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years later, Boole [START_REF] Boole | Exposition of a general theory of linear transformation[END_REF] established the main purpose of what has become today classical invariant theory. Cayley [START_REF] Crilly | The rise of Cayley's invariant theory (1841-1862)[END_REF][START_REF] Crilly | The decline of Cayley's invariant theory (1863-1895)[END_REF] deeply investigated this field of research and developed important tools still in use nowadays, such as the Cayley Omega operator. During about fifteen years (until Cayley's seventh memoir [START_REF] Cayley | A seventh memoir on quantics[END_REF] in 1861) the English school of invariant theory, mainly led by Cayley and Sylvester, developed important tools to compute explicit invariant generators of binary forms. Thus, the role of calculation deeply influenced this first approach in invariant theory [START_REF] Crilly | The rise of Cayley's invariant theory (1841-1862)[END_REF].

Meanwhile, a German school principally conducted by Clebsch, Aronhold and Gordan, developed their own approach, using the symbolic method (also used with slightly different notations by the English school). In 1868, Gordan, who was called the "King of invariant theory", proved that the algebra of covariants of any binary forms is always finitely generated [START_REF] Gordan | dass jede Covariante und Invariante einer Bineren Form eine ganze Function mit numerischen Coefficienten einer endlichen Anzahl solcher Formen ist[END_REF]. As a great part of the mathematical development of that time, such a result was endowed with a constructive proof: the English and the German schools were equally preoccupied by calculation and an exhibition of invariants and covariants. Despite Gordan's constructive proof, Cayley was reluctant to make use of Gordan's approach to obtain a new understanding of invariant theory. That's only in 1903, with the work of Grace-Young [START_REF] Grace | The algebra of invariants[END_REF], that the German approach of Gordan and al. became accessible to a wide community of mathematicians. During that time, from 1868 to 1875, Gordan's constructive approach led to several explicit results: first, and without difficulty, Gordan [START_REF] Gordan | Uber das Formensystem Binaerer Formen[END_REF] computed a bases for the covariants of the quintic and the sextic. Thereafter, he started the computation of a covariant bases for the septimic and the octic. This work was achieved by Von Gall who exhibited a complete covariant bases for the septimic [START_REF] Gall | Das vollstandige formensystem der binaren form 7ter ordnung[END_REF] and for the octic [START_REF] Gall | Ueber das vollständige System einer binären Form achter Ordnung[END_REF].

In 1890, Hilbert made a critical advance in the field of invariant theory. Using a totally new approach [START_REF] Hilbert | Theory of algebraic invariants[END_REF], which is the cornerstone of today's algebraic geometry, he proved a finiteness theorem in the very general case of a linear reductive group [START_REF] Derksen | Computational invariant theory. Invariant Theory and Algebraic Transformation Groups[END_REF]. However, his first proof [START_REF] Hilbert | Theory of algebraic invariants[END_REF] was criticized for not being constructive [START_REF] Fisher | The death of a mathematical theory. A study in the sociology of knowledge[END_REF]. Facing those critics, Hilbert produced a second proof [START_REF] Hilbert | Theory of algebraic invariants[END_REF], claimed to be more constructive. This effective approach is nowadays widely used to obtain a finite generating set of invariants [START_REF] Shioda | On the graded ring of invariants of binary octavics[END_REF][START_REF] Dixmier | Série de Poincaré et systèmes de paramètres pour les invariants des formes binaires de degré 7[END_REF][START_REF] Brouwer | The invariants of the binary decimic[END_REF][START_REF] Brouwer | The invariants of the binary nonic[END_REF]. Let summarize here the three main steps of Hilbert's approach [START_REF] Hilbert | Theory of algebraic invariants[END_REF].

The first step is to compute the Hilbert series of the graded algebra A of invariants, which is always a rational function by the Hilbert-Serre theorem [START_REF] Cox | Using algebraic geometry[END_REF]. This Hilbert series1 gives dimensions of each homogeneous space of A. The second step is to exhibit a homogeneous system of parameters (hsop) for the algebra A. Finally, the Hochster-Roberts theorem [START_REF] Hochster | Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay[END_REF] ensures that the invariant algebra A is Cohen-Macaulay2 . Thanks to that statement, one system of parameters (or at least the knowledge of their degree) altogether with the Hilbert series produce a bound for the degrees of generating invariants. We refer the reader to several references [START_REF] Sturmfels | Algorithms in invariant theory[END_REF][START_REF] Brouwer | The invariants of the binary decimic[END_REF][START_REF] Dixmier | Série de Poincaré et systèmes de paramètres pour les invariants des formes binaires de degré 7[END_REF][START_REF] Derksen | Computation of invariants for reductive groups[END_REF][START_REF] Derksen | Computational invariant theory. Invariant Theory and Algebraic Transformation Groups[END_REF][START_REF] Derksen | Computing invariants of algebraic groups in arbitrary characteristic[END_REF] to get a general and modern approach on this subject. However, one major weakness of that strategy is that it depends on the knowledge of a system of parameters (or at least their degree). The Noether normalization lemma [START_REF] Lang | Algebra[END_REF] ensures that such a system always exists, but as far as we know, current algorithms to obtain such a system [START_REF] Hashemi | Efficient Algorithms for Computing Noether Normalization[END_REF] are not sufficiently effective because of the extensive use of Grobnër basis. For the invariant or covariant algebra of binary forms, one has of course the concept of nullcone and the Mumford-Hilbert criterion [START_REF] Derksen | Computational invariant theory. Invariant Theory and Algebraic Transformation Groups[END_REF][START_REF] Brion | Invariants et covariants des groupes algébriques réductifs[END_REF] to check that a given finite family is a system of parameters. But this criterion does not explain how to obtain a system of parameters. Furthermore, in the case of joint invariants, that is for the invariant algebra Inv(V ) of V := S n 1 ⊕ • • • ⊕ S n k , such a system of parameters has, in general, a complex shape. Indeed, Brion [START_REF] Brion | Invariants de plusieurs formes binaires[END_REF] showed that there exists a system of parameters which respects the multi-graduation of Inv(V ) only in thirteen cases.

An important motivation for this article was to compare effective approaches in invariant theory since the goal was to compute invariant basis for non trivial joint invariants, such as S 8 ⊕ S 4 ⊕ S 4 or S 6 ⊕ S 4 ⊕ S 2 ⊕ S 2 . Those computations have important applications in continuum mechanics [START_REF] Atkin | An introduction to the theory of elasticity[END_REF] in which occurs invariants of tensor spaces defined on R 3 , naturally isomorphic (after complexification) to SL(2, C) spaces of binary forms [START_REF] Sternberg | Group theory and physics[END_REF][START_REF] Boehler | On the polynomial invariants of the elasticity tensor[END_REF]. For instance, to obtain invariants of the elasticity tensor [START_REF] Backus | A geometrical picture of anisotropic elastic tensors[END_REF], Boehler-Kirilov-Onat [START_REF] Boehler | On the polynomial invariants of the elasticity tensor[END_REF] derived from the invariant bases of S 8 (first obtained by Von Gall [START_REF] Gall | Ueber das vollständige System einer binären Form achter Ordnung[END_REF] in 1880) a generating set of invariants for the higher dimensional irreducible component of the elasticity tensor. Such an invariant bases can be used to classify the orbit space of the elasticity tensor, as pointed out by Auffray-Kolev-Petitot [START_REF] Auffray | On Anisotropic Polynomial Relations for the Elasticity Tensor[END_REF]. In a recent paper, we used a joint invariant bases of S 6 ⊕ S 2 already obtained by von Gall [START_REF] Gall | Ueber das simultane Formensystem einer Form 2ter und 6ter Ordnung[END_REF] to obtain a new result on an invariant bases of a traceless and totally symmetric third order tensor defined on R 3 [START_REF] Olive | Isotropic invariants of a completely symmetric third-order tensor[END_REF]. Such an invariant bases is useful in piezoelectricity [START_REF] Yang | Special topics in the theory of piezoelectricity[END_REF] and second-gradient of strain elasticity theory [START_REF] Mindlin | Second gradient of strain and surface-tension in linear elasticity[END_REF].

Other interests for effective computations of generating sets of invariants of binary forms arise in geometrical arithmetic, illustrated by the work of Lercier-Ritzenthaler [START_REF] Lercier | Hyperelliptic curves and their invariants: geometric, arithmetic and algorithmic aspects[END_REF] on hyperelliptic curves. We could also cite other areas such as quantum informatics with the paper of Luque [START_REF] Luque | Invariants des hypermatrices[END_REF] and recoupling theory, with the work of Abdesselam and Chipalkatti [START_REF] Abdesselam | Brill-Gordan loci, transvectants and an analogue of the Foulkes conjecture[END_REF][START_REF] Abdesselam | The higher transvectants are redundant[END_REF][START_REF] Abdesselam | On the volume conjecture for classical spin networks[END_REF][START_REF] Abdesselam | Quadratic involutions on binary forms[END_REF] on 6j and 9j-symbols.

Approaches on effective invariant theory do not only rely on the algebraic geometry field initially developed by Hilbert. In the case of a single binary form, Olver [START_REF] Olver | Classical invariant theory[END_REF] exhibits another constructive approach, which was later generalized for a single n-ary form and also specified with a "running bound" by Brini-Regonati-Creolis [START_REF] Brini | Combinatorics, transvectants and superalgebras. An elementary constructive approach to Hilbert's finiteness theorem[END_REF]. We could also cite Kung-Rota [START_REF] Kung | The invariant theory of binary forms[END_REF] but the combinatorial approach developed there became increasingly complex for the cases we had to deal with.

As we already noticed, a special case of Gordan's algorithm, stated in theorem 8.1, leads to a very easy computation of one covariant bases for S 6 ⊕ S 2 . Due to this observation, we decided to reformulate Gordan's theorem 3 on binary forms in the modern language of operators and SL(2, C) equivariant homomorphisms. We also decided to represent SL(2, C) equivariant homomorphisms with directed graphs, in the spirit of the graphical approach developed by Olver-Shakiban [START_REF] Olver | The structure of null Lagrangians[END_REF].

The paper is organized as follows. In section 2 we recall the mathematical background of classical invariant theory, and we introduce classical operators such as the Cayley operator, polarization operator and the transvectant operator. In section 3, we introduce molecule and molecular covariants which are graphical representations of SL(2, C) equivariant homomorphisms constructed with the use of Cayley and polarization operators. We then give in section 4 important relations between molecular covariants and transvectants. Gordan's algorithm for joint covariants, explained in section 5, produces a finite generating set for Cov(S m ⊕ S n ), knowing a finite system of generators for the covariant algebra Cov(S m ) and Cov(S n ). A second version of Gordan's algorithm, which enables to compute a covariant bases for S n , knowing covariant basis for S k (k < n), is detailed in section 6. We propose in section 7 some improvement of those two algorithms and in section 8 we give some illustrations of that method, by (re-)computing a minimal covariant bases for S 6 ⊕ S 2 (already done by von Gall [START_REF] Gall | Ueber das simultane Formensystem einer Form 2ter und 6ter Ordnung[END_REF]). We also exhibit for the first time a minimal bases for the joint covariants of S 6 ⊕ S 4 (theorem 8.3), and also a minimal bases for the joint covariants of S 6 ⊕ S 4 ⊕ S 2 (new, theorem 8.4). Then we apply the algorithm for a single binary form and give a minimal covariant bases for the binary octics. Note this was already obtained by Von Gall [START_REF] Gall | Das vollstandige formensystem der binaren form 7ter ordnung[END_REF], Lercier-Ritzenthaler [START_REF] Lercier | Hyperelliptic curves and their invariants: geometric, arithmetic and algorithmic aspects[END_REF], Cröni [START_REF] Cröni | Zur Berechnung von Kovarianten von Quantiken[END_REF] and Bedratyuk [START_REF] Bedratyuk | On complete system of covariants for the binary form of degree 8[END_REF]. Finally we obtain for the first time a minimal invariant bases for S 8 ⊕ S 4 ⊕ S 4 (theorem 8.11). Note also that a minimal covariant bases for the binary nonics and decimics will be presented in a forthcoming paper with Lercier [START_REF] Olive | A minimal covariant basis for the binary nonics and decimics[END_REF].

Mathematical framework

Covariants of binary forms.

Definition 2.1. The complex vector space of n-th degree binary forms, noted S n , is the space of homogeneous polynomials

f (x) := a 0 x n + n 1 a 1 x n-1 y + . . . + n n -1 a n-1 xy n-1 + a n y n , with x := (x, y) ∈ C 2 and a i ∈ C.
The natural SL 2 (C) action on C 2 induces a left action on S n , given by

(g • f )(x) := f (g -1 • x), g ∈ SL 2 (C).
By a space V of binary forms, we mean a direct sum

V := s i=0 S n i , n i ∈ N
where the action of SL 2 (C) is diagonal. One can also define an SL 2 (C) action on the coordinate ring

C[V ⊕ C 2 ] by (g • p)(f , x) := p(g -1 • f , g -1 • x) for g ∈ SL 2 (C), p ∈ C[V ⊕ C 2 ].
Definition 2.2. The covariant algebra 4 of a space V of binary forms, noted Cov(V ), is the invariant algebra

Cov(V ) := C[V ⊕ C 2 ] SL 2 (C) .
An important result, first established by Gordan [START_REF] Gordan | dass jede Covariante und Invariante einer Bineren Form eine ganze Function mit numerischen Coefficienten einer endlichen Anzahl solcher Formen ist[END_REF] and then extended by Hilbert [START_REF] Hilbert | Theory of algebraic invariants[END_REF] (for any linear reductive group) is the following.

Theorem 2.3. For every space V of binary forms, the covariant algebra Cov(V ) is finitely generated, i.e. there exists a finite set h 1 , . . . , h N in Cov(V ), called a bases, such that

Cov(V ) = C[h 1 , . . . , h N ].
There is a natural bi-graduation on the covariant algebra Cov(V ):

• By the degree, which is the polynomial degree in the coefficients of the space V ; • By the order which is the polynomial degree in the variables x;

Let Cov d,k (V ) be the subspace of degree d and order k covariants, and:

C + := d+k>0 Cov d,k (V ).
Then, C + is an ideal of the graduated algebra Cov(V ). For each d + k > 0, let δ d,k be the codimension of (C

2 + ) d,k := (C 2 + ) ∩ Cov d,k (V ) in Cov d,k (V ).
Since the algebra Cov(V ) is of finite type, there exists an integer p such that δ d,k = 0 for d + k ≥ p and we can define the invariant number:

n(V ) = d,k δ d,k . Definition 2.4. A family (p 1 , . . . , p s ) is a minimal bases of Cov(V ) if its image in the vector space C + /C 2
+ is a bases. In that case we have s = n(V ).

Remark 2.5. As pointed out by Dixmier-Lazard [START_REF] Dixmier | Le nombre minimum d'invariants fondamentaux pour les formes binaires de degré 7[END_REF], a minimal bases is obtained by taking, for each d, k, a complement bases of (

C 2 + ) d,k in Cov d,k (V ).
There is a long history of an explicit determination of such a minimal bases for covariant algebras. We give in Table 1 some results 5 obtained from XIX th century to XXI th century. As we know, there is no way to get the invariant n(V ) but to exhibit an explicit minimal bases of Cov(V ). 4 For a general and modern approach on invariant and covariant algebra, we refer to the online text [START_REF] Kraft | Classical Invariant Theory, a Primer[END_REF] by Kraft and Procesi. 5 The website http://www.win.tue.nl/$\sim$aeb/math/invar.html gives a general overview on those results. 1. Minimal basis of covariant algebras.

Bidifferential operators and transvectants.

