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Abstract

Effective presentation of data for decision supf®g major issue when large volumes of data
are generated as happens in the Intensive Care (\@Glit). Although the most common
approach is to present the data graphically, itbeen shown that textual summarisation can
lead to improved decision making. As part of théoyBealk project, we present a prototype,
called BT-45, which generates textual summariesabbut 45 minutes of continuous
physiological signals and discrete events (e.guipggent settings and drug administration). Its
architecture brings together techniques from tliferdint areas of signal processing, medical
reasoning, knowledge engineering, and natural laggugeneration. A clinical off-ward
experiment in a Neonatal ICU (NICU) showed that harexpert textual descriptions of NICU
data lead to better decision making than classigaphical visualisation, whereas texts
generated by BT-45 lead to similar quality decisinaking as visualisations. Textual analysis
showed that BT-45 texts were inferior to human expexts in a number of ways, including
not reporting temporal information as well and pedbducing good narratives. Despite these
deficiencies, our work shows that it is possible domputer systems to generate effective
textual summaries of complex continuous and disdeanporal clinical data.
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1 Introduction

Doctors and nurses caring for sick babies in a M&drintensive Care Unit (NICU) must make
important decisions about how to best treat thatiepts, sometimes under time pressure. A
large amount of data about a baby is availableheo dliinical staff, including signals from
sensors measuring physiological variables (e.qarthate, blood pressure) and patient notes
which record previous interventions, results ofolatory tests, and so forth. In principle,
efficient access to such information should alloveren effective decisions to be taken.
However, the mode of presentation of that inforomafis crucial: data is only effective to the
extent that it is presented in a way that allowg ikems to be extracted quickly, with reduced
chance of error.

Currently, the predominant mode of presentatiovigsalisation, but this has not been as
effective as was hoped [54,76]. While visualisatgystems work extremely well in helping
experienced users to explore data sets for sepati@nts over a period of hours or days [80],
they are not always effective in helping users vaittange of expertise (in our case, ranging
from junior nurses to experienced consultants) nddasions in a few minutes. Another way
of using the data for decision-support is to cremtamowledge-based (expert) system which
recommends specific interventions to the medicaff.sWith a few exceptions [22], such
systems have not been successfully integratednmetdical practice. One possible reason for
this is related to the user’s perception of sudystem. For example, expert system advice is
often ignored, particularly when it is not accomigdrby an explanation [20,29,49] even when
users acknowledge its global good performance [67].

We believe that an alternative way of using sucta dar decision-support is to harness
knowledge-based methods to identify key items &brimation in the data, and then present
these to the user via a textual summary, produegdnatically using Natural Language
Generation (NLG) techniques. In short, we arenggyto steer a middle ground between
presenting the raw data (as classical visualisagigstems do) and recommending specific
actions to the medical staff (as most expert systdn). Our aim is to provide doctors and
nurses with a clear summary which presents theieymation to facilitate decision-making,
leaving the latter process entirely up to theigeshent.

We are realising our vision in the BabyTalk projechich is developing several systems to
present NICU data to different audiences and fffeidint purposes. In this paper, we present
the first BabyTalk system, BT-45, which generatgmmaries of around 45 minutes of clinical
data (hence the name BT-45), to help doctors amdesumake immediate decisions. We
describe how BT-45 works, and then present an atialu of the system, which suggests that
BT-45 texts are at least as effective as existingalisation methods in supporting intervention
decisions, although they are not as effective asadmiauthored summaries of the data. We
expect that subsequent BabyTalk systems will géméexts which are closer in quality to the
human-authored texts, and which can serve as aleomaptary presentation modality to the
currently employed visualisations.

1.1NICU and BabyTalk

A typical patient in a NICU is a premature baby stdodily systems require artificial support
until s/he is ready for independent life. The kafdsupport a baby receives in a NICU includes
the use of ventilators to assist respiration, iatats to provide warmth and humidity, etc.



Typically, babies stay in a NICU for a period ofeks, though a stay may range from a few
days to a few months. In addition to the treatneémdatients, an integral part of the activity in
a NICU includes the support of parents or guardia® have to cope with a stressful
situation. Along with medical advice, medical staf§o help parents to care for and feed their
baby, and give recommendations for using medicakds at home when needed.

The BabyTalk project is a collaboration between NMkKCU at the Edinburgh Royal
Infirmary, the universities of Aberdeen and Edirdlyrand Clevermed Ltd13] (a company
which makes software for NICUs). The main goath# project as a whole is to understand
how textual summaries can be generated for diffeiere scales (minutes to hours to days),
different use contexts (e.g., decision supportressing shift summary) and different user
groups (e.g., doctors vs. parents). Prior to adhgethis, a number of challenges need to be
met, not the least of which is the developmentewhhiques to process large volumes of
heterogeneous data.

The BT-45 system was a first step towards achietivgge goals. It was intended as a
demonstration of the feasibility of building a largcale system that combines techniques from
intelligent signal processing and natural languggeeration. One of the motivations was
provided by a study by Laet al[48], who found that NICU staff performed bettémaelinical
decision-making task when exposed to data thatwvégen by human experts, compared to
graphical presentations of the kind they are uguatposed to. Our evaluation attempted to
replicate their findings, by comparing both humad aomputer-generated texts, in addition to
graphics. Since the Laet al. study presented subjects with scenarios consisfid® minutes
of patient data, BT-45 was designed to generatersarias of periods of this length.

1.2Example

An example of the input data to BT-45 is shown imguFe 1. The graphs show the
physiological time series acquired from the bed-aidonitor. Beneath the graphs, coloured
markers indicate events entered by a research.n#imeclarity, a subset of these observations
is listed next to the graph, with the times at wahtlsey were recorded. The reader can refer to
the appendix for definitions of the different meaditerms and abbreviations. Figure 2 shows a
human-authored summary of the data, and Figure®sihe summary text produced by BT-
45. Human and computer-generated texts are cld#fgrent but for clarity their differences
will not be considered in this introduction buttire discussion section of the paper.

The human-authored summary is one of a set of suohmaries generated by clinical
experts for experimental purposes; the authorsictss themselves as far as possible to a
description of salient events, avoiding giving aexplicit direction or diagnosis. This
constraint ensured that the corresponding BT-45nsany, generated from the raw data in
Figure 1, could be directly compared to the humamraary in our evaluation experiment.
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Figure 1: Example of NICU data. Channels, from topto bottom, are HR, TcPO2
TcPCO2, Sa02, T1 & T2, and Mean BP (not recorded ding the period shown).

To start with, the HR=152; TcPO2=6; TcPCO2= 8.6 and Sa02=92%. T1= 37.7° and T2= 34.3°C.

Initially there is an increase in oxygenation: TcPO2 rises from 6 to 10.6 SaO2 rises from 89 to 98%. HR
and TcPCO2 are static.

At 14:15 hours a heel prick is done. The HR increases at this point and for 7 minutes from the start of this
procedure there is a lot of artifact in the oxygen saturation trace. Also there are upward spikes in the
TcPO2 (to 17), each corresponding with downward spikes in the TcPCO2 (to 2.6). At 14:23 the FiO2 is
changed to 45% and the TcPO2 rises from 6 to 12.

At 14:28 the saturation probe is reapplied, the oxygen saturation is 100%, and the HR settles back to
baseline of 155. The FiO2 is reduced twice and at 14:31 is 25%.

At 14:34 hours the baby is examined. For the following 5 minutes there is another series of spikes in the
transcutaneous parameters, with TcPO2 spikes up to 19 and corresponding TcPCO2 spikes down to 1.4,
while the saturations fall to 74%. The FiO2 is increased to 32%. HR remains stable at 145-160.

By 14:38 the toe-core gap has widened to >4° with a T1 of 37.7°C. Both temperature probes are re-
applied at 14:41. Shortly after this the oxygen saturation settles to 94-95% and at 14:46 the FiO2 is
reduced to 28%.

At 14.48 hours the oxygen saturation falls to 83%, TcPO2 is 6.6 and TcPCO2 is 7.6. HR remains steady
around 160. While the oxygen saturation remains at 83% the TcPO2 falls to 5 and the TcPCO2 to 6.6.
The FiO2 is increased to 30%.

By 14:50 T1 is 37.5° and T2 is 34.2°C.

Figure 2: Human-authored text corresponding to thedata presented Figure 1.



“You saw the baby between 14:10 and 14:50. Heart Rate (HR) = 159. Core Temperature (T1) = 37.7,
Peripheral Temperature (T2) = 34.3. Transcutaneous Oxygen (TcPO2) = 5.8. Transcutaneous CO2
(TcPCO2) = 8.5. Oxygen Saturation (Sa02) = 89.

Over the next 30 minutes T1 gradually increased to 37.3.

By 14:27 there had been 2 successive desaturations down to 56. As a result, Fraction of Inspired Oxygen
(FIO2) was set to 45%. Over the next 20 minutes T2 decreased to 32.9. A heel prick was taken. Previously|
the spo2 sensor had been re-sited.

At 14:31 FIO2 was lowered to 25%. Previously TcPO2 had decreased to 8.4. Over the next 20 minutes HR|
decreased to 153.

By 14:40 there had been 2 successive desaturations down to 68. Previously FIO2 had been raised to 32%.
[TcPO2 decreased to 5.0. T2 had suddenly increased to 33.9. Previously the spo2 sensor had been re-sited.
IThe temperature sensor was re-sited.”

Figure 3: BT-45 computer-generated text correspondig to the data presented in Figure 1

These summaries illustrate the main purpose of BTwhich is to present information in

narrative form, highlighting features which an entpeould consider as highly salient and
warranting clinical attention. Such events areafrse implicit in the graphical presentation as
well; however, their identification would require significant amount of analysis and
interpretation on the part of a user. For examfle, text in Figure 3 mentionsuccessive

desaturationsat different points in the 45 minute period. Theserespond to troughs in the
Oxygen Saturation signal (labelled SaO2 in Figuyewhich need to be classified (using
knowledge about certain features such as the doraii a trend and the lowest value that
needs to be reached in order to qualify as a dedmmn). Moreover, there is significant noise
in the signals, such as prolonged drops to ze8ai@2, which a user would need to filter out.

In order to generate a text such as that in FiguiT-45 goes through a number of stages.
Before turning to a full description of the arclotigre (Section 4), we first discuss some related
work (Section 2) and describe the input data iragpe detail, as well as the corpus that
informed some of the design decisions (SectioMa).describe a clinical trial in which BT-45
was evaluated (Section 5) and the paper concludtbsaw extended discussion (Section 6), our
intentions for future work (Section 7) and a sumyr@rour conclusions (Section 8).

2 Background

Large data sets are currently available in manyalosfrom sensors, simulations, databases,
and so forth. As shown by the examples of geogcaphinformation systems (GIS) and
meteorological data, this state of affairs is restricted to the medical domain. Much effort
has been invested in the design of effective sump@tems, permitting a user to sift through
the data and focus on relevant bits of informatiinis work spans many different areas, and in
this section we focus on two which are of particulelevance to our domain of inquiry,
namely, visualisation and data-to-text (Natural guzege Generation) systems.

2.1 Visualisation

Information visualisation has been the focus oénsive research; the aim is to facilitate
the process of making abstractions and inferritaticens between variables by presenting the
user with graphical representations of complex .d@ae of the main selling-points of



visualisation techniques is their utility in knowtge discovery, for example, the detection of
complex (especially non-linear) relationships betwerariables [79]. However, as noted for
example by Plaisant [65], success in knowledgeodisxy tends to increase with the amount of
time allocated to the task. Other applications lbammore time-critical; for example, clinical
applications in the ICU involve decision-making endtime pressure. Currently, such
decisions are often based on patterns and trertelsteld in large volumes of patient data.

Closer to the concerns of the present paper, vésumn techniques have been extensively
deployed in the presentation of time-series dat&7[2 These efforts tend to focus on the
challenge of adequately presenting high-volume datan such constraints as limited screen
resolution, and on finding ways of dealing with tkieds of discontinuities that arise when
values are sampled unevenly [5]. Another area ¢éré@st in visualising time series is
interactivity. For example Buonet al [8] describe the use dfmeboxes mechanisms which
permit a user to focus on a particular temporarivel in a time-series plot, with the additional
possibility of searching for specific patternsie remaining data.

A number of psychological explanations have beeferefl for the effectiveness of
visualisations in some domains. These include Vistmanking (roughly, grouping elements of
a graphical presentation together on the basispafiad proximity and/or similarity) and
parallel processing [90]. In addition, Schneidernfia8] has suggested that information-rich
visualization is an effective strategy to reducasaer’s working memory load. However, the
effectiveness of visualisation tools in real-woskttings has proven harder to assess. A recent
survey by Plaisant [65] concludes that most evalnatare laboratory-based and tend to focus
on speed and usability issues, which do not nedbsbkave a direct relationship to the impact
of information presentation on task performance.

