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ABSTRACT

Structured illumination microscopy is a recent imaging technique
that aims at going beyond the classical optical resolution limits by
reconstructing a high-resolution image from several low-resolution
images acquired through modulation of the transfer function of the
microscope. A precise knowledge of the sinusoidal modulation pa-
rameters is necessary to enable the super-resolution effect expected
after reconstruction. In this work, we investigate the retrieval of
these parameters directly from the acquired data, using a novel 2-
D spectral estimation method.

Index Terms— Structured illumination microscopy, SIM, sinu-
soidal modulation, frequency estimation, spectral analysis, super-
resolution

1. INTRODUCTION

Optical microscopy has become a key research tool in modern bi-
ology. However, its resolution, which is the ability to discriminate
small and close objects, is intrinsically limited by light diffraction.
Because a microscope has a lowpass transfer function, the high-
frequency content of the scene is lost, and the acquired image is
blurry. Several techniques have been proposed to improve the reso-
lution of microscopy; in this article, we focus on the recently devel-
oped approach of structured illumination microscopy (SIM) [1, 2].
The idea of SIM is to illuminate the object with a sinusoidal fringe
pattern, so that the high frequency content of the imaged scene is
aliased as low frequency content, which is not canceled by the trans-
fer function of the microscope. This way, the frequency content of
the acquired image is a mixture of the low and high frequency parts
of the spectrum of the unknown desired image, which must be sepa-
rated subsequently. Thus, several images are acquired with different
modulation angles and phases, so that the disambiguation process is
possible [1, 3–5]. However, the modulation frequencies and phases
must be known precisely for the reconstruction to achieve the de-
sired goal. Even a small error on these parameters can have disas-
trous effects, since not only the super-resolution effect is lost, but
also the reconstructed image is corrupted with remaining oscillating
artifacts [6]. Moreover, calibration of the device prior to acquisition,
to estimate the unknown modulation parameters, is not appropriate,
since even a small perturbation can change them; we recall that the
unit of space considered here is a few microns. We believe that this is
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the sensitivity of SIM to the modulation parameters which has ham-
pered its wide diffusion until now. Therefore, we focus in this paper
on robust and precise estimation of these parameters, directly from
the acquired set of modulated images.

The paper is organized as follows. In sect. 2, we model the setup
of SIM and formulate the considered problem. In sect. 3, we briefly
recall the state of the art in 2-D spectral estimation and we present
our new method. Finally, we present the estimation results on a real
image stack.

2. IMAGING MODEL AND PROBLEM FORMULATION

In SIM, the sample to be acquired is illuminated with an incoherent
sinusoidal pattern of light. Neglecting the 3-D aspects and reasoning
on the image in the focal plane, the forward acquisition model is the
following: x ∈ R

N1×N2 is the unknown sought-after image, of size
N1×N2. The set of acquired images ym ∈ R

N1×N2 , m = 1, . . .M ,
are such that ym = um ∗ h + εm, where ∗ denotes convolution, h
is the 2-D point-spread function of the microscope, εm is a nuisance
image modeling the random noise and the model imprecisions, and

um[k1, k2] = x[k1, k2]
(

1+αm cos(f1,mk1+f2,mk2+φm)
)

, (1)

where k1 = 1, . . . , N1 and k2 = 1, . . . , N2 are the horizontal and
vertical pixel indexes, αm ∈ ]0, 1], f1,m ∈ [0, π[, f2,m ∈ ] − π,π[
and φm ∈ [0, 2π[ are the unknown amplitude, horizontal frequency,
vertical frequency, and phase of the modulation pattern used to ac-
quire the m−th image, respectively. Only the modulation angle
changes, and not the frequency along the 1-D modulation direction;
that is, f2

1,m + f2
2,m is the same for all m. Note that, in addition to

the fact that the modulation parameters are unknown, the model is
only approximate: the excitation pattern is never exactly sinusoidal
and it can fluctuate along the time, for instance due to temperature
variations.