Recall that S n is an irreducible SL(2, C) representation [START_REF] Fulton | Representation theory[END_REF]. The Clebsch-Gordan decomposition [START_REF] Fulton | Representation theory[END_REF] of a tensor product is the SL(2, C) irreducible decomposition

S n ⊗ S p ≃ min(n,p) r=0 S n+p-2r .
We then deduce that, for each 0 ≤ r ≤ min(n, p), there is only one (up to a scale factor) Clebsch-Gordan projector

π r : S n ⊗ S p -→ S n+p-2r , f ⊗ g → (f , g) r := π r (f ⊗ g).
Such a projector is called a transvectant. To have an explicit formula for transvectants, we use bi-differential operators:

• the Cayley operator [START_REF] Olver | Classical invariant theory[END_REF], which is a bi-differential operator acting on the tensor product of complex analytic functions f (x α )g(x β ):

Ω αβ (f (x α )g(x β )) := ∂f x α ∂g y β - ∂f y α ∂g x β ;
• the polarization operator6 acting on a complex analytic function f (x α ):

σ α (f (x α )) = x ∂f ∂x α + y ∂f ∂y α .
Both the Cayley and polarization operators commute with the SL 2 (C) action (see [START_REF] Olver | Classical invariant theory[END_REF] for instance). Definition 2.6. Given two binary forms f ∈ S n and g ∈ S p , their transvectant of index r ≥ 0, noted (f , g) r , is defined to be

(f , g) r := Ω r αβ σ n-r α σ p-r β (f (x α )g(x β )) if 0 ≤ r ≤ min(n, p) 0 else .
Remark 2.7. Note that the definition given in [START_REF] Olver | Classical invariant theory[END_REF] uses a scale factor and a trace operator:

(f , g) r = (n -r)!(p -r)! Ω r αβ f (x α )g(x β ) |xα=x β =x .
On the other hand, Gordan's definition [START_REF] Grace | The algebra of invariants[END_REF] corresponds to

1 n! 1 p! (f , g) r .
This last expression is very simple when applied to powers of linear forms. Indeed, if

a n xα := (a 0 x α + a 1 y α ) n , b p x β := (b 0 x β + b 1 y β ) p , (ab) := a 0 b 1 -a 1 b 0 , then, 1 n! 1 p! (a n xα , b p x β ) r = (ab) r a n-r x b p-r
x . Our choice of definition 2.6 has the advatange of inducing simple relations on operators and thus on transvectants (see 3.3 for instance).

Remark 2.8. Take a space of binary forms

V = S n 1 ⊕ . . . ⊕ S ns
and consider the set T containing each f i ∈ S n i and closed under tranvectant operations:

f ∈ T , g ∈ T ⇒ (f , g) r ∈ T , ∀r ∈ N. Then as a classical result [START_REF] Procesi | of Monografías del Instituto de Matemática y Ciencias Afines[END_REF] the covariant algebra Cov(V ) is generated by the (infinite) set T . One important issue is then to extract a finite family from that infinite set.

Molecular covariants

Let Sym d (V ) be the space of totally symmetric tensors of order d on V . The Aronhold polarization induces an isomorphism [START_REF] Dieudonné | Invariant theory, old and new[END_REF] between Cov d,k (V ) and the space

Hom SL(2,C) (Sym d (V ), S k ) ⊂ Hom SL(2,C) (⊗ d V, S k ).
Transvectants, Cayley operator and polarization operator give natural way to obtain SL(2, C)-equivariant homomorphisms. We already saw (definition 2.6) that the Clebsch-Gordan projector π r : S n ⊗ S p -→ S n+p-2r , can be written as Ω r αβ σ n-r α σ p-r β . Such a monomial will be represented by the colored directed graph (colored digraph) 7 :

α β r
where the atom α (resp. β) is colored by S n (resp. S p ).

More generaly, let V = S n 1 ⊕ • • • ⊕ S ns be a space of binary forms. We are going to define equivariant multilinear maps from V to some S k , corresponding to monomials in the symbols Ω αβ , σ γ , . . . and labelled by molecules (colored digraphs).

More precisely, let V(D) = {α, β, . . . , ε} be the set of vertices of a colored digraph D and E(D) be its set of edges. Each vertex α of D, also called an atom, is colored by a factor S(α) := S n i of V . In that case, the valence of α is val(α) := n. Define o(e), t(e) and w(e) to be respectively the origin, the 7 It is important to note that a digraph represents here a morphism and not a bidifferential operator as did Olver-Shakiban [START_REF] Olver | Graph theory and classical invariant theory[END_REF].

termination and the weight of an edge e ∈ E(D). Finally, we define the free valence val D (α) of an atom α ∈ V(D) to be: There exists syzygies on morphisms φ D induced by fundamental relations among operators. Let α, β, γ and δ be four atoms.

(1) The first syzygy derives from the equality

Ω αβ = -Ω βα ,
which leads to the graphical relation:

α β = -α β (3.1) 
(2) The second one comes from the Plücker relation [START_REF] Olver | Classical invariant theory[END_REF]:

Ω αβ σ γ = Ω αγ σ β + Ω γβ σ α , (3.2) 
which leads to the graphical relation:

α β γ = α β γ + α β γ (3.3) ( 
3) The third one derives also from a Plücker relation, namely

Ω αβ Ω γδ = Ω αδ Ω βγ + Ω αγ Ω δβ ,
which leads to the graphical relation:

α β γ δ = α β γ δ + α β γ δ (3.4)
Remark 3.2. By syzygie 3.1, we have

α β 2 = α β 2
thus for even weighed edges, we will not specify orientation:

α β 2 := α β 2
For each atom α ∈ V(D), let f α ∈ S(α) and consider one covariant

φ D   α∈V(D) f α   ∈ Cov(V ).
This defines a map from the set of molecules to Cov(V ). A molecular covariant D is then defined to be an image of a molecule by this map, and in that case a binary form f α ∈ S(α) = S n is said to be an atom of valence n in D. The following result is known as the first fundamental theorem for binary forms [START_REF] Kung | The invariant theory of binary forms[END_REF][START_REF] Olver | Classical invariant theory[END_REF].

Theorem 3.3. Given a space V = S n 1 ⊕ . . . ⊕ S ns of binary forms, the covariant algebra Cov(V ) is generated by the (infinite) family of molecular covariants.

Transvectants on molecular covariants

First observe that a transvectant (f α , f β ) r is represented by a simple molecular covariant:

f α f β r
Now, to obtain general relations between iterated transvectants and molecular covariants, we need to specify some operations on molecular covariants. Definition 4.1. Let D and E be two molecular covariants. Let r ≥ 0 be an integer and ν(r) be a symbol, we define the molecular covariant M ν(r) , graphically noted

D E ν(r)
to be a new molecular covariant obtained by linking D and E with r edges in a given way ν(r).

Example 4.2. Given atoms f α , . . . , f ǫ of valence greater than 4, let

D = f β f γ f α 2 and E = f δ f ǫ we can define D E ν 1 (2) = f β f γ f α f δ f ǫ 2 2 or D E ν 2 (2) = f β f γ f α f δ f ǫ 2
By a direct application of Leibnitz formula, we have [START_REF] Olver | Classical invariant theory[END_REF]:

Proposition 4.3. Let D, E be two molecular covariants and r ≥ 0 be an integer. Then the transvectant (D, E) r is a linear combination of molecular covariants 8 M ν(r) with rational positive coefficients 9 , for each possible link ν(r) between D and E:

(D, E) r = ν(r) a ν(r) M ν(r) , a ν(r) ∈ Q + . (4.1)
Example 4.4. Let f α , . . . , f δ be atoms of valence greater than 4,

D = f β f γ f α 2 and E = f δ
We have thus: [START_REF] Atkin | An introduction to the theory of elasticity[END_REF]. Given a molecular covariant D, and an integer k ≥ 0, we define 10 D µ(k) to be the molecular covariant obtained by adding k edges on D in a certain way µ(k).

(D, E) 2 = a ν(1) f β f γ f α f δ 2 2 + a ν(2) f β f γ f α f δ 2 2 + a ν(3) f β f γ f α f δ 2 2 + a ν(4) f β f γ f α f δ 2 + a ν(5) f β f γ f α f δ 2 + a ν(6) f β f γ f α f δ 2 Definition 4.
Example 4.6. Given atoms f α , f β , f γ of valence greater than 4 and the molecular covariant

D = f α f β f γ 2 we can consider D µ 1 (2) = f α f β f γ 3 or D µ 2 (2) = f α f β f γ 2 2 8
The covariant M ν(r) is called a term in [START_REF] Grace | The algebra of invariants[END_REF]. 9 There is explicit expression of those coefficients in [START_REF] Olive | Géométrie des espaces de tenseurs, une approche effective appliquée à la mécanique des milieux continus[END_REF]. 10 This operation is called convolution in [START_REF] Grace | The algebra of invariants[END_REF].

Proposition 4.7. Let D, E be two molecular covariants and r ≥ 0 be an integer. Then for every molecular covariant M ν(r) in the decomposition 4.1 of (D, E) r , we have

M ν(r) = λ(D, E) r + k 1 ,k 2 ,r ′ λ k 1 ,k 2 ,r ′ (D µ 1 (k 1 ) , E µ 2 (k 2 ) ) r ′ , λ > 0 with k 1 + k 2 + r ′ = r being constant and r ′ < r.
Sketch of proof. This proof is based on induction on r. When r = 1 take a molecular covariant M ν (1) in (D, E) 1 . In this molecular covariant, there is a link between an atom f α 1 in D and an atom f β 1 in E. Let M µ(1) be another molecular covariant in (D, E) 1 , with a link between an atom f α 2 = f α 1 in D and an atom f

β 1 = f β 2 in E. By relation 3.3 we have f α 1 f α 2 f β 2 f β 1 = f α 1 f α 2 f β 2 f β 1 + f α 1 f α 2 f β 2 f β 1
where the last molecular covariant is a transvectant (D, E 1 ) 0 . By the same relation 3.3:

f α 1 f α 2 f β 2 f β 1 = f α 1 f α 2 f β 2 f β 1 + f α 1 f α 2 f β 2 f β 1
where the last molecular covariant is a transvectant (D 1 , E) 0 . Thus every molecular covariant of (D, E) 1 is expressible in terms of M ν (1) and a linear combination of (D a 1 , E a 2 ) 0 . All coefficients a ν of 4.1 being positives, this conclude the case r = 1.

Example 4.8. Given V = S n (n ≥ 4) and the molecular covariants:

D = f α f β 2 and E = f γ
we can consider the transvectant (D, E) 2 and the molecular covariant:

M = f α f β f γ 2 2
By proposition 4.7:

M = λ f α f β 2 , f γ 2 + λ 1 f α f β 3 , f β 1 + λ 2 f α f β 4
, f γ 0 Corollary 4.9. Let V be a space of binary forms. Then every molecular covariant can be written in terms of transvectants.

Proof. This is a simple induction on the number d of atoms in a molecular covariant M. For d = 1, there is nothing to prove. Given d > 1, we can write M as

D f ν(r)
where f ∈ V , r ≥ 0 and D is a molecular covariant with d -1 atoms. We conclude by induction and using proposition 4.3.

Remark 4.10. By corolary 4.9, we deduce theorem 3.3 from the fact that transvectants generate the covariant algebra of binary forms.

Gordan's algorithm for joint covariants

Gordan's algorithm for joint covariants produces a finite generating set for Cov(V 1 ⊕ V 2 ), knowing a finite family of generators for Cov(V 1 ) and Cov(V 2 ).

Let V 1 and V 2 be two spaces of binary forms and

A := {f 1 , • • • , f p } ⊂ Cov(V 1 ), B := {g 1 , • • • , g q } ⊂ Cov(V 2 ),
be finite families of generators for Cov(V 1 ) and Cov(V 2 ) respectively.

Lemma 5.1. Cov(V 1 ⊕ V 2 ) is generated by transvectants (U, V) r ,
with r non-negative integer and

U := f α 1 1 . . . f αp p , V := g β 1 1 . . . g βq q , α i , β j ∈ N Proof. By theorem 3.3, Cov(V 1 ⊕ V 2 ) is generated by molecular covariants M with atoms in V 1 and V 2 . Just isolate in M atoms f i ∈ A (resp. g j ∈ B) to form a molecular covariant D (resp. E) such that M = D E ν(r) , D ∈ Cov(V 1 ), E ∈ Cov(V 2 )
which is a molecular covariant M ν(r) in the decomposition of a transvectant (D, E) r . By proposition 4.7, M ν(r) is a linear combination of (D, E) r and (D

µ 1 (k 1 ) , E µ 2 (k 2 ) ) r ′ , with D µ 1 (k 1 ) ∈ Cov(V 1 ) and E µ 2 (k 2 ) ∈ Cov(V 2 ). By hypothesis, all covari- ants in Cov(V 1 ) (resp. Cov(V 2 )) can be recast using monomials in the f ′ i s (resp. g ′ j s).
Define a i (resp. b j ) to be the order of the covariant f i (resp. g j ). Now, to each non-vanishing transvectant (U, V) r , we can associate an integer solution κ := (α, β, u, v, r) of the linear Diophantine system S(A, B) :

a 1 α 1 + . . . + a p α p = u + r, b 1 β 1 + . . . + b q β q = v + r, . (5.1) 
Conversely, to each integer solution κ of S(A, B) we can associate a well defined transvectant (U, V) r . Recall an integer solution κ of S(A, B) is reducible if we can decompose κ as a sum of non-trivial solutions. Recall also that a non constant covariant h ∈ Cov d,k (V ) is said to be reducible if h is in the algebra generated by covariants of degree d ′ ≤ d and order

k ′ ≤ k, with d ′ < d or k ′ < k. Lemma 5.2. If κ = (α, β, u, v, r
) is a reducible integer solution of S(A, B), then there exists a reducible molecular covariant M ν(r) in the decomposition of (U, V) r .

Proof. Take the integer solution κ = κ 1 + κ 2 to be reducible, with

κ i = (α i , β i , u i , v i , r i ) solution of (5.1).

Thus we can write

U = U 1 U 2 and V = V 1 V 2 and there exists ν(r), ν 1 (r 1 ) and ν 2 (r 2 ) such that U V ν(r) = U 1 V 1 ν 1 (r 1 ) U 2 V 2 ν 2 (r 2 )
which is a reducible molecular covariant in the decomposition of (U, V) r .

Remark 5.3. If an integer solution associated to a transvectant (U, V) r is reducible, this does not implie that such a transvectant is a reducible one. Lemma 5.2 only states that such a transvectant can be decomposed in terms which contain a reducible transvectant. For instance, take f ∈ S 6 , A = B := {f } and the transvectants

(f α 1 , f β 1 ) 5 . Then the solution (α 1 , β 1 , u, v, 5) = (2, 1, 7, 1, 5) is a reducible one: (2, 1, 7, 1, 5) = (1, 1, 1, 1, 5) + (1, 0, 6, 0, 0)
We directly observe that the transvectant

(f 2 , f ) 5 (5.2)
contains the molecular covariant

f f f 5
which is a null covariant. Observe that property 4.7 implies that transvectant (5.2) is a linear combination of transvectants

((f , f ) 4 , f ) 1 , ((f , f ) 3 , f ) 2 = 0, ((f , f ) 2 , f ) 3 , ((f , f ) 1 , f ) 4 = 0,
and one can finally show that

(f 2 , f ) 5 = 65 66 ((f , f ) 4 , f ) 1 ,
where ((f , f ) 4 , f ) 1 is an irreducible covariant, as being in the covariant bases of S 6 (see table 8.1).

Nevertheless, we have the following result:

Lemma 5.4. Let a := max(a i ), b := max(b j ) and

U := f α 1 1 . . . f αp p , V := g β 1 1 . . . g βq q . Let u =Ord(U) -r and v =Ord(V) -r. If u + v ≥ a + b, (5.3) 
then, the transvectant (U, V) r is reducible.