Recent research has questioned the utility of lisateon for clinical decision-making,
when this is the sole method of information preatom. A recent study by Lawt al [48]
presented NICU doctors and nurses with large votuaigatient data, presented either in the
form of graphs as in Figure 1, or in the form opent-authored textual summaries as in Figure
2. A comparison of the clinical decisions takendxperimental participants when presented
with data in these two modalities showed a supiyiaf textual presentation over graphics.
This corroborates previous findings that the greghidisplay of clinical data does not
necessarily lead to improved clinical decision-maki{16,53] and thus that other ways of
presenting information are needed.

2.2 Data-to-Text Systems

Within the field of NLG, there has been growingeirgst in data-to-text systems [72], which
summarise numeric data. Such systems are motitgtéide belief that textual summaries can
make data more accessible to human users thatidrediforms of presentation, such as time-
series plots. Together with the results obtained Uayw et al [48] discussed above,
developments in data-to-text technology have peichuch of the impetus for the research
underlying the BT-45 system.

The most successful applications of data-to-textdede have been in the weather
forecasting domain, where systems summarise nuabemieather prediction data. One of the
earliest such systems, FoG [28], produced bilingEalglish/French) texts, aiming to reduce
some of the most routine tasks that human foreastad to carry out by automatically



generating forecasts from data that had previdosgn manipulated by human users through a
graphical user interface. A different kind of irdetive approach was taken in MULTIMETEO
[14], another multilingual generator, which genedaforecasts based on structured input data,
and also provided the user with an interface whéctabled editing of the automatically
produced output. The potential of this technologs lrecently been demonstrated in the
SumTime system, which produced marine weather &stsd83]. An evaluation of this system
showed that human readers preferred some of theTitwentexts to those authored by
professional forecasters [73]. This was probabdyftist demonstration of this kind for a data-
to-text NLG system. A number of other data-to-textstems have been developed to
summarise small data sets, including summariesabistcal data [24,41], air quality reports
[6], and financial data [18,46].

One common factor among these systems is thatathégnd to generate brief summaries
in domains of relatively low-density data. Moreaviiile data is of one kind only (for example,
the weather forecast systems only need to deal mitheric weather prediction data). The
brevity of their summaries reduces the importarfceome NLG tasks. A typical NLG system
includes a document planning component, which selaeod structures content, as well as a
microplanning and realisation component, which Hess out the semantic content in a
document plan, and realises it as text [75]. Maithese systems have fairly simple document
planners, while the nature of the data affordsegsiitnple solutions for microplanning. From a
technological perspective, these systems were medifpr a task which is considerably easier
than BT-45's task, which is to generate multi-peapj summaries of large data sets
containing tens of thousands of numbers. Therdvemerecent systems which handle datasets
of comparable size. SumTime-Turbine [91] summarisgge quantities of data from gas
turbines, while RoadSafe [86] summarises large ametegical datasets to help road
maintenance staff decide where and when to putasalt grit on roads. Like the weather
reporting systems, however, these handle only nigngeta, whereas BT-45's input is more
heterogeneous.

Natural Language Generation technology has alsa deployed in the medical domain,
with a number of systems which summarise clinicthd There is a substantial literature on
text-to-text summarisation of medical data, whose B to produce concise summaries of
existing documents, using generation techniquesanfing degrees of sophistication (see
Afantenoseet al [1] for a review). The generation of medical suani@s from raw data seems
to be less common (see [35] for a review). An eddgision-support system which combined
data interpretation with text generation was TOPAZscribed by Kahn and colleagues [42].
TOPAZ summarised data related to blood cell coants drug dosages of lymphoma patients
over a period of time. It used a numerical modelcWwtcompared patient-specific values to
population parameters to detect deviations. This felowed by a temporal abstraction stage
which grouped together significant events into rivads, and identified possible explanations.
The output of this stage formed the input to a s@dased text generation system that
converted the abstractions into a summary thatdcbel read by clinicians. This system is a
precursor to the one described in this paper, hiotlits rationale of exploiting textual
presentations for clinical decision support, andsrreliance on expert knowledge to analyse
and interpret significant events in the data. Hosveit focused on discrete (albeit numeric)
information, and its scope was limited to a rekltfvsmall medical domain. In addition, the
NLG technology employed, based on ATN networkslestH out the content of schemas, was
relatively inflexible in terms of the structure acohtent of the documents produced.



Like TOPAZ, most data-to-text systems in the mdddmmain to date have focused on
summarising discrete (as opposed to high-densitgsg data. For example, Suregen [34]
helps hospital doctors write routine reports; ane Narrative Engine [31] helps doctors in
small practices and clinics create summaries (warehneeded in part for legal reasons) of the
symptoms reported by a patient, lab tests, prasong and so forth. A number of NLG
systems have also been developed to produce infiomah texts for patients (rather than
medical staff), such as STOP [74], which generatadonalised smoking-cessation letters, and
PIGLIT [11]. Again these systems only summariséscréte data. To the best of our
knowledge, BT-45 is the first medical NLG systemiabhsummarises sensor as well as
discrete data, and also one of the first medicabMlystems whose primary purpose is decision
support.

Another important question for data-to-text tecluggl is related to evaluation. Most data-
to-text systems have been evaluated by asking hisubjects to rate or compare texts (or
indeed by simply seeing if end-users wish to ussystem). Few such systems have been
evaluated by directly testing whether they achiéweir goal. One exception is the STOP
system [74], which was evaluated in a randomiseatrotted clinical trial which measured
how effective STOP letters were at actually helpgegpple stop smoking; unfortunately this
evaluation showed that STOP letters were no mdeetéfe than control material.

3 Input Data and Corpus

Three kinds of clinical data are available to BT-4%me series data extracted from
physiological sensors callgghysiological signalgor signals for short), structured information
about events (usually actions taken and obsenatitade by the medical staff) callddcrete
events(so-called in order to distinguish them from tireeries data sampled at a high-
frequency constant rate), and free-text notes ftoenmedical staff. In BT-45 we used the
time-series and event data; we did not use theténgenotes. An example of the time-series,
displayed using the Time Series Workbench [373hiswn in Figure 1.

The data used by BT-45 came from the Neonate gr{§ét Physiological variables were
collected automatically by the Badger 2 system [d3h rate of one sample per second. A
maximum of seven physiological variables were rdedr Heart Rate (HR), pressures of
oxygen and carbon dioxide in the blood (TcPO2 an&d02), oxygen saturation (Sa02),
peripheral and central temperatures of the babyafi® T1) and mean blood pressure (Mean
BP). The Neonate database contains over 400 lidutata from 42 babies. As with all real
ICU signals, the data contain artifacts and areedones incomplete. Incompleteness may
arise, for example, when a sensor is temporaritye off.

Discrete events were recorded by a research nutse was employed on the ward
specifically for this purpose; they consist of fbhowing types of information:
the actions taken by the medical staff (e.g., iatapchange nappy);
the settings on the various items of equipment(tiog the ventilator);
the results of blood gas analysis and other laboyaesults;
the drugs administered;
occasional descriptions of the physical state efithby (observations);
occasional free-text comments (not used in BT-45).



BT-45 relies exclusively on the data entered byrt#search nurse, not on the information
entered routinely by the medical staff as, at theetof the Neonate project, both paper and
electronic records were being maintained. We redhat future BabyTalk systems that will be
used in the real world will only be able to accesstinely recorded information (i.e., sensor
data acquired automatically and discrete eventeredtroutinely by the medical staff); a
specially-employed research nurse will not be abddl to enter clinical events. However,
much of the information used in BT-45 which wasomged by the research nurse is now
automatically gathered on the ward (e.qg., the Edigh NICU makes use of Clevermed'’s latest
system, Badger-3), though at a lower time accurdesrt of our research agenda is to explore
the extent to which we can reconstruct from theilabke data the information which was
recorded by the research nurse but is either nii¢cted by Badger-3 or recorded with
imprecise time-stamps.

In addition to the clinical input data, we needectbgous of human-authored summaries to
provide examples of what our computer-generatechsanes should look like. As we aimed at
comparing the efficiency of the BT-45 outputs whtlhman expert summaries, colleagues at the
Edinburgh NICU wrote 23 summaries of NICU data whgupplemented the 18 summaries
written for the Neonate Project [48]. The summarigkich describe time periods of between
30 and 50 minutes, were used as the developmeat fdatBT-45. A further 26 human-
authored summaries were used in the evaluationriex@et to compare the benefits to clinical
decision-making of human-authored and BT-45 sumesaifrigure 2 is an example of one of
these. These 26 texts waret available to the BT-45 developers until they halmsitted the
final texts generated automatically by the systenit$ final evaluation.

4 A detailed description of the system

The architecture of BT-45 is shown in Figure 4;sthfibllows the data-to-text architecture
suggested by Reiter [72]. Textual summaries aneigded in four stages, all of which access a
domain ontology which includes information aboutCMl concepts. The first stage of the
processing isSignal Analysig1) which extracts the main features of the pHyggical time
series (artifacts, patterns, and trend§)ata Interpretation(2) performs some temporal and
logical reasoning to infer more abstract medicalestations and relations (re-intubation, “A”
causes “B”, etc.) from the signal features andetent dataDocument Planning3) selects the
most important events from earlier stages and grdlupm into a tree of linked events. Finally,
Microplanning and Realisatioif4) translates this tree into coherent text. lis gection, we
first describe the Ontology (Section 4.1) and thescuss each stage in turn.

<«
O COnCeptS OntOIOQy
time series Signal L /

Analysis | signalys | @ Y concepts
features Data
A Interpretation | — medical ]

I x observations Document
Planning | —oroups O
of events Micro-Planning 4

NeoNate | cinical annotations | and Realisation

H>

textual

DataBase

summan

Figure 4: Architecture of BT-45.
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4.1 NICU Ontology

Ensuring a proper communication between all of ghecessing stages is mandatory in this
kind of application. For example, when an evenextracted from a signal at the signal
analysis stage, the concept it is labelled withdse® be recognisable by the microplanning
stage further downstream. In BT-45, domain knowdetdgcentralised in an ontology of NICU
concepts. In addition to helping us integrate Yheious modules by providing a common
conceptual vocabulary; this vocabulary, togetheéhwbme other types of knowledge such as
the clinical importance of certain events and theilationship to different physiological
systems, also serves to support reasoning.

A number of large medical thesauri, taxonomies antblogies have been created in
medicine, including SNOMED CT [82], MeSH (Medicallgect Headings), and UMLS [36].
However, the size of these general knowledge seUfd&ILS covers more than 1.5 million
concept names) makes them difficult to embed incigpepurpose reasoning systems.
Moreover, these ontologies do not include suffitiaformation about temporal reasoning and
the linguistic expression of concepts for our pggs The BT-45 ontology of NICU concepts
was purpose-built to accommodate all of these remqments, from reasoning to linguistic
knowledge. It was based on a NICU lexicon createdne of our previous projects; this
specified the words used by nurses and doctorslkoabout the NICU domain [38]. We
expanded the initial version to include additionahcepts needed by BT-45, and refined it
through consultation with doctors and nurses, atsuding the temporal and linguistic
information that we needed. The final version of 8T-45 ontology represents about 550
different concepts.

The ontology was implemented in Protégé-Frames 288]) which provides a Java API
and can be integrated with the JESS productionsyséem [26]. Part of the ontology is shown
in Figure 5. The principal top-level nodes are EMEBNd ENTITY. ENTITY subsumes
domain objects, such as NURSE, VENTILATOR, MEDIC®N, etc, which do not undergo
significant change (from the point of view of thgstem) for the duration of a 45-minute
scenario. EVENT subsumes activities that involve ¢htities. All events are labelled with a
patient id, a start time, an end time, and an itgnme value; the latter communicates the
medical significance of an event - it can be eitlregd or calculated by BT-45 (see Section
4.2.3). The subclasses of EVENT include INTERVEQNI (e.g., drug administration),
OBSERVATION (e.g., the observation that a baby hesor capillary refill), DATA
COLLECTION (e.qg., adjusting sensors), COMMUNICATIQH.g., discussions with a senior
consultant), and CARE ACTION (e.g., linen change).