The number M of acquired images is the product of the num-
ber of different angles Mangle and the number of different phases
Mphase for each angle. So, for every m = 1, . . . ,Mphase, or m =
Mphase+1, . . . , 2Mphase, and so on, the frequencies f1,m and f2,m
are the same, only the phases φm are different. Moreover, theses
phases are separated by the integer multiples of 2π/Mphase. There-
fore, for every m′ = 1, . . . ,Mangle, we have

m′Mphase
∑

m=(m′−1)Mphase+1

cos(f1,mk1 + f2,mk2 + φm) = 0. (2)



Consequently, we define the image wm′ as

wm′ =
1

Mphase

m′Mphase
∑

m=(m′−1)Mphase+1

ym (3)

= x ∗ h+
1

Mphase

m′Mphase
∑

m=(m′−1)Mphase+1

εm ≈ x ∗ h. (4)

Thus, averaging the images obtained with same modulation angle
but different phases yields approximately the image that would have
been obtained with classical wide-field microscopy, without modu-
lation. So, for every angle, we compute this image wm′ averaged
over the phases and subtract it from the corresponding images ym:
for every m = 1, . . . ,M , we define the image vm = ym − wm′ ,
where m′ = ⌊(m − 1)/Mphase⌋ + 1. Then, the modulation and
convolution do not commute, but in first approximation, we have,
for every k1 = 1, . . . , N1, k2 = 1, . . . , N2,

vm[k1, k2] ≈ wm′ [k1, k2]βm cos(f1,mk1 + f2,mk2 + φm), (5)

for some unknown constant βm. Thus, given the images vm and
wm′ , our goal is to find estimates of f1,m, f2,m and φm by weighted
spectral estimation. More precisely, we want to solve the nonlinear
least-squares problem:

Find (β̃m, f̃1,m, f̃2,m, φ̃m) = argmin
β>0,f1∈[0,π[,f2∈]−π,π[,φ∈[0,2π[

N1
∑

k1=1

N2
∑

k2=1
∣

∣vm[k1, k2]− wm′ [k1, k2]β cos(f1k1 + f2k2 + φ)
∣

∣

2
. (6)

This parametric problem is very difficult to solve, because the cost
function to minimize is nonconvex and very oscillating, with many
local minima [7, 8]. Note that looking for the maximum of the am-
plitude of the Fourier transform of the image vm yields estimates of
the frequencies f̃1,m and f̃2,m, but on the Fourier grid: these values
will be multiples of 2π/N1 and 2π/N2, respectively. Such estimates
are too coarse for the reconstruction of the super-resolved image to
be effective; that is why we want to use a high resolution spectral
estimation technique [7], which is able to retrieve the parameters ex-
actly in absence of noise. So, in the next section, we extend to the
2-D case the original 1-D approach developed recently by the first
author in [8], which achieves maximum-likelihood estimation even
in presence of a significant amount of noise.

3. HIGH RESOLUTION ESTIMATION OF THE
MODULATION PARAMETERS

3.1. State of the art

Spectral analysis consists in retrieving the unknown amplitudes,
phases and frequencies of a sum of sinusoids or complex exponen-
tials, from noisy samples [7]. In 1-D, there is a vast literature on
spectral analysis and well-established subspace methods like MU-
SIC or ESPRIT; they are fast but suboptimal in comparison with
maximum-likelihood estimation, which is believed NP-hard in gen-
eral [8]. Spectral analysis in 2-D has been investigated for many
years [9] and some of the 1-D subspace methods have been extended
to 2-D [10–12]. In our context, these methods are not applicable,
because 1) they do not perform weighted spectral estimation; that is,
they do not account for the presence of the weight image wm′ in the
fit (6); 2) they require storage and SVD computations of very large
matrices, of size around N1.N2 × N1.N2, which is not practicable
for N1 = N2 = 512.