Proof. Condition (5.3) implies that u ≥ a or v ≥ b. Thus the transvectant (U, V) r contains a reducible molecular covariant M ν(r) (the corresponding integer solution κ is thus not minimal). By virtue of proposition 4.7, this transvectant is a linear combination of the term M ν(r) and transvectants

(U µ(k 1 ) , U µ(k 2 ) ) r ′ ,
where r ′ < r and k 1 + k 2 = r -r ′ . Note that, since both families A and B are supposed to be generator sets, we have

U µ(k 1 ) = f α ′ 1 1 . . . f α ′ p p , V µ(k 2 ) = g β ′ 1 1 . . . g β ′ q q ,
where, moreover, the order of the transvectant (U

µ(k 1 ) , V µ(k 2 ) ) r ′ is u ′ + v ′ = u + v. Since we have supposed that u + v ≥ a + b, we get that u ′ + v ′ ≥
a + b and the proof is achieved by a recursive argument on the index of the transvectant r.

Remark 5.5. The statement u + v ≥ a + b cannot be replaced by the weaker hypothesis u ≥ a or v ≥ b. For instance in remark 5.3, for f ∈ S 6 and h := (f 2 , f ) 5 , we have u = 7 ≥ 6 but h is not reducible.

Lemma 5.4 is closely related to:

Corollary 5.6. Let F ∈ Cov(V ) of order s and {F 1 , • • • , F k } ⊂ Cov(V )
be a family of homogeneous covariants. Let t i be the order of F i and t = max(t i ). For a given integer r, if

k i=1 t i ≥ a + 2r, then the transvectant (F 1 . . . F k , F) r is reducible.
Proof. Let f 1 , . . . , f p be a covariant bases of Cov(V ), each f i 's being a homogeneous covariant of order a i . Then, each covariant F j is a linear combination of monomials f

α i 1 i 1 . . . f α i l i l with a i ≤ t j ≤ t. Thus F 1 . . . F k is a covariant expressible in terms of monomials U in the f i 's with Ord(U) = k i=1 t i and max(a i ) ≤ t.
We have also F = f

β j 1 j 1 . . . f β jm jm
with max(a j ) ≤ s. By lemma 5.4, each transvectant (U, V) r is thus a reducible covariant.

Take back A and B to be finite generator sets of V 1 and V 2 , respectively. We know that there exists a finite family of irreducible integer solutions of the system S(A, B) (5.1) (see [START_REF] Stanley | Enumerative combinatorics[END_REF][START_REF] Stanley | Combinatorics and commutative algebra[END_REF][START_REF] Sturmfels | Algorithms in invariant theory[END_REF] for details on linear Diophantine systems).

Theorem 5.7. The algebra Cov(V 1 ⊕ V 2 ) is generated by the finite family C of transvectants (U, V) r corresponding to irreducible solutions of the linear Diophantine system S(A, B) (5.1).

Proof. Let first remark that each f i (resp. each g j ) corresponds to an irreducible solution of S(A, B). Thus A ⊂ C and B ⊂ C.

From lemma 5.1, we know that

Cov(V 1 ⊕V 2 ) is generated by transvectants (U, V) r where U (resp. V) is a monomial in C[A] (resp. C[B]) and r is a non-negative integer.
The proof is by induction on r. When r = 0, for A ⊂ C and B ⊂ C, we know that the conclusion is true. Now, let r > 0 and (U, V) r be a transvectant which corresponds to a reducible integer solution

11 κ = κ 1 + κ 2 , κ i irreducible.
As in lemma 5.2, there exists a molecular covariant M ν(r) in the decomposition of (U, V) r which can be written as

M ν(r) = M ν 1 (r 1 ) 1 M ν 2 (r 2 ) 2 , r i ≤ r. But M ν i (r i ) i is a term in a transvectant τ i = (U i , V i ) r i ∈ C. Then by proposition 4.7, (U, V) r is a linear combination of a product of τ i 's and transvectants (U µ , V µ ′ ) r ′ , (U ν i i , V ν ′ i i ) r ′ i r ′ < r, r ′ i < r (5.4) Now U µ , U ν i i ∈ Cov(V 1 ) (resp. V, V i and Cov(V 2 )
). Therefore the transvectants (5.4) are linear combinations of

(U ′ , V ′ ) r ′′ , r ′′ < r,
where U ′ (resp. V ′ ) is a monomial in the f i 's (resp. g j ). Thus, by induction on r, the algebra Cov(V 1 ⊕ V 2 ) is generated by the finite family C. Note that lemma 5.4 gives a bound on the order of each element of a minimal bases of joint covariants:

Corollary 5.8. Let V = S n 1 ⊕ • • • ⊕ S ns . If µ i
is the maximal order of a minimal bases for S n i , then, for each element h of a minimal bases for V , we get

ord(h) ≤ s i=1 µ i .
Example 5.9. We can directly use theorem 5.7 to get a covariant bases of S 3 ⊕ S 4 . The same result has been obtained by Popoviciu-Brouwer [17] with more computations. Let u ∈ S 3 and v ∈ S 4 . Recall that:

• The algebra Cov(S 3 ) is generated by the three covariants [START_REF] Grace | The algebra of invariants[END_REF]:

u ∈ S 3 , h 2,2 := (u, u) 2 ∈ S 2 , h 3,3 := (u, h 2,2 ) 1 ∈ S 3
and one invariant ∆ := (u, h 3,3 ) 3 ;

• The algebra Cov(S 4 ) is generated by the three covariants [START_REF] Grace | The algebra of invariants[END_REF]:

v ∈ S 4 , k 2,4 := (v, v) 2 ∈ S 4 , k 3,6 := (v, k 2,4 ) 1 ∈ S 6
and the two invariants i := (v, v) 4 , j := (v, k 2,4 ) 4 . We then have to solve the linear Diophantine system (S) :

2α 1 + 3α 2 + 3α 3 = u + r 4β 1 + 4β 2 + 6β 3 = v + r . (5.5) 
Using Normaliz package in Macaulay 2 [START_REF] Bruns | Normaliz: algorithms for affine monoids and rational cones[END_REF], this leads to 104 solutions. The associated covariants form a family of covariants of maximum total degree d + k = 18. The Hilbert series of Cov(S 4 ⊕ S 3 ), computed using Bedratyuk's Maple package [START_REF] Bedratyuk | The MAPLE package for calculating Poincaré series[END_REF], is given by [17]. Table 2. Covariant bases of S 3 ⊕ S 4

H(z) = 1 + z 2 + 2 z 3 +
d/o 0 1 2 3 4 5 6 # Cum 1 ---1 1 --2 2 2 1 1 1 1 1 1 -6 8 3 1 1 2 2 1 1 1 9 17 4 1 2 2 2 1 -- 8 

Gordan's algorithm for simple covariants

There is a second version of Gordan's algorithm which enables to compute a covariant bases for S n , knowing covariant basis for S k , (k < n). The main idea is, once again, to make use of linear Diophantine system, arguing step by step modulus a chain ideal.

Relatively complete family and Gordan's ideal. Let

A = {f 1 , • • • , f p } ⊂ Cov(S n )
denote a finite family of covariants (not necessary a bases). We define Cov(A) to be the algebra generated by the set which contains the family A and closed under transvectant operations 12 . Definition 6.1. Let I ⊂ Cov(V ) be an homogeneous ideal. A family

A = {f 1 , • • • , f p } ⊂ Cov(V ) of homogeneous covariants is relatively complete modulo I if every homogeneous covariant h ∈ Cov(A) of degree d can be written h = p(f 1 , . . . , f p ) + h I with h I ∈ I,
where p(f 1 , . . . , f p ) and h I are degree d homogeneous covariants. Remark 6.2. The notion of relatively complete family is weaker than the one of generator set. For instance, take u ∈ S 3 and as in example 5.9

h 2,2 := (u, u) 2 ∈ S 2 , h 3,3 := (u, h 2,2 ) 1 ∈ S 3 . Take now the invariant ∆ := (h 2,2 , h 2,2 ) 2 . The family A 1 = {u, h 2,2 , h 3,3 , ∆} is also a covariant bases of Cov(A 1 ) = Cov(S 3
) and is thus a relatively complete family modulo I = {0}. Now, let

A 2 := h 2,2 , ∆ . We have Cov(A 2 )
Cov(S 3 ), but A 2 is exactly a covariant bases [START_REF] Grace | The algebra of invariants[END_REF] of the quadratic form h 2,2 ∈ S 2 , thus A 2 is a relatively complete family modulo I = {0} but is not a covariant bases of Cov(S 2 ). w(e). Definition 6.3. Let r be an integer; we define G r to be the set of all molecular covariants issued from a molecule D (cf. ( 3)) with grade at least r.

As a first observation, it is clear that G r = {0} for r > n. Furthermore, we have G i+1 ⊂ G i for all i. (6.1) Definition 6.4 (Gordan's ideals). Let r be an integer. We define the Gordan ideal I r to be the homogeneous 13 ideal generated by G r ; we write

I r := G r .
12 Equivalently (by 4.3 and 4.7), we can choose the set of all molecular covariants with atoms taken in A. 13 Such an ideal is clearly an homogeneous ideal as being generated by homogeneous elements.

Remark 6.5. Gordan's ideal I r (for r ≤ n) is also generated by the set of transvectants (h, (f

, f ) r 1 ) r 2 , r 1 ≥ r, r 2 ∈ N * ,
where h ∈ Cov(S n ) is an homogeneous covariant. This is a direct application of propositions 4.3 and 4.7. Because (f , f ) r 1 = 0 for r 1 odd, such a family can also be written as the family of transvectants

(h, H 2k ) r ′ , H 2k := (f , f ) 2k , 2k ≥ r, r ′ ≥ 0.
We directly observe that:

• I r = {0} for all r > n;

• By equation 6.1, I r+1 ⊂ I r for every integer r.

• By remark 6.5:

I 2k-1 = I 2k , ∀2k ≤ n. (6.2)
By the property 4.3, Gordan's ideals are stable by transvectant operations: Lemma 6.6. Let h r ∈ I r , and h ∈ Cov(S n ) be a covariant. Then for every integer r ′ ≥ 0, (h, h r ) r ′ ∈ I r .

Remark 6.7. Suppose that ∆ ∈ Cov(S n ) is an invariant. Then the ideal ∆ is also stable by transvectant operations, since

(h, ∆k) r = ∆(h, k) r .
Given two finite families A and B of covariants, let κ 1 , . . . , κ l be the irreducible integer solutions of the linear system S(A, B) (5.1) and τ i be the associated transvectants. Let f ∈ S n , ∆ ∈ Cov(S n ) be an invariant, k ≥ 0 and

H 2k := (f , f ) 2k . Finally, write J 2k+2 = I 2k+2 or J 2k+2 = I 2k+2 + ∆ .
Theorem 6.8. Suppose that A is relatively complete modulo I 2k and contains the binary form f . Suppose also that B is relatively complete modulo J 2k+2 and contains the covariant H 2k . Then the family C := {τ 1 , . . . , τ l } is relatively complete modulo J 2k+2 and

Cov(C) = Cov(A ∪ B) = Cov(S n ).
Proof. We first use the fact that Cov(A ∪ B) is generated by the (infinite) family of transvectants (D, E) r where D ∈ Cov(A) is a degree d homogeneous covariant of f ∈ S n and E ∈ Cov(B) (the proof is the same as the one for lemma 5.1). We order such a family using lexicographic order on (d, r). By hypothesis, we can suppose that D = U + h 2k , h 2k ∈ I 2k where U is a monomial of degree d in C[A] and h 2k is a homogeneous covariant of degree d. Furthermore we can write

E = V + h 2k+2 , h 2k+2 ∈ J 2k+2 . Thus we have (D, E) r = (U, V) r + (h 2k , V) r + (U, h 2k+2 ) r + (h 2k , h 2k+2 ) r ∈J 2k+2 . (6.3)
The goal here is to prove that such a covariant can be written as

p(C) + h ′ 2k+2 , h ′ 2k+2 ∈ J 2k+2 . But in (6.3) we just have to focus on (U, V) r + (h 2k , V) r .
We do it by induction on (d, r). For d = 0, there is nothing to prove. Suppose now that our claim is true up to an integer d and take covariants (U, V) r and (h 2k , V) r where U and h 2k are of degree d + 1.

(1) If (U, V) r corresponds to a reducible solution, using proposition 4.7 and the same argument as in the proof of theorem 5.7, this transvectant decomposes as

p(C), (U, V) r ′ <r .
But U is of degree d + 1 : we conclude using a direct induction on r ′ . (2) Using remark 6.5, the covariant h 2k can be written as a linear combination of

(M, H 2j ) r 1 , H 2j := (f , f ) 2j , j ≥ k,
where the degree of M in f is strictly less then d + 1. The case j > k being obvious, we only focus on the case j = k, and then consider transvectants ((M, H 2k ) r 1 , V) r . Using lemma B.1 on degree 3 covariant bases, such a covariant can be written as a linear combination of

(M, (H 2k , V) r ′ 1 ) r ′ but (H 2k , V) r ′ 1 ∈ Cov(B), thus we have to consider transvectants (M, V ′ ) r ′
where degree of M in f is strictly less than d + 1 : we conclude using induction on d. Thus, for all couple (d, r), our claim is true. 6.2. The algorithm. Take V = S n (n > 2) and f ∈ S n . By corollary C.1, the family A 0 := {f } is relatively complete modulo I 2 . This means that every covariant h ∈ Cov(S n ) can be written as

h = p(f ) + h 2 with h 2 ∈ I 2 .
Take now the covariant H 2 = (f , f ) 2 of order 2n -4:

• If 2n -4 > n, we take B 0 := {H 2 } which is, by lemma C.3, relatively complete modulo I 4 ; applying theorem 6.8 we get a family A 1 := C relatively complete modulo I 4 .

• If 2n -4 = n, we take B 0 := {H 2 , ∆} which is, by lemma C.4, relatively complete modulo I 4 + ∆ ; where ∆ is the invariant

∆ = f f f n 2 n 2 n 2
In that case, by applying theorem 6.8, we can take A 1 to be C ∪ {∆}. A direct induction on the degree of the covariant shows that A 1 is relatively complete modulo I 4 .

• If 2n -4 < n, we suppose already known a covariant bases of S 2n-4 ;

we then take B 0 to be this bases, which is finite and relatively complete modulo I 4 (because relatively complete modulo {0}); we directly apply theorem 6.8 to get A 1 := C.

Let now be given by induction a family A k-1 containing f , finite and relatively complete modulo I 2k . We consider the covariant H 2k = (f , f ) 2k . Then:

• If H 2k is of order p > n, we take B k-1 := {H 2k } which, by lemma C.3, is relatively complete modulo I 2k+2 . By theorem 6.8 we take A k := C. • If H 2k is of order p = n, we take B k-1 := {H 2k , ∆} which, by lemma C.4, is relatively complete modulo I 2k+2 + ∆ ; where ∆ is the invariant

∆ = f f f n 2 n 2 n 2
In that case, by applying theorem 6.8, we can take A k to be C ∪ {∆}. A direct induction on the degree of the covariant shows that A k is relatively complete modulo I 2k+2 .

• If H 2k is of order p < n, we suppose already known a covariant bases of S p ; we then take B k-1 to be this bases, which is relatively complete modulo I 2k+2 (because relatively complete modulo {0}); we directly apply theorem 6.8 to get A k := C.

Thus in each case, we have defined the family A k . Now, depending on n's parity:

• If n = 2q is even, we know that the family A q-1 is relatively complete modulo I 2q ; furthermore the family B q-1 only contains the invariant ∆ q := {f , f } 2q ; finally we observe that A p is given by

A p := A p-1 ∪ {∆ q }
and is relatively complete modulo I 2q+2 = {0}; thus it is a covariant bases.