Since the ontology is used both to represent dokiainwledge, and to support linguistic
processing, events have slots (features) whichifgpeir participants. During lexicalisation
(a part of microplanning), these participants nathematic rolesfleshing out the argument
structure of the predicates that express an eemtexample, the INSERT_CHEST_DRAIN
event can have slots that specify #gent(the person who inserted the chest drain; uswally
doctor or nurse); thbeneficiary(the person for whom the chest drain was insexsdally a
baby); and thetheme (the chest-drain which was inserted). An instanck the
INSERT_CHEST_DRAIN event class would have slot ealthat referred to specific doctor,
baby, and chest-drain instances, whose classesibsgypes of ENTITY.
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We are currently investigating techniques to expaumdontology and to synchronise it with
UMLS, in order to meet the greater knowledge rezquents of future systems, and to ensure
sharability of resources.

For Project: @ BabyTak For Class: & INSERT_CHEST-DRAIN  (instance of :STANDARD-CLASS)

Class Hierarchy Hame Documentation
STHING ‘\NSERLCHEST-DRAIN | iFrnm the inzettion point of the blace to cut the: skin to the point
> EWSTEM-CLASS !when the procedure iz completed. Procedure invalves: skin cut,
¥ O EVENT - {insertion of trochar (remaoval of trochar) and drain, manipulation
- |of drain into optimal position, application of purse string suture
¥ O INTERVENTION ‘ Concrete @ vi !and adhesive tape.

¥ @ CHEST-DRAIN_MANPULATION
@ INSERT_CHEST-DRAIN
@ MOMTOR_CHEST-DRAIN

Template Slots

Mame |Card\naldy Type ‘ Cther
B GITHREAN. CHESTDRAN ¢ agent single  Instance of MEDICAL_STAFF

FURIICEANGE ROSITION (=) beneticiary single Instance of B&BY
P O EYESTIGATION () Enicd - clate single Irtecer
L2 FEEDING (m] evert_type single Symbol allowed-values={active gxistential predicative } default=active
| 2 LIME_MANPULATION ) il single String
P O SAPETY, MARNAGERENT, (e} importance single Float minimum=0.0, maximum=100 0 default=100.0

B HeCacTion (] criginstor single Instance of PERSON or COMPLITER

@ DRUG_ADMINISTRATION () start_dsis single Integer
P B RESHRATION. NTERVENTION (1) theme: single. Instarice of CHEST_DRAIN

B O THERAPY_APPLICATION

B 0 OBSERWATION

P @ DATA_COLLECTION

B O COMMUMCATION

B @ CARE_ACTION < 3

b @ INCUBATOR_HAMDLING _ACTION Metrics

¥ QNI Summary

» @ PERSON | system | nouded | Diect | Total |

b O CHANNEL s 15 o 546 563

B O ANATOMCAL LOCATION Siate 3 0 10 135

B O MEDICATION Facets 10 0 o 10

B O EQURMENT taness a i 33 3
) LINEN Freiés 53 ] 642 7

B & CLOTHING

B @ THERAPY

b O RESPIRATORY_SETTING

Figure 5: Snapshot of the ontology used within BT in Protégé-2000.

4.2 Signal analysis

Physiological signals contain a lot of informatiabout the patient’s state that need to be
extracted from this temporally accurate but raw &odhetimes noisy data. For example,
transient period of low heart rate is importaniomnfiation but it is not reported as discrete
event notes in the data. Thus, the aim of the signalysis module is to detect important
patterns and events from the seven channels dedciibsection 3 (HR, TcPO2, TcPCO2,
Sa02, T1, T2, Mean BP). This is done in two stépescribed below): first we identify
artifacts periods that do not represent actual values (i@se); we then identify patterns and
events in the remaining signal.

Signal processing uses information about which dataes are: (i) in normal range, (i)
unusual but physiologically plausible, (iii) unus@ad of definite medical concern, and (iv)
impossible. This information is computed from aeln model we acquired from values
averaged over a hundred babies [17] according ® lhby's gestation age, further
supplemented with domain expert rules.
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4.2.1Artifact analysis

NICU sensor data can be affected by a varietgrtifacts (sensor problems). For example, a
nurse may disconnect a sensor when she picks @y b sensor attached to the baby's foot
may only intermittently read correct data if théopas kicking; a sensor may not have been
attached properly in the first place. BT-45 ne&asdentify which data values reflect the
baby's real physiological state, and which are tluesensor problems. It also needs to
distinguish short-term transient artifacts, fromder-term artifacts. Transient artifacts do not
convey any information and must be removed fromati@lysis or corrected if possible. Long-
term artifacts need further analysis as they cartaio important information about what is
happening to the baby (e.g., a blood sample admuisfrom an arterial line results in a
specific pattern on the blood pressure signal)oAleng-term artifacts can motivate certain
kinds of intervention by medical staff, such asapplying or adjusting sensors so that they
read more accurate data values (Section 6.2.1).

20r

Mean Blood Pressure (mmHg) 15

99
10r
N TcPO2 (mmHg)
6 St
\ O-
10
3 TcPCO2 (mmHQ)
b i _uans
A A b
T T T T T | L L L
1410 1415 1420 1425 1430 1435 1440 1445 1450 1000 1005 1010 1015 1020
() (b)

Figure 6: Examples of artifacts. a) Artifacts on tke blood pressure channel; b) artifacts on
the signals measured from the transcutaneous sensor

Figure 6 shows excerpts of signals in which artifagriods are present. Figure 6(a) shows
short-term artifacts (indicated by the thin arrgws)this case the short downward spikes are
reparable (by interpolating from non-artifact vajewhereas the longer-term artifact (thick
arrow) on the right is not. Actually this long-teartifact suggests that a blood sample is being
taken from an arterial line; this can be used toferin or confim a
BLOOD_FROM_CATHETER discrete event that may haverbéogged in the database.
Figure 6(b) shows a longer-term sequence of simettas spikes on both TcPO2 and TcPCO2
which suggest that the sensor needs to be re-attach

Artifact detection and removal in ICU signals haeb studied for many years and several
techniques has been tested including Kalman fjlteusoregressive (AR) modelling, median
filters and decision trees [32,40,63,69]. Howewnpirical comparative studies [32,63] have
not shown a definite superiority of one techniquesrothe others. Moreover, successful
systems in the NICU domain, such as VIE-VENT [3Bbpwed that effective data analysis
requires a combination of numerical and knowledgseld stages. Thus, our artifact analysis
incorporates three stages of three classical tqubsi
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1. Range checkinghis flags all values that are not physiologigabssible;

2. Autoregressive (AR) modellinghis flags all values outside a dynamically updat
acceptance interval, and repairs some transieifa@st AR coefficients were learnt using the
biosig toolbo%, using a separate NICU data set where artifaaisble®n marked up (courtesy
of J. Quinn [69]);

3. Correlation checkinga knowledge-based system relates the artifactffierent variables.
For example, as the TcPO2 and TcPCO2 signals argedefrom the same probe (the
transcutaneous probe), if an artifact appears ersamal, it should also appear on the other.

4.2.2ldentifying pattern and events.

This module works in three stages: identificatidnspecific events known to be medically
significant, identification of other short-term feahs, and identification of long-term trends.
We define pattern as a group of consecutive timstpadhat is the manifestation (observation)
of an event. For example, in Figure 6 b), the ameaind each arrow corresponds to a pattern
which is instantiated as a spike event.

The module first looks specifically for patternsititorrespond to a known set of medically
important events such as bradycardia (rapid deereafeart rate) and desaturation (fall in
oxygen saturation). Many methods can be appliedetect such patterns: thresholding [21],
statistical and model based detection methods §15.@ecision trees [66], etc. After a
comparison of different techniques [66], we impleted a thresholding method to detect the
events, together with an estimate of the baselsiiregua median filter to find the start and end
time of the events.

The module then looks for other short-term pattdinsaddition to the ones mentioned
above) using a technique based on the rapid-chdeigetor of the SumTime-Turbine project
[91]. The algorithm searches for perturbations @hannel; these are cases when the difference
between the maximum and minimum values within atstime period (currently 30 seconds)
exceeds a threshold (currently 10% of the physioldly possible range of values in the
channel). Adjacent perturbations are merged, hred the perturbation interval is classified
either as a SPIKE, STEP, or OTHER-PATTERN dependimgs starting and ending values.

We need to detect general short-term patterns Bedais not possible to explicitly specify
all medically important patterns. For example,hie tase of a probe lifting as in Figure 6(b),
the general pattern is a number of successive spikeunknown number and magnitude.
Creating a specific detector for probe lifting wabdde difficult, whereas detecting only spikes
and reporting them (as By 10:29 there had been 2 successive spikes in Zc¢ipQo 18.)
lets the reader decide whether or not these spileerelated to a probe problem.

Finally, the module looks for long-term trends hetdata - in the BT-45 context, "long-
term" means on the time-scale of minutes insteadeabnds. Currently we only look for
value-increasing, value-decreasing, value-stabte \aue-varying trends; this is done using
bottom-up segmentation [43] preceded by an accwlatsg window segmentation to speed
up the process. This creates a piecewise linearoaippation to the signal. The algorithm

! http://biosig.sourceforge.net/
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works by first constructing a very detailed lineapproximation to the data, and then
repeatedly merging similar adjacent linear segmenti there are no adjacent segments which
are similar enough to be merged. To adapt the ertation to the dynamic of the signals, our
tolerance error thresholds are based on the variahtmedian-filtered) data; we multiply this
variance by empirically-determined constants.

One of the difficulties faced by signal analysisietecting patterns with different levels of
resolution. An example is determining long-terrmtte when the data also contains short-term
artifacts and patterns. Currently this is donédgmoring or interpolating through artifacts and
patterns. This is not always successful, and iddebetter technique to detect simultaneous
events at different timescales is one of the miginad analysis challenges in BabyTalk.

4.2.3Computing Importance of events.

BT-45 also needs to determine how important evangs this information is used in later
stages of the system to determine whether an eenid be mentioned in the generated text.
Event importance is determined in two ways. Focrdite events (which are directly read from
the database), importance is determined by expetvledge encoded in the ontology. For
example, medical interventions such as intubaticeveh high importance, and are
communicated whatever the context in which theypleap For events which are extracted
from the signals, the importance is computed froeombination of expert rules and linear
modelling of range values. For example, if a bradg@ is detected, its importance is related
to its duration and depth. The importance of a yradlia is also weighted differently
according to the values it reaches (i.e., if a @aisl within a range that warrants serious
concern, the bradycardia has a higher weight threnwehose value is within a physiological
range). Although this method is a crude translatibexpert reasoning, its classificatory power
has proven satisfactory. However, future systenilsnged to compute importance values
based on the context in which an event occurs.ekample, if two important events, such as
an intubation and a fall in blood pressure, happeccessively, and the intubation has been
successfully managed, much more focus must be govére fall in blood pressure. We return
to this context awareness problem in the discussgation.

4.2.4Example

The output of Signal Analysis consists of eventthwi stated duration. An example is given in
Figure 7 for part of the data shown in Figure 1clelne consists ofevent type (variable),

start time, end time (importance), where importance is scored from 0 to 100. Thengle
shows that samples of SaO2 have been classifieattidact. Two rapid changes have been
detected by the pattern recognizer in TcPCO2 arflORcand have been classified as spike
and step. Three medical events (desaturation®) been detected in SaO2. Trends have been
established and an example of signal decompositsanend (dashed lines) is shown for Sa02.
Note that the computation of the upward trendsa®3 did not take into account any period
during which a pattern was detected (desaturations)
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SPIKE (TcPO2): 14:36:44 14:38:05 (21)

STEP (TcPCO2): 14:34:36 14:35:03 (5)
SPIKE (TcPCO2): 14:36:46 14:37:36 (7)
repco? (i) ’\/ W
Artifacts:

ARTIFACT (Sa02): 14:22:23 14:27:49 (0)

10 L"'W‘.‘B"a Medical Events:
Sa02 (%) DESATURATION (Sa02): 14:37:06 14:37:57 (27)

5 DESATURATION (Sa02): 14:38:32 14:38:45 (17)
DESATURATION (Sa02): 14:39:25 14:40:36 (45)

2 TcPO2 (mmHg)
1 Patterns:

N SPIKE (TcPO2): 14:34:35 14:35:36 (9)
1

200 Trends:
e e e A eSS — CTRENDIFLAT  (SaO2): 14:28:32 14:34:48 (0)
100~ HR (bpm) TREND;WANDER (Sa02): 14:35:12 14:36:39 (0)
TREND,UP  (Sa02): 14:38:10 14:44:53 (9)
o~ TREND;DOWN  (Sa02): 14:45:04 14:49:21 (3)

38—
31
36—

34 —N—/’;l\]\,—:—'—’—'i
[ 20

32
L L S L B B B I |
1425 1430 1435 1440 1445 1450

Figure 7: Example of the inputs to and output fromSignal Analysis.

