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Structured illumination microscopy is a recent imaging technique that aims at going beyond the classical optical resolution limits by reconstructing a high-resolution image from several low-resolution images acquired through modulation of the transfer function of the microscope. A precise knowledge of the sinusoidal modulation parameters is necessary to enable the super-resolution effect expected after reconstruction. In this work, we investigate the retrieval of these parameters directly from the acquired data, using a novel 2-D spectral estimation method.

INTRODUCTION

Optical microscopy has become a key research tool in modern biology. However, its resolution, which is the ability to discriminate small and close objects, is intrinsically limited by light diffraction. Because a microscope has a lowpass transfer function, the highfrequency content of the scene is lost, and the acquired image is blurry. Several techniques have been proposed to improve the resolution of microscopy; in this article, we focus on the recently developed approach of structured illumination microscopy (SIM) [START_REF] Gustafsson | Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[END_REF][START_REF] Gustafsson | Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination[END_REF]. The idea of SIM is to illuminate the object with a sinusoidal fringe pattern, so that the high frequency content of the imaged scene is aliased as low frequency content, which is not canceled by the transfer function of the microscope. This way, the frequency content of the acquired image is a mixture of the low and high frequency parts of the spectrum of the unknown desired image, which must be separated subsequently. Thus, several images are acquired with different modulation angles and phases, so that the disambiguation process is possible [START_REF] Gustafsson | Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[END_REF][START_REF] Conchello | Image estimation for structured-illumination microscopy[END_REF][START_REF] Orieux | Bayesian estimation for optimized structured illumination microscopy[END_REF][START_REF] Stoker | An estimation theoretic framework for structured illumination microscopy[END_REF]. However, the modulation frequencies and phases must be known precisely for the reconstruction to achieve the desired goal. Even a small error on these parameters can have disastrous effects, since not only the super-resolution effect is lost, but also the reconstructed image is corrupted with remaining oscillating artifacts [START_REF] Shaefer | Structured illumination microscopy: artefact analysis and reduction utilizing a parameter optimization approach[END_REF]. Moreover, calibration of the device prior to acquisition, to estimate the unknown modulation parameters, is not appropriate, since even a small perturbation can change them; we recall that the unit of space considered here is a few microns. We believe that this is the sensitivity of SIM to the modulation parameters which has hampered its wide diffusion until now. Therefore, we focus in this paper on robust and precise estimation of these parameters, directly from the acquired set of modulated images.

The paper is organized as follows. In sect. 2, we model the setup of SIM and formulate the considered problem. In sect. 3, we briefly recall the state of the art in 2-D spectral estimation and we present our new method. Finally, we present the estimation results on a real image stack.

IMAGING MODEL AND PROBLEM FORMULATION

In SIM, the sample to be acquired is illuminated with an incoherent sinusoidal pattern of light. Neglecting the 3-D aspects and reasoning on the image in the focal plane, the forward acquisition model is the following: x ∈ R N 1 ×N 2 is the unknown sought-after image, of size N1×N2. The set of acquired images ym ∈ R N 1 ×N 2 , m = 1, . . . M, are such that ym = um * h + εm, where * denotes convolution, h is the 2-D point-spread function of the microscope, εm is a nuisance image modeling the random noise and the model imprecisions, and

um[k1, k2] = x[k1, k2] 1+αm cos(f1,mk1 +f2,mk2 +φm) , (1) 
where k1 = 1, . . . , N1 and k2 = 1, . . . , N2 are the horizontal and vertical pixel indexes, αm ∈ ]0, 1], f1,m ∈ [0, π[, f2,m ∈ ] -π, π[ and φm ∈ [0, 2π[ are the unknown amplitude, horizontal frequency, vertical frequency, and phase of the modulation pattern used to acquire the m-th image, respectively. Only the modulation angle changes, and not the frequency along the 1-D modulation direction; that is,

f 2 1,m + f 2 2,m
is the same for all m. Note that, in addition to the fact that the modulation parameters are unknown, the model is only approximate: the excitation pattern is never exactly sinusoidal and it can fluctuate along the time, for instance due to temperature variations.