• If n = 2q + 1 is odd, the family B q-1 contains the quadratic form H 2q := {f , f } 2q ; we know then that the family B q-1 is given by the covariant H 2q and the invariant δ q := (H 2q , H 2q ) 2 . By theorem 6.8, the family A q := C is relatively complete modulo I 2q+2 = {0} and is thus a covariant bases.

Improvment of Gordan's algorithm

Using Gordan's algorithm, one gets a finite set of generators. In general, such a family is not minimal, as shown in example 5.9 for the algebra Cov(S 3 ⊕ S 4 ). A classical way to get a minimal bases once given a finite bases is to make use of Hilbert series [START_REF] Kemper | A course in Commutative Algebra[END_REF] and then reduce the family degree per degree.

7.1. Hilbert series. Recall here that, for a C graduated algebra of finite type

A = k≥0 A k , A 0 := C
where each homogeneous space A k is of finite dimension a k . The Hilbert series associated to A is the formal series

H A (z) := k≥0 a k z k .
For covariant algebras, the Hilbert series can be computed a priori, using for example Bedratyuk's Maple package [START_REF] Bedratyuk | The MAPLE package for calculating Poincaré series[END_REF]. Suppose now that we know a finite bases F (with homogeneous elements) of the algebra A, which is not necessary minimal. Suppose also that we know a finite minimal family 14 F k up to a degree k. To get up to degree k + 1:

• Compute a bases for the subspace of A k+1 spanned by elements of F k ; • If this dimension's subspace is strictly less than a k+1 , choose homogeneous elements in F such that we get a subspace with dimension exactly a k+1 .

We obtain this way a finite minimal bases. But a major weakness of this strategy is that we work with homogeneous spaces which can be of huge dimensions. For instance, for the invariant algebra of V = S 8 ⊕ S 4 ⊕ S 4 (see subsection 8.5), Gordan's algorithm produces a degree 49 invariant, and for such a homogeneous space we have dim Cov 49,0 (V ) = 103 947 673 173.

which is far beyond our computation means.

To get one step further, we thus propose to use some algebraic tools to improve Gordan's algorithm. The main idea is to make use of relations on covariant algebras. Note here that this idea was suggested by R. Lercier. 14 This means that for k ′ < k, we have (C[F k ]) k ′ = A k ′ and if we take a strict subfamily G F k this property is no more true.

Relations on weighted mononomials. Let

x 1 > x 2 > . . . > x p be indeterminates and A = C[x 1 , . . . , x p ] be a graduated algebra of finite type. Consider also the lexicographic order on monomials of A. We write m 1 | m 2 whenever the monomial m 1 divide monomial m 2 .

Hypothesis 7.1. There exists a finite family I ⊂ {1, . . . , p -1} of distinct integers and for each i ∈ I a relation

(R i ), x a i i = a i -1 k=0 x k i p k (x i+1 , . . . , x p ), a i ∈ N * (7.1)
where p k is some polynomial. We write m i := x a i i . Lemma 7.2. Under hypothesis 7.1, the algebra A is generated by the family of monomials m such that

m i ∤ m, ∀i ∈ I Proof.
We first order the finite family I = {i 1 , i 2 , . . . , i s } such that

x i 1 > x i 2 > . . .
We then get a direct proof by induction on s. 

m i ∤ m, m ′ j ∤ m, ∀i ∈ I, ∀j ∈ J Proof.
We first order J = {j 1 , . . . , j l } such that m ′ j 1 > m ′ j 2 > . . . From lemma 7.2 we can take a monomial m such that m i ∤ m for all i ∈ I. Now Suppose that m ′ j | m for one given j ∈ J which means that m = x r 1 1 . . . x

r j b j b . . . x r jc jc . . . x rp p , r j b ≥ b j b , r jc ≥ c jc . Using relation R ′ j (7.
2) we then have

m = x r 1 1 . . . x r ′ j b j b . . . x r ′ jc jc p(x jc+1 , . . . , p), r ′ j b < b j b or r ′ jc < c jc .
We can also suppose that no monomial in p(x jc+1 , . . . , p) is divided by m i , otherwise we use some relation R i (7.1).

Suppose now that the lemma is true for a given family J = {j 1 , . . . , j l }. Take j > j l and (R ′ j ), x such that m i ∤ m for all i ∈ I and m ′ jt ∤ m for all j t ∈ J. Using relation R ′ j , we decompose m in monomials

n = x r 1 1 . . . x r ′ j b j b . . . x r ′ jc jc x r ′ jc +1 jc+1 . . . x r ′ p p r ′ j b < b j b or r ′ jc < c jc .
We also know that r ′ j b ≤ r j b and r ′ jc ≤ r jc . Using lemma 7.2, we can suppose that no any monomial m i divides n. If now some monomial m ′ k divide m ′ , we must have k c ≥ j c + 1. We thus conclude using relation R ′ k and lemma 7.2. 7.2.1. Application to joint covariant algorithm. Let A := {f 1 , . . . , f p } (resp. B := {g 1 , . . . , g q }) be a covariant bases of S m (resp. S n ). We introduce an order f p < f p-1 < . . . < f 1 on the covariants f i ∈ A and we define a lexicographic order on Cov(S m ) = C[A]. We also suppose that there exists relations R i and R ′ j as in hypotheses 7.1 and 7.3.

Example 7.5. As noted in example 5.9 the algebra Cov(S 4 ) is generated by v, k 2,4 , k 3,6 and the two invariants i, j (where v ∈ S 4 ). Let

k 3,6 > k 2,4 > v > i > j
be an order on Cov(S 4 ). In that case we have one relation (obtained by a direct computation)

R 1 : 12k 2 3,6 = -6k 3 2,4 -2jv 3 + 3iv 2 k 2,4 . (7.3) 
Recall now that theorem 5.7 applied to Cov(S m ⊕ S n ) gives us a finite bases C of transvectants (U, V) r related to irreducible solutions (α, β, u, v, r) of the Diophantine system S(A, B) (5.1).

Theorem 7.6. The algebra Cov(S m ⊕ S n ) is generated by the finite subfamily of

C ( Ũ, V) r ∈ C, m i ∤ Ũ, m ′ j ∤ Ũ, ∀i ∈ I, ∀j ∈ J. Proof. Take one transvectant (U, V) r
of the family C. Using lemma 7.4, we can write the monomial U ∈ C[A] as a linear combination of Ũ, m i ∤ Ũ, m ′ j ∤ Ũ, ∀i ∈ I, ∀j ∈ J As in the proof of theorem 5.7, if the transvectant ( Ũ, V) r corresponds to a reducible solution κ = κ 1 + κ 2 of the Diophantine system S(A, B) (5.1), it will decompose as transvectants (U ′ , V) r i corresponding to irreducible solution κ i and transvectants of strictly lower indexes. But we necessary have

m i ∤ U ′ , m ′ j ∤ U ′
, ∀i ∈ I, ∀j ∈ J and thus we conclude using a direct induction on r.

Suppose now that we also have hypotheses 7.1 and 7.3 for the algebra Cov(S n ), which leads to relations R k (k ∈ K) and R 

m i ∤ Ũ, m ′ j ∤ Ũ, ∀i ∈ I, ∀j ∈ J m k ∤ Ṽ, m ′ l ∤ Ṽ, ∀k ∈ K, ∀l ∈ L .
7.2.2. Application to simple covariant algorithm. Let take the case when V = S n . Recall that in that case Gordan's algorithm deals with families A 0 , B 0 , . . . (see subsection 6.2). Consider the case when the family B k-1 is one covariant bases of the binary form

H 2k = (f , f ) 2k .
In that case H 2k is of order p < n and we suppose known that the related covariant basis. As for theorem 6.8, write ∆ ∈ Cov(S n ) to be an invariant and

J 2k+2 = I 2k+2 or J 2k+2 = I 2k+2 + ∆ . Write A := A k-1 , B := B k-1
and note C to be the finite family of transvectants (U, V) r related to irreducible solutions (α, β, u, v, r) of the Diophantine system S(A, B) (5.1). Finally, suppose that we have hypotheses 7.1 and 7.3 on the bases B of the algebra Cov(S p ), with relations R i (i ∈ I) and R ′ j (j ∈ J) on monomials m i and m ′ j . In that case we have:

Theorem 7.8. The subfamily C of C given by

(U, Ṽ) r ∈ C, m i ∤ Ṽ, m ′ j ∤ Ṽ, ∀i ∈ I, ∀j ∈ J. is relatively complete modulo J 2k+2 and Cov( C) = Cov(A ∪ B) = Cov(S n ).
Proof. We just take back the proof of theorem 6.8 and replace every monomials V with monomials Ṽ; we then make use of the same ideas as in the proof of theorem 7.6. 7.3. Invariant's ideal and covariant relations. Lemma 7.9. Let U ∈ Cov(S m ) be a covariant. If U is in the ideal generated by invariants of S m then every covariant

(U, V) r , r ≥ 0, V ∈ S n is reducible.
Proof. We just observe that if U = ∆U ′ , where ∆ ∈ Inv(S m ) and U ′ ∈ Cov(S m ) then (∆U ′ , V) r = ∆(U ′ , V) r is reducible. Now, in a more general case, we take back two families A, B and the family C of transvectants (U, V) r related to irreducible solutions of the Diophantine system S(A, B) (5.1).

Lemma 7.10. Let Û = Û1 + Û2 be monomial covariants in Cov(S m ), V a monomial covariant in S n and suppose that the transvectants ( Û1 , V) r , ( Û2 , V) r correspond to reducible integer solutions of the linear Diophantine system (5.1). Then the transvectant ( Û, V) r is expressible in terms of transvectants of the family C and of transvectants

(U ′ , V ′ ) r ′ , r ′ < r where U ′ (resp. V ′ ) is a monomial in C[A] (resp. C[B]).
Proof. This is a direct application of proposition 4.7 and lemma 5.2.

Effective computations

8.1. Covariant bases of S 6 ⊕ S 2 . There is a simple procedure to produce a covariant bases of V ⊕ S 2 once we know a covariant bases of V , as detailed in the following theorem, which proof can be found in [START_REF] Grace | The algebra of invariants[END_REF].

Theorem 8.1. Let {h 1 , . . . , h s } be a covariant bases of Cov(V ), and let u ∈ S 2 . Then irreducible covariants of Cov(V ⊕ S 2 ) are taken from the sets:

• {h i , u r } 2r-1 for i = 1 . . . s;

• {h i , u r } 2r for i = 1 . . . s;

• {h i h j , u r } 2r where h i is of order 2p+1 and h j is of order 2r -2p-1.

Write now h = h d,k to be a covariant of degree d and order k, taken from the covariant bases of S 6 in table 8.1, issued from Grace-Young [START_REF] Grace | The algebra of invariants[END_REF], and u to be a quadratic form in S 2 . By theorem 8.1 we only have to consider covariants given by {h, u r } 2r-1 or {h, u r } 2r . Recall the covariant algebra Cov(V ) := Cov(S 6 ⊕ S 2 ) is a multi-graded algebra:

Cov(V ) = d 1 ≥0,d 2 ≥0,k≥0 Cov(V ) d 1 ,d 2 ,k .
where d 1 is the degree in the binary form f ∈ S 6 , d 2 is the degree in the binary form u ∈ S 2 and k the degree in the variable x ∈ C 2 . We can define the Hilbert series:

H 6,2 (z 1 , z 2 , t) := d 1 ,d 2 ,k dim(Cov(V ) d 1 ,d 2 ,k )z d 1 1 z d 2 2 t k , d/k 0 2 4 6 1 f 2 (f , f ) 6 h 2,4 := (f , f ) 4 3 h 3,2 := (h 2,4 , f ) 4 h 3,6 := (h 2,4 , f ) 2 4 (h 2,4 , h 2,4 ) 4 (h 3,2 , f ) 2 h 4,6 := (h 3,2 , f ) 1 5 (h 2,4 , h 3,2 ) 2 (h 2,4 , h 3,2 ) 1 6 (h 3,2 , h 3,2 ) 2 h 6,61 := (h 3,8 , h 3,2 ) 2 h 6,62 := (h 3,6 , h 3,2 ) 1 7 (f , h 2 3,2 ) 4 (f , h 2 3,2 ) 3 8 (h 2,4 , h 2 3,2 ) 3 9 (h 3,8 , h 2 3,2 ) 4 10 (h 3 3,2 , f ) 6 (h 3 3,2 , f ) 5 12 (h 3,8 , h 3 3,2 ) 6 15 (h 3,8 , h 4 3,2 ) 8 d/k 8 10 12 2 h 2,8 := (f , f ) 2 3 h 3,8 := (h 2,4 , f ) 1 (h 2,8 , f ) 4 (h 2,8 , h 2,4 ) 1 5 h 5,8 := (h 2,8 , h 3,2 ) 1
Table 3. Covariant bases of S 6 which has been computed using Bedratyuk's Maple package [START_REF] Bedratyuk | The MAPLE package for calculating Poincaré series[END_REF]. From this Hilbert series and theorem 8.1, we finally get a minimal bases of 99 covariants, already obtained by von Gall [START_REF] Gall | Ueber das simultane Formensystem einer Form 2ter und 6ter Ordnung[END_REF]. It's worth noting that, by using theorem 8.1, we only had to check invariant homogeneous space's dimensions up to degree 15. Results are summerized in table 4.

d/o 0 2 4 6 8 10 12 # Cum 1 -1 -1 ---2 2 2 2 -2 1 1 --6 8 3 -3 2 2 2 -1 10 4 4 3 3 4 -2 -16 5 -4 6 -3 --13 6 5 7 -5 ---17 7 3 1 6 ----10 8 1 8 -----9 9 7 -1 ----8 10 1 2 -----3 11 2 ------2 12 -1 -----1 13 1 ------1 14 -------- 15 
1 ------1 T ot 27 30 20 [START_REF] Brion | Invariants et covariants des groupes algébriques réductifs[END_REF] 

(f , u 2 ) 4 (h 2,4 , u) 2 Degree (h 2,4 , u 2 ) 3 (h 3,2 , u) 1 (f , u 3 ) 5 Degree h 5,2 (h 2,8 , u 3 ) 6 (h 4,4 , u) 2 (h 3,6 , u 2 ) 4 Degree (h 2,8 , u 4 ) 7 (h 4,4 , u 2 ) 3 (h 5,2 , u) 1 (h 3,6 , u 3 ) 5 (h 5,4 , u) 2 (h
v ∈ S 4 , k 2,4 := (v, v) 2 , k 3,6 := (v, k 2,4 ) 1 , i := (v, v) 4 , j := (v, k 2,4 ) 4 .
We already know one relation on Cov(S 4 ) (see example 7.5): . Now, writing f = f (a 0 , . . . , a 6 , x, y) we compute the exact expression of those monomials in (a i , x, y) and, by computing a kernel, we directly obtain the relation 36h 2 3,12 + h 2,0 f 4 -6f 3 h 3,6 -9h 2,4 f 2 h 2,8 + 18h 3 2,8 = 0. We do in the same way for all other relations.

R 1 : 12k 2 3,6 = -6k 3 2,4 -2jv 3 + 3iv 2 k 2,4 . (8 
We are now able to compute a minimal covariant bases of Cov(S 6 ⊕ S 4 ):

• As a first step, we use Normaliz package [START_REF] Bruns | Normaliz: algorithms for affine monoids and rational cones[END_REF] developed in Macaulay2 [START_REF] Grayson | Macaulay2, a software system for research in algebraic geometry[END_REF] to compute irreducible solutions of the linear Diophantine system associated to the covariant basis A and B of Cov(S 6 ) and Cov(S 4 ).