4.3 Data Interpretation

Abstraction and linking are necessary prerequiditesummarisation of the data coming
from signal analysis and the database. Indeedrtiegceevery single event (e.g., each spike)
would not reduce information overload whereas aloittg them into higher level descriptions
(e.g., a sequence of spikes) will. Moreover, asgmeis between two events (e.g., because one
causes the other) need to be highlighted to fatgliunderstanding. In BT-45, this is achieved
using expert system rules, with more than a huhdsgert rules and metarules implemented
for the purpose. We distinguistibstraction which groups a set of events into a single, highe
level event, frominterpretation which infers associations between events andse&lh much
more domain knowledge than abstraction. Broadlyaking, the former produces information
that is nominal in nature (e.gsequence of JAwhereas the latter yields information that is
somewhat more akin to a proposition (eAyis linked to B. It should be emphasised that the
nominal/propositional distinction at this stagepodcessing is being made for clarification, and
does not necessarily predetermine the way in wthiehoutput of the data interpretation stage
will be realised in the final text.

Data interpretation in BT-45 is largely based amperal abstraction [81,84], an important
part of all on-line decision support systems [181]. Existing techniques vary greatly
according to the data available (absolute datdsnvals, ordering, etc) and the aims of the
system (action recommendation, prognosis, diagnei¥ The goal of BT-45 is not diagnosis
or prognosis but abstraction and information. Rddt this reason, temporal reasoning in BT-
45 is higher-level and less detailed than tempoeasoning in classic decision-support
systems. We therefore restricted ourselves to singhporal reasoning based on a subset of
Allen’s intervals [3]. Another feature of data irpieetation is the use of vague terms to
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describe temporal durations and relationships dteylbradycardia”, “the baby has been hand-
bagged during the intubation”, etc), because this/iat we observed in corpus texts. The
main challenge in BT-45 in using terms such asd'as not to represent the extent to which
such terms are applicable (i.e., determining whtialy counts as a “long” period), but rather
understanding the impact of contextual factorsi{sagthe baby's general status, recent events,
personal preferences of individual doctors andesifg3]) on the use of these terms.

4.3.1Detecting higher level events: Temporal abstraction

Temporal abstraction primarily involves the appiica of a singlesequencingnechanism,
determined through an analysis of human texts atehiiews with clinicians. Sequences can
then be interpreted usingraerging or translation mechanism; all of these are specified by
rules.

Sequencings used for chronic or repetitive events. For eglenwhen several spikes
appear in a signal, corpus texts evince a preferémcgrouping these, rather than describing
them individually. For instanceThe TcPO2 is [...] with sharp spikes up to 11-14iteptl-2
minute$ and ‘there are a couple of spikes in the Mean tBie to 65 and 56 Sequence
detection is based on a set of rules whereby aoyetvents which belong to a particular type
(ontological class), have certain required featusesl occur within a specific time period
(which specifies the maximum time between neighimgurevents in the sequence), are
grouped together. Additional events which meettiipe and feature constraints are added to
the sequence if they occur within the specifiediqueiof any event in the sequence. For
example, the sequence rule (SPIKE, 600, [variabke TcPO2, direction = upward]) specifies
that SPIKE events ifcPO2with anupward direction should be grouped into a sequence if
they occur within 600 seconds of each other.

Merging rules combine events in a sequence into a singlate For example, a sequence
of ventilator setting adjustments within a shoméi (FiO2 (oxygen level) = 26, 27, 32, and
then 28% in less than 2 minutes) indicates fineragiof the setting, and is therefore merged
into a single ventilator setting event, keepingydhke most significant value (here, 28%).

Translationrules convert a sequence of events (not necessdiribf the same type) into a
single higher-level event of a different type. $&eules in particular can be used to interpret
atomic actions by medical staff in terms of higherel procedures. For example, one
common medical procedure in NICU iistubation which involves an attempt to insert a
breathing tube down a baby's throat and into hegdulntubation is a difficult procedure, and
there are often several attempts before succeeddig45's translation rules interpret a series
of atomic INTUBATE and EXTUBATE events into highlevel INTUBATION (first
intubation), RE-INTUBATION (replacing the tube), BXTUBATION (complete removal of
the tube) events.

4.3.2Detecting causal and other relationships

BT-45 also attempts to determine when two eventsni@ or high-level) are causally or
otherwise related. We refer to this as evanking. Once again, inference of causality is done
using expert rules that specify the constraintd the events must satisfy in order to be
causally related. For example, we can representfabe that a fall in the baby's oxygen
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saturation is likely to lead nurses to increasegexy levels in the ventilator using the
declaration:

CAUSES(TREND, [channel is-a Sa02, direction = dasirg],
INSPIRED_OXYGEN_SETTING, [direction = increasind])0).

This is translated by the system #dsa decreasing trend in oxygen saturation (SaG?) i
followed within 100 seconds by an increase in irgbioxygen setting, then the inspired
oxygen has been set because of the trend.

In addition to causal links, rules of this forméniNCLUDES (part-of) and ASSOCIATES
(other correlation) relations. The former only playole in associating events that have not
already been linked by temporal abstraction. Anmgda of an ASSOCIATES link is that
overlapping spikes in TcPO2 and TcPCO2 are regaadeabsociated since they come from the
same probe and are physiologically inversely cateel (decrease in TcPO2 is usually
associated with an increase in TcPCO2, and viceayehowever we cannot say that one of
these spikes causes another (more likely some lymerphysiological event has caused
both).

BT-45's rules for detecting causal relationshigslzased on the pairs/follows rules used in
the TIGER system for monitoring gas-turbines [91The TIGER developers experimented
with much more complex causal reasoning mechanismseventually decided that simple
rules based on the temporal proximity of events kedr reasonably well, and could be
understood by (and hence discussed with) domaierexp BT-45 differs from TIGER in that
it interprets both data generated via sensoysn humans, and data recordeg humans
(discrete events). While behavioural models ofeayst being supervised can be constructed in
the industrial domain, it is much harder to modatignts in the far less controlled environment
of the NICU. This means that fixed time limits (bugs 100 seconds in the above rule) do not
work as well as they did in TIGER. To reason witke uncertainty in the data and with the
inaccuracy in their time recording, we are inveatiigg temporal reasoning using Possibility

Theory which is well suited to represent uncertaintexpert systems [23].
Abstraction Level

Sequence of Hand-Bagging |

| Re-Intubation |
abstracted
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Figure 8: Result of data interpretation in one sceario in BT-45.

4.3.3Example

Figure 8 shows a graphical time representation afnts with their inferred
abstractions/interpretations and relationshipgh wihe on the X-axis and abstraction levels on
the Y-axis. The first level below the bold dashee Irepresents non-abstracted events (direct
instances from signal analysis and the input dathjle the upper level above the dashed line
represents events inferred by abstraction andpregation. Two close bradycardias have been
abstracted as a sequence of bradycardias and taree-bagging events abstracted as a
sequence. A RE-INTUBATION event has been interprétem the sequence of EXTUBATE
and INTUBATE events. As hand-bagging and intubatawa likely to cause bradycardias,
CAUSE links have been detected, and as intubatiocgglures often include hand-bagging, an
INCLUDE link has been instantiated. These links #ren used in the further modules to
produce: By 11:00 the baby had been hand-bagged a numbtmes causing 2 successive
bradycardias. After 2 attempts she was re-intubatadcessfully. In these sentences, the
causal links ¢ausing, the sequence of hand-baggihgid-bagged a number of timesd the
re-intubation interpretatior(attempts, re-intubated successfuligve been fully exploited.

Figure 9 shows the result of the data interpretafiio the example presented in Figure 7. A
sequence of DESATURATIONSs has been detected akddito its elements. An adjustment
in the oxygen supply (FiO2) is linked to the eventexygen pressure (TcPO2) and saturation
(Sa02). Trends in oxygen pressure (TcPO2) and atagor (SaO2) are associated with the
changes in Sa02.

Eventl Link type Event2

SEQ (DESAT): 14:37:06 14:40:36 (55) INCLUDE DESATURATION: 14:38:32 14:38:45 (17)
SEQ (DESAT): 14:37:06 14:40:36 (55) INCLUDE DESATURATION: 14:39:25 14:40:36 (45)
SEQ (DESAT): 14:37:06 14:40:36 (55) INCLUDE DESATURATION: 14:37:06 14:37:57 (27)
FIO2 (32.0):  14:37:01 14:37:01 (21) CAUSE TREND (TcPO2): 14:38:21 14:39:36 (3)
FIO2 (32.0):  14:37:01 14:37:01 (21) CAUSE TREND (Sa02): 14:38:10 14:44:53 (9)
FIO2 (32.0):  14:37:01 14:37:01 (21) CAUSE DESATURATION: 14:37:06 14:37:57 (27)
FIO2 (32.0):  14:37:01 14:37:01 (21) CAUSE DESATURATION: 14:38:32 14:38:45 (17)
TREND (Sa02):14:45:04 14:49:21 (3) CAUSE FIO2 (28.0): 14:46:03 14:46:03 (12)

TREND (Sa02):14:38:10 14:44:53 (9) ASSOCIATE  TREND (TcPO2): 14:38:21 14:39:36 (3)
STEP (Sa02): 14:34:50 14:35:.08 (2) ASSOCIATE  TREND (TcPCO2):14:35:04 14:38:22 ( 6)

Figure 9: Result of linking for the events in Figue 7.

4.4 Document planning

The document planner takes as input the set of tevand links produced by data
interpretation, exemplified in Figure 9. Each s@sient constitutes a unit of information and
the document planner decides which among thesassgbould be communicated in the text.
We will sometimes refer to the selected eventsmiassagesince, once selected, they form part
of the communicative content of the text that isrgually realised. The document planner is
also responsible for structuring the messagespatagraphs and determining the order within
each paragraph. The resultidgcument plaris a tree whose nodes contain events (messages),
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document structure information (such as paragrapdsdl whose edges are labelled with
rhetorical relations.

FIO2: 14:37:01 14:37:01 i21i (root)
sequence

DESATURATION: 14:37:06 14:37:57 (27)
EXAMINE_BABY: 14:37:08 14:37:22 (20) (key event)

TREND (HR): 14:38:03 14:49:16 ( 1)

TREND (Sa02): 14:38:10 14:44:53 ( 9)

TREND (TcPO2): 14:38:21 14:39:36 ( 3) .

TREND (T2): 14:38:29 14:38:56 ( 1) include

DESATURATION: 14:38:32 14:38:45 (17) inclﬂde\

RE-SITE_PROBES: 14:38:54 14:39:51 (20)

RE-SITE_PROBES: 14:38:54 14:39:51 (20) é reason

TREND (TcPCO2): 14:38:54 14:42:00 ( 5)

STEP (T2): 14:38:58 14:39:23 (16)  desat.

DESATURATION: 14:39:25 14:40:36 (45)

TREND (TcPO2): 14:40:17 14:49:21 (12) (TcPO2) re-site
TREND (Sa02): 14:45:04 14:49:21 ( 3) desat.

FIO2: 14:46:03 14:46:03 (12)

FlO2: 14:49:34 14:49:34 ( 6) FlO2 step (T2) re-site

Figure 10: Example of document planning for the evats in Figure 7 (which corresponds to
the last paragraph in Figure 3). Nodes with namein (brackets) are grouping nodes which
do not include an event; other nodes include the maed event.

Figure 10 gives an example of the way documentrpfenworks for the events in Figure 7.
The left panel shows the list of events availabdeirgut for the period 14:37 till 14:50;
highlighted rows are selected events. The righe sif the figure shows the resulting portion of
the document plan tree, corresponding to a paragigs has a root node, with four children:
a node for the SEQUENCE event (#key evenof the paragraph) and events related to it, and
grouping nodes for other (not directly related ke tkey event) events mentioned in the
paragraph; these are grouped together into vdatilaelated events, temperature-related
events, and other events. Some of the links betwemles are annotated with rhetorical
relations; in particular the SEQUENGEcludesthe two specific DESATURATION events,
and is theeasonfor the FIO2 event.

The most important decision made by the documesmirdr is which events should be
mentioned in the text. This decision is made inwghly similar fashion to that used by Hallett
et al [30]. The algorithm identifies a small number @&ykevents and creates a paragraph for
each of these. To a first approximation, the kegnéwv are those events that have the highest
importance, and the messages mentioned in eacteweyt paragraph are those which are
either explicitly linked to the key event, or whiobcur at the same time as the key event. Key
events are always mentioned first, followed by ésemhich are explicitly linked to the key
event, followed by other co-temporal event. Thisgasss is repeated for each of the key events,
and the key event paragraphs are ordered by thdista of their respective key event.

