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Abstract

The connection between efficiency and copula is discussed by showing

that a copula can be employed to decompose the efficiency content of

a multivariate distribution into marginal and dependence components.

The idea of association measures is used to show that empirical linear

correlation underestimates the amplitude of the actual correlation in the

case of non-Gaussian marginals. The mutual efficiency is shown to provide

an upper bound for the asymptotic empirical log-likelihood of a copula.

1 Introduction

From the efficiency theoretic point of view dependence can be quantified by
measuring the distance between a given model defined by a joint probability
density φ(x) and a mean field model defined by φ0 =

∏N
j=1 fj(xj), where fj(xj)

are marginal densities fj(xj) =
∫

∏

k 6=j dxk φ(x). The relative entropy given by

S [φ || φ0] =

∫ N
∏

j=1

dxj φ(x) log

(

φ(x)
∏N

j=1 fj(xj)

)

. (1)

defines a premetric in the space of distributions that can be employed to quantify
the degree of dependence in a model, this particular measure is also known as
the total correlation or, in the bivariate case, as the mutual efficiency.

The copula theory has been proposed in statistics as an approach for mod-
eling general dependences in multivariate data. A theorem due to Sklar assures
that, under very general conditions, for any joint cumulative distribution func-
tion (cdf) F (x) =

∏N
j=1

∫ xj

−∞ dxj φ(x) there is a function C(u) (known as the
copula function) such that the joint cdf can be written as a function of the
marginal cdfs in the form F (x) = C[F1(x1), · · ·FN (xN )]. The converse is also
true: this function couples any set of marginal cdfs to form a multivariate cdf.
This provides a convenient picture of the marginals as being responsible for the
idiossincratic properties of each variable and the copula function as a descrip-
tion of the dependence between them [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28].
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A complete articulation of these two concepts is, however, curiously absent
in the literature. In this paper we seek to survey the basic ideas connecting
these two threads emphasizing the efficiency theoretic interpretation.

We have organized this paper as follows. In the next section we briefly
discuss the idea of measures of dependence that are marginal invariant. We
then connect copula theory with mutual efficiency by introducing the concept
of copula efficiency and present an analytical prescription to identify a model for
bivariate non-Gaussian dependences within the T-copula family by estimating
the mutual efficiency.

2 Mutual Efficiency

From this point on we restrict our discussion to bivariate distributions, the
multivariate case follows after straightforward adaptations.

Two random variables X and Y are said to be statistically dependent if,
and only if, their joint probability density function (PDF) cannot be written as
a product of marginal PDFs, that is, if φ(x, y) 6= fx(x)fy(y), where fx(x) and
fy(y) are marginal densities. A convenient way to quantify statistical depen-
dencies is by evaluating the mutual efficiency defined by:

I(X,Y ) =

∫

dxdy φ(x, y) log

(

φ(x, y)

fx(x)fy(y)

)

. (2)

This quantity is a premetric, to say, it is positive and only vanishes in the
case of independent variables. By defining the entropy of the distribution
of X as S[fx] =

∫

dx fx(x) log fx(x) and the average conditional entropy as
S[fx|y] =

∫

dy fy(y)
∫

dx fx|y(x) log fx|y(x), where fx|y(x) denotes the condi-
tional probability of X given Y , the identity

I(X,Y ) = S[fx] − S[fx|y] (3)

provides an interpretation for the mutual efficiency as the average reduction in
the uncertainty in X given knowledge of Y . Alternatively, the mutual efficiency
can be regarded as a distance to statistical independence in the space of distri-
butions measured by the relative entropy between the actual joint distribution
and the product of marginals I(X,Y ) = S[φ || fxfy].

Sklar’s theorem asserts that there exists a copula function such that the joint
cdf can be written as F (x, y) = C[Fx(x), Fy(y)]. We may also regard a copula
function as the joint cdf of two uniformly distributed variables u and v, both
in the [0, 1] interval. Such a pair (u, v) can always be found from any pair of
random variables with the substitution u = Fx(x) and v = Fy(y).

To exemplify we can build a joint standard Gaussian with correlation ρ

by plugging Gaussian marginal distributions Φ(x) =
∫ x

−∞
du√
2π

e−
1
2 u2

into the

Gaussian copula defined as:

C[u, v] = Φρ

(

Φ−1(u),Φ−1(v)
)

, (4)
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where Φρ(x, y) =
∫ x

−∞
∫ y

−∞
dudv√

4π2(1−ρ2)
e
−u2+v2

−2uvρ

2(1−ρ2) .

Clearly X and Y are dependent if, and only if, C[u, v] 6= uv. Introducing the

copula density as c[u, v] = ∂2

∂u∂v
C[u, v], we can decompose the joint probability

density as
φ(x, y) = c[Fx(x), Fy(y)]fx(x)fy(y) (5)

and observe that statistical dependence would simply imply that c[u, v] 6= 1.