To get such a system, we only have to deal with non-invariant covariant of each bases, which then leads to a system of 21 

+ 3 + 3 = 27 unknowns      2(
= u + r 4(β 1 + β 2 ) + 6β 3 = v + r .
We thus obtain on this first step a finite family of 1732 transvectants. • By the known relations (8.1) and by lemma 8.2, we can use theorem 7.7 and thus we get a first reduction process that leads to a finite family of 1134 transvectants. • We compute now degree per degree, making use of the multigraduated Hilbert series of the algebra

Cov(S 6 ⊕ S 4 ) = d 1 ,d 2 ,k Cov d 1 ,d 2 ,k (S 6 ⊕ S 4 )
where d 1 is on degree on f ∈ S 6 , d 2 is the degree on v ∈ S 4 and k is the order of the covariant. Such a multigraduated series can be directly computed using Bedratyuk's Maple package [START_REF] Bedratyuk | The MAPLE package for calculating Poincaré series[END_REF]. We then organize all the 1134 transvectants using orders, then using degrees, which is summarized in table 5 Proof. We have to get a minimal family using the 1134 transvectants summerized in table 5. We do this order per order, then degree per degree, using multigraduated Hilbert series of the algebra Cov(S 6 ⊕ S 4 ). For instance, we have 365 order 0 covariants (which are invariants) from degree 3 up to degree Then, using scripts written in Macaulay2 [START_REF] Grayson | Macaulay2, a software system for research in algebraic geometry[END_REF] and algorithm explained in subsection 7.1, we get a finite minimal family of 60 invariants. We then do in the same way for each order. We give now transvectants expression of this minimal covariant bases.

d/o 0 2 4 6 8 10 12 # Cum 1 --1 1 ---2 2 2 2 1 3 1 2 -- 9 
Order 0 : 5 invariants from S 6 , 2 invariants from S 4 and 53 joint invariants Degree

3 (h 2,4 , v) 4 Degree 4 (h 2,8 , v 2 ) 8 (h 2,4 , k 2,4 ) 4 (f , k 3,6 ) 6 Degree 5 (h 3,8 , v 2 ) 8 (h 4,4 , v) 4 (h 2,8 , v • k 2,4 ) 8 (f 2 , v 3 ) 12 Degree 6 (h 3,8 , v • k 2,4 ) 8 (f 2 , v 2 • k 2,4 ) 12 (h 2,8 , k 2 2,4 ) 8 (h 3,6 , k 3,6 ) 6 (h 3,12 , v 3 ) 12 (h 5,4 , v) 4 (h 4,4 , k 2,4 ) 4 (h 3,2 • f , v 2 ) 8 Degree 7 (h 2 3,2 , v) 4 (h 5,4 , k 2,4 ) 4 (h 5,8 , v 2 ) 8 (f • h 3,6 , v 3 ) 12 (f 2 , v • k 2 2,4 ) 12 (h 3,2 • f , v • k 2,4 ) 8 (h 4,6 , k 3,6 ) 6 (h 3,12 , v 2 • k 2,4 ) 12 (h 3,8 , k 2 2,4 ) 8 continued on next page continued from previous page Degree (h 3,2 h 2,4 , k 3,6 ) 6 (h 3,12 , v • k 2 2,4 ) 12 (h 3,2 h 3,6 , v 2 ) 8 (h 2 3,2 , k 2,4 ) 4 (h 7,4 , v) 4 (f • h 4,6 , v 3 ) 12 (f • h 3,6 , v 2 • k 2,4 ) 12 (h 3,2 • f , k 2 2,4 ) 8 (h 5,8 , v • k 2,4 ) 8 Degree (h 7,4 , k 2,4 ) 4 (h 3,2 • h 5,2 , v) 4 (h 5,2 • f , v • k 2,4 ) 8 (h 3,12 , k 3 2,4 ) 12 (h 3,2 • h 2,8 , v • k 3,6 ) 10 (fh 4,6 , v 2 • k 2,4 ) 12 (h 2 3,6 , v 3 ) 12 (h 3,2 • h 4,6 , v 2 ) 8 Degree (h 9,4 , v) 4 (h 3,2 • h 2,8 , k 2,4 k 3,6 ) 10 (h 5,2 • h 3,6 , v 2 ) 8 (f • h 6,61 , v 3 ) 12 Degree (h 2 5,2 , v) 4 (f • h 6,62 , v 2 • k 2,4 ) 12 (h 3,2 • h 6,61 , v 2 ) 8 Degree (h 3,2 h 8,2 , v) 4 (h 3,2 h 6,62 , vk 2,4 ) 8 Degree (h 8,2 h 3,6 , v 2 ) 8 Degree (h 3,2 h 10,2 , v) 4
Order 2 : 6 covariants from S 6 and 62 joint covariants.

Degree (f , v) 4 Degree h 3,2 (h 2,4 , v) 3 (f , k 2,4 ) 4 (f , v 2 ) 6 Degree (h 2,4 , k 2,4 ) 3 (f , v • k 2,4 ) 6 (f , k 3,6 ) 5 (h 2,8 , v 2 ) 7 (h 3,2 , v) 2 (h 3,6 , v) 4 Degree h 5,2 (h 3,6 , k 2,4 ) 4 (h 4,4 , v) 3 (h 3,6 , v 2 ) 6 (h 2,8 , v • k 2,4 ) 7 (f , k 2 2,4 ) 6 (h 3,2 , k 2,4 ) 2 (f 2 , v 3 ) 11 (h 4,6 , v) 4 (h 2,8 , k 3,6 ) 6 (h 2,4 , k 3,6 ) 4 (h 3,8 , v 2 ) 7 Degree (f 2 , v 2 • k 2,4 ) 11 (h 2,8 , v • k 3,6 ) 8 (h 3,2 • f , v 2 ) 7 (h 2,8 , k 2 2,4 ) 7 (h 4,4 , k 2,4 ) 3 (h 4,10 , v 2 ) 8 (h 3,12 , v 3 ) 11 (h 5,2 , v) 2 (h 4,6 , v 2 ) 6 (h 3,6 , v • k 2,4 ) 6 (h 4,6 , k 2,4 ) 4 (h 3,8 , v • k 2,4 ) 7 (h 3,8 , k 3,6 ) 6 (h 5,4 , v) 3 Degree h 7,2 (h 2,8 , k 2,4 • k 3,6 ) 8 (h 6,62 , v) 4 (h 3,12 , v 2 • k 2,4 ) 11 (h 4,10 , v 3 ) 10 (h 6,61 , v) 4 (f • h 3,6 , v 3 ) 11 (h 2 3,2 , v) 3 (h 5,2 , k 2,4 ) 2 (h 3,8 , v • k 3,6 ) 8 (h 2 2,4 , k 3,6 ) 6 (h 5,8 , v 2 ) 7 (h 4,6 , v • k 2,4 ) 6 (f 2 , v • k 2 2,4 ) 11 (h 5,4 , k 2,4 ) 3 (h 4,10 , v • k 2,4 ) 8 (h 4,6 , k 3,6 ) 5 Degree h 8,2 (h 3,2 • h 3,6 , v 2 ) 7 (h 7,2 , v) 2 (h 2 3,2 , k 2,4 ) 3 (h 6,61 , k 2,4 ) 4 (h 6,62 , v 2 ) 6 (h 4,10 , k 2 2,4 ) 8 Degree (h 8,2 , v) 2 (h 2 3,2 , k 3,6 ) 4 (h 3,2 • h 5,2 , v) 3 Degree h 10,2 (h 5,2 • h 3,6 , v 2 ) 7 Degree (h 2 5,2 , v) 3 Degree h 12,2
Order 4 : 2 covariants from S 4 , 5 covariants from S 6 and 31 joint covariants.

Degree v Degree k 2,4 h 2,4 (f , v) 3 Degree (h 2,4 , v) 2 (f , v 2 ) 5 (h 2,8 , v) 4 (f , k 2,4 ) 3 Degree h 4,4 (h 3,8 , v) 4 (h 3,2 , v) 1 (h 2,8 , k 2,4 ) 4 continued on next page continued from previous page (h 2,4 , k 2,4 ) 2 (h 2,8 , v 2 ) 6 (f , k 3,6 ) 4 (f , v • k 2,4 ) 5 (h 3,6 , v) 3 Degree 5 h 5,4 (h 2,8 , v • k 2,4 ) 6 (h 3,12 , v 2 ) 8 (h 4,6 , v) 3 (h 3,2 , k 2,4 ) 1 (h 3,6 , k 2,4 ) 3 (h 4,4 , v) 2 (h 3,8 , k 2,4 ) 4 (h 2,8 , k 3,6 ) 5 (f , k 2 2,4 ) 5 (h 3,6 , v 2 ) 5 Degree 6 (h 5,2 , v) 1 (h 3,12 , v • k 2,4 ) 8 (h 5,8 , v) 4 (h 5,4 , v) 2 (h 4,6 , k 2,4 ) 3 (h 3,6 , k 3,6 ) 4 Degree 7 h 7,4 (h 5,8 , k 2,4 ) 4 Degree 8 (h 7,4 , v) 2 Degree 9 h 9,4
Order 6 : 1 covariant form S 4 , 5 covariants from S 6 and 11 joint covariants.

Degree 1 f Degree 2 (f , v) 2 Degree 3 h 3,6 k 3,6 (f , k 2,4 ) 2 (h 2,4 , v) 1 (h 2,8 , v) 3 Degree 4 h 4,6 (h 2,8 , k 2,4 ) 3 (h 3,8 , v) 3 (h 2,8 , v 2 ) 5 (h 2,4 , k 2,4 ) 1 Degree 5 (h 4,10 , v) 4 (h 4,4 , v) 1 (h 4,6 , v) 2 Degree 6 h 6,61 h 6,62
Order 8 : 3 covariants form S 6 , 5 joint covariants. Degree 2

h 2,8 (f , v) 1 Degree 3 h 3,8 (f , k 2,4 ) 1 (h 2,8 , v) 2 Degree 4 (h 3,8 , v) 2 (h 3,12 , v) 4 Degree 5 h 5,8
Order 10 : 1 covariant from S 6 and 1 joint covariant. Degree 3 (h 2,8 , k 1,4 ) 1 Degree 4 h 4,10

Order 12 : 1 covariant from S 6 . Degree 3 h 3,12 

. Degree (v, u 2 ) 4 ((f , v) 4 , u) 2 Degree (k 2,4 , u 2 ) 4 ((f , v) 3 , u 2 ) 4 ((f , v 2 ) 6 , u) 2 ((f , k 2,4 ) 4 , u) 2 ((h 2,4 , v) 3 , u) 2 Degree ((f , v) 2 , u 3 ) 6 ((f , k 2,4 ) 3 , u 2 ) 4 ((f , v 2 ) 5 , u 2 ) 4 ((f , k 3,6 ) 5 , u) 2 ((f , v • k 2,4 ) 6 , u) 2 ((h 2,8 , v) 4 , u 2 ) 4 ((h 2,4 , v) 2 , u 2 ) 4 ((h 2,8 , v 2 ) 7 , u) 2 ((h 2,4 , k 2,4 ) 3 , u) 2 ((h 3,6 , v) 4 , u) 2 ((h 3,2 , v) 2 , u) 2 Degree (k 3,6 , u 3 ) 6 ((f , v) 1 , u 4 ) 8 ((f , k 2,4 ) 2 , u 3 ) 6 ((f , k 3,6 ) 4 , u 2 ) 4 ((f , v • k 2,4 ) 5 , u 2 ) 4 ((f , k 2 2,4 ) 6 , u) 2 ((h 2,4 , v) 1 , u 3 ) 6 ((h 2,8 , v) 3 , u 3 ) 6 ((h 2,8 , v 2 ) 6 , u 2 ) 4 ((h 2,8 , k 2,4 ) 4 , u 2 ) 4 ((h 2,4 , k 2,4 ) 2 , u 2 ) 4 ((h 2,8 , v • k 2,4 ) 7 , u) 2 ((h 2,8 , k 3,6 ) 6 , u) 2 ((f 2 , v 3 ) 11 , u) 2 ((h 2,4 , k 3,6 ) 4 , u) 2 ((h 3,6 , v) 3 , u 2 ) 4 ((h 3,8 , v) 4 , u 2 ) 4 ((h 3,2 , v) 1 , u 2 ) 4 ((h 3,6 , k 2,4 ) 4 , u) 2 ((h 3,6 , v 2 ) 6 , u) 2 ((h 3,2 , k 2,4 ) 2 , u) 2 ((h 3,8 , v 2 ) 7 , u) 2 ((h 4,4 , v) 3 , u) 2 ((h 4,6 , v) 4 , u) 2 Degree ((f , k 2,4 ) 1 , u 4 ) 8 ((f , k 2 2,4 ) 5 , u 2 ) 4 ((h 2,8 , v) 2 , u 4 ) 8 ((h 2,8 , v 2 ) 5 , u 3 ) 6
continued on next page continued from previous page 