The document planner is controlled by a numbeparfameters, which specify a high
importance threshold (high importance events must nbentioned somewhere), a low
importance threshold (low importance events cateomentioned), the maximum number of
key event paragraphs, the maximum number of mesdageach paragraph, and so forth. It
also incorporates a number of special-case rutegseXample paragraphs based on lab result
key-events do not include cotemporal events whrehrat explicitly linked to the key event.
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These parameters and special-case rules were datertihrough a qualitative analysis of a
corpus of expert-written texts described in Sec8on

In the example shown in Figure 10, the documentn®a picks the SEQUENCE event
(which represents a sequence of desaturationsheakey event, since it has the highest
importance (55). The document planner then addhieoSEQUENCE node the two most
important components (DESATURATION) of the sequengging aninclude relation; and
other linked events, which in this case is justEh®2 event (this in fact is linked to one of the
components of the sequence, but from the documbmngr’s perspective, SEQUENCE
events inherit their constituent’s links). The doent planner then looks for other events at
least moderate importance which overlap the keynteteanporally, and finds four such events:
a TREND in TCPO2, a STEP in T2, and two RE-SITE_BE@vents. The document planner
groups these into three physiological categoriext{Sn 6.2.2): ventilation, temperature, and
other. Within each system, events are orderetthdiy start time.

One of the hardest problems in document plannirdgaing with events of very different
durations. For example, in an earlier version & #igorithm, if a baby was undergoing
phototherapy for an entire 45-minute period, thiaswmentioned in the first key event
paragraph, but some readers thought this meanbibleoapy ended when the other events in
this paragraph ended, which was not true. We vedahis problem in a fairly straightforward
fashion, by modifying the document planner so tbagj events (longer than a threshold which
was in the 10-20 minute range) were expressed Hegeh separate paragraphs. It is
interesting that dealing with events of differeemporal granularity, which was a major
problem in signal analysis, also turned out to Ineagor problem in document planning.

From an NLG perspective, perhaps the main innomatiache BT-45 document planner is
the key-event algorithm, and more generally th¢ tlaat the notion of a paragraph was treated
as a primitive. In previous NLG systems, paragsapave tended to either follow very strict
patterns (e.g., one paragraph about medicationparsgraph about respiration, etc); or to be
treated as an aggregation phenomenon. By conpastgraph formation is at the heart of BT-
45's key-event algorithm, which dynamically prodiicparagraphs of varied length and
content.

The evaluation of BT-45 pointed out a number ofigdefcies in document planning,
mostly related to the structure of the narratitggaduces as a result of its processing strategy.
We defer detailed discussion of these issues todbes.

4.5 Microplanning and realisation

The final stage in the BT-45 architecture in Figdrés microplanning and realisation. These
are often considered to be separate NLG tasks fiasfoplanning “fleshes out” the linguistic
content of a document plan (here, events/messaugsheir rhetorical relations), creating
semantic representations which are then rendetedlimguistic (syntactic) structures by the
realisation module, to be finally linearised astteldowever, we combine them into one stage,
as in other data-to-text systems [72]. We will gotinto details here about realisation, as this
is a fairly straightforward mapping from semangpresentations to syntax.
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Figure 11 Microplanning architecture in BT-45

The internal architecture of the BT-45 microplanigeshown in Figure 11; the individual
modules are described in the rest of this sectiblote that there is naggregation [70]
module in the microplanner. The role of aggregatsolargely taken over by thevent linking
module, which links events together at the concdplevel, based on the output of data
interpretation (Section 4.3.1) and document plagnin

Unless otherwise stated, all examples in this seatbrrespond to the final paragraph of
Figure 3, which is output by the microplanning aedlisation module given the document
plan in Figure 10 as input. The text is reproduoeldw.

By 14:40 there had been 2 successive desaturations down to
68. Previously FIO2 had been raised to 32%. TcPO2 d ecreased
to 5.0. T2 had suddenly increased to 33.9. Previous ly the
spo2 sensor had been re-sited. The temperature sens or was
re-sited.

4.5.1Lexicalisation: building semantic representations

The first microplanning stage, lexicalisation, mapessages in the document planet@nt
frames case-frame like representations consisting ofrdal predicate, and a specification of
its semantic (thematic role) arguments, such as MGEPATIENT and THEME. An argument
specification pairs a thematic role with an instweé an ENTITY in the ontology or with a
numeric value. Lexicalisation is rule-based, magpEVENTs to predicates based on their
ontological class using rules that match eventgagsemplates. This procedure is also backed
by a lexicon which extends Verbnet [44]. Verbnetugs verbs into semantic classes according
to their allowable thematic role configurations.r@uxtension introduces a small set of new
classes which are specific to the NICU domain.

To take an example, the clauBeaction of Inspired Oxygen (FIO2) had been raiged
32% starts out as an instance of an FIO2 event in doaiment plan. In the ontology, this is
subsumed by the VENTILATOR_SETTING class, instanoéswvhich are specified for a
direction slot taking one of the valuéscrease, decreaser change.In this case, the relevant
value isincreaseso that the instance matches the template sholewbe

(event-verb-mapping
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(event-class "VENTILATOR_SETTING")
(verb-class "intentional_value_setting")
(direction “increase”)

(verb "raise"))

This specifies that a VENTILATOR_SETTING event slibmap to the verbaise in the
case where its direction iscrease Other such events with a differaditection feature would
be covered by other rules (e.g. if the directionlésreasethen the verb isower). The verb
belongs to the cladatentional_value_settingh the extended Verbnet lexicon, from which it
inherits three thematic roles, an AGENT (the pensbio set the value), a THEME (the thing
which is set, here FIO2), and a VALUE (here, 32%alues for these roles (which are
instances of the ENTITY superclass) are specifigtlats of the event instance itself (see
Section 4.1), as is the numeric value. Event faaleo hold information about the start and
end times of the event.

Lexicalisation is generalised to deal with sequsrafesvents that have been formed as part
of data abstraction, by grouping these into a siegkent frame. Thus, the two desaturations are
specified in the document plan as belonging tonglsi sequence (see also the example in
Figure 10) are realised #sere had been 2 successive desaturations dows, tthé result of
mapping a sequence to a single frame, specifyiegthiematic roles, the predicate, and a
cardinality of 2.

4.5.2Event linking

The microplanner seeks to make explicit a numbethefrelations (links) between events in
the document plan. Temporal relations are expreasedy adverbials and tenses, a topic to
which we turn in Section 4.5.4 below. Other kinddioks, especially causal and part-whole
relations, are dealt with by the event linking miedhere are a humber of ways in which a
causal link can be expressed, and the microplanses heuristics to choose between these.
For example, if the target of a causal link is aerg-frame realised as a non-existential,
declarative clause, then this will be rendered a®@arate clause, with the cue phrasea
result An example can be seen in paragraph 2 of Figukeh&h contains the sentenés a
result, Fraction of Inspired Oxygen (FIO2) was $et45% Conversely, existential clauses
(e.g.,there was a bradycard)jaare realised as subordinate clauses (€hg, baby was given
morphine, causing a bradycardiarlhis is achieved by setting the subordinate eframe as a
direct child of its parent, creating a complex évepresentation which is realised as a single
clause (consisting of matrix and subordinate) bg tealisation component. Part-whole
relations expressed by the microplanner arise veheomplex medical procedure is mentioned
which involves multiple events. An example is atulration, which may involve giving a dose
of morphine to an infant. Such relations are exggdsusing adverbial phrases, for example,
The baby was intubated. As part of this procedsine,was given 50mg of morphine.

4.5.3Generation of referring expressions (GRE)

Following lexicalisation and linking, an event framwill contain a number of thematic roles
which include pointers to domain entities, for whiceferring expressions need to be
constructed. The GRE module handles four kindefefiring expressions.
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Named entitiesNamed entities in the NICU domain include sigrmlsh as Heart Rate and
Blood Pressure, as well as equipment parametetsasi&raction of Inspired Oxygen. BT-45
adopts the convention of always introducing theggies by their full name together with their
acronym, if applicable (see for example paragrapm Figure 3). When an acronym is
available, all subsequent references to a naméty ese the acronym.

Mass termsMass terms refer to substances suctmamphine References to these involve
the name of the class (i.e., MORPHINE). If a qitgrdf the substance is specified (e80,
mg), this is realised as a quantified noun phrasg,@&mg of morphine

Definite and indefinite noun phraseShese references are constructed by first sakgcti
properties of entities from the ontology. The ré&agl semantic form is then mapped to a noun
phrase (NP) at the realisation stage. The decwiavhether or not to refer to an entity using a
definite or indefinite NP depends on whether thatitg is inherently identifiableor not.
Entities such athe babyandthe SPO2 sensa@re assumed to always be unique in the domain
of discourse, hence identifiable by a reader. Otjipes of entities (e.g., an IV line) in the
ontology do not satisfy this criterion, as there potentially many instances of these classes in
the domain. These entities are therefore alway®doted via an indefinite NP. For both
definite and indefinite NPs, content determinatiprcarried out using a version of Dale and
Reiter’s Incremental Algorithm [19], generaliseddteal with plurals [27].

Anaphoric referenceA salience-based algorithm [45] is used to deileemvhether entities
should be referred to by pronouns. In practicenpuns are extremely rare in BT-45 texts.
However, salience is also useful in deciding onubke of determiners in indefinite NPs. For
example, if a bradycardia is mentioned at a painthie text where a previously-mentioned
bradycardia has high salience, then the deternaimetheris used when introducing the second
bradycardia.

4.5.4Discourse management and temporal coherence

One of the biggest challenges in BT-45 microplagrthe expression of time and temporal
relations, which is handled by the discourse managery event described by BT-45 has a
start time and an end time, and the reader shaulable to reconstruct from the text the order
in which events occurred. The complication arigesnfthe fact that narrative order is not
isomorphic to temporal order, due to the importalpased (rather than time-based) heuristics
which the document planner uses, and which theapianner tries to respect. For instance,
the penultimate clause in our running exampleeyiously the spo2 sensor had been re-yited
describes an event which was temporally prior ®dkient mentioned immediately before it.
The text needs to convey this temporal informatiotherwise it risks conveying false
implicatures [59]. For example, should a readeseflgl assume that one event occurred before
another, their additional domain knowledge migttoasupport the false conclusion that a
causal relationship holds between them. It is solna¢\surprising that, despite the substantial
amount of work on temporal representation and magoin natural language understanding
[7,51,62], this problem has received very littlezation from the generation point of view.

The key event that forms the root of each paragiam@iways expressed with an explicit
mention of its start time, so that the each pagggrstarts with a clear temporal grounding.
Tenses and temporal adverbials are then used toatedthe relative temporal order of the
events mentioned after the key event.



24

Tenses are computed using an implementation ahttael proposed by Reichenbach [71].

Under this model, tense is viewed as anaphoric, [B&pfar as the time at which an event is
interpreted to have occurred depends not only enatttual event time (E), but also on its
relation to the time of utterance, and a third terapparameter, called theference timgR).
In the BT-45 model, the utterance time is used #&temnine simple tense distinctions
(past/present/future). Since all events happenrbdfee utterance time (the system clock time
at the stage when a text is generated), they aayalnarrated in the past. Stylistically, this
distinguishes the BT-45 texts from their human-atgl counterparts (Figure 2), which tend to
use the narrative present.

The relative ordering of R and E for an event fratatermines the use of a perfect vs. non-
perfect tense. For instance, the clali2éhad suddenly increased to 3t6icates that its event
time precedes its reference time (E < R). In thiseg this is due to its reference time being the
event time of the previously mentioned event, wictually started after it. The sentefid¢e
temperature sensor was re-sitatbo has the event time of the previously mentiogeent as
its reference time. However, since the two eventaioed at the same time, this sentence is in
the simple past (since R = E).

1. Desaturation ) 2. FIO2

R1 = E1 R2 < E2 R2 = E1
(simple past)
R3 < E3
(simple past)
3. Trend (TCPO2)
R3 = E1
R4 < E4
(simple past)
4. Step (T2) 5. Re-site (SP0O2) ) 6. re-site (Temp. sensor)
R4 = E3 R5 > E5 ) R5 = E4 R6 = E6 R6 = E5

(past perfect) (simple past)

Figure 12 Temporal relations corresponding to paragaph 4 in Figure 3

The temporal relations in our example paragraphdaglayed in Figure 12, where events
are indexed by the order in which they are mentiohtere E;, is the event time of event frame
n, andR, its reference time. By default; for an event frameis equal to the start time of the
event, whereas;Rs either equal toEor to some Fj <i. In the latter case, an event frame is
temporally anchored with respect to a previoushntiomed event [89]. The model used to
compute temporal anchoring is relatively simple distinguishes the following cases.

(a) If event framd is the key event in a paragraph, the=H. This is the case for the
Desaturation event in the Figure.
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(b)  Otherwise, R= E, wherej <i and one of the following conditions is satisfied:

i. j is an event which immediately dominatesn the document plan. For
example, the sequence of desaturations dominageBID2 event in Figure
10, so that the event frame for FIO2 has the etiemt of the desaturation as
its reference time.

i. i1 has been linked tg by the event linking module, so thatis again
subordinate t¢.

ii. jis the most salient event frame previously mentiorkis is the case for all
other events in Figure 12. Typically, the most esgtlievent frame in the
discourse is the last one mentioned (j.e.i-1).

The computation of reference time did not alwaysultein an optimally coherent text,
mainly because the above rules cause the refetinedo shift considerably in the course of a
paragraph. For example, the final three sentenmesemporally ambiguous: the past perfect
signals the fact that the step in T2 occurs pigothe TcPO2 trend, but the same tense is also
used in the subsequent sentendde( SPO2 sensor had been re-gitedlhis does not
successfully indicate whether the event occurréar po the step in T2 or prior to the TcPO2
trend. Part of the reason for the continual shifteéference time is the recency-based model of
event salience (where the most salient event iallysthe previously mentioned one). One of
our aims in future work is to refine this model.eplausible alternative is to fix the reference
time in a paragraph, restricting it to the key d@yan which all other events are related.
Whether this will allow the reconstruction of theder of events in the discourse is an
empirical question.

The choice of temporal adverbials, which are addexh event frame prior to realisation, is
motivated by three considerations, namely, (a) idrethe event frame corresponds to a key
event (the first mentioned); (b) what type of evém¢ frame represents; (c) whether its
temporal anchoring is potentially ambiguous. Kegrdgg always have an absolute time-stamp
in order to situate the time of the other eventatineed in the same paragraph. In the current
example, the time of the key event is expresselyat4:40and this reflects the fact that the
event is a sequence, so that it makes more sessgnt the time of its completion rather than
its start time. Another example of how event typé&dmines choice of adverbial is that of long
trends, where the duration of the event is sigdaltather than its exact time (e.@ver the
next 20 minutes T2 decreased to 32Bemporal ambiguity can occur when two events
mentioned in sequence are expressed using the samse, but have different temporal
anchors. As noted above, this is the case in cample paragraph with the sentend@shad
suddenly increased to 33.9. Previously the spoz@ehad been re-sitedHere, the adverb
previouslyis inserted to indicate that the re-siting of ti®CO2 sensor had occurred prior to the
step in T2. Though we do not claim that this isiecessful disambiguation strategy, the use of
the past perfect alone would arguably lead to eweme ambiguity, as the re-siting event
would be likely to be interpreted as having occdiaéter the step in T2.

One issue which is currently under investigatiorelated to the range of temporal relations
handled by the microplanner. The BT-45 microplanhandlesbefore and after temporal
relations, but has difficulty in handling othermiiive relations of the sort discussed by Allen
[3], such agduring. Dealing with these issues would require moredistic knowledge and a
finer-grained semantic representation, perhapsgaibe lines discussed by Vendler [88]. For
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example, it is necessary to distinguish betweefertit event types, such as occurrences,
states and transitions, in order to block the esgiom of semantically odd temporal relations,
such as auring relation holding between a process and a state, (eegrt rate decreased
while the baby was being blueMoreover, events are frequently non-atomic, aad be
decomposed into sub-events. This is especiallydfumsedical interventions, which are usually
composed of multiple procedures. Determining theetof such events depends on knowledge
about which sub-part corresponds to the core oétleat itself [55,68].

5 Experimental evaluation

BT-45 was evaluated during an experiment held bemd® November 2007 and f@anuary
2008. For each 45 minute period (scenario), data weesented either graphically or as text.
Doctors and nurses were asked to analyse the baityétion and to make decisions about the
action(s) that should be taken at the end of theogeThe experiment was carried out "off-
ward" using historical data from babies who hadnbieethe unit several years before; we did
not ask clinicians to make decisions about thedsatiiey were currently looking after. This in
particular meant that the only information subjdws about the baby was what we told them,
they could not visually observe the baby.

This section describes the chosen scenarios, tksilppe actions, the participants, the
experimental set up and the software used for ptiegethe data. For additional details about
the evaluation, see [87].

5.1 Materials

We created 24 scenarios in which we tested clinisiaecision making (plus two other

scenarios which were only used for participantniraj). Each scenario consisted of

approximately 45 minutes of data (both sensor dathevent data), which preceded one of the
following main target actions

adjust ventilation/ Fi@

check/ adjust CPAP

extubate

manage temperature

(check) monitoring equipment
no action

suction

support blood pressure

These actions were selected to ensure a spreaiffeedt types of scenario that appear
routinely on the ward. For each scenario, we attemtified other appropriate actions (i.e.,
beneficial to the baby), neutral actions (i.e.,les® but harmless), and inappropriate actions
(i.e., potentially harmful). In total, 18 possitadetions (including ‘no action’) were identified.

Three presentations of each scenario were prepgraghs (G), human authored text (H)
or computer generated text (C). We also asked oomahn experts to write a short 'background’
text giving the age and gestation of the baby andsignificant events preceding the start of
the scenario.
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In the graphical presentation (G), physiologicabdaere displayed as line graphs, such as
that in Figure 1. In order to avoid presentatiomatrioad, only the discrete events mentioned
in the human-authored texts were presented. Tteeds (H) were written by a consultant
neonatologist and two experienced neonatal nursés, initially produced a descriptive
summary of each scenario independently, and theduged a single consensus summary. The
summaries were written to be descriptive and tddaeaplicit direction or medical diagnosis
and/or use of any judgmental language (e.g., tlaet mate was ‘normal’ or the blood pressure
was ‘worrying’). Another project member checked tegts to ensure they did not contain
interpretative information. The computerized tex®) were generated using BT-45 on a
database containing all of the data (continuousdiscrete) that was available to the human
experts in writing their texts. The texts were dteztto avoid bugs that could be fixed before
the experiment and to verify that all the termsdusere consistent with the one used by the
experts. No alterations were made to the textstdpam (i) one term that needed to be
changed because of changes in medical practideeilNtiCU (HAND-BAG_BABY had been
replaced by GIVE_NEOPUFF_VENTILATION) and (ii) twterms which were not available
in the agreed ontology (WIPE_INCUBATOR and ADJUSENTILATOR_TUBING).

The mean length of the 26 (24 scenarios+ 2 traisg®narios) human authored texts was
135 words (sd = 79); for the computer generatetstiéxvas 119 words (sd = 36). According to
the Wilcoxon signed rank test they are not sigaiiity differently distributed, (z = -.588, p =
.493). Linear regression shows a positive gradi@nb75), with computer text length
explaining 51.1% (R2=0.511) of the variation in lamtext length. The human texts were
therefore overall more wordy than the computerstdott with more variability. The positive
gradient shows that they shared the same trend \ileen human text is longer, so is the
computer text).

5.2 Participants

The participants consisted of 35 staff members imgrin the NICU at the Royal Infirmary of
Edinburgh. They were allocated to one of four gmupepending on role and experience in
neonatal care: Senior Doctd®® (n=9), Junior DoctordD (n=9), Senior NurseSN (n=9), or
Junior NursesIN (n=8). Those with one year or less of experiemceheir specialty were
classified as junior; those with 8 years or morgenelassified as senior. Participants were
chosen in this way to have a clear separation lestviieniors and seniors (as designated by
years of experience and role within the unit)sitviorth emphasising that all participants were
qualified in neonatal intensive care and thereftad demonstrated both knowledge and skill
in performing the procedures that were listed assinbe target actions in the scenarios. For
example, while nurses typically do not take themamy decision to extubate an infant
(extubation being one of the possible actions amtireg 18 listed in the experimental
scenarios), they are the ones who typically perftmenextubation.

5.3 Methodology

The 24 scenarios were divided into three sets; sathontained exactly one scenario for each
main target action. Each participant saw one sesegmted graphicallyd), one other set
presented using human texts)( and one other set presented using computer (€xtsThe
materials were counterbalanced using a Latin sqdes&n, so that each scenario was seen by
an equal number of participants in each conditidre order of presentation of the individual
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scenarios within each set was randomized and diffefior each participant. The participants
were not informed of the origin of the texts (ileuman or computer); nor were they explicitly
told that some of the texts might be computer gaeel Participants were informed that
experimental data would be stored and analysedyamously and would not be used for staff
assessment. The experiment was conducted in a mpoet away from the ward in three
sessions. The participants received training ab#gnning of each session to ensure that they
were familiar with the software, the possible awsicand the use of the mouse. For each
scenario they were asked to imagine that the perin@red led to the present time and that
they had to select appropriate action(s) that shbaltaken. Each scenario had to be analyzed
in not more than 3 minutes in order to impose sogadistic time pressure and to guarantee the
maximum length of the experimental session. Paditis were not formally asked to provide
feedback but any spontaneous feedback was recardet/mously.

The data were presented using a modified versiorthef Time Series Workbench
(TSW)[37]. This program was run on a laptop computeder Windows XP Professional, and
presented on an external (17 inch) monitor at aluésn of 1280 x 1024 pixels. Figure 13
shows an example screenshot in Gieondition (in theC andH conditions, a text would
replace the graphic in the right-hand panel). Txample corresponds to the data shown in
Figure 1. The background texts described in se&itrwere presented in the left hand panel in
the same way for all conditions. In the graphiaaidition, the user could click with the mouse
on the continuous data to generate a ‘pop up’ bieplaying the actual value and time.
Beneath the time series were coloured icons indigavents that occurred on the ward when
the babies were originally observed; the user colittk on these icons to see which event it
was.
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BACKGROUND =2 ok
Born at 26 weeks + 4 days
gestation, birth weight 800 grams,
he is now 2 weeks old.
T2

He was on CPAP but yesterday

was re-intubated because of more /\f\’,_‘}/kw\,\.\,\
frequent apnoeas and o0

bradycardias. Ventilator settings z0.0

are CMV, rate 35, pressures 18 / e

4,iT 0.3 seconds and 35% _——1"‘1‘,
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desaturations to the 70s and the
inspired oxygen has been adjusted
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recent change was an increase s Y
from 29 to 35% at 14:09.
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S Adjust ventilation / Fi2 || Cali / comfort the baby  Extubate Tntubate: Seplic sereen Take blood gas
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Figure 13: Screenshot of the experiment under thergphical (G) condition

The bottom of the screen always contained the sE8neheck boxes for the actions that
could be selected; the participant could selectentban one action (except when 'no action
was selected). At the bottom left was an ACCEPTdouivhich the participant clicked to show
that they had finished with this scenario. A pragrdar showed the time remaining to the
participant for the current scenario.

5.4 Results

Detailed results are presented in [87]; here wensarise the main findings.

5.4.1Time to complete and reaction time

If a participant did not press the ‘accept’ butteithin three minutes, the scenario was ‘timed
out’ and excluded from the study. This happened 46l times in 840 trials and was roughly
equally distributed between the four groups ofipgrants.

In order to avoid speed-accuracy trade off, thetiea time (time to the selection of the
first action) was analysed only for those trialsvinich first action was an appropriate one. The
mean reaction time foB was 73.16 sec, fad it was 77.23 sec, and f&@ it was 78.81 sec.
There was no tendency for either the presentatomdt or the staff group to influence the
reaction time. This replicates previous findingslayv et al. [48].



30

5.4.2 Appropriateness of actions

The score for a participant for a particular scenaias computed as follows. Latbe the set
of appropriate actions in a scenario, aﬁq)dg Abe the appropriate actions selected by a

participant. Similarly, letl be the set of inappropriate actions, Witra c | . The score is

computed by subtracting the proportion of seledteghpropriate actions from the proportion
of selected appropriate actions, as follows:
A I
score= M - M

A

with scoree [-11] -

The overall mean for the graphical conditid®d) (was 0.33 (sd = 0.14), for the human-
authored textH) 0.39 (sd = 0.11) and for the computer-generateti(€) 0.34 (sd = 0.14). A
3 (condition) x 4 (Group) mixed ANOVA by subjecthasved a main effect of condition
approaching significance (F (2, 31) = 2.939, p 86).but no main effect of group, and no
interaction. Condition was found to exert a sigmifit main effect in separate by-subjects
ANOVAs comparing theG andH conditions (F (1, 31) = 4.975, p < 0.05) and @hendH
conditions (F(1,31) = 5.266, p < 0.05). There wassignificant difference between tikeand
C conditions. Analysis per type of participant segigd that the superior performancetbn
texts was mostly due to the junior nurse group. @halysis was also carried out by items
(taking scenarios as the source of variation ameaging over all participants per scenario). A
one-way ANOVA revealed a significant main effectppésentation condition (F(2,188) = 6.2;
p < 0.005).

One potential shortcoming of the above score isitidepends not only on the proportion
of correct actions selected, but also on the nurabactions (out of the predetermined 18) that
were inappropriate for a given scenario. To corfecta possible bias, a separate Mixed
ANOVA was conducted using only the proportion opegpriate actions (the left hand side of
the above equation) as the dependent variablerdsdts showed a similar pattern, though the
main effect of condition did not reach significan((2,31) = 2.28; p > 0.1). Separate
ANOVAs again found a significant difference betweitie G and H conditions (F(1,31) =
4.017, p = 0.05) with no difference betwe8randC. However, the difference between tBe
andH conditions, though it goes in the same directisiihe previous analysis, failed to reach
significance (F(1,31) = 3.13, p = 0.08). Thougts timay suggest that computer texts appear to
approach the human texts in an analysis usingsablesed score, we emphasise that this was a
post-hoc analysis, and its results should be tdeatth caution.
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0.90+

0.80+

Condition
[ craph @)
0.70+ . Human (H)

. Computer (C)

0.50-

Mean score

0.404

0.304

0.204

Adjust Check / adjust Extubate Manage Monitor No action Suction Support
ventilation / FIO2 CPAP temperature equipment blood pressure

Target action

Figure 14 Results of the BT-45 experiment by targedction using the main performance
score. Error bars represent standard error.

In short, there is an overall better score for kh@resentation, mainly led by the junior
nurse group and no difference betweenGhandC presentations. The superiority léftexts
was not surprising given the findings of [48].

However, if scenarios are grouped by main targibmcas in Figure 14, a striking pattern
appears. Computer texts were generally as effeetivhuman texts for five of the eight target
actions, but they did considerably worse for thtagget actions: Manage Temperature,
Monitoring Equipment, and No Action. This was comfed in a by-items ANOVA testing the
effect of main target action on thdifference in performance betweehl and C texts
(F(1,7)=8.002, p<.001). The reasons for poor peréorce in these scenarios is further
discussed in Section 6.2.

6 Discussion

Perhaps the most important outcome of this workimsply that itis possible to generate
effective textual summaries of complex clinicaladlatWe know from previous work [48] that
human-written text summaries can be a very effectiecision-support aid. Although our
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computer-generated textual summaries are not ag geduman-written summaries, they are
as effective as computer-generated graphical viatans, which is an encouraging result
after only one year of development. Since theneldyy for generating textual summaries of
data sets is still very new, we expect data-to-sydtems to approach the effectiveness of
human-written text summaries over the next few year

In order to help us understand which aspects ottmputer texts caused them to be less
effective than the human texts, we analysed tHerdifices in some depth. Of course we were
aware of a large number of ways in which BT-45 ddu® improved; the goal of this analysis
was to identify which of these improvements wouldrhost likely to make the system more
effective.

6.1 Comments by Subjects

Subjects were not explicitly asked for free-textntoents, but a number of them volunteered
comments, which we recorded. Apart from minor éssuelating to text layout, the main
aspect of the BT-45 texts that was criticised by tw more subjects was related to what we
call continuity BT-45 in some cases described changes in sigmalsys which didn't make
sense. For example, the BT-45 text in Figure ®ailly states that T1 is 37.7, and that TcPO2
is 5.8, and then states that itreasedo 37.3, and TcPOQecreasedo 8.4

This problem is mainly caused by BT-45's bottomeaptent-determination strategy. If we
look at the actual TcPO?2 trace in Figure 1, we sa@ that TcPO2 rose between 14.15 and
14.17, to a peak value of around 20, before it esd to 8.4. BT-45's importance rules
assigned more importance to the fall in TcPO2 tioathe preceding rise, which meant that the
fall was mentioned in the text but not the rise.

We call this problentontinuity; alluding to the phrase used by filmmakers forghablem
of ensuring that neighbouring scenes in a film @asistent with each other. Some of the
human texts also seemed to have continuity prohléusnone of the subjects complained
about this; which suggests that some kinds of paitti violations are more problematical than
others (perhaps this depends on the proximity efdtents in both time and the document
structure).

One way of dealing with continuity problems is t@kcitly identify and fix them; another
is to use a more top-down approach document plgnnin

6.2 Scenarios where computer texts did badly

We have pointed out that the computer-generated tha considerably worse than the human
texts for three target actions: Manage Temperatamitoring Equipment, and No Action.
Analysing the reasons for this failure highlightilgional problem areas for BT-45.

6.2.1Too much focus on medical importance

Content-selection in BT-45 is based on rules tsaess the medical importance of events and
signal changes. BT-45's importance rules de-enighaignal changes which are probably due
to sensor problems, and not physiologically reahilé/this is appropriate in most cases, one of
the target actions (Monitor Equipment) is to chexapply and adjust sensors in order to
reduce sensor problems; in fact this is the taagdon for the scenario presented in Figure 1,
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Figure 2, and Figure 3. Note that the human tEigufe 2) explicitly refers to artifacts and
mentions spikes to implausible values:

At 14:15 hours a heel prick is done. The HR insesaat this point and for
7 minutes from the start of this procedure thera it of artifact in the
oxygen saturation trace.

The BT-45 text (Figure 3), in contrast, does notntimm these because BT-45 has
(correctly) identified these as sensor artefaatsl, l'ence decided to ignore them; this means
that readers of the BT-45 texts are less likelsettise that equipment must be adjusted.

This is a difficult problem to solve, because icantext where medical intervention was
needed, BT-45 would be correct to ignore the sepsalslems. One solution would be for BT-
45 to perform a top-level diagnosis itself, anduatljts texts based on whether it believed staff
should focus on medical intervention or adjustiegsors. Whether this is desirable or even
feasible is unclear; it relates to the more genmsle of how a data-summarisation system
such as BT-45 should be integrated with a mediearibsis system.

6.2.2Poor Description of Related Variables

BT-45 describes each physiological variable mordess independently. For temperature,
however, it is probably better to describe the t@mperature channels together and even
contrast them, which is what the human texts dis; pnobably contributes to BT-45's poor
performance in Manage Temperature scenarios. Hride clearly seen in the example texts.
The human text shown in Figure 2 either descritieeind T2 together (e.g.BY 14:50 T1 is
37.5° and T2 is 34.2°Q¢"or describes the gap between the tvRy(14:38 the toe-core gap has
widened to >49; in either case the reader gets an integrateing of the temperature system.
The BT-45 text shown in Figure 3, in contrast, frently refers to either T1 or T2 without
making any reference to the other temperature @iann

BT-45's document planner is mostly driven by medim@ortance and causal relationships.
Although it does try to group together informatiabout related channels, this is done as a
secondary optimisation, not as a primary organigingciple. The human texts place a much
higher priority on grouping 'physiological systen(& use NICU terminology) of related
channels and events together, including the raspyreand cardiac systems as well as the
temperature system. We suspect that BT-45 shdalte pnore emphasis on systems in its
document planning.

6.2.3Poor Long-Term Overview

BT-45 is better at describing short-term changed patterns than longer-term ones; it is

probably least satisfactory when it tries to sumsgawhat happens to a channel over an entire
scenario. This isn't a major problem in eventftgrarios when the key is to describe the

events, but it does mean that BT-45 does not dbiweineventful scenarios when the target

action is No Action (i.e., do nothing).

This problem is due to deficiencies in both sigaalysis and linguistic processing. From
a signal analysis perspective, humans do a betieof detecting long-duration patterns. For
example, the human text describes the blood presiaia in Figure 15 by saying
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The mean BP is 35-43 with the baseline decreasieg the 45 minutes to 27-30.
Within the BP trace are 2 periods where it is teraply elevated, one at 10:21 (to a
mean of 51) and one at 10:41 (to a mean of 57).

The BT-45 text. in contrast, just mentions sometlasd individual changes (e.g., the
decrease in BP between 10.25 and 10.30), it doesummarise these changesZaperiods
where it is temporarily elevated

60 | Mean BP (mmHg)

30

20 ||||I|||III||III|||I|r||||||||||||I||||I||||

1015 1020 1025 1030 1035 1040 1045 1050 1055

Figure 15: Blood Pressure in scenario 14

From a linguistic perspective, BT-45's summariesaothannel over time would be
improved by better aggregation. For example, ia scenario, the human text describes T2
over the course of the scenario as

T2 drifts down over the 45 minutes from 34 to 33.3C

The BT-45 text, in contrast, separately gives tiigal and end values of T2:
Peripheral Temperature (T2) = 34.0...

Over the next 44 minutes T2 decreased to 33.4.

6.3 Temporal Issues

It is clear from what we have said that BT-45 teaften did not communicate time well.
There are a number of reasons for this, of whigh fost fundamental is the problem of
describing the time of events with durations of mb@s or more. For example, in one scenario,
the BT-45 text said:

After 6 attempts, at 14:17 a peripheral venous livas inserted successfully.

In this case, there are a series of attempts totitise peripheral line, starting at 14.17 and
ending at 14:35. In the above text BT-45 gives tilhe that the series of attempts started
(14:17), but readers interpret this time as belmgtime that success was achieved, which was
in fact 14:35. The problem here is that when BTdé4Scribes long-duration events, it does not
take into consideration the type of event. In therent example, the event is an intervention
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which is successful; hence, the use of the end wimdd be justified, as it is in fact the time at
which the insertion was achieved. This would not jbstified in case the insertion was
unsuccessful. It is interesting that the above thmse would probably have been acceptable
if the sequence of attempts was described diffgrent

At 14:17, 6 attempts were made to insert a peripheenous line, the last
of which was successful.

BT-45 needs a much better model of how to commutmidame, and how this
communication depends on the semantics and linguestpression of the events being
described. An obvious first step, which we arerenilty working on, is to include a
linguistically-motivated temporal ontology [55], wh will be separate from the existing
domain ontology. We also need better techniques dommunicating the temporal
relationships between events in cases where tleegadisted in chronological order [59].

One theme which runs through much of the previoissudsion is that of temporal
granularity. The technology developed for productegtual descriptions of ICU data was
aimed at processing around 45 minutes in ordezgooduce the previous experiment [48]. We
have also tested BT-45 with scenarios spanningyaoda week and the system was able to
process this amount of data in a reasonable timdea minutes). However, the way
information was extracted and reported still prggges a time resolution of 45 minutes. For
example, in a report covering a week, details ataouintubation (hand-bagging, morphine,
etc.) were reported whereas they should be sumedaris OnMay 15" the baby was
successfully intubated his is a well known problem in data abstracti@ather than fixing the
level of abstraction, this needs to be dynamicdkyermined by the period of data to be
analysed, reporting low-level abstractions in caseser selects a short peri@dg., FiO, was
increased to 24%, at 14:25 it was decreased to }18&4th higher-level abstractions for longer
periods(FiO, varied between 18% and 36% over the périod

6.4 Narrative structure

Two discourse analysts from the University of Edirgh, Dr Andrew McKinlay and Dr Chris
McVittie, kindly agreed to examine and compare sahée human and BT-45 textsheir
top-level comment was that the human texts had rbetter narrative structures than the BT-
45 texts. They use the term 'narrative' in thesseasf Labov [47]; that is, story-like structures
which describe real experiences, and which go betyost describing the events and include
information that helps listeners make sense of vilagipened, such as abstracts, evaluatives,
correlatives, and explicatives.

The above observation might be taken to imply thatnarrative superiority of the human
texts may be due to their implicitly containing radnterpretation than the machine-generated
texts, because of superior domain-knowledge. Thises an important issue, namely, the
extent to which the superiority of one presentatimodality (such as text) over another (such
as graphics) may depend in part on the expertise (@nce the interpretive capacity) of an
author. Evaluating this could involve, for examgeyersion of our experimental design which
manipulated the level of expertise of the authdrthe human-written texts. Though this was
beyond the scope of the present study, it remainstaresting avenue for future exploration.
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Nevertheless, many of the issues raised by Dr Meliiand Dr McVittie had to do with
linguistic and presentational features of the maetgenerated texts, including many of those
mentioned above. Indeed, it is striking how manytledse (continuity, describing related
information better, long-term overview, describitigne) are aspects of narrative generation.
They also pointed out a humber of other narratigcténcies in the BT-45 texts, the most
fundamental being that the human texts did a m@ttebjob of linking related events into a
coherent whole. In addition, BT-45 texts lackedaaclusion, whereas many of the human
texts did try to "wrap up" in some fashion, evenrity to describe the baby's status at the end
of the period. For example, the human text in Fég2 ends with a description of temperature
at the end of the scenario (14:50), while the BTted& in Figure 3 says nothing about the state
of the baby at 14.50.