The number M of acquired images is the product of the number of different angles M angle and the number of different phases M phase for each angle. So, for every m = 1, . . . , M phase , or m = M phase +1, . . . , 2M phase , and so on, the frequencies f1,m and f2,m are the same, only the phases φm are different. Moreover, theses phases are separated by the integer multiples of 2π/M phase . Therefore, for every m ′ = 1, . . . , M angle , we have

m ′ M phase m=(m ′ -1)M phase +1 cos(f1,mk1 + f2,mk2 + φm) = 0. (2)
Consequently, we define the image w m ′ as

w m ′ = 1 M phase m ′ M phase m=(m ′ -1)M phase +1 ym (3) = x * h + 1 M phase m ′ M phase m=(m ′ -1)M phase +1 εm ≈ x * h. (4)
Thus, averaging the images obtained with same modulation angle but different phases yields approximately the image that would have been obtained with classical wide-field microscopy, without modulation. So, for every angle, we compute this image w m ′ averaged over the phases and subtract it from the corresponding images ym: for every m = 1, . . . , M, we define the image vm = ym -w m ′ , where m ′ = ⌊(m -1)/M phase ⌋ + 1. Then, the modulation and convolution do not commute, but in first approximation, we have, for every k1 = 1, . . . , N1, k2 = 1, . . . , N2, vm[k1, k2] ≈ w m ′ [k1, k2]βm cos(f1,mk1 + f2,mk2 + φm), [START_REF] Stoker | An estimation theoretic framework for structured illumination microscopy[END_REF] for some unknown constant βm. Thus, given the images vm and w m ′ , our goal is to find estimates of f1,m, f2,m and φm by weighted spectral estimation. More precisely, we want to solve the nonlinear least-squares problem:

Find ( βm, f1,m, f2,m, φm) = arg min β>0,f 1 ∈[0,π[,f 2 ∈]-π,π[,φ∈[0,2π[ N 1 k 1 =1 N 2 k 2 =1 vm[k1, k2] -w m ′ [k1, k2]β cos(f1k1 + f2k2 + φ) 2 . (6) 
This parametric problem is very difficult to solve, because the cost function to minimize is nonconvex and very oscillating, with many local minima [START_REF] Stoica | Spectral Analysis of Signals[END_REF][START_REF] Condat | Cadzow denoising upgraded: A new projection method for the recovery of Dirac pulses from noisy linear measurements[END_REF]. Note that looking for the maximum of the amplitude of the Fourier transform of the image vm yields estimates of the frequencies f1,m and f2,m, but on the Fourier grid: these values will be multiples of 2π/N1 and 2π/N2, respectively. Such estimates are too coarse for the reconstruction of the super-resolved image to be effective; that is why we want to use a high resolution spectral estimation technique [START_REF] Stoica | Spectral Analysis of Signals[END_REF], which is able to retrieve the parameters exactly in absence of noise. So, in the next section, we extend to the 2-D case the original 1-D approach developed recently by the first author in [START_REF] Condat | Cadzow denoising upgraded: A new projection method for the recovery of Dirac pulses from noisy linear measurements[END_REF], which achieves maximum-likelihood estimation even in presence of a significant amount of noise.