3.2. Proposed method

The proposed approach takes its roots in the annihilation property,
which dates back to Prony’s work in the eighteenth century [13]:
consider a sequence v = {vn}Nn=1 made of N ≥ 3 uniform samples
of a sinusoid; that is, for every n = 1, . . . , N , vn = η cos(ξn+ ϕ),
for some real parameters η, ξ,ϕ. Then, there exists a symmetric se-
quence h = {h1, h2, h3}, with h3 = h1, called the annihilating fil-
ter, such that the convolution of the sequences v and h is identically
zero:

∑3
k=1 hkvn+k−1 = 0, for every n = 1, . . . , N − 2. Thus,

the proposed method consists in denoising the noisy image vm, so
that it matches the form in the right-hand side of (5), by finding the
sinusoidal image c̃, with c̃[k1, k2] = cos(f̃1,mk1 + f̃2,mk2 + φ̃m)
for every k1, k2, solution to (6). Then, we easily find the two anni-
hilating filters h̃1 and h̃2, both symmetric and of size three, which
annihilate every row and column of c̃, respectively. The two roots
of the polynomial h̃1,1z

2 + h̃1,2z + h̃1,3 are, with very high proba-

bility, on the complex unit circle, and are e+jf̃1,m and e−jf̃1,m . We
retrieve the frequency ±f̃2,m from h̃2, the same way. Finally, us-

ing a linear regression, we find the complex amplitude β̃mejφ̃m and
disambiguate the sign of f̃2,m. We refer to [8] for more details on

this procedure, which yields the estimates f̃1,m, f̃2,m, φ̃m, β̃m from
the sinusoidal image c̃. In the sequel, we describe the core of our
approach, which is how the image c̃ is computed.

First, let us define the orthogonal operator T1, which maps an
image of size N1 × N2, with N1 ≥ 5, viewed as a matrix of size
N2×N1, to a centro-symmetric Toeplitz matrix of size 6N2×N1−2
as follows: each row of the image is mapped to a Toeplitz matrix of
size 3×N1 − 2 and these matrices are stacked on top of each other.
Finally, the obtained matrix is duplicated, the order of the rows and
columns is reversed, and this duplicated matrix is stacked under the
first one. A small example is the following:

[

a1,1 a1,2 a1,3 a1,4 a1,5

a2,1 a2,2 a2,3 a2,4 a2,5

]

T1)→

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a1,3 a1,4 a1,5

a1,2 a1,3 a1,4

a1,1 a1,2 a1,3

a2,3 a2,4 a2,5

a2,2 a2,3 a2,4

a2,1 a2,2 a2,3

a2,3 a2,2 a2,1

a2,4 a2,3 a2,2

a2,5 a2,4 a2,3

a1,3 a1,2 a1,1

a1,4 a1,3 a1,2

a1,5 a1,4 a1,3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(7)
We also define the matrix p of size 6N2×N1−2, whose every entry
is the inverse of the number of times the entry at same position in the
output of T1 has been repeated. For the small example above, one
has

p=

⎡

⎣

1/6 1/4 1/2 1/6 1/4 1/2 1/6 1/4 1/2 1/6 1/4 1/2
1/4 1/6 1/4 1/4 1/6 1/4 1/4 1/6 1/4 1/4 1/6 1/4
1/2 1/4 1/6 1/2 1/4 1/6 1/2 1/4 1/6 1/2 1/4 1/6

⎤

⎦

T

(8)
We also define the operator T2 : v )→ T1(v

T). Then, one can show
[7] that if c is an image of a sinusoid, then T1(c) and T2(c) are both
of rank only two. Hence, our approach consists in computing the
matrices t̃1 and t̃2 of rank 2, such that t̃1 = T1(c̃) and t̃2 = T2(c̃),
where c̃ is the desired sinusoidal image. That is, we we want to solve
the structured low-rank approximation problem [14]:



Considered matrix approximation problem:
Find the pair of matrices (t̃1, t̃2) ∈ argmin

t1,t2∈R6N2×N1−2

∥

∥(
√
p,
√
p) ◦

(

T1(wm′) ◦ t1 − T1(vm), T2(wm′) ◦ t2 − T2(vm)
)
∥

∥

2

F

s.t. (t1, t2) ∈ T , rank(t1) = 2, rank(t2) = 2, (9)

where ◦ is the Hadamard entrywise product of matrices, the square
root is taken entrywise, ∥ · ∥F is the Frobenius norm, and we define
the set T = {(T1(c), T2(c)) : c ∈ R

N2×N1}. The orthogonal
projection PT of a pair of matrices (t1, t2) onto T is simply done by
averaging and the orthogonal projection PR2 of a matrix onto the set
of matrices of rank at most 2 is done by SVD truncation; see more
details in [8] for these two operations. To solve the problem (9), we
alternate between a gradient descent with respect to the cost func-
tion, which is the squared Frobenius norm, and the two projections
PT and PR2 to enforce the constraints. The iterative algorithm is
the following:

Proposed algorithm to solve (9):
Choose the parameters µ > 0, γ ∈ ]0, 1[, and the initial estimates

t(0)1 , t(0)2 , s(0)1 , s(0)2 . Then iterate, for every l ≥ 0,
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t(l+1)
1 = PR2

(

s(l)1 + γ(t(l)1 − s(l)1 )− µ p ◦ T1(wm′) ◦
(

T1(wm′) ◦ t(l)1 − T1(vm)
)

)

,

t(l+1)
2 = PR2

(

s(l)2 + γ(t(l)2 − s(l)2 )− µ p ◦ T2(wm′) ◦
(

T2(wm′) ◦ t(l)2 − T2(vm)
)

)

,

(s(l+1)
1 , s(l+1)

2 ) = (s(l)1 , s(l)2 )− (t(l+1)
1 , t(l+1)

2 ) +

PT

(

2(t(l+1)
1 , t(l+1)

2 )− (s(l)1 , s(l)2 )
)

.

The algorithm can be shown to converge when it is applied to
solve problems with two convex constraint sets [8], but in our case,
the set R2 is not convex, so that there is no guarantee of conver-
gence. But we found out empirically that the algorithm always yields
the expected solution, for an appropriate choice of the parameters µ
and γ. For our experiments, we use µ = 0.1, γ = 0.5, and we

initialize the images t(0)1 , t(0)2 , s(0)1 , s(0)2 as identically zero. A few
iterations are enough to yield an estimate of the sinusoidal image
c̃, but about 1,000 iterations are necessary to achieve convergence
within machine precision, which takes several minutes.

We tested our method on a real dataset, see fig. 1 and its caption
for illustrations and details. The estimated frequencies are summa-
rized in the table below. The std. dev. of the frequencies around their
mean for the corresponding angle is 5e-4. f̃2

1,m + f̃2
2,m is almost the

same for every m, around 0.7485 with std. dev. 2e-3.

m = 1, . . . , 5
f̃1,m 0.8415 0.8415 0.8407 0.8416 0.8412

f̃2,m 0.2004 0.2005 0.1993 0.2006 0.1997
m = 6, . . . , 10

f̃1,m 0.5955 0.5953 0.5955 0.5958 0.5954

f̃2,m -0.6296 -0.6301 -0.6293 -0.6285 -0.6291
m = 11, . . . , 15

f̃1,m 0.2466 0.2465 0.2457 0.2459 0.2458

f̃2,m 0.8289 0.8295 0.8273 0.8285 0.8283

4. CONCLUSION

We proposed a new algorithm for 2-D weighted spectral estima-
tion, based on a annihilation technique robust to noise, and applied
it to retrieve the parameters of the sinusoidal modulation in images
acquired by structured illumination microscopy. Future work will in-

clude theoretical and experimental performance evaluation and com-
parison with other methods. Moreover, the impact of the estimation
quality of the modulation parameters on the quality of the recon-
structed super-resolved image, using for instance the method pro-
posed in our companion paper [15], remains to be studied. A Matlab
implementation of the method is available on the webpage of the first
author.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 1. (a)–(d): the four images y1, y6, y11, y12 of a data set of fifteen images, with Mangle = 3 angles and Mphase = 5 phases for each
angle. So, the images in (a)–(c) have been acquired with different modulation angles and the image in (d) has been acquired with the same
angle as the image in (c), but with a different phase. The microscope is a Nikon N–SIM and the image sample is a LifeAct (mCherry) stably
transfected RPE fixed cell. The images are of size 512 × 512. (e): the image w1, which is the average of the five images y1, y2, y3, y4, y5,
acquired with same modulation angle but different phases. (f): the difference image v1 between the image y1 in (a) and the average image w1

in (e). (g): the computed image c̃ solution to (6). (h): the entrywise product w1 ◦ c̃, which can be viewed as a denoised version of the image
v1 in (f), in the sense of the model (5). The images in (f), (g), (h) have been normalized, so that zero values are represented by a middle gray.


