mimics the real in-vivo DATA distortion
and signal loss mainly in the paranasal sinus region , around the cingulate and near the
temporal lobe ; Without correcting the images from the gradient field inhomogeneities, the
R2* is over-estimated ( R2∗ = 1/T2*) by more than 100% and the biological information
and brain structures are lost. In the center of the brain where the field gradient is less than
10Hz/cm, both LSC and NLSC provide approximately the same correction ; although in the
presence of large field inhomogeneities, LSC over-estimates the correction and thus under-
estimates the R2∗ values ; NLSC appears more robust and provide accurate correction, the
R2∗ values are corrected with an accuracy of 4Hz and the brain structures are well recovered
. The computed SSIM when correcting the R2∗ map with the LSC remains under 0.7 in
region with a large B0macro, but the index increase and becomes high [0.95-1] when the
NLSC is applied. This result leads to the conclusion that, in addition to the quantitative
R2∗ parameter recovery, the NLSC correction also recovers the visual quality of the image
structure with reducing noise which affects the qualitative aspect.

Figure 5: Left : Phantom R2* map [Hz] without correction, middle and right with LSC
and NLSC correction respectively. .

As we see in the Fig. 5, the R2∗ values are over-estimated near the phantom edges and
around the air bubbles, also, a big gradient artifact in right side of the phantom is obser-
ved even if a gradient shim was set . The LSC correction reduce the field inhomogeneities
artifacts in region with high SNR ; but around the air bubbles, the correction leads to over-
estimate theR2∗ values, the phantom side artifact and near the edges R2∗ over-estimation
are partially removed but keeping a high level of noise. NLSC provide more robust correc-
tion throughout the phantom whatever the severity of the field gradient inhomogeneities.
The R2∗ over-estimation within the spheres, near the phantom edges and also the artifact
in the left side of the phantom are totally removed with decreasing in local noise.
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Figure 6: R2∗ value [Hz] as function ofMnCl2 concentrations [mg/L] within the phantom
spheres, before (red line) and after correction with both LSC (green line) and
NLSC (blue line)

Fig. 6 shows that at low MnCl2 concentrations, both corrections remove the expected R2∗

bias ; however near the right edge (sphere 2) and With increasing MnCl2 concentrations
(sphere 4 and 5), the LSC over corrects and the linear relationship of R2∗ withMnCl2 is
only preserved with the NLSC. The result clearly shows that the NLSC recover better the
linear relationship between theR2∗ andMnCl2concentrations comparing to LSC, especially
in regions suffering from huge field gradient inhomogeneities.

Figure 7: In-vivo DATA obtained from a human subject. Left image : R2∗ map without
correction. Middle and right image present R2∗corrected with LSC and NLSC
respectively.
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As in the phantom study, the presence of large macroscopic field gradient inhomogeneities
in specific regions like the paranasal sinus, around the cingulate and near the brain edges
(SNR < 5), leads to magnitude signal distortion and loss, therefore a huge R2∗ values over-
estimation occurs Fig. 7 . In the center of the brain (SNR > 20), the field inhomogeneities
are less significant and both LSC and NLSC provide approximately the same correction.
In addition, we can remark an appearance of a spherical volume near the sinus region
which has the same R2∗value as the MS lesions in the same DATA.in Fig. 8, we can notice
that without field inhomogeneities correction, the quantitative R2∗ parameters are over-
estimated. After correction, the NLSC recovers the R2∗ values with high accuracy and less
noise comparing to LSC method which tends to under-estimate the R2∗.NLSC methods
remove the over-estimation and bring the R2∗ values into the rang of Ideal R2∗ even in the
presence of high gradient variations.

Figure 8: Boxplot of R2* values for 14 in-vivo DATA. VOI drawn in the paranasal sinus
region where the field gradient is large (> 50Hz/cm) after correction with LSC
and NLSC and compared with the R2∗ values of VOI drown in the center of
the brain where the field inhomogeneities are small (artifact free or IdealR2∗) .
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Figure 9: Left : MP2rage image with iron deposit lesion (blue arrow).Upper row : GRE
images in different echo times showing the increasing blooming artifact around
the iron deposit lesion (red arrows). Lower row : overlapped lesion mask which
computed from the non-corrected and corrected R2∗ maps with LSC and NLSC.

Fig. 9, the upper row shows that the field distortion induced by the iron deposit creates
a blooming artifact which increases with the echo time and may influence the lesion size
measurement. In the MP2rage image(left), the lesion (blue arrow) appears small and well
delineated and without any blooming artifacts, because MP2rage is less sensitive to the
macroscopic B0 field [1].The R2∗ values in paranasal sinus region is highly over-estimated
without applying correction, consequently the detection of any abnormal signal (high R2∗)
is difficult. After correction with LSC and LSC, the over-estimation is removed and the
region appears free from any iron deposit. Also the size of the lesion is in concordance with
size seen in MP2rage image. To well assess the lesion volume, we manually delineated the
iron deposit lesion and computed the lesion volume from the MP2rage, non-corrected and
corrected R2∗ maps with NLSC and LSC, the results are shown in the Fig. 10 .
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Figure 10: lesion volume computed from MP2rage, non-corrected and corrected R2∗

images with LSC and NLSC.

Fig. 10, the volume of the iron deposit lesion is over-estimated if we consider only the non-
corrected R2∗ maps (1.2±0.01cm3) comparing to the MP2rage volume(0.5±0.01cm3). This
result is not surprising because of the blooming artifact generated by the field distortion
around the iron deposit lesion. With the NLSC correction, the computed volume(0.49 ±
0.01cm3) is approximately equal to the volume computed from the MP2rage comparing to
the lesion volume with LSC (0.34±0.1cm3) ; it means that both LSC and NLSC correction
removes the macroscopic field inhomogeneities while keeping the microscopic information
unchanged (iron deposit), but the over-estimation of the field distortion when the LSC is
applied, may lead to small but not negligible underestimation of the lesion size .However,
the result presented in this section remain subjective and dependent on the lesion deli-
neation methods as well as the used statistics. Nevertheless, This application field of R2∗

correction will be further investigated in the detection of the microbleeds and validation of
the cut-off point assumption to distinguish between the macro and microbleeds in patients
with intracerebral hemorrhage .

The gradient computation near the brain edges is described as limitation for the R2∗

correction ;existing solutions based on field map extrapolation beyond the air/tissue inter-
faces [2] or computing the gradient for the left-sided neighbor [4] have been demonstrated
to improve the field characterization, but may still lead to inaccurate field estimates and
are computationally expensive . However introducing the weighting factor ψ(TEN) [eq.17]
removes the gradient over-estimation while correcting the R2∗ maps without time consu-
ming. The approximations used to build the algorithm like the ideal slice profile and the
linear field variation across the image voxel are valid in isotropic high resolution imaging ;
extra field behavior measurements showed that no benefit from increasing polynomial fit
order or voxel neighbors size while using high resolution images ; in the case of low re-
solution images, the analytical Sinc solution changes But the nonlinear phase behavior
remains valid and the phase dispersion can be computed using the proposed approach.
The technique of combining the nonlinear phase behavior as function of echo time and the
nonlinear field gradient evolution across the image voxel will be investigated in the future
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for low resolution imaging. NLSC postprocessing correction procedure remains the fastest
method, comparing to the iterative sinc correction in [5] which takes 134 hours for 3D
image of 136x136x112 voxel, and the optimized Sinc correction in [22] which take 1 hours,
the NLSC need only 2 minutes .

6 conclusion

Many studies have been dedicated to solve the problem of R2* correction from the ma-
croscopic field inhomogeneties, but the complexity of the problem leaves it an open area
for improvement. In this article we proposed a new approach to correct the quantitative
R2* which we consider like a step in this direction. Conventionally, the existent algorithms
assume the phase evolves linearly with time ; however, in the presence of a large B0macro,
e.g. near the edge of the brain, this is assumption is broken and the phase evolution appears
random and noisy. In this work, we hypothesized that the phase evolution in the presence
of largeB0macro can be modeled and corrected using Gaussian-random-walk theory to com-
pute the expected phase dispersion as function of echo time. So we reconsidered the basic
theory and developed the NLSC method to correct from the field inhomogeneities whate-
ver its severity. NLSC provided an equivalent correction as the LSC in region with high
signal to noise ratio (SNR > 20) but appears more robust in regions of large or abrupt
changes in B0macro (SNR < 5). This correction technique shows promise to improve R2∗

measurements in regions of large susceptibilities and those applications need to be further
investigated.
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