HIGH RESOLUTION ESTIMATION OF THE MODULATION PARAMETERS

State of the art

Spectral analysis consists in retrieving the unknown amplitudes, phases and frequencies of a sum of sinusoids or complex exponentials, from noisy samples [START_REF] Stoica | Spectral Analysis of Signals[END_REF]. In 1-D, there is a vast literature on spectral analysis and well-established subspace methods like MU-SIC or ESPRIT; they are fast but suboptimal in comparison with maximum-likelihood estimation, which is believed NP-hard in general [START_REF] Condat | Cadzow denoising upgraded: A new projection method for the recovery of Dirac pulses from noisy linear measurements[END_REF]. Spectral analysis in 2-D has been investigated for many years [START_REF] Kimura | A hybrid approach to high resolution two-dimensional spectrum analysis[END_REF] and some of the 1-D subspace methods have been extended to 2-D [START_REF] Hua | Estimating two-dimensional frequencies by matrix enhancement and matrix pencil[END_REF][START_REF] Rouquette | Estimation of frequencies and damping factors by two-dimensional ESPRIT type methods[END_REF][START_REF] Huang | Multidimensional sinusoidal frequency estimation using subspace and projection separation approaches[END_REF]. In our context, these methods are not applicable, because 1) they do not perform weighted spectral estimation; that is, they do not account for the presence of the weight image w m ′ in the fit (6); 2) they require storage and SVD computations of very large matrices, of size around N1.N2 × N1.N2, which is not practicable for N1 = N2 = 512.

Proposed method

The proposed approach takes its roots in the annihilation property, which dates back to Prony's work in the eighteenth century [START_REF] Blu | The generalized annihilation property-A tool for solving finite rate of innovation problems[END_REF]: consider a sequence v = {vn} N n=1 made of N ≥ 3 uniform samples of a sinusoid; that is, for every n = 1, . . . , N, vn = η cos(ξn + ϕ), for some real parameters η, ξ, ϕ. Then, there exists a symmetric sequence h = {h1, h2, h3}, with h3 = h1, called the annihilating filter, such that the convolution of the sequences v and h is identically zero: 3 k=1 h k v n+k-1 = 0, for every n = 1, . . . , N -2. Thus, the proposed method consists in denoising the noisy image vm, so that it matches the form in the right-hand side of (5), by finding the sinusoidal image c, with c[k1, k2] = cos( f1,mk1 + f2,mk2 + φm) for every k1, k2, solution to [START_REF] Shaefer | Structured illumination microscopy: artefact analysis and reduction utilizing a parameter optimization approach[END_REF]. Then, we easily find the two annihilating filters h1 and h2, both symmetric and of size three, which annihilate every row and column of c, respectively. The two roots of the polynomial h1,1z

2 + h1,2z + h1,3 are, with very high probability, on the complex unit circle, and are e +j f1,m and e -j f1,m . We retrieve the frequency ± f2,m from h2, the same way. Finally, using a linear regression, we find the complex amplitude βme j φm and disambiguate the sign of f2,m. We refer to [START_REF] Condat | Cadzow denoising upgraded: A new projection method for the recovery of Dirac pulses from noisy linear measurements[END_REF] for more details on this procedure, which yields the estimates f1,m, f2,m, φm, βm from the sinusoidal image c. In the sequel, we describe the core of our approach, which is how the image c is computed.

First, let us define the orthogonal operator T1, which maps an image of size N1 × N2, with N1 ≥ 5, viewed as a matrix of size N2 ×N1, to a centro-symmetric Toeplitz matrix of size 6N2 ×N1-2 as follows: each row of the image is mapped to a Toeplitz matrix of size 3 × N1 -2 and these matrices are stacked on top of each other. Finally, the obtained matrix is duplicated, the order of the rows and columns is reversed, and this duplicated matrix is stacked under the first one. A small example is the following: a1,1 a1,2 a1,3 a1,4 a1,5 a2,1 a2,2 a2,3 a2,4 a2,5

T 1 → ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
a1,3 a1,4 a1,5 a1,2 a1,3 a1,4 a1,1 a1,2 a1,3 a2,3 a2,4 a2,5 a2,2 a2,3 a2,4 a2,1 a2,2 a2,3 a2,3 a2,2 a2,1 a2,4 a2,3 a2,2 a2,5 a2,4 a2,3 a1,3 a1,2 a1,1 a1,4 a1,3 a1,2 a1,5 a1,4 a1,3

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (7)
We also define the matrix p of size 6N2 × N1 -2, whose every entry is the inverse of the number of times the entry at same position in the output of T1 has been repeated. For the small example above, one has We also define the operator T2 : v → T1(v T ). Then, one can show [START_REF] Stoica | Spectral Analysis of Signals[END_REF] that if c is an image of a sinusoid, then T1(c) and T2(c) are both of rank only two. Hence, our approach consists in computing the matrices t1 and t2 of rank 2, such that t1 = T1(c) and t2 = T2(c), where c is the desired sinusoidal image. That is, we we want to solve the structured low-rank approximation problem [START_REF] Markovsky | Low Rank Approximation: Algorithms, Implementation, Applications[END_REF]: 

p = ⎡ ⎣ 1/6 1/
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Fig. 1 .