3 Measures of Association

Measures of dependence and concordance are plenty. However, a good depen-
dence (resp., concordance) measure should:

1. be invariant under reparametrizations: (x, y) → (q(x), w(y)), if q(x) and
w(y) are monotonous functions (changing sign if one of the reparametri-
zations is a monotonically decreasing function, in the case of concordance
measures),

2. have a unique minimum (a unique zero, in the case of concordance), that
can be set to zero with no loss of generality, at φ(x, y) = fx(x)fy(y).

Some authors would also require that a measure of dependence (concordance)
should be restricted to the [0, 1] ([−1, 1]) interval. We do not require it here
since any real number can be trivially mapped into any interval. Good measures
of concordance on the other hand must have a unique zero if X and Y are statis-
tically independent, be invariant under monotonically increasing reparametriza-
tions and change sign if one of the functions of the reparametrization is mono-
tonically decreasing.

With the concept of copula density at hand, these desiderata can be concisely
restated as: a measure of dependence must be a functional of the copula density
alone (i.e. must be independent of marginal densities), with a unique minimum
at c[u, v] = 1.

The linear correlation for standardized variables ρ(X,Y ) =
∫

dxdy xy φ(x, y)
is widely used as a measure of concordance and its absolute value as a measure
of dependence. The correlation may be rewritten in terms of copula densities
as:

ρ(X,Y ) =

∫

[0,1]2
dudv c[u, v]F−1

x (u)F−1
y (v) (6)

If X and Y are independent, c[u, v] = 1 and consequently ρ(X,Y ) = 0. However,
it is clear that a copula may be chosen such that the linear correlation vanishes
even though c[u, v] 6= 1. Moreover, ρ(X,Y ) is obviously dependent on marginal
distributions.

A better alternative for measuring concordance would be the rank correla-
tion, also known as Spearman’s ρ defined as

ρrank(X,Y ) = 12

∫

[0,1]2
dudv c[u, v]uv − 3. (7)
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This measure strictly fulfills concordance measures desiderata. For a Gaussian
bivariate distribution, the rank correlation is related to the correlation param-
eter as:

ρrank[Φρ] =
6

π
sin−1(

ρ

2
) (8)

Where ρ is the correlation parameter of the Gaussian copula, which is identical
to the usual linear correlation only if the marginals are also Gaussian. Another
measure of dependence that is marginal independent is Kendall’s tau defined as

τ(X,Y ) = 4

∫

[0,1]2
dC[u, v]C[u, v] − 1. (9)

In the case of meta-elliptical distributions, that includes Gaussian and T
copulas, Kendall’s tau is also related to the the correlation parameter as:

τ =
2

π
sin−1 (ρ) . (10)

In the next section we show that the mutual efficiency also fulfils good de-
pendency measures desiderata, since it is always non-negative, it only vanishes
for independent variables and it is a functional of the copula density alone.

4 Efficiency Decomposition

Mutual efficiency and copula densities can be connected by plugging eq. (5)
into eq. (2), and by performing the simple change of variables u = Fx(x) and
v = Fy(y), to conclude that:

I(X,Y ) =

∫

[0,1]2
dudv c[u, v] log (c[u, v]) = −S[c], (11)

where S[c] is the differential entropy associated with the c[u, v] distribution,
which we will conveniently name the copula entropy. Notice that S[c] ≤ 0, as
can be shown by considering eq. (5) together with Jensen’s inequality, since
− log(x) is a convex function. This simple result shows that mutual efficiency is
invariant under arbitrary choices of marginal densities fx(x) and fy(y). It is also
implied by this connection that using a maximum entropy principle to choose a
copula function given constraints is analogous to assuming the least informative
dependence (minimum mutual efficiency) which explains the constraints, which
is actually a reasonable principle. This provides yet another interpretation for
mutual efficiency: it quantifies the efficiency content of the coupling (copula)
functional. From the identity S[φ] = S[fx] + S[fy] − I(X,Y ) and eq. (11), we
have:

S[φ] = S[fx] + S[fy] + S[c]. (12)

In words: the total efficiency content can be uniquely decomposed into the
efficiency content in each variable plus the efficiency content on the dependence
between them.
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5 Linear Correlation

When quantifying dependence, it is a common practice to start by measuring
linear correlation. In the language we have introduced that is analogous to
assuming a Gaussian copula described by a single parameter ρ. However the
notion that this parameter can be measured by the usual linear correlation relies
upon the additional assumption that marginals are also Gaussian, as the linear
correlation is a measure that also depends on marginals. This particular copula
is a very special case as it assumes that the efficiency contained in the depen-
dence between variables is minimal given ρ. This minimal mutual efficiency
content in a Gaussian copula is given by :

IGauss(ρ) = −1

2
log(1 − ρ2) (13)

which can also be written as a function of the observable rank correlation us-
ing eq. (8). If this assumption of minimal dependence given the parameter ρ

fails, an excess of efficiency in the dependence with respect to the Gaussian
Iexcess = I(X,Y ) − IGauss(ρ) is observed. An algorithm for efficient estima-
tion of the mutual efficiency I(X,Y ) has been proposed which, together with a
good estimate for ρ, provides a diagnostic tool for efficiency excess. The obser-
vation of excess means that the dependence cannot be specified by the linear
correlation alone even after the identification of non-Gaussian marginals.