This concern with narrative is especially significan light of the fact that many of our
medical collaborators at Edinburgh have told ug thay believe stories are valuable when
presenting information about the babies, and indhatia major problem with contemporary
data visualisation systems, compared to the olgstem of written notes, is that neither the
visual chart presentation nor the summary generfxted form-filling tells stories. This is
supported by Strople and Ottani [85] which emplexbizhat one of the ancillary (but
nonetheless important) purposes of medical sumsiaige education: computerised data
management systems must preserve this as muctssiblpo Junior nurses and doctors are not
always aware of causal links between events, antestmake some of the cause-consequence
links between events explicit.

We believe that there is a lot of merit in this ecoemt, and indeed that a good top-level
summary of BT-45's deficiencies is that it needgrimduce better narratives. There has been
research on generating narratives in the compuigtioreativity community, although this
focused on generating fictional stories, and hdaogely addressed issues such as character
development [64], which are perhaps not that ingurin the BT-45 context of generating
narratives about non-fictional events, for the s of decision support. Regardless, one of
our objectives for the future is to establish heliteks with creativity researchers interested in
narrative generation. Previous research on neerati the NLG community has focused on
detailed microplanning issues [9], although unfostiely not on the temporal expression issues
which are perhaps the hardest microplanning chgdién BT-45.

7 Future Work

7.1Future BabyTalk systems

In the remainder of the BabyTalk project, we will to develop four other systems which will
generate texts from NICU data for various users tas#ls; these systems will be based on a
core software frameworkB{-Core which is largely based on the BT-45 architectaral
modules described above. All of the future BabiTaistems will restrict their input to data
that is routinely recorded or automatically acqdiren the hospital, in a few cases
supplemented by a small amount of additional inftion about parents, acquired via a
guestionnaire.
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BT-Nursewill generate descriptions of NICU data which vk included in end-of-shift
nursing summaries. These summaries will describbdlurs of data, and are intended to give
incoming nurses information about what happenetherprevious shift.

BT-Docwill provide summaries of several hours of NICUajan demand, to help medical
staff (especially junior doctors) make good decisi@bout interventions. It has a similar
motivation to BT-45, but will generate summarieattdescribe longer data periods; hence it
will probably need to use high-level abstractiohthe data.

BT-Parent[50] will generate summaries of NICU data for pdsgto help them understand
what is happening, possibly reducing anxiety. R&@rare quite varied in their information
needs, medical expertise, and emotional state @&rgss level); BT-Parent will put much more
emphasis on user-modelling and adaptation thasybems intended for doctors and nurses.
This work builds on thé&abyLinksystem [25] which is currently used at the EdinbukjCU
to generate parent reports, but does not usecatifntelligence or NLG techniques.

BT-Clan[56] will generate texts for friends and family.de grandparents), to encourage
them to offer appropriate support to parents armdsa Initial user studies indicate that clan
members want to know how the parents are doingvedisas the baby's state; for this reason
BT-Clan in particular will probably need more infaition about parents than is available in
the current NICU database.

In addition to BabyTalk, we plan to investigate mai the data-to-text issues raised above
in other projects as well. In particular, we hageently started a project on helping children
with learning difficulties to write a story for tmeparents about their day at school, based on
sensor data which tracks their location and aétisjtthis project will enable us to explore
narrative generation in another context. We woallsb like to explore using BabyTalk
technology in the context of assisted living. The&r considerable research in using sensors to
monitor elderly people in the home, for the purpodriggering alarms. We would like to
summarise the monitoring data, both to help captaa future activities (analogous to BT-
Nurse), and to help elderly people maintain contdttt friends and family (analogous to BT-
Clan).

7.2 Temporal reasoning and expression

As should be clear from the body of this paper, ynainthe research challenges in BT-45
involve temporal information: temporal reasoningmporal expression, and more generally
better techniques for handling events at diffetené-scales. This problem will become more
severe in other Babytalk systems, as they havertora&rise longer periods of time.

Temporal reasoning and expression becomes particutdnallenging when temporal
information is uncertain, and this will be a mafactor in the future BabyTalk systems. Input
of BT-45 consisted of sensor data (accurate tosdwond), and notes about discrete actions
entered by a research nurse (time-stamped, andajignaccurate to within a minute or so).
For information about discrete actions, future Beddk systems will rely on the standard
NICU database, which is generally less temporatigusate (with some exceptions). For
example, records of changes in the oxygen levéhénincubator may well be inserted on an
hourly basis, so that the precise time at whichange was effected is not known.
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One way to surmount this problem is to use the@edata to get more accurate timings of
events. Many discrete events, such as patient ingndiesult in observable patterns in the
sensor data. ldentifying such patterns may redueaihcertainty in the time of discrete events.
Nevertheless, temporal uncertainty will not beyfdliminated, and will need to be expressed.
There are many linguistic mechanisms for commuirigaiemporal uncertainty (ranging from
explicit adverbials such asughly atto changing temporal precision, for example fri&:®0to
3PM); we will explore these in the future.

In the long run, these problems can be expectdihmish as a result of more automation
in data collection in the NICU. For example, theCNI could record incubator humidity levels
on a second-by-second basis. This would enabignalsainalysis module to identify the time at
which an incubator was opened (for example, to leaadpatient), based on fluctuations in
humidity. While there is no felt need to do thigta present time, if systems such as BabyTalk
gain acceptance, they could provide added motindtio making the necessary changes.

7.3 Additional Information

To date, we have only used structured data in #iemqt database as input to BT-45. The
patient database also contains many free-text decarhich in principle contain very valuable
information; for example the rationale behind matian and other interventions, information
about how parents are coping, and detailed obsengawhich do not fit the database schema.
Of course these free texts are often highly unsirad, with lots of abbreviations, grammatical
errors. We are currently exploring using InformaticExtraction (IE) techniques to
automatically extract information from these fregttnotes.

More speculatively, doctors and nurses have reglateld us that they get a lot of useful
information by visually observing babies. We wonidén principle some of this information
could be obtained by a computer vision system whiatonnected to a camera which observes
the baby. We intend to discuss this with colleagnehe computer vision area.

7.4 Multimodal presentations

BT-45 is a stand-alone system which generatesaégstummaries of data. We suspect that this
technology would be more effective if it could beeigrated into anultimodal systemvhich
combined graphical data charts with textual sumesarThis could benefit a broader class of
users, given that some people are more visualBnted than others, while the correct
interpretation of graphs also tends to depend amellef expertise. For example, junior
clinicians could benefit from the textual preseiotatwhereas senior clinicians could quickly
retrieves information from graphs. Also, differetypes of data may be better suited to
visualisation or textual summarisation. Offeringtbtypes of presentation allows the user to
choose the one which best fits her way of thinkamgl the specific data set being examined.
Ideally the two presentation types could be linkedh cross-references and otherwise
integrated [4]. Multimodal systems could includedital images, videos of the baby as well
as graphs.

Ideally, BT-45 should also bateractive for example, by including hyperlinks [60] which
users could click on for more detailed summarysetiout particular events, and/or graphical
depictions of the sensor data in specific periddss kind of document organisation could
extend the notion of am-document[10] in which multimedia information is structured
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according to user annotations. Another examplénteraction is given by the KNAVE-II
system [52] which enables users to query patietathdaes to retrieve raw and abstracted low
frequency data and display this on the screen foremaccurate decision making in the
oncology domain. One of the greatest strengthisfofmation visualisation systems is their
interactivity; we would like to investigate whethgsme of the interactivity techniques used in
visualisation systems can be adapted to textuaduttimodal summaries.

7.5 Decision-Support

Traditional decision support systems (including sthanformed by computerised clinical
guidelines) are oriented towards making recommeémast However, automatic advice
generation is still a sensitive subject in medjactice and, apart from some exceptions [22],
few systems are actually in use on the ward.

Systems like BT-45, which summarise data and doattempt to interpret it, provide an
interesting starting point for the development afrensophisticated decision support systems.
In its current form the amount of advice offeredBiy-45 is zero; it does not perform the kind
of data interpretation needed to recommend diagnagd interventions and leaves decision-
making completely to the clinician. However one Idoconceivably increase the amount of
advice in some fraction of the text, in order tokmdt more likely that a reader proceed in a
specific direction (or directions); if the fractioleached 100% we would have a classical
recommender system. We would like to experimenhwaifowing users to vary the relative
proportions of summary and advice, and see whicht pm this scale was most acceptable to
clinicians and/or most effective in terms of leagtn good decision-making.

8 Conclusion

Modern society badly needs better ways of presgninge data sets to human decision-
makers, in medicine and also in many other conte@srrently data sets are almost always
presented using information visualisation technggumit visualisation systems are not always
as effective as might be hoped. An alternativecfmplement) to visualisation is to use NLG
and data-to-text techniques to generate textuahgnmes of data sets. In this paper, we have
presented a data-to-text prototype, BT-45, whiahegates texts automatically from continuous
numerical data and discrete numerical and symluigia acquired from babies cared for in a
neonatal ICU. Although BT-45 has many problems deficiencies, an off-ward experiment
with doctors and nurses suggests that BT-45 tendsaa effective for decision support as
conventional visualisations.

In short, we have shown that it is possiblgénerate summary texts of large complex data
sets, which are effective decision-support aids;haee done this by combining ideas from
many fields of artificial intelligence, includingnkwledge representation and reasoning,
pattern analysis, and natural language processitig.have also identified humerous ways in
which the technology could be improved so that geted texts become more effective, some
of which draw on yet more areas of artificial ifitegnce, such as computational creativity and
computer vision. We believe that with concertefbref data-to-text technology can improve
markedly, to the point where it is routinely usedhtlp people understand large data sets, not
just in medicine but also in engineering, meteaggldinance, and many other areas.
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Appendix: Glossary of medical terms used in the aitle

Apnoea
Arterial line/catheter

Blood from catheter
Bradycardia

CPAP

Desaturation
Extubate

Fio2

Gestational age
Hand bagging

Heel prick
HR

ICU

IV line
Incubator
Intubate
Intubation

Mean BP

Neopuff

NICU

Peripheral venous line
Phototherapy

Probe lift

Re-intubation

Re-site probes/sensors
Sa02

SpO2

Suction

T1

T2

TcPCO2

TcPO2

Toe-core gap
Transcutaneous sensor
Ventilation

Episode of low (or absent) respiration.

Narrow tube inserted into an artery for measuring blood pressure or
for obtaining a blood sample.

Action of taking a blood sample from the arterial catheter.

Episode of slow heart rate.

The maintenance of a continuous positive pressure in the airways.
Fall in oxygen saturation.

Action of removing an endotracheal tube from the baby's trachea.
Fraction of inspired of oxygen setting on the ventilator.

Amount of time the baby spent in the womb.

Provision of respiratory support via a bag which is squeezed by
hand; this is nowadays performed by a machine such as Neopuff.

Action of taking a blood sample from the baby's heel.

Heart rate from electrocardiogram leads or arterial catheter.
Intensive Care Unit.

See peripheral venous line.

Enclosed cot for the baby with controlled temperature and humidity.
Action of putting an endotracheal tube in the baby's trachea.

Entire procedure at the end of which a baby is being ventilated via a
tube placed into the trachea (also called endotracheal intubation).

mean blood pressure as measured via the arterial catheter.
See hand-bagging.

Neonatal ICU.

Narrow tube inserted into a vein on a limb.

Treatment involving the exposure of the skin to strong UV light.

Transitory event during which a probe detaches itself slightly from
the skin and generates incorrect readings.

Procedure of changing an endotracheal tube.

Moving a probe or sensor to another location on the baby.
Oxygen saturation in the blood as measured by pulse oximetry.
Pulse oximeter sensor.

Removal of secretions from the endotracheal tube.

Central (core) temperature of the baby.

Peripheral temperature of the baby (at the toe).

Pressure of carbon dioxide in the blood as measured by the
transcutaneous sensor.

Pressure of oxygen in the blood as measured by the transcutaneous
sensor.

The difference between T1 and T2.
Sensor on the baby's skin for measuring TcPO2 and TcPCO2.

Respiratory support for babies who are unable or too immature to
breathe independently.