 1 Fig. 1. (a)-(d): the four images y1, y6, y11, y12 of a data set of fifteen images, with M angle = 3 angles and M phase = 5 phases for each angle. So, the images in (a)-(c) have been acquired with different modulation angles and the image in (d) has been acquired with the same angle as the image in (c), but with a different phase. The microscope is a Nikon N-SIM and the image sample is a LifeAct (mCherry) stably transfected RPE fixed cell. The images are of size 512 × 512. (e): the image w1, which is the average of the five images y1, y2, y3, y4, y5, acquired with same modulation angle but different phases. (f): the difference image v1 between the image y1 in (a) and the average image w1 in (e). (g): the computed image c solution to (6). (h): the entrywise product w1 • c, which can be viewed as a denoised version of the image v1 in (f), in the sense of the model (5). The images in (f), (g), (h) have been normalized, so that zero values are represented by a middle gray.
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Considered matrix approximation problem:

Find the pair of matrices ( t1, t2) ∈ arg min

where • is the Hadamard entrywise product of matrices, the square root is taken entrywise, ∥ • ∥F is the Frobenius norm, and we define the set

The orthogonal projection PT of a pair of matrices (t1, t2) onto T is simply done by averaging and the orthogonal projection PR 2 of a matrix onto the set of matrices of rank at most 2 is done by SVD truncation; see more details in [START_REF] Condat | Cadzow denoising upgraded: A new projection method for the recovery of Dirac pulses from noisy linear measurements[END_REF] for these two operations. To solve the problem [START_REF] Kimura | A hybrid approach to high resolution two-dimensional spectrum analysis[END_REF], we alternate between a gradient descent with respect to the cost function, which is the squared Frobenius norm, and the two projections PT and PR 2 to enforce the constraints. The iterative algorithm is the following:

Proposed algorithm to solve (9): Choose the parameters µ > 0, γ ∈ ]0, 1[, and the initial estimates

2 . Then iterate, for every l ≥ 0, t

2 ) . The algorithm can be shown to converge when it is applied to solve problems with two convex constraint sets [START_REF] Condat | Cadzow denoising upgraded: A new projection method for the recovery of Dirac pulses from noisy linear measurements[END_REF], but in our case, the set R2 is not convex, so that there is no guarantee of convergence. But we found out empirically that the algorithm always yields the expected solution, for an appropriate choice of the parameters µ and γ. For our experiments, we use µ = 0.1, γ = and we initialize the images t

2 as identically zero. A few iterations are enough to yield an estimate of the sinusoidal image c, but about 1,000 iterations are necessary to achieve convergence within machine precision, which takes several minutes. We tested our method on a real dataset, see fig. 1 and its caption for illustrations and details. The estimated frequencies are summarized in the table below. The std. dev. of the frequencies around their mean for the corresponding angle is 5e-4. 

CONCLUSION

We proposed a new algorithm for 2-D weighted spectral estimation, based on a annihilation technique robust to noise, and applied it to retrieve the parameters of the sinusoidal modulation in images acquired by structured illumination microscopy. Future work will in-clude theoretical and experimental performance evaluation and comparison with other methods. Moreover, the impact of the estimation quality of the modulation parameters on the quality of the reconstructed super-resolved image, using for instance the method proposed in our companion paper [START_REF] Boulanger | Non-smooth convex optimization for an efficient reconstruction in structured illumination microscopy[END_REF], remains to be studied. A Matlab implementation of the method is available on the webpage of the first author.