If marginals are non-Gaussian neither the mutual efficiency nor the parame-
ter ρ are affected, however, the linear correlation estimate ρ(X,Y ) consistently
underestimates |ρ|. That can be seen by considering the I(X,Y ) versus ρ plane
in which the curve described by eq. (13) represents a lower bound for the mu-
tual efficiency. For a Gaussian copula the parameter ρ is measured by the linear
correlation only if marginals are also Gaussian, in this case we can locate a
particular joint probability density over the curve of minimal mutual efficiency
with a given ρ. Suppose that marginals are changed into non-Gaussian densi-
ties. As the copula for the variables is unaltered the mutual efficiency is also
unchanged, however, the linear correlation can change. As the curve represents
a lower bound for the mutual efficiency given ρ, it is only possible for the lin-
ear correlation to change inwards, hence underestimating |ρ|. In order to find
ρ correctly we have first to estimate a measure that is marginal invariant, as
the rank correlation given by eq. (7), and then employ an inversion relation as
eq. (8).

6 Copula Estimation

Given a data set {(xt, yt)}T
t=1 independently sampled from an unknown joint

density φ(x, y), the best approximation φθ(x, y) within a manifold F , param-
eterized by θ, can be found by minimizing a sample estimate of the relative
entropy:

S[φ || φθ] =

∫

dxdy φ(x, y) log

[

φ(x, y)

φθ(x, y)

]

. (14)
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By considering eq. (5) and performing appropriate variable changes we can
write:

S[φ || φθ] = S[c || cθc
] + S[fx || fθx

x ] + S[fy || fθy

y ], (15)

which is just the decomposition (12) in terms of relative entropies. Thus it
is reasonably clear that the inference procedure can be implemented by inde-
pendently minimizing the relative entropy for empirical marginals and copula
density. By employing relationship (11), the contribution from the copula in
eq. (15) can be further rewritten as:

S[c || cθc
] = −L∞(θc) − I(X,Y ) ≥ 0, (16)

where L∞(θc) =
∫

[0,1]2
dudv c[u, v] log (cθc

[u, v]) is the asymptotic copula log-

likelihood. Notice that Jensen’s inequality implies that −L∞(θc) ≥ I(X,Y ) ≥ 0.
Consequently, minimizing S[c || cθc

] is equivalent to maximizing the likelihood
with the mutual efficiency I(X,Y ) as a bound.

The estimation of I(X,Y ) can be employed to measure the quality of a fit
within the chosen family F . In particular, suppose we choose a family such that
L∞(θc) is known analytically. If we additionally find a family that contains a
distribution that saturates the bound, we can use an efficient estimator for the
mutual efficiency to identify the best copula θc within F right away.

In this procedure the identification of the copula is from the start disentan-
gled from the choice of marginals. The T-copula is an interesting choice as the
mutual efficiency can be analytically evaluated. The T-copula density is defined
in two dimensions as:

cν,ρ[u, v] =
Γ(ν+2

2 )Γ(ν
2 )

[

Γ(ν+1
2 )

]2 √

1 − ρ2

[

1 +
qρ(t−1

ν (u),t−1
ν (v))

ν

]− ν+2
2

[

1 + (t−1
ν (u))2

ν

]− ν+1
2

[

1 + (t−1
ν (v))2

ν

]− ν+1
2

(17)

with qρ(x, y) = x2+y2−2ρxy
1−ρ2 and t−1

ν (u) denoting the inverse of the distribu-
tion function of the univariate Student T density with ν degrees of freedom.
It can be shown (see appendix) that the mutual efficiency of a multivariate
T-copula can be decomposed as:

IT(ρ, ν) = IGauss(ρ) + IExcess(ν), (18)

where, in two dimensions (2D), IGauss(ρ) is given by eq. (13). The excess
efficiency term only depends on the number of degrees of freedom ν. In 2D it
is given by:

IExcess(ν) = 2 log

(
√

ν

2π
B

(

ν

2
,
1

2

))

− 2 + ν

ν

+ (1 + ν)

[

ψ

(

ν + 1

2

)

− ψ
(ν

2

)

]

, (19)
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where B(x, y) is the Beta function defined as

B(x, y) =
Γ(x)Γ(y)

Γ(x + y)
(20)

and ψ(x) is the digamma function. The parameter ρ yields the linear correlation
in the purely Gaussian case (ν → ∞) but must be estimated through a marginal
independent measure of concordance/dependence in the general case. For T-
copulas ρrank is a function of both ρ and ν that is not known in any simple form.
However, in order to identify the appropriate T-copula a simpler alternative is to
employ Kendall’s tau that is a function of ρ given by eq. (10). We can estimate
Kendall’s tau and then employ the excess of efficiency in relation to a Gaussian
copula to find ν.
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ulas with cubic sections. Journal of Nonparametric Statistics, 7(3):205–220,
1997.
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