((h 2,8 , k 2,4 ) 3 , u 3 ) 6 ((h 2,4 , k 2,4 ) 1 , u 3 ) 6 ((h 2,8 , v • k 2,4 ) 6 , u 2 ) 4 ((h 2,8 , k 3,6 ) 5 , u 2 ) 4 ((h 2,8 , k 2 2,4 ) 7 , u) 2 ((f 2 , v 2 • k 2,4 ) 11 , u) 2 ((h 2,8 , v • k 3,6 ) 8 , u) 2 ((h 3,8 , v) 3 , u 3 ) 6 ((h 3,2 , k 2,4 ) 1 , u 2 ) 4 ((h 3,8 , k 2,4 ) 4 , u 2 ) 4 ((h 3,6 , v 2 ) 5 , u 2 ) 4 ((h 3,12 , v 2 ) 8 , u 2 ) 4 ((h 3,6 , k 2,4 ) 3 , u 2 ) 4 ((h 3,6 , v • k 2,4 ) 6 , u) 2 ((h 3,12 , v 3 ) 11 , u) 2 ((h 3,8 , v • k 2,4 ) 7 , u) 2 ((h 3,8 , k 3,6 ) 6 , u) 2 ((h 4,6 , v) 3 , u 2 ) 4 ((h 4,4 , v) 2 , u 2 ) 4 ((h 4,6 , k 2,4 ) 4 , u) 2 ((h 4,6 , v 2 ) 6 , u) 2 ((h 4,4 , k 2,4 ) 3 , u) 2 ((h 4,10 , v 2 ) 8 , u) 2 ((h 3,2 • f , v 2 ) 7 , u) 2 ((h 5,4 , v) 3 , u) 2 ((h 5,2 , v) 2 , u) 2 Degree 8 ((h 2,8 , v) 1 , u 5 ) 10 ((h 2,8 , k 2,4 • k 3,6 ) 8 , u) 2 ((f 2 , v • k 2 2,4 ) 11 , u) 2 ((h 3,12 , v) 4 , u 4 ) 8 ((h 3,8 , v) 2 , u 4 ) 8 ((h 3,12 , v • k 2,4 ) 8 , u 2 ) 4 ((h 3,6 , k 3,6 ) 4 , u 2 ) 4 ((h 3,8 , v • k 3,6 ) 8 , u) 2 ((h 3,12 , v 2 • k 2,4 ) 11 , u) 2 ((h 4,10 , v) 4 , u 3 ) 6 ((h 4,6 , v) 2 , u 3 ) 6 ((h 4,4 , v) 1 , u 3 ) 6 ((h 4,6 , k 2,4 ) 3 , u 2 ) 4 ((h 4,6 , v • k 2,4 ) 6 , u) 2 ((h 4,10 , v 3 ) 10 , u) 2 ((f • h 3,6 , v 3 ) 11 , u) 2 ((h 4,10 , v • k 2,4 ) 8 , u) 2 ((h 4,6 , k 3,6 ) 5 , u) 2 ((h 2 2,4 , k 3,6 ) 6 , u) 2 ((h 5,8 , v) 4 , u 2 ) 4 ((h 5,2 , v) 1 , u 2 ) 4 ((h 5,4 , v) 2 , u 2 ) 4 ((h 5,2 , k 2,4 ) 2 , u) 2 ((h 5,8 , v 2 ) 7 , u) 2 ((h 5,4 , k 2,4 ) 3 , u) 2 ((h 6,62 , v) 4 , u) 2 ((h 2 3,2 , v) 3 , u) 2 ((h 6,61 , v) 4 , u) 2 Degree 9 ((h 4,10 , k 2 2,4 ) 8 , u) 2 ((h 5,8 , k 2,4 ) 4 , u 2 ) 4 ((h 3,2 • h 3,6 , v 2 ) 7 , u) 2 ((h 6,61 , k 2,4 ) 4 , u) 2 ((h 2 3,2 , k 2,4 ) 3 , u) 2 ((h 6,62 , v 2 ) 6 , u) 2 ((h 7,2 , v) 2 , u) 2 Degree 10 ((h 2 3,2 , k 3,6 ) 4 , u) 2 ((h 7,4 , v) 2 , u 2 ) 4 ((h 8,2 , v) 2 , u) 2 ((h 3,2 • h 5,2 , v) 3 , u) 2 Degree 11 ((h 5,2 • h 3,6 , v 2 ) 7 ,
2 (v, u) 2 Degree 3 (v, u 2 ) 3 (k 2,4 , u) 2 ((f , v) 4 , u) 1 ((f , v) 3 , u) 2 Degree 4 ((1, k 2,4 ) 0 , u 2 ) 3 ((f , v) 2 , u 2 ) 4 ((f , v) 3 , u 2 ) 3 ((f , k 2,4 ) 3 , u) 2 ((f , v 2 ) 5 , u) 2 ((f , k 2,4 ) 4 , u) 1 ((f , v 2 ) 6 , u) 1 ((h 2,4 , v) 2 , u) 2 ((h 2,8 , v) 4 , u) 2 ((h 2,4 , v) 3 , u) 1 Degree 5 (k 3,6 , u 2 ) 4 ((f , v) 2 , u 3 ) 5 ((f , v) 1 , u 3 ) 6 ((f , k 2,4 ) 2 , u 2 ) 4 ((f , k 2,4 ) 3 , u 2 ) 3 ((f , k 3,6 ) 5 , u) 1 ((f , v • k 2,4 ) 5 , u) 2 ((f , v • k 2,4 ) 6 , u) 1 ((f , k 3,6 ) 4 , u) 2 ((h 2,8 , v) 4 , u 2 ) 3 ((h 2,4 , v) 1 , u 2 ) 4 ((h 2,8 , v) 3 , u 2 ) 4 ((h 2,4 , v) 2 , u 2 ) 3 ((h 2,8 , v 2 ) 7 , u) 1 ((h 2,4 , k 2,4 ) 3 , u) 1 ((h 2,8 , k 2,4 ) 4 , u) 2 ((h 2,8 , v 2 ) 6 , u) 2 ((h 2,4 , k 2,4 ) 2 , u) 2 ((h 3,2 , v) 1 , u) 2 ((h 3,6 , v) 4 , u) 1 ((h 3,2 , v) 2 , u) 1 ((h 3,6 , v) 3 , u) 2 ((h 3,8 , v) 4 , u) 2 Degree 6 ((f , k 2,4 ) 1 , u 3 ) 6 ((f , k 2 2,4 ) 5 , u) 2 ((f , k 2 2,4 ) 6 , u) 1 ((h 2,8 , v) 2 , u 3 ) 6 ((h 2,8 , v 2 ) 5 , u 2 ) 4 ((h 2,8 , k 2,4 ) 4 , u 2 ) 3 ((h 2,8 , k 2,4 ) 3 , u 2 ) 4 ((h 2,4 , k 2,4 ) 1 , u 2 ) 4 ((h 2,8 , v • k 2,4 ) 7 , u) 1 ((h 2,8 , k 3,6 ) 5 , u) 2 ((h 2,8 , k 3,6 ) 6 , u) 1 ((h 2,8 , v • k 2,4 ) 6 , u) 2 ((h 3,8 , v) 3 , u 2 ) 4 ((h 3,6 , v) 3 , u 2 ) 3 ((h 3,2 , k 2,4 ) 1 , u) 2 ((h 3,8 , k 2,4 ) 4 , u) 2 continued on next page continued from previous page ((h 3,6 , v 2 ) 5 , u) 2 ((h 3,6 , v 2 ) 6 , u) 1 ((h 3,6 , k 2,4 ) 3 , u) 2 ((h 3,2 , k 2,4 ) 2 , u) 1 ((h 3,12 , v 2 ) 8 , u) 2 ((h 3,8 , v 2 ) 7 , u) 1 ((h 4,6 , v) 3 , u) 2 ((h 4,6 , v) 4 , u) 1 ((h 4,4 , v) 2 , u) 2 Degree 7 ((h 2,8 , v) 1 , u 4 ) 8 ((h 3,8 , v) 2 , u 3 ) 6 ((h 3,12 , v) 4 , u 3 ) 6 ((h 3,12 , v • k 2,4 ) 8 , u) 2 ((h
2 (v, u) 1 Degree 3 (k 2,4 , u) 1 ((f , v) 2 , u) 2 ((f , v) 3 , u) 1 Degree 4 (k 3,6 , u) 2 ((f , v) 2 , u 2 ) 3 ((f , v) 1 , u 2 ) 4 ((f , k 2,4 ) 3 , u) 1 ((f , k 2,4 ) 2 , u) 2 ((h 2,8 , v) 4 , u) 1 ((h 2,4 , v) 2 , u) 1 ((h 2,8 , v) 3 , u) 2 ((h 2,4 , v) 1 , u) 2 Degree 5 ((f , k 2,4 ) 1 , u 2 ) 4 ((h 2,8 , v) 2 , u 2 ) 4 ((h 2,8 , k 2,4 ) 4 , u) 1 ((h 2,8 , v 2 ) 5 , u) 2 ((h 2,8 , k 2,4 ) 3 , u) 2 ((h 2,4 , k 2,4 ) 1 , u) 2 ((h 3,6 , v) 3 , u) 1 ((h 3,8 , v) 3 , u) 2 Degree 6 ((h 2,8 , v) 1 , u 3 ) 6 ((h 3,8 , v) 2 , u 2 ) 4 ((h
3 ((f , v) 2 , u) 1 ((f , v) 1 , u) 2 Degree 4 ((f , k 2,4 ) 1 , u) 2 ((h 2,8 , v) 2 , u) 2 Degree 5 ((h 2,8 , v) 1 , u 2 ) 4 ((h 3,12 , v) 4 , u) 2 ((h 3,8 , v) 2 , u) 2
12 covariants of order 8 : 3 from S 6 , 3 joint covariants of S 6 ⊕ S 2 given in 8.1, 5 joint covariants of S 6 ⊕ S 4 given in 8.2. There is left 1 covariant given below: degree 4 ((h 2,8 , v) 1 , u) 2

There is left 3 covariants of order 10 : 1 from S 6 , 1 joint covariant of S 6 ⊕ S 2 given in 8.1 and 1 joint covariant of S 6 ⊕ S 4 given in 8.2. Finally there is 1 covariant of order 12 taken from S 6 . 8.4. Covariant bases of S 8 . We apply here Gordan's algorithm for a simple binary form.

(1) As a first step A 0 = {f } for f ∈ S 8 . The family B 0 only contains the covariant

h 2,12 := {f , f } 2 ∈ S 12 .
(2) To obtain A (3) To get the system A 2 we have to consider transvectants (f a 1 h a 2 2,12 h a 3 3,18 , h b 2,8 ) r . The same kind of argument as above, using lemma such as lemma A.4 leads to [START_REF] Grace | The algebra of invariants[END_REF][START_REF] Gordan | Uber das Formensystem Binaerer Formen[END_REF]: Lemma 8.5. The family A 2 is given by the seven covariants

f , h 2,8 = (f , f ) 4 , h 2,12 = (f , f ) 2 , h 3,12 := (f , h 2,8 ) 2 , h 3,14 := (f , h 2,8 ) 1 h 3,18 := (f , h 2,12 ) 1 , h 4,18 := (h 2,12 , h 2,8 ) 1
Recall also that we have to consider the invariant (f , h 2,8 ) 8 . Now, the family B 2 is given by one covariant bases of

h 2,4 := (f , f ) 6 ∈ S 4 .
As seen above in subsection 8.2, such a covariant bases is given by: 

h 2,
, o) 1 v 1 (1, 0, 4) 15 (v 1 , h 8 ) 3 (1, 2, 2) 2 v 2 (0, 1, 4) 16 (v 2 , h 7 ) 3 (2, 1, 2) 3 (v 1 , v 1 ) 4 (2, 0, 0) 17 (v 1 , h 8 ) 2 (1, 2, 4) 4 (v 2 , v 2 ) 4 (0, 2, 0) 18 (v 2 , h 7 ) 2 (2, 1, 4) 5 (v 1 , v 2 ) 4 (1, 1, 0) 19 (v 1 , h 7 ) 1 (3, 0, 6) 6 (v 1 , v 2 ) 3 (1, 1, 2) 20 (v 2 , h 8 ) 1 (0, 3, 6) 7 (v 1 , v 1 ) 2 (2, 0, 4) 21 (v 1 , h 8 ) 1 (1, 2, 6) 8 (v 2 , v 2 ) 2 (0, 2, 4) 22 (v 2 , h 7 ) 1 (2, 1, 6) 9 (v 1 , v 2 ) 2 (1, 1, 4) 23 (h 7 , h 8 ) 4 (2, 2, 0) 10 (v 1 , v 2 ) 1 (1, 1, 6) 24 (h 7 , h 8 ) 3 (2, 2, 2) 11 (v 1 , h 7 ) 4 (3, 0, 0) 25 (h 19 , v 2 ) 4 (3, 1, 2) 12 (v 2 , h 8 ) 4 (0, 3, 0) 26 (v 1 , h 20 ) 4 (1,
Table 10. Covariant bases of Cov(S 8 ).

To get an invariant bases of the invariant algebra Inv(S 8 ⊕ S 4 ⊕ S 4 ), we use the same strategy as the one used for the computation of a covariant bases of Cov(S 6 ⊕ S 4 ) (see subsection 8.2). We give now details of the three steps of this strategy.

Resolution of the associated linear Diophantine system. To apply Gordan's algorithm given in theorem 7.6, we have to solve a linear Diophantine system associated to covariant orders (and thus excluding invariants) given by tables 9 and 10.

From this lemma 8.8 and from lemmas 7.9 and 7.10, we get: Lemma 8.9. All invariants from degree 22 to degree 49 are reducibles.

Proof. We have to consider invariants given as transvectants (U, V) r , r ≤ 0 where U (resp. V) is a monomial in Cov(S 8 ) (resp. Cov(S 4 ⊕ S 4 )). From lemma 7.9, we know that every time one monomial m (given by one of the 179 first relations of lemma 8.8) divide V, then the invariant is a reducible one. We get here a first reduction process. For instance, for degree 26 invariants, we initially have 20 392 invariants, and this first reduction leads to 1822 invariants. We now use lemma 7.10 for a second reduction process. For degree [START_REF] Derksen | Computation of invariants for reductive groups[END_REF] Using those relations and lemmas 7.9 and 7.10 thus lead to a third reduction process. We can now make use of the multigraduate Hilbert series of Inv(S 8 ⊕ S 4 ⊕ S 4 ) to get our final result.

Finite minimal bases of Inv(S 8 ⊕ S 4 ⊕ S 4 ).

Theorem 8.11. The invariant algebra Inv(S 8 ⊕ S 4 ⊕ S 4 ) is generated by a minimal bases of 297 invariants, resumed 16 in table 11. 16 We note here Invj (V1 ⊕ V2) a set of joint invariants of degree d1 > 0 and d2 > 0 in V1 and V2. Using scripts written in Macaulay2 [START_REF] Grayson | Macaulay2, a software system for research in algebraic geometry[END_REF], we thus checked all homogeneous spaces for the finite family already obtained. This leads to no irreducible invariants for this degree. Such computations had thus been done to homogeneous spaces up to degree 21.

We now give joint invariants of S 8 ⊕ S 4 . For that purpose, we write v ∈ S 4 and k 2,4 := (v, v) 2 , k 3,6 := (v, k 2,4 ) 1 .

53 joint invariants of Inv j (S 8 ⊕ S 4 ). Degree 3 (f 3 , v) Lemma C.2. Let V be a space of binary forms, α, β and γ be three atoms of respective valence n, p, q. Let r be an integer such that r ≤ min(n, p, q); then and we just have to multiply each side of the equation by σ n-r α σ p-r β σ q-r γ .

Recall here that, for f ∈ S n and for a given integer k ≥ 0, we have In the same way:

Lemma C.4. If n = 4k, then H 2k is of order n and the family B = {H 2k } is relatively complete modulo I 2k+2 + ∆ where ∆ is the invariant given by:

f f f n 2 n 2 n 2

  val D (α) := val(α) -α=o(e) or α=t(e) w(e). Definition 3.1. The SL(2, C)-equivariant homomorphism φ D defined by the molecule D is given by φ D := e∈E(D) Ω w(e) o(e) t(e) α∈V(D) σ val D (α) α if val D (α) ≥ 0, ∀α ∈ V(D) 0 else . When val D (α) ≥ 0 for all α ∈ V(D), it maps S(α) ⊗ • • • ⊗ S(ε) to S k , where k = val D (α) + . . . + val D (ǫ).

  Let now D be a molecule upon S n (recall such a molecule represents an SL(2, C) equivariant homomorphism), the grade of D, denoted gr(D), is the maximum weight of the edges of D : gr(D) := max e∈E(D)

Hypothesis 7 . 3 .= x b j b j b x c jc jc . Lemma 7 . 4 .

 7374 There exists a finite family J and for each j ∈ J a relation(R ′ j ), x b j b j b x c jc jc = p(x jc+1 , . . . , x p ), b j b , c jc ∈ N * (7.2)where x j b > x jc and p is some polynomial. We write m ′ j :Under hypotheses 7.1 and 7.3, the algebra A is generated by the family of monomials m such that

b j b j b x c jc

  jc = p(x jc+1 , . . . , x p ), b j b , c jc ∈ N * . Let m = x r 1 1 . . . x r j b j b . . . x r jc jc . . . x rp p , r j b ≥ b j b , r jc ≥ c jc

′lTheorem 7 . 7 .

 77 (l ∈ L), specified on monomials m k and m ′ l . The finite family C denote once again the finite family of transvectants (U, V) r related to irreducible solutions (α, β, u, v, r) of the Diophantine system S(A, B) (5.1). The same proof as in theorem 7.6 now leads to the more general result: The algebra Cov(S m ⊕ S n ) is generated by the finite subfamily of C ( Ũ, Ṽ) r ∈ C,

  Starting with relation (3.2):Ω αβ σ γ = Ω αγ σ β + Ω γβ σ α , Ω r-i γβ σ i β σ r-i γ ,

Hrα f β f γ e 0 = 2k e 1 •e 1

 11 2k := (f , f ) 2k . Lemma C.3. If 2n -4k > n, where 2n -4k is the order of H 2k , then the family B = {H 2k } is relatively complete modulo I 2k+2 . Proof. We have to consider molecular covariants containing with 1 ≤ r ≤ 2k all symbol being equivalent. When r > k, the molecular covariant f = r is of grade 2k + 1 by lemma A.4. Thus the molecular covariant associated to D is in I 2k+1 = I 2k+2 by (6.2). When r < k, by relation (C.1), D decomposes as a linear combination of If i ≥ k, we consider the molecule = r e 2 = i of weight w = 2k + r + i ≥ 3k + r > 3k. Since 2k + r + i ≤ n, by lemma A.3 this molecule is of grade r ≥ 2 3 w > 2k; • If i < k, we consider the molecule α β δ e 0 = 2k e 2 = 2k -i and we conclude using lemma A.4.

  5 z 4 + 10 z 5 + 18 z 6 + 31 z 7 + 55 z 8 + 92 z 9

+ 144 z 10 + 223 z 11 + 341 z 12 + 499 z 13 + 725 z 14 + 1031 z 15 + 1436 z 16 + 1978 z 17 + 2685 z 18 + . . . By scripts written in Macaulay 2 [37], we reduced the family of 104 generators to a minimal set of 63 generators given in table 2, which has also been obtained by Popoviciu-Brouwer

Table 4 .

 4 Minimal covariant bases of S 6 ⊕ S 2 . Ordre 0 : 5 invariants from S 6 , 1 invariant from S 2 and 21 joint invariants. Degree (f , f ) 6 (u, u) 2 Degree (h 1,6 , u 3 ) 6 (h 2,4 , u 2 ) 4 (h 3,2 , u) 2 Degree (h 3,6 , u 3 ) 6 (h 2,8 , u 4 ) 8 (h 4,4 , u 2 ) 4 (h 5,2 , u) 2 Degree (h 5,4 , u 2 ) 4 (h 3,8 , u 4 ) 8 (h 4,6 , u 3 ) 6 Degree (h 7,2 , u) 2 Degree (h 7,4 , u 2 ) 4 (h 6,61 , u 3 ) 6 (h 4,10 , u 5 ) 10 (h 5,8 , u 4 ) 8 (h 8,2 , u) 2 (h 3,12 , u 6 ) 12 (h 6,62 , u 3 ) 6 Degree (h 3 3,2 , f ) 6 Degree (h 10,2 , u) 2 (h 9,4 , u 2 ) 4 Degree (h 12,2 , u) 2 Degree (h 4 3,2 , h 3,8 ) 8 Order 2 : 1 from S 2 , 6 from S 6 and 23 joint covariants.

	6 2	1

  3,8 , u 3 ) 6 (h 4,6 , u 2 ) 4 Degree h 7,2 Degree h 8,2 (h 7,2 , u) 1 (h 7,4 , u) 2 (h 6,6b , u 2 ) 4 (h 5,8 , u 3 ) 6 (h 3,12 , u 5 ) 10 (h 4,10 , u 4 ) 8 (h 6,6a , u 2 ) 4 Degree h 10,2 (h 9,4 , u) 2 Degree h 12,2 Order 4 : 5 covariants from S 6 and 15 joint covariants. Degree h 2,4(f , u) 2 Degree (h 2,4 , u) 1 (f , u 2 ) 3 Degree h 4,4 (h 3,6 , u) 2 (h 2,8 , u 2 ) 4 Degree h 5,4 (h 3,8 , u 2 ) 4 (h 3,6 , u 2 ) 3 (h 4,4 , u) 1 (h 4,6 , u) 2 (h 2,8 , u 3 ) 5 Degree h 7,4 (h 6,61 , u) 2 (h 3,12 , u 4 ) 8 (h 4,10 , u 3 ) 6 (h 6,62 , u) 2 (h 5,8 , u 2 ) 4 Degree 4 h 4,6 (h 2,8 , u 2 ) 3 (h 3,6 , u) 1 (h 3,8 , u) 2 Degree 7 h 6,61 h 6,62 (h 5,8 , u) 2 (h 4,10 , u 2 ) 4 (h 3,12 , u 3 ) 6 Order 8 : 3 covariants from S 6 and 3 joint covariants. Degree 2 h 2,8 Degree 3 h 3,8 (h 2,8 , u) 1 Degree 5 h 5,8 (h 4,10 , u) 2 (h 3,12 , u 2 ) 4 Order 10 : 1 covariant from S 6 and 1 joint covariant. Degree 3 h 4,10 (h 3,12 , u) 2 Order 12 : 1 covariant from S 6 . Degree 3 h 3,12 8.2. Covariant bases of S 6 ⊕ S 4 . Taking f ∈ S 6 and v ∈ S 4 we take generators h d,k of Cov(S 6 ) given by 8.1 and we write

		continued from previous page
	Degree	h 9,4
		Order 6 : 5 covariants from S 6 and 8 joint covariants.
	Degree	f
	Degree	(f , u) 1
	Degree	h 3,6 (h 2,8 , u) 2
		continued on next page

  , h 12,2 h 10,2 . Proof. To get one relation R on a monomial m, we consider the homogeneous space Cov d,k associated to the monomial m. Take for instance the monomial h 2 3,12 ∈ Cov 6,24 . By a direct computation in Macaulay2[START_REF] Grayson | Macaulay2, a software system for research in algebraic geometry[END_REF], we get that the space Cov 6,24 is spanned by the family

	m ′ j occurring in those relations are
	h 2 12,2 , h 2 10,2 , h 2 8,2 , h 2 7,2 , h 2 9,4 , h 2 7,4 , h 2 5,4
	h 2 6,61 , h 2 6,62 , h 2 3,12 , h 2 5,8 , h 2 4,10 h 2,0 f 4 ; h 2,4 h 2 1,6 h 2,8 ; f 3 h 3,6 ; h 3 2,8 ; h 2 3,12

.1) and thus we have hypothesis 7.1 on that algebra.

Let put on Cov(S 6 ) the order

h 2,0 > h 4,0 > h 6,0 > h 10,0 > h 15,0 > h 3,2 > h 2,4 > h 4,4 > f > h 3,

6 > h 4,6 > h 5,4 > h 2,8 > h 6,61 > h 6,62 > h 3,8 > h 7,4 > h 5,2 > h 7,2 > h 9,4 > h 12,2 > h 10,2 > h 8,2 > h 5,8 > h 4,10 > h 3,12 . Lemma 8.2. There exists, in the algebra Cov(S 6 ), 12 relations as in hypothesis 7.1 and one relation as in hypothesis 7.3. The monomials m i and

  α 1 + . . . + α 6 ) + 4(α 7 + . . . + α 11 ) + 6(α 12 + . . . + α 16 )+ 8(α 17 + α 18 + α 19 ) + 10α 20 + 12α 21

Table 5 .

 5 . Finite generating family after reduction process.

	Order	0	2	4	6	8	10 12 14 16
	# of trans. 365 462 144	78	46	24 10	4	1
	Degrees	3-30 2-30 1-23 1-15 2-12 3-9 3-8 4-7 6

Theorem 8.3. The covariant algebra Cov(S 6 ⊕ S 4 ) is generated by a minimal bases of 194 elements, summarized in table 7.

Table 6 .

 6 [START_REF] Dixmier | Série de Poincaré et systèmes de paramètres pour les invariants des formes binaires de degré 7[END_REF]. Furthermore, for high level degree, we know exactly which homogeneous spaces Cov d 1 ,d 2 ,0 (S 6 ⊕ S 4 ) occur (table6) in the given family. Dimension of homoegenous spaces for high degree invariants.

	Degree	30 28 27 26
	d 1	27 25 24 23
	d 2	3	3	3	3
	Dimension 639 518 534 413

Table 7 .

 7 Minimal covariant bases of S 6 ⊕ S 4

	11

Table 8 .

 8 8.3. Covariant bases of S 6 ⊕ S 4 ⊕ S 2 . Now we have a covariant bases of Cov(S 6 ⊕ S 4 ) from theorem 8.3, we can use theorem 5.7 with V = S 6 ⊕ S 4 . We thus have: Theorem 8.4. The covariant algebra Cov(S 6 ⊕ S 4 ⊕ S 2 ) is generated by a minimal bases of 494 elements, summarized in table 8. Covariant bases of S 6 ⊕ S 4 ⊕ S 2 We give now transvectants expression of this minimal covariant bases. 195 invariants: 5 from S 6 , 2 from S 4 , 1 from S 2 , 21 joint invariants of S 6 ⊕ S 2 given in 8.1, 53 joint invariants of S 6 ⊕ S 4 given in 8.2. There is left 113 invariants

	d/o	0	2	4	6	8 10 12 # Cum
	1	-	1	1	1 ---	3	3
	2	3	2	5	2	2 --14	17
	3	4	10	9	8	4	1	1	37	54
	4	12	19 20 10 3	2 -66	120
	5	15	38 24 6	3 --86	206
	6	37	46 12 5 ---100 306
	7	42	31	7 ----80	386
	8	38	15	1 ----54	440
	9	22	4	1 ----27	467
	10	9	3	-----12	479
	11	6	1	-----	7	486
	12	3	1	-----	4	490
	13	2	-	-----	2	492
	14	1	-	-----	1	493
	15	1	-	-----	1	494
	T ot 195 171 80 32 12 3	1		494

  u) 2 Degree 12 ((h 2 5,2 , v) 3 , u) 2 171 covariants of order 2:6 from S 6 , 1 from S 2 , 23 joint covariants of S 6 ⊕ S 2 given in 8.1, 62 joint covariants of S 6 ⊕ S 4 given in 8.2. There is left 79 covariants given below: Degree

  3,6 , k 3,6 ) 4 , u) 2 ((h 4,6 , v) 2 , u 2 ) 4 ((h 4,4 , v) 1 , u 2 ) 4 ((h 4,10 , v) 4 , u 2 ) 4 ((h 4,6 , v 2 ) 6 , u) 1 ((h 4,6 , k 2,4 ) 3 , u) 2 ((h 5,4 , v) 2 , u) 2 ((h 5,8 , v) 4 , u) 2 ((h 5,4 , v) 3 , u) 1 ((h 5,2 , v)1 , u) 2 Degree 8 ((h 5,8 , k 2,4 ) 4 , u) 2 Degree 9 ((h 7,4 , v) 2 , u) 2 80 covariants of order 4 : 5 from S 6 , 2 from S 4 , 15 joint covariants of S 6 ⊕ S 2 given in 8.1, 31 joint covariants of S 6 ⊕ S 4 given in 8.2. There is left 27 covariants given below: Degree

  3,12 , v) 4 , u 2 ) 4 ((h 4,10 , v) 4 , u) 2 ((h 4,4 , v) 1 , u) 2 ((h 4,6 , v) 2 , u) 2 32 covariants of order 6 : 5 from S 6 , 1 from S 4 , 8 joint covariants of S 6 ⊕ S 2 given in 8.1, 11 joint covariants of S 6 ⊕ S 4 given in 8.2. There is left 7 covariants given below: Degree

  1 we have to consider transvectants (f a , h b 2,12 ) r , which contain no reducible molecular covariants modulo I 4 . From (6.2) we deduce that necessarily r ≤ 2. Take now a molecule Using lemma A.4 with e 0 = 2 and e 1 = 2, this molecule is of grade 3 and thus by (6.2) of grade 4. We can deduce from all this that the family A 1 is f , h 2,12 , h 3,18 := {f , h 2,12 } 1 and family B 1 only contains the covariant h 2,8 := {f , f } 4 ∈ S 8 .

	α	2	β
			2
	δ	2	γ

  4 , h 4,4 := (h 2,4 , h 2,4 ) 2 , h 6,6 := (h 2,4 , (h 2,4 , h 2,4 ) 2 ) 1 and two invariants h 4,0 := (h 2,4 , h 2,4 ) 4 , h 6,0 := (h 2,4 , (h 2,4 , h 2,4 ) 2 ) 4 .

	d/o 0 2 4 6 # Cum
	1	--2 -2	2
	2 3 1 3 1 8	10
	3 4 2 2 4 12 22
	4 1 3 --4	26
	5	-2 --2	28
	Tot 8 8 7 5	28
	Number Covariant (d 1 , d 2 , o) Number Covariant (d 1 , d 2
	(4) To get the family B 3 , we have to consider transvectants
	(f a 1 h a 2 2,8 h a 3 2,12 h a 4 3,12 h a 5 3,14 h a 6 3,18 h a 7 4,18 , h b 1 2,4 h b 2 4,4 h b 3 6,6 ) r
	which is associated to the integer system
	8a 1 + 8a 2 + 12a 3 + 12a 4 + 14a 5 + 18a 6 + 18a 7 = u + r 4b 1 + 4b 2 + 6b 3 = v + r	.	(8.2)
	We also make use of the relation (8.1) in Cov(S 4 ), thus we can
	apply theorem 7.8. With computations made in Macaulay2 [37], we
	finally get a covariant bases of S 8 given bellow.

Table 9 .

 9 Covariant bases of Cov(S 4 ⊕ S 4 ).

	3, 2)

  invariant, we have for example to consider the invariant (f 18 f 12 f 22 , h3 18 f 12 f 22 , h 3 10 h 19 h 3 7 ) 36 , (f 18 f 12 f 22 , h 3 10 h 19 h 11 h 3 1 ) 36 , (f 18 f 12 f 22 , h 3 10 h 19 h 3 h 2 1 h 7 ) 36 where h 11 and h 3 are invariants (thus the two last transvectants are reducible). By a direct computation, we can check that the transvectant (f 18 f 12 f 22 , h 3 10 h 19 h 3 7 ) 36 correspond to a reducible integer solution. Using lemma 7.10 we thus deduce that transvectant (8.3) is expressible in terms of reduced invariant and lower index transvectants. We then use the same arguments for lower indexe transvectants, which are all reducible. Now there still remain 257 770 invariants, from degree 3 to degree 21. Direct computation in the algebra Cov(S 8 ) leads to: Lemma 8.10. There exists 4085 monomial covariants m ∈ Cov(S 8 ) contained in the invariant ideal of Cov(S 8 ). Furthermore, there exists 964 relations U = U i , U, U i monomials in Cov(S 8 )

	10 h 3 19 ) 36 .	(8.3)
	In that case, we have the relation	
	12h 2 19 + 6h 3 7 + 2h 11 h 3 1 -3h 3 h 2 1 h 7 = 0	
	which leads to consider invariants	
	(f	

Table 11 .

 11 Minimal bases of Inv(S 8 ⊕ S 4 ⊕ S 4 ) Proof. Let d 1 be the invariant degree in f ∈ S 8 , d 2 the degree in v 1 ∈ S 4 and d 3 the degree in v 2 ∈ S 4 . Thus we haveInv(S 8 ⊕ S 4 ⊕ S 4 ) = d 1 ,d 2 ,d 3 ≥0 Inv d 1 ,d 2 ,d 3 (S 8 ⊕ S 4 ⊕ S 4 )Using multigraduated Hilbert series computed by Bedratyuk's Maple package[START_REF] Bedratyuk | The MAPLE package for calculating Poincaré series[END_REF], we can compute the minimal bases degree per degree, as explained in subsection 7.1. For instance, we have left 740 degree 12 invariants. Note that for each of those invariants, we know the associated homogeneous spaces, given in table12. d 1 , d 2 , d 3 Dimension d 1 , d 2 , d 3 Dimension d 1 , d 2 , d

	3 Dimension

Table 12 .

 12 Homogeneous spaces in degree 12

  4 (f 1 , v 2 ) 8 Degree 4 (f 1 , v • k 2,4 ) 8 (f 4 , v 2 ) 8 (f 3 , k 2,4 ) 4 (f 7 , v) 4 Degree 5 (f 1 , k 2 2,4 ) 8 (f 4 , v • k 2,4 ) 8 (f 5 , v 3 ) 12 (f 7 , k 2,4 ) 4 (f 9 , v 2 ) 8 (f 15 , v) 4 (f 16 , v) 4 Degree 6 (f 4 , k 2 2,4 ) 8 (f 5 , v 2 • k 2,4 ) 12 (f 11 , v 3 ) 12 (f 9 , v • k 2,4 ) 8 (f 8 , k 3,6 ) 6 (f 15 , k 2,4 ) 4 (f 18 , v 2 ) 8 (f 16 , k 2,4 ) 4 (f 26 , v) 4 (f 27 , v) 4 Degree 7 (f 5 , v • k 2 2,4 ) 12 (f 10 , v • k 3,6 ) 10 (f 11 , v 2 • k 2,4 ) 12 (f , v • k 2,4 ) 8 (f 17 , k 3,6 ) 6 (f 21 , v 3 ) 12 (f 30 , v 2 ) 8 (f 27 , k 2,4 ) 4 (f 26 , k 2,4 ) 4 (f 37 , v) 4 (f 38 , v) 4 Degree 8 (f 47 , v) 4 (f 48 , v) 4 (f 37 , k 2,4 ) 4 (f 38 , k 2,4 ) 4 (f 42 , v 2 ) 8 (f 29 , k 3,6 ) 6 (f 30 , v • k 2,4 ) 8 (f 20 , v • k 3,6 ) 10 (f 21 , v 2 • k 2,4 ) 12 (f 11 , v • k 2 2,4 ) 12 Degree 9 (f 2 8 , v 3 ) 12 (f 48 , k 2,4 ) 4 (f 47 , k 2,4 ) 4 (f 55 , v) 4 (f 56 , v) 4 Degree 10 (f 56 , k 2,4 ) 4 (f 63 , v) 4 Degree 11 (f 63 , k 2,4 ) 4 (f 2 25 , v) 4 Finally, we give joint invariants of S 8 ⊕ S 4 ⊕ S 4 . Recall here that h n is defined to be the number n covariant in the covariant bases of Cov(S ⊕ S 4 ), given in table 9. 174 joints invariant of Inv j(S 8 ⊕ S 4 ⊕ S 4 ). Degree 3 (f 1 , h 1 • h 2 ) 8 Degree 4 (f 1 , h 1 • h 8 ) 8 (f 1 , h 2 • h 9 ) 8 (f 1 , h 2 • h 7 ) 8 (f 1 , h 1 • h 9 ) 8 (f 3 , h 9 ) 4 (f 4 , h 1 • h 2 ) 8 Degree 5 (f 1 , h 8 • h 9 ) 8 (f 1 , h 2 • h 17 ) 8 (f 1 , h 7 • h 8 ) 8 (f 1 , h 2 • h 18 ) 8 (f 1 , h 2 9 ) 8 (f 1 , h 7 • h 9 ) 8 (f 1 , h 1 • h 18 ) 8 (f 4 , h 1 • h 8 ) 8 (f 4 , h 2 • h 9 ) 8 (f 5 , h 1 • h 2 2 ) 12 (f 3 , h 17 ) 4 (f 4 , h 2 • h 7 ) 8 (f 3 , h 18 ) 4 (f 4 , h 1 • h 9 ) 8 (f 5 , h 2 1 • h 2 ) 12 (f 9 , h 1 • h 2 ) 8 (f 7 , h 9 ) 4 (f 8 , h 10 ) 6 Degree 6 (f 1 , h 8 • h 17 ) 8 (f 1 , h 2 • h 2 6 ) 8 (f 1 , h 9 • h 17 ) 8 (f 1 , h 9 • h ) 8 continued on next page continued from previous page (f 1 , h 1 • h 2 6 ) 8 (f 1 , h 7 • h 18 ) 8 (f 4 , h 2 • h 17 ) 8 (f 5 , h 1 • h 2 • h 8 ) 12 (f 4 , h 8 • h 9 ) 8 (f 5 , h 2 2 • h 9 ) 12 (f 4 , h 2 • h 18 ) 8 (f 5 , h 1 • h 2 • h 9 ) 12 (f 5 , h 2 1 • h 8 ) 12 (f 4 , h 2 9 ) 8 (f 4 , h 7 • h 8 ) 8 (f 5 , h 2 2 • h 7 ) 12 (f 5 , h 2 1 • h 9 ) 12 (f 4 , h 7 • h 9 ) 8 (f 4 , h 1 • h 18 ) 8 (f 5 , h 1 • h 2 • h 7 ) 12 (f 9 , h 1 • h 8 ) 8 (f 8 , h 21 ) 6 (f 10 , h 2 • h 10 ) 10 (f 8 , h 2 • h 6 ) 6 (f 9 , h 2 • h 9 ) 8 (f 11 , h 1 • h 2 2 ) 12 (f 11 , h 2 1 • h 2 ) 12 (f 10 , h 1 • h 10 ) 10 (f 9 , h 2 • h 7 ) (f 9 , h 1 • h 9 ) 8 (f 8 , h 1 • h 6 ) 6 (f 8 , h 22 ) 6 (f 16 , h 9 ) 4 (f 17 , h 10 ) 6 (f 18 , h 1 • h 2 ) 8 (f 15 , h 9 ) 4 Degree 7 (f 5 , h 2 2 • h 17 ) 12 (f 5 , h 1 • h 2 8 ) 12 (f 5 , h 2 • h 8 • h 9 ) 12 (f 5 , h 2 2 • h 18 ) 12 (f 5 , h 1 • h 8 • h 9 ) 12 (f 5 , h 2 • h 7 • h 8 ) 12 (f 5 , h 2 • h 2 9 ) 12 (f 5 , h 1 • h 2 9 ) 12 (f 5 , h 2 • h 7 • h 9 ) 12 (f 5 , h 1 • h 2 • h 18 ) 12 (f 5 , h 1 • h 7 • h 8 ) 12 (f 5 , h 1 • h 7 • h 9 ) 12 (f 5 , h 2 1 • h 18 ) 12 (f 5 , h 2 • h 2 7 ) 12 (f 10 , h 2 • h 21 ) 10 (f 10 , h 1 • h ) 10 (f 11 , h 2 2 • h 9 ) 12 (f 11 , h 1 • h 2 • h 8 ) 12 (f 10 , h 2 2 • h 6 ) 10 (f 12 , h 2 2 • h 10 ) 14 (f 10 , h 1 • h 2 • h 6 ) 10 (f 11 , h 2 1 • h 8 ) 12 (f 10 , h 1 • h 21 ) 10 (f 10 , h 2 • h 22 ) 10 (f 12 , h 1 • h 2 • h 10 ) 14 (f 11 , h 1 • h 2 • h 9 ) 12 (f 11 , h 2 2 • h 7 ) 12 (f 9 , h 2 9 ) 8 (f 10 , h 1 • h 22 ) 10 (f 11 , h 1 • h 2 • h 7 ) 12 (f 11 , h 2 1 • h 9 ) 12 (f 10 , h 2 1 • h 6 ) 10 (f 10 , h 2 • h 19 ) 10 (f 12 , h 2 1 • h 10 ) 14 (f 21 , h 1 • h ) 12 (f 18 , h 2 • h 9 ) 8 (f 17 , h 21 ) 6 (f 17 , h 2 • h 6 ) 6 (f 20 , h 2 • h 10 ) 10 (f 19 , h 2 • h 10 ) 10 (f 18 , h 1 • h 8 ) 8 (f 17 , h 1 • h 6 ) 6 (f 18 , h 1 • h 9 ) (f 17 , h 22 ) 6 (f 20 , h 1 • h 10 ) 10 (f 21 , h 2 1 • h 2 ) 12 (f 19 , h 1 • h 10 ) 10 (f 18 , h 2 • h 7 ) 8 (f 29 , h 10 ) 6 (f 30 , h 1 • h 2 ) 8 (f 26 , h 9 ) 4 (f 27 , h 9 ) 4 (f 28 , h 10 ) 6 Degree 8 (f 37 , h 9 ) 4 (f 38 , h 9 ) 4 (f 40 , h 10 ) 6 (f 41 , h 10 ) 6 (f 42 , h 1 • h 2 ) 8 (f 29 , h 21 ) 6 (f 30 , h 1 • h 8 ) 8 (f 30 , h 2 • h 9 ) 8 (f 31 , h 2 • h 10 ) 10 (f 32 , h 2 • h 10 ) 10 (f 33 , h 2 • h 10 ) 10 (f 29 , h 22 ) 6 (f 30 , h 1 • h 9 ) 8 (f 30 , h 2 • h 7 ) 8 (f 31 , h 1 • h 10 ) 10 (f 32 , h 1 • h 10 ) (f 33 , h 1 • h 10 ) 10 (f 20 , h 2 • h 22 ) 10 (f 20 , h 1 • h 2 • h 6 ) 10 (f 21 , h • h 8 ) 12 (f 21 , h 1 • h 2 • h 9 ) 12 (f 21 , h 2 2 • h 7 ) 12 (f 22 , h 1 • h 2 • h 10 ) 14 (f 20 , h 1 • h 22 ) 10 (f 20 , h 2 1 • h 6 ) 10 (f 21 , h 2 1 • h 9 ) 12 (f 21 , h 1 • h 2 • h 7 ) 12 (f 22 , h 2 1 • h 10 ) 14 (f 11 , h 2 • h 7 • h 9 ) 12 (f 12 , h 2 1 • h 2 • h 6 ) 14 (f 13 , h 2 1 • h 2 • h 10 ) 18 (f 11 , h 2 • h 2 7 ) 12 (f 12 , h 1 3 • h 6 ) 14 (f 13 , h 1 3 • h 10 ) 18 (f 11 , h 2 • h 2 9 ) 12 (f 12 , h 1 • h 2 2 • h 6 ) 14 (f 13 , h 1 • h 2 2 • h 10 ) 18 (f 20 , h 2 • h 21 ) 10 (f 20 , h 2 2 • h 6 ) 10 (f 21 , h 1 • h 2 • h 8 ) 12 (f 21 , h 2 2 • h 9 ) 12

	continued on next page

There exists several methods to compute this Hilbert series[START_REF] Bedratyuk | The MAPLE package for calculating Poincaré series[END_REF][START_REF] Littelmann | On the Poincaré series of the invariants of binary forms[END_REF][START_REF] Springer | Séries de Poincaré dans la théorie des invariants[END_REF] a priori.

Meaning the algebra A is a finite and free k[θ1, . . . , θs]-module, where {θ1, . . . , θs} is a system of parameters.

Note that Weyman[START_REF] Weyman | Gordan ideals in the theory of binary forms[END_REF] has also reformulated Gordan's method in a modern way and through algebraic geometry but unfortunately, we were unable to extract from it an effective approach. There is also a preprint of Pasechnik[START_REF] Pasechnik | Computing covariants of binary forms and related topics[END_REF] on this method.

This operator is called scalling process in[START_REF] Olver | Classical invariant theory[END_REF].

For simplicity, we can suppose that κ is the sum of two irreducible solutions.
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Appendix C. Relatively complete families of a single binary form Acknowledgement References

Introduction

Classical invariant theory was a very active research field throughout the XIX th century. As pointed out by Parshall [START_REF] Parshall | Toward a history of nineteenth-century invariant theory[END_REF], this field was initiated by Gauss' Disquisitiones Arithmeticae (1801) in which he studied a linear change of variables for quadratic forms with integer coefficients. About forty continued from previous page Degree 8 ( For such an invariant bases, we apply theorem 7.6 with V 1 = S 8 and V 2 = S 4 ⊕ S 4 . Note here that we make use of a different covariant bases 15 of Cov(S 8 ) than the one given in subsection 8.4.

All the covariant basis of Cov(S 8 ) and Cov(S 4 ⊕ S 4 ) are given in tables 9 and 10. In those tables, h n (resp. f n ) denotes the covariant of S 4 ⊕ S 4 (resp. S 8 ) defined by line numbered n.

We thus have a linear Diophantine system with 81 unknowns:

(S e ) : To solve such a system, we use Clausen-Fortenbacher's result [START_REF] Clausen | Efficient solution of linear Diophantine equations[END_REF] on reduced systems. First note (a 1 , a 2 , . . . , a 8 , b 1 , b 2 , b 3 ) the irreducible solutions of the reduced system:

We then get irreducible solutions of the initial system (S e ) by solving all the systems

= b 3 Note also that to get irreducible solutions of the reduced system (S ′ ), we used Normaliz package [START_REF] Bruns | Normaliz: algorithms for affine monoids and rational cones[END_REF] in Macaulay2 [START_REF] Grayson | Macaulay2, a software system for research in algebraic geometry[END_REF]. Finally we have: Lemma 8.6. The system (S e ) has 695 754 irreducible integer solutions, corresponding to invariants from degree 3 to degree 49.

Relations on Cov(S 8 ) and Cov(S 4 ⊕ S 4 ). Take here the minimal bases of Cov(S 8 ) given in table 10 and take the lexicographic order:

An algorithm developed by Lercier [START_REF] Olive | A minimal covariant basis for the binary nonics and decimics[END_REF] 

Appendix A. The Stroh formula and some corollaries

The following general algebraic relation was obtained by Stroh [START_REF] Stroh | Ueber die asyzygetischen Covarianten dritten Grades einer binären Form[END_REF] (see also [START_REF] Grace | The algebra of invariants[END_REF]).

Lemma A.1. Let u 1 , u 2 and u 3 be three commutative variables such that

Then we have

This formula leads to new degree three relations on molecules. Let V = S n and (e 0 , e 1 , e 2 ) be three integers such that e i + e j ≤ n (i = j). Define: 

Suppose that we have a linear relation

Taking f α = x n α , f β = y n β and f γ = y n γ leads to λ 0 = 0; and by induction we get λ i = 0 for all i. Thus F 1 := {D(w -i, i, 0), i = 0 . . . w} is a bases of Hom SL(2,C) (S n ⊗ S n ⊗ S n , S 3n-2w ). There is the same statement for F 2 := {D(0, w -i, i), i = 0 . . . w} and F 3 := {D(i, 0, w -i), i = 0 . . . w}.

Let

Those are commutative variables verifying u 1 + u 2 + u 3 = 0. Now, taking the family (2) If w > n then

Sketch of proof. The detailed proof is in [START_REF] Grace | The algebra of invariants[END_REF]. Just consider here the case when w ≤ n with w = 3k -1. Taking m 1 = m 2 = m 3 = m in lemma A.2 leads to a family F whose molecules are of grade at least 2k. We use the same kind of arguments for w = 3k + 2 and w = 3k.

A special case of A.3 is:

Lemma A.4. Let D(e 0 , e 1 , e 2 ) be given by A.2 with e i + e j ≤ n (i = j).

Suppose that Appendix B. Degree three covariant basis Take n, p and q be three non negative integers. By Clebsch-Gordan decomposition, we first know that we have an SL(2, C) decomposition

The same argument leads to

We define a triplet (n, p, i) to be admissible if 0 ≤ i ≤ min(n, p) : this means that the irreducible component S n+p-2i appears is the SL(2, C) decomposition of S n ⊗ S p .

Lemma B.1. Let r be an integer, i 1 , i 2 , j 1 , j 2 be integers such that      (n, p, i 1 ), (n + p -2i 1 , q, i 2 ), (p, q, j 1 ), (n, p + q -2j 1 , j 2 ) are admissible

are vector basis of

Proof. This lemma is the dual version of [19, lemma 2.6.1], the only idea being that for finite dimensional linear SL(2, C) representations we have Hom SL(2,C) (E 1 ⊕ E 2 , F ) ≃ Hom SL(2,C) (E 1 , F ) ⊕ Hom SL(2,C) (E 2 , F ) Now, given integers i 1 , i 2 , r as in the hypothesis, we have S n ⊗ S p ⊗ S q ≃ min(n,p)

S n+p-2i 1 ⊗ S q and φ i 1 ,i 2 is a non nul vector of the one dimensional space Hom SL(2,C) (S n+p-2i 1 ⊗ S q , S r ).

We do similarly for integers j 1 , j 2 , r.

Appendix C. Relatively complete families of a single binary form

We give here results about reduction of some families modulo an ideal. We take a space S n of binary forms and Gordan's ideal I r (see definition 6.4). By (6.2), every molecular covariant of grade 1 is thus in I 2 , and then:

Corollary C.1. The family A 0 := {f } is relatively complete modulo I 2

The following lemma is about degree three molecular covariants, and is used in the following: