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ABOUT GORDAN’S ALGORITHM FOR BINARY FORMS

MARC OLIVE

Abstract. In this paper, we present a modern version of Gordan’s algorithm on binary forms.
Symbolic method is reinterpreted in terms of SL2(C)–equivariant homomorphisms defined upon
Cayley operator and polarization process. A graphical approach is thus developed to obtain
Gordan’s ideal, a central key to get covariant bases of binary forms. To illustrate the power of
the method, we compute a covariant basis of S6 ⊕ S2 and S8.
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1. Introduction

Classical invariant theory was a very active research field throughout the XIXe century. As
pointed out by Parshall [44], the birth of this field can be find in the Disquisitiones arithmeticae
(1801) of Gauss. He studied there linear changes of variables in a quadratic form with integer
coefficients. About forty years later, Boole [7] established the main purpose of what will become
today classical invariant theory. Cayley [16, 17] deeply investigated this field of research and
developed important tools still in use nowadays, such as the Cayley Omega process. During
about fifteen years (until the 1861 and Cayley’s seventh memoir [14]) the English school of
invariant theory, mainly leaded by Cayley and Sylvester, developed important tools to compute
explicit invariant generators of binary forms. Thus, the role of calculation deeply influenced
this first approach in invariant theory [16].

At that time, a German school mainly conducted by Clebsch, Aronhold and Gordan, developed
their own approach, named the symbolic method. In 1868, Gordan, who was called the “King of
invariant theory”, proved that covariants of any binary forms are always finitely generated [26].
As a great part of the mathematic development of that time, such a result was endowed with a
constructive proof : the English and the German school were equally preoccupied by calculation
and exhibition of invariants and covariants. Despite Gordan’s constructive proof, Cayley was
reluctant to make use of the symbolic method to obtain new understanding of invariant theory.
In the same spirit, Sylvester claimed that Gordan’s proof was “so long and complicated and so
artificial a structure that it requires a very long study to master and there is not one persun
in Great Britain who has mastered it” [17]. That’s only in 1903, with the work of Grace–
Young [28], that the German approach of Gordan and al. became accessible to a wide community
of mathematicians. Let also point out that Gordan’s constructive approach leaded to several
explicit results : first, and without no difficulty, Gordan [27] gave the quintic and the sextic
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2 MARC OLIVE

bases for covariants1, then he gave the first part of the septimic ond the octic covariant basis.
After that, Von Gall finished the computation for the septimic [54] and for the octic [24].

But, in 1890, Hilbert made a critical advance in the field of invariant theory. Using a to-
tally new approach [31], which is the cornerstone of all nowadays abstract algebra, he proved
the finiteness theorem for all cases dealing with invariants of a reductive group. But his first
proof [31] was criticized for not being constructive. Facing theses critics, Hilbert made another
contribution [31] which claimed to be more constructive. This effective approach is nowadays
widely used to obtain effective results in the field of invariant theory [46, 22, 11, 12]. As pointed
out by Hilbert himself in [31], the main scope of this approach can be summarized into three
steps.

The first step is to compute the Hilbert series of the graded algebra A of invariants2. Of
course, there exists several methods to compute a priori this Hilbert series [5, 38, 47] which is
always a rational function by the Hilbert—Serre theorem [15]. The second step is to exhibit what
is called a system of parameters for the algebra A of invariants3. Finally, the Hochster–Roberts
theorem [32] ensures us that the algebra A is Cohen–Macaulay4. Thanks to that statement, the
system of parameters altogether with the Hilbert series give a bound for the degree of invariants
still have to be found. We refer the reader to several references [52, 11, 22, 19, 20, 21] to get a
general and modern approach to this subject.

But one major lack of this strategy is summed up in the effective computation of a system
of parameters. The Noether normalization lemma [36] ensures us that such a system always
exists, but as we know, effective algorithms to get such a system [30] are not sufficiently effective
because of the extensive use of Grobnër bases. In the case of invariants algebra Inv(Sn) of
a single binary form, one has of course the concept of the nullcone and the Mumford–Hilbert
criteria [20, 9], to check that a finite family of invariants is a system of parameters of Inv(Sn)

5.
But this criteria is not an algorithm to get a system of parameters, and it is no more valid in
the case of covariants. Furthermore, in the case of joint invariants, that is invariants algebra of
V := Sn1

⊕ · · · ⊕ Snk
, such a system of parameters has, in general, a complex shape. Indeed,

Brion [10] showed that only in some very few cases, as for instance in the simple case of joint
invariants of S4 ⊕ S2, there exists a system of parameters which respects the multi–graduation
of Inv(V ).

Let’s point out here that an important motivation for this work was to use an effective
approach on invariant theory because we had, for example, to compute joints invariants of
S6 ⊕ S2. In fact, this motivation is directly taken from the field of continuum mechanics, and
more precisely from the theory of elasticity in small deformations [1]. As an example, to get
one part of the invariants basis of the elasticity tensor [3], Boehler–Kirilov–Onat used a classical
isomorphism between SO(3) linear representations over a complex vector space and the one of
SL(2,C) linear representations on binary forms [50, 6]. Doing so, they directly obtained the
part of the invariant bases of the elasticity tensor related to the invariant bases of S8, which was
first obtained by Von Gall [24] in 1888. Such invariant bases has a direct application to classify
orbits space of elasticity tensor, as pointed out by Auffray–Kolev–Petitot [2]. In a forthcoming
article, though, we also present a new useful result for continuum mechanics [40], which was a
direct consequence of results we obtain in our present paper for the case of joint covariants of
S6 ⊕ S2.

But we may also observe some other important interests on the subject which come from the
field of geometrical arithmetic, illustrated by the work of Lercier–Ritzenthaler [37] on hyperel-
liptic curves, but also in the field of quantic informatics as illustrated by the work of Luque [39].

1The case of a binary quintics presented such a level of difficulty for the English school that Cayley conjectured
an infinite number of invariant generators for a binary form of order greater than or equal to five [16].

2Writing A =
⊕

Ai we define the Hilbert series to be the formal series HA(z) :=
∑

dimAiz
i.

3The set {θ1, · · · , θs} ⊂ A is a system of parameters if A is finitely generated over its subring k[θ1, · · · , θs].
4Meaning the algebra A is a a finite and free k[θ1, · · · , θs]–module, where {θ1, · · · , θs} is a system of parameters
5A set {θ1, · · · , θs} ⊂ Inv(Sn) is a system of parameters if θ1(f) = · · · = θs(f) = 0 implies that f ∈ Sn has a

root which multiplicity is of order strictly greater than
n

2
.
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Of course, the algebraical geometry approach first developed by Hilbert is not the only con-
structive one. In the case of a single binary form, Olver [42] exhibits another constructive
approach, which was generalized for a single n-ary form and also specified with a “running
bound”by Brini–Regonati–Creolis [8]. We also have in Kung–Rota [35] a constructive approach
with a combinatorial which became increasingly complex for the cases we had to deal with.

Thus, as it appears to us in the case of joint covariants of S6 ⊕ S2, a very simple result
stated in Grace–Young (theorem 4.6 of our present paper) gave us a direct algorithm to obtain
a covariant basis, although other approaches failed to do so. From this observation, we decided
to reformulate Gordan’s theorem 6 on binary forms in the modern language of operators, which
was already modernized by Olver [42]. We also decided to represent operators with directed
graphs, in the spirit of the graphical approach dealt by Olver–Shakiban [41], and to focus on
equivariants morphisms.

The paper is organized as follows. In section 2 we recall the mathematical background of
classical invariant theory, and we introduce classical operators such as the Omega Cayley opera-
tor, polarization operators and the transvectant operator. We then introduce Aronhold molecule
and molecular covariants which give graphicals representations of equivariants morphisms con-
structed on the basis of Cayley and polarization operators. We prove Gordan’s theorem for joint
covariants in section 4 and for simple covariants in section 5.

Finally, in Appendix A, we illustrate the method7 by computing explicitly the basis of joint
covariants of a sextic and a quadric, and of simple covariants of an octic. This result was
already obtained by Von Gall [54], Lercier–Ritzenthaler [37], Cröni [18] and Bedratyuk [4], but
the computation is summarized and simplified here.

2. Covariants of binary forms

Let’s take x to be a couple (x, y) ∈ C2 ; we define:

Definition 2.1. The C vector space of nth degree binary forms, noted Sn is the space of
homogeneous polynomials

f(x) = a0x
n +

(

n

1

)

a1x
n−1y + · · ·+

(

n

n− 1

)

an−1xy
n−1 + any

n

with each ai in C.

Now we can take V to be a space of binary forms, that is

V :=
s

⊕

i=0

Sni

There is a natural SL2(C) action on C2 and thus on V , given by

(g · f)(x) := f(g−1 · x) for g ∈ Gl2(C) or g ∈ SL2(C)

From this, we naturally define an action8 on the ring coordinate C[V ⊕ C2]: for p ∈ C[V ⊕ C2]
we define the action to be

(g · p)(f ,x) := p(g−1 · f , g−1 · x) for g ∈ SL2(C)

Thus, all this lead to the classical definition of the covariant ring of binary form

Definition 2.2. The covariant algebra of a space V of binary forms, noted C(V ), is the algebra
of SL2(C) polynomial invariant:

C(V ) := C[V ⊕ C2]SL2(C)

A very important result, first due to Gordan [26] and then generalized by Hilbert [31] is:

6Remark also that Weynman [56] did an algebra formulation of Gordan’s theorem.
7Pasechnik [45] did also an application of this method.
8for a general and modern approach of invariants and covariants algebra we refer the reader to the online text

of Procesi–Kraft [34]
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Theorem 2.3. For every space V of binary forms, the algebra C(V ) is finitely generated, mean-
ing there exist a finite set h1, · · · ,hN in C(V ), called a basis, such that

C(V ) = C[h1, · · · ,hN ]

We can also attempt to obtain a minimal basis [23]. Let’s define the subspace Ci ⊂ C(V )
of ith degree homogeneous polynomials, and the ideal C+ :=

∑

i>0 Ci of the graduated algebra
C(V ). Then we can consider for each Ci the number δi to be the cardinal of a supplement to
(C+)2i ⊂ Ci in Ci. Now because of the finiteness, there exist k such that δi = 0 for i ≥ k ; and
we can finally define the invariant number:

n(V ) =
∑

i

δi

Now:

Definition 2.4. A set h1, · · · ,hN is a minimal basis of C(V ) if their image in the vector space

C+/ (C+)
2
is a basis. In that case we will have N = n(V )

An important observation is that we have a natural bi-graduation on the covariant algebra
C(V ):

• By the degree, which is the polynomial degree in the coefficients of the space V ;
• By the order which is the polynomial degree in the variables x ;

If then we put Ck,r(V ) to be the subspace of kth degree and rth order covariants, we thus
have:

C(V ) =
⊕

k≥0,r≥0

Ck,r(V ) (2.1)

A first way to obtain covariant is to make use of Cayley’s operator [42], which is a bi-differential
operator acting on a tensor product of smooth functions f(xα)g(xβ), and which is given by

Ωαβ(f(xα)g(xβ)) :=
∂f

xα

∂g

yβ
−

∂f

yα

∂g

xβ

We will also make use of the polarization process9, defined to be

σα := x
∂

∂xα
+ y

∂

∂yα

Cayley’s operator and polarization operator commute with SL2(C) action [42]. We then
naturally get, with these operators, covariants of a binary form. In fact, as we will see further
on, these operatore suffice to get all covariants (see theorem 2.10).

Using Cayley’s operator, we can now obtain transvectant operation, defined to be:

{f ,g}r := Ωrσn−r
α σp−r

β (fαgβ)

The classical approach, here, is to give invariants or covariants bases using transvectant opera-
tors. For instance, the covariant is of a cubic f ∈ S3 is given by table 1.

Order/degree 1 2 3 4
3 f

2 H := {f , f}2 T := {f ,H}1
0 {H,H}2

Table 1. Covariant basis of a binary cubics given in terms of transvectant

Remark 2.5. Gordan’s proof of finiteness for binary forms, proof that can be find in Grace–
Young [28], used what 19th century mathematicians called the symbolic method. As pointed
out by Olver [42], differential operators naturally translate into symbolic forms10.

9This operator was named scalling process by Olver [42]
10A huge amount of work as been done first by Weyl [55] and afterword by Kung–Rota [35] to get a modern

version of this symbolic method, and these leads for example to Umbral calculus.
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We now define Symk(V ) to be the space of totally symmetric tensor subspace of ⊗kV .

Remark 2.6. We have a natural isomorphism between Ck,r(V ) and the space HomSL2(C)(Sym
k(V ),Sr).

This isomorphism is a simple trace operation. Indeed, if we take an equivariant morphism
ϕ ∈ HomSL2(C)(Sym

k(V ),Sr) we just have to take the covariant p(f ,x) = ϕ(f(x), · · · , f(x)).
Cayley’s operator and polarization process carrying us to a natural way to construct SL2(C)

equivariant homomorphism from Sn1
⊗ Sn2

⊗ · · · ⊗ Sns to Sr. For instance, we can construct the
morphism:

ΩαβΩ
2
αγσ

n−3
α σp−1

β σq−2
γ : Sn ⊗ Sp ⊗ Sq −→ Sr with r = n+ p+ q − 6 (2.2)

Such an equivariant morphism will be represented by a digraph [53, 33, 43]. We start with
atoms

α β γ

associated to valences val(α) = n, val(β) = p, val(γ) = q.
Thus we represent the SL2(C) equivariant morphism with the digraph11

α β

γ
2 in which val(α) = n− 3, val(β) = p− 1, val(γ) = q − 2

Thus a directed and weighted edge, with weight r, from two given atoms α and β will represent
the operator Ωr

αβ. Finally we use polarization operator related to atom’s valence to get a
morphism ; for instance

α β
r will represent the SL2(C) equivariant morphism Ωαβσ

n−1
α σq−1

β

Is this above example, we have val(α) = n− 1.
Following these ideas, we can now construct a more general object on the space V =

⊕s
i=1 Sni

of binary forms. When given a digraph D, its set of vertices will be denoted by V(D), its set
of (oriented) edges by E(D). Given an (oriented) edge e we denote its origin by o(e) and its
termination by t(e).

Definition 2.7. Let α, β, . . . , ǫ be symbols associated to orders niα , . . . , niǫ ; an Aronhold
molecule D is a digraph constructed on atoms

α . . . ǫ

which represent a SL2(C) equivariant morphism

τD :=
∏

e∈E(D)

Ω
w(e)
o(e) t(e)

∏

v∈V(D)

σval(v)
v

from Sniα
⊗· · ·⊗Sniǫ

to Sr, with r = val(α)+ . . .+val(ǫ). The set of all Aronhold molecule will
be noted M(V ) and the vector space generated by all Aronhold molecules, will be noted A(V ).

Taking f(v) ∈ V for each vertex v ∈ V(D), we can thus define a covariant in C(V ) taking

τD





⊗

v∈V(D)

f(v)





This define a map Ψ from A(V ) to C(V ). Now:

Definition 2.8. For every space V of binary forms, we define a molecular covariant M to be a
covariant given by M = Ψ(D) where D ∈ M(V ).

Each molecular covariant will aslo be represented using a digraph. For instance, the basis of
a binary cubic is given in figure 1.

11It is very important to note that we represent here a morphism and not a bi-differential operator as did
Olver–Shakiban [43]
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f f f
2

f f

f

2

1

f f

ff

2

2

Figure 1. Covariant basis of a binary cubic given in molecular form

In fact, we have a relation between covariants given in transvectant form and the ones given
in molecular form (see section 3).

When given an Aronhold molecule D ∈ A(V ), we define w(D) to be the weight of the weighted
digraph D. We also define the grade gr(D) of D to be the maximal weight of D.

Definition 2.9. For a given integer r, we define Ar(V ) to be the vector subspace of A(V )
generated by all Aronhold molecule D such that gr(D) ≥ r.

Now, if we take a given space V of binary forms, we can define M(V ) to be the algebra
generated by all molecular covariants Ψ(M(V )). We then have a very important result, which
non trivial proof can be found for example in Olver [42]:

Theorem 2.10. Every covariant of a given space of binary forms V is a polynomial in molecular
covariants ; that is:

C(V ) = M(V )

For nineteenth century mathematicians, this result was the fact that every covariant may be
expressible as a polynomial in symbolic forms.

Nevertheless, this result doesn’t assure us that every covariant of a given space V can be
written with transvectants operations. To get this result, one must make use of relations between
transvectant covariants and molecular covariants: such a relation is given in Olver [42], but we
also give such a result in property 3.5.

When we want to express covariants as molecular covariants, we don’t have a unique ex-
pression. Indeed, (see Olver [42] and Olver–Shakiban [43]) we have fundamentals relations,
called syzygies, among operators and thus among Aronhold molecule and also among molecular
covariants. Take α, β, γ and δ be four symbols associated to valence n1, n2, n3 and n4.

(1) The first syzygie comes from the egality:

Ωαβσ
n1−1
α σn2−1

β = −Ωβασ
n1−1
α σn2−1

β

which gives, in graphical forms:

α β = − α β (2.3)

(2) The second one, comes from a determinantal property [42]:

Ωαβσ
n1−1
α σn2−1

β σn3

γ = Ωαγσ
n1−1
α σn2−1

β σn3

γ +Ωγβσ
n1

α σn2−1
β σn3−1

γ

which gives, in graphical forms:

α β

γ

=

α β

γ

+

α β

γ

(2.4)

(3) The last one is a peculiar case of the previous one.

ΩαβΩγδσ
n1−1
α σn2−1

β σn3−1
γ σn3−1

δ = ΩαδΩβγσ
n1−1
α σn2−1

β σn3−1
γ σn3−1

δ +ΩαγΩδβσ
n1−1
α σn2−1

β σn3−1
γ σn3−1

δ
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which gives, in graphical forms:

α β

γδ

=

α β

γδ

+

α β

γδ

(2.5)

One may observe that these syzygies are in fact rewriting rules for molecular covariants. For
example, by 2.3 we will have

α β
2

= α β
2

= α β
2

thus, for an even number or edges, we will not precise the direction.
Another important observation is that the syzygies 2.4 and 2.5 leads to a huge amount of

relations among molecular covariants.
As an example, let’s now12 take the space V = Sn the syzygies 2.4 and 2.3 will give us

α β

γ

2

=

α β

γ

+

α β

γ

2

= −

α β

γ

2 +

α β

γ

2

and finally, in the case we are in Sym3(V ), all symbols are equivalent, so

f f

f

2

= 0

Because Cayley’s operator and polarization operator commutes, we will have other important
relations. One of them is simply an application of the binomial formula:

α β

γ

r

=

r
∑

i=0

(

r

i

)

α β

γ

i r − i (2.6)

Now we can get, with fine enough computations [28] the following relation, obtained by
Stroh [51], which can be directly applied to operators Cayley’s operators and polarization oper-
ators which all commute:

Lemma 2.11. Let u1, u2 and u3 be three commutative variables such that

u1 + u2 + u3 = 0

Then we have

(−1)k2
k1
∑

i=0

(

g

i

)(

k1 + k3 − i

k3

)

ug−i
3 ui1 + (−1)k3

k2
∑

i=0

(

g

i

)(

k2 + k1 − i

k1

)

ug−i
1 ui2+

(−1)k1
k3
∑

i=0

(

g

i

)(

k3 + k2 − i

k2

)

ug−i
2 ui3 = 0 (2.7)

12This example is directly taken from [42, 43]
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with k1 + k2 + k3 = g − 1.

Take here a degree three Aronhold molecule with V = Sn, given by:

D(e0, e1, e2) :=

α β

γ

e0

e1e2
with weight w = e0 + e1 + e2 (2.8)

We then have an important lemma, which proof can be found in Grace–Young [28]:

Corollary 2.12. If w ≤ n and m1, m2, m3 are integers such that m1 +m2 +m3 = w+ 1 then
the Aronhold molecule D(e0, e1, e2) is a linear combination of the Aronhold molecule.

α β

γ

w − i1

i1

α β

γ

w − i2i2

α β

γ

i3

w − i3

with is = 0 . . . ms.

From this we deduce two very important lemmas:

Corollary 2.13. Let D(e0, e1, e2) be given by 2.8.

(1) If w ≤ n then

D(e0, e1, e2) ∈ Ar(V ) with r ≥
2

3
w

(2) If w > n then

D(e0, e1, e2) ∈ Ar(V )

Corollary 2.14. Let D(e0, e1, e2) be given by 2.8 of grade e0 and suppose that

e0 ≤
n

2
and e1 + e2 >

e0

2

then

D(e0, e1, e2) ∈ Ae0+1(V )

unless e0 = e1 = e2 =
n

2
.

One may remark that these relations are upon morphism, thus these lemma give new syzygies
among molecular covariants.

3. Transvectants and molecular covariants

It’s important here to understand the way transvectants and molecular covariants are linked.
To get molecular covariants when given a transvectant is the easiest way: it is a direct conse-
quence of Leibnitz formula for derivatives.

Because molecular covariants come from Aronhold molecule, we will give in fact relations
between transvectant and Aronhold molecule. Transvectants can be seen as SL2(C) equivariant
morphisms ; using composition, we thus can make transvectants of Aronhold molecule.

Definition 3.1. If D and E are two Aronhold molecules, for a given integer r and a given symbol
ν(r), we define the Aronhold molecule Lν(r)(D,E), graphically noted

D E

ν(r)

to be a new Aronhold molecule constructed by linking D and E with r edges in a given way.
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If we take for example

D = β γα
2

and E = δ ǫ

we can define

D E

ν1(2)
=

β γα

δ ǫ

2

2

or

D E

ν2(2)
=

β γα

δ ǫ

2

We then get a property which proof can be find in [42]:

Proposition 3.2. If D and E are two Aronhold molecules, for every integer r, the rth transvec-
tant {D,E}r can be obtain as a linear combination of Aronhold molecules Lν

r (D,E), for each
possible link ν(r) between D and E:

{D,E}r =
∑

ν(r)

aν(r) D E

ν(r)

Because of Aronhold molecule’s definition, which differ from Olver–Shakiban’s molecular def-
inition, the coefficients are not as simple as the ones given in Olver [42]. In fact, we won’t have
to use exact expression of these coefficients.

As an example, we can take

D = β γα
2

and E = δ
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We will thus have:

{D,E}2 = aν(1)

β γα

δ

2

2
+ aν(2)

β γα

δ

2

2

+ aν(3)

β γα

δ

2

2

+aν(4)

β γα

δ

2

+ aν(5)

β γα

δ

2

+ aν(6)

β γα

δ

2

For the opposite link, that is the link between an Aronhold molecule and transvectants, we
will make use of another molecular operation13:

Definition 3.3. Given an Aronhold molecule D, and an integer k, we define D
µ(k)

as the
Aronhold molecule obtained by adding k edges on D in a certain way µ(k).

For example, we can take the Aronhold molecule

D =

α β

γ

2

and then consider

D
µ1(2)

=

α β

γ

3

or D
µ2(2) =

α β

γ

2

2

The proofs of the following two propositions will be omitted. They can be found in Olver [42]:

Proposition 3.4. Let be given two Aronhold molecules D and E, an integer r and two links
ν1(r) and ν2(r) in the transvectant {D,E}r, then the molecular transvectant

D E

ν1(r)

is a linear combination of

D E

ν2(r)

13This operation was called convolution in [28]
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and transvectants

{D
µ1(k1)

,E
µ2(k2)

}r′

with k1 + k2 + r′ = r being constant and r′ < r.

Furthermore we also have:

Proposition 3.5. Let be given two Aronhold molecules D and E, an integer r and a link ν(r)
in the transvectant {D,E}r, then the Aronhold molecule

D E

ν(r)

is a linear combination of the transvectants

{D,E}r and {D
µ1(k1)

,E
µ2(k2)

}r′

with k1 + k2 + r′ = r being constant and r′ < r.

If we take for example the Aronhold molecules:

D = α β
2

and E = γ

we can consider the transvectant {D,E}2 and the two Aronhold molecules:

M1 =

α β

γ

2

2 and M2 =

α β

γ

2

Then, property 3.4 assures us that

M1 = λ1M2 + λ2

{

α β
3

, γ

}

1

+ λ3

{

α β
4

, γ

}

0

Furthermore property 3.5 assures us that

M1 = µ1

{

α β
2

, γ

}

2

+ µ2

{

α β
3

, β

}

1

+ µ3

{

α β
4

, γ

}

0

all coefficients depending on the valences degrees of the atoms α, β and γ.

4. Gordan’s algorithm for joint covariants

Let recall here that Gordan’s proof is constructive and was given in the original paper of
Gordan [26] ; but, what follows is directly inspired by the proof given in Grace–Young [28] and,
in a very much similar form, in a book by Glenn [25].

The idea is to argue on molecular covariants.
Let’s take A to be a covariant family taken from a space V of binary forms:

A ⊂ C(V )

Now, we define Cov(A) to be the covariants algebra taken from A, which can be obtained by
doing all possible transvectants14 from elements of A. We know by theorem 2.10 and proposi-
tion 3.5 that Cov(V ) is nothing else than the covariant algebra C(V ).

First of all it is clear that
A ⊂ B ⇒ Cov(A) ⊂ Cov(B) (4.1)

Then we have a direct lemma, consequence of theorem 2.10:

Lemma 4.1. Let V = Sn and f ∈ V . If any family A ⊂ Cov(V ) contains f then Cov(A) =
Cov(V ).

Furthermore, using (4.1) we get the following lemma:

14We can also take all possible molecular covariants.
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Lemma 4.2. Let A1 and A2 be two families of Cov(V ). If A1 ⊂ A2 ⊂ Cov(A1) then
Cov(A1) = Cov(A2)

Now there is an important definition:

Definition 4.3. A covariants family A of V is said to be complete if it generates its covariant
algebra Cov(A) ; that is

C[A] = Cov(A)

It is important to notice that the notion of complete family is weaker than the one of a
covariant basis15. For instance, let us take V = S3 and f ∈ V to be a cubic. We define

H := {f , f}2 ; T := {f ,H}1 and ∆ := {H,H}2

We then know that the family A1 = {f ,H,T,∆} is a covariant basis of Cov(A1) = C(S3). Now
if we take

A2 = {H,∆} we will have Cov(A2) ( Cov(V )

But we also observe that A2 is exactly the covariant basis [28] of the quadratic form H ∈ S2 ;
thus A2 is a complete family but is not a covariant basis of Cov(V ).

Let now take two finite covariant families A and B:

A := {f1, · · · , fp} ; B := {g1, · · · ,gq}

We define ai (resp. bj) to be the order of fi (resp. gj). If we put U (resp. V ) to be a monomial
in k[A] (resp. k[B]) we will write

U := f
α1

1 · · · f
αp
p ; V := g

β1

1 · · · g
βq
q

We will also write α := (α1, · · · , αp) ∈ Np and β := (β1, · · · , βq) ∈ Nq.
To each non nul transvectant

{U,V}r

we can associate a non nul integer solution κ := (α,β, u, v, r) taking from the system of linear
diophantine equation:

(S)

{

a1α1 + . . .+ apαp = u+ r,

b1α1 + . . .+ bqβq = v + r,
(4.2)

Now, it is clear that reciprocally, to each non null integer solution κ of (S) we can associate a
non null transvectant {U,V}r. For each solution κ, let F(κ) be the finite family of all molecular
covariants occurring in the molecular decomposition of the transvectant {U,V}r, directly taken
from proposition 3.2.

Let’s take for example the case when A = {f} ,with f ∈ S5 and B = {g}, with g ∈ S2. For
a = (1) and b = (1, 1) we can consider

• The family F(a,b, 2) which contains the molecular covariants

f

g g

2 and

f

g g

where the first one is a non connected molecular covariant.
• The family F(a,b, 3) which contains the molecular covariants

f

g g

2 or

f

g g

2

In this case there is no non connected molecular covariant.

If fact we have:

15All examples are directly taken from Grace–Young [28]
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Lemma 4.4. If κ is a reducible integer solution of (S), then F(κ) contains a non connected
molecular covariant.

Proof. Take the integer solution κ = (a,b, u, v, r) to be reducible, that is κ = κ1 + κ2 with

κi = (ai,bi, ui, vi, ri) solution of(4.2)

Thus we will be able to write U = U1U2 and V = V1V2.Now there exist ν(r), ν1(r
1) and ν2(r

2)
such that

U V
ν(r)

= U1 V1

ν1(r
1)

U2 V2

ν2(r
2)

(4.3)

which is a non connected covariant molecular occurring in F(κ). �

Now we know that there exists a finite family of irreducible integer solutions of (4.2) (see [49,
48, 52] for details). Let then define κ1, · · · , κl to be the irreducible integer solutions of (4.2).
We also define τ i to be the transvectant associated to the solution κi. We thus get a main
result [26, 28]:

Theorem 4.5. Let V1 and V2 be two spaces of binary forms. Define A = {f1, · · · , fp} ⊂ Cov(V1)
and B = {g1, · · · ,gq} ⊂ Cov(V2) to be two finite and complete families. Then Cov(A ∪ B) is

generated by the finite and complete family τ := {τ1, · · · , τ l}.

Proof. Let first remark that each fi (resp. each gj) correspond to an irreducible solution of (4.2).
Thus we know that A ⊂ τ and B ⊂ τ .

From theorem 2.10 we have to prove that each molecular covariant M ∈ C(A ∪ B) is in a
finite algebra. But, using definition 3.1 we can write the molecular covariant M as

M = D E
ν(r)

with a molecular covariant D ∈ Cov(A) and E ∈ Cov(B) ; r being some integer. Because A
is complete, we can suppose D to be a mononomial expression U on the fi’s ; and in the same
way we can suppose E to be a mononomial expression V on the gj ’s. We then have to consider
molecular covariants

M = U V
ν(r)

with

U = fa11 · · · fanp and V = gb1
1 · · · g

βp
q

Now we can make a direct induction on the index r of the transvectant. Put τ1, · · · , τ i1 to
be transvectants from the family τ which indexes are lower than r. If we take a transvectant
{U,V}r+1 which correspond to a reducible integer solution, then by proposition 3.2, we can
extend this transvectant as a linear combination of a non connected molecular covariant T and
transvectants {U′,V′}r′ of lower index r′ < r+1. By induction hypothesis, all these transvectants
{U′,V′}r′ are in k[τ ].

Let suppose without loss of generality that T = T1T2 where each term correspond to an
irreducible integer solution of (4.2). Using proposition 3.5 we can thus write each term as a
linear combination of on τi ∈ τ and transvectants of index r′ < r+1. We can thus conclude the
first part of the lemma stating that Cov(A ∪ B) is generated by the finite family τ .

To conclude, we have to show that τ is a complete family. For that purpose, let just remark
that

A ∪ B ⊂ τ ⊂ Cov(A ∪ B)

and then

Cov(τ) = Cov(A ∪ B) = C[τ ]

�
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One direct application of theorem 4.5 is about joint covariants. Indeed, this theorem gives us
a constructive approach to get a basis covariant of Sn ⊕ Sp, once we know a basis covariant of
each space Sn and Sp. Of course, this algorithm depend on the resolution of an integer system.

Nevertheless, there is a simple procedure to get a basis covariant of Sn ⊕ S2, as detailed in
theorem 4.6, which proof is given in [28]. From now on, we define u to be a quadratic form.

Theorem 4.6. If {h1, · · · ,hs} is a covariant basis of Cov(Sn), then irreducible covariants of
Cov(Sn ⊕ S2) are taken from one of this set:

• {hi,u
r}2r−1 for i = 1 · · · s ;

• {hi,u
r}2r for i = 1 · · · s ;

• {hihj,u
r}2r where hi is of order 2p + 1 and hj is of order 2r − 2p − 1.

We also have another important property:

Lemma 4.7. Let µ := max(ai) and ν := max(bj). If

u+ v ≥ µ+ ν, (4.4)

then, the transvectant {U, V }r is reducible.

Proof. Condition (4.4) implies that u ≥ µ or v ≥ ν and thus that the transvectant {U, V }r
contains a reducible term T (the corresponding integer solution (α, β, u, v, r) is thus not min-
imal). By virtue of proposition 3.5, the transvectant is a linear combination the term T and
transvectants

{Ū c(k1), V̄ c(k2)}r′ ,

where r′ < r and k1 + k2 = r − r′. Note that, because both families A and B are supposed to
be complete, we have

Ū c(k1) = f
α′
1

1 . . . f
α′
p

p , V̄ c(k2) = g
β′
1

1 . . . g
β′
q

q ,

where, moreover, the order of the transvectant {Ū c(k1), V̄ c(k2)}r′ is of order u
′+v′ = u+v. Since

we have supposed that u+ v ≥ µ+ ν, we get that u′ + v′ ≥ µ+ ν and the proof is achieved by
a recursive argument on the index of the transvectant r. �

Remark 4.8. The statement u+ v ≥ µ+ ν can’t be replaced by the hypothesis u ≥ µ or v ≥ ν.
Indeed, taking f ∈ S6 and the covariant bases given in A, we can compute the first covariant
h3,8 := {{f , f}4, f}1 from this bases and the second covariant h := {f2, f}5. For this last covariant
we have u = 7 ≥ 6 but

h =
65

66
h3,8

and then h is no reducible.

Note that the lemma 4.7 gives a bound for the order of each element of a minimal basis of
joint covariants. More precisely:

Corollary 4.9. If

V = Sn1
⊕ · · · ⊕ Sns ,

and if µi is the maximal order of a minimal basis for Sni
, then, for each element h of a minimal

basis for V , we get

ord(h) ≤

s
∑

i=1

µi.

5. Gordan’s algorithm for simple covariants

Now, to get the finiteness result when dealing with a space of binary form V = Sn, we will
have to introduce a weaker version of the notion of complete family. Note also that we will
always consider homogeneous families.
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Definition 5.1. Let I ⊂ Cov(V ) be an ideal, a family A is said to be relatively complete
modulo I if every homogeneous covariant h ∈ Cov(A) can be written

h = p(A) + hI with hI ∈ I

and p(A) being a polynomial expression in A, all expression having the same degree.

Now, related to grade’s definition 2.9:

Definition 5.2. Let r be an integer ; we define Gr(V ) ⊂ M(V ) to be the set of all molecular
covariants with grade at least r:

Gr(V ) := Ψ (Ar(V ))

As a first observation, it is clear that for V = Sn, we have Gr(Sn) = {0} as soon as r > n.
Furthermore, we will have

Gi+1(V ) ⊂ Gi(V ) for all i (5.1)

We now get the

Definition 5.3 (Gordan’s ideals). Let r be an integer. We define the Gordan ideal Ir(V ) to be
the ideal generated by Gr(V ) ; we will write

Ir(V ) := 〈Gr(V )〉

We observe directly that:

• Ir(Sn) = {0} for all r > n ;
• By equation 5.1, we have Ir+1(V ) ⊂ Ir(V ) for every integer r.

By the property 3.2, we immediately have:

Lemma 5.4. If hr ∈ Ir(V ), for every covariant h ∈ Cov(V ) and for every integer j, we have

{hr,h}j ∈ Ir(V )

Let’s now take the vector space Sn of nth degree binary forms, f ∈ Sn. We will write Ir to be
the associated Gordan’s ideal. We also put ∆ to be an invariant.

One important result, close to theorem 4.5, is:

Theorem 5.5. Let A and B be two families of Cov(Sn). Let’s suppose that

• f ∈ A ;
• A is relatively complete modulo I2k ;
• B is relatively complete modulo I2k+1 (resp. modulo I2k+1 + 〈∆〉).
• B contains H2k = {f , f}2k

Then there exist a finite family C, is relatively complete modulo I2k+1 (resp. modulo I2k+1+〈∆〉)
such that

Cov(C) = Cov(A ∪ B) = Cov(Sn)

Proof. Using theorem 2.10 and property 3.5, we can consider transvecants

{hA,hB}r avec hA ∈ Cov(A) and hB ∈ Cov(B) (5.2)

Now we can write, by hypothesis

hA = p(A) + h2k and hB = q(B) + h2k+2 (5.3)

Thus (5.2) can be decomposed as

{p(A), q(B)}r (5.4)

{h2k, q(B)}r (5.5)

{p(A),h2k+2}r et {h2k,h2k+2}r (5.6)

Thus we may directly observe that :

• The case (5.4) had been studied in proof of theorem 4.5 ;
• all transvectant of (5.6) are in I2k+2 by lemma 5.4 ;
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Thus we just have to deal with the case (5.5), when h2k ∈ I2k − I2k+2.
For that purpose, we will make here an induction on :

• The order r of the transvectant in (5.5) ;
• The degree d in f of the covariant hA ; this degree is the same as the one of h2k in (5.3).

Suppose indeed that for two given integers d and r we have a finite family C1, · · · ,Cl such
that, as soon as the degree in f of hA is d1 < d

{hA, q(B)}m = φ2(Ci) + h2k+2 for all m (5.7)

and for all r1 < r
{h2k, q(B)}r1 = φ1(Ci) + h2k+2

Let’s now consider the transvectant {hA,hB}r with hA of degree d in f . If a molecular
covariant of this transvectant 3.2 is non connected, then we will have a linear combination of
transvectants of order r′ < r ; either we will only consider transvectants {h2k, q(B)}r with h2k

of degree d in f . Thus we can write h2k as

M H2k

ν(r)

for some integer r′ and some molecular covariant M ∈ Cov(V ) of degree in f strictly less
than d ; and thus {h2k, q(B)}r will decompose, modulo I2k+2, into

M H2k

ν(r)
q(B)

ν(r)

thus, modulo I2k+2, into

M q′(B)
ν(r′′)

because H2k ∈ B and every molecular covariant which come from H2k and q(B) will be in
Cov(B). We can thus make use of (5.7) : we will only have to consider non-connected molecular
covariants of {p(A), q(B)}r : we already saw in proof of theorem 4.5 that we only have finite
cases. �

We now give some important lemmas before getting to the proof of theorem 5.5. Let’s first
define

H2k := {f , f}2k of order 2n− 4k

It is clear that this is the molecular covariant

H2k := f g
2k

and thus H2k ∈ I2k. Now, using 2.13:, we get:

Lemma 5.6. If H2k is of order strictly greater than n, that is if 2n − 4k > n, then the family
B = {H2k} is relatively complete modulo I2k+2

Proof. We have to consider Aronhold molecule which contain the Aronhold molecule, all symbol
being equivalent:

α β

γδ

2k

2k

r with 1 ≤ r ≤ 2k
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When r > k, we can directly use lemma 2.14 with e0 = 2k and e1 = r, and conclude that this
Aronhold molecule is in A2k+1, and thus in A2k+2.

When r < k, using syzygie (2.6) we may decompose this Aronhold molecule as a linear
combination of

α β

γδ

2k

r
2k − i

i with 0 ≤ i ≤ 2k

But now; to conclude:

• either i ≥ k, and thus 2k + r + i ≥ 3k ; because 2k + r + i ≤ n we may use lemma 2.13

and we will have an Aronhold molecule in Ar with r ≥
2

3
w > 2k ;

• or i < k, and thus 2k − i > k: the same argument as above, using lemma 2.14 will be
used.

�

And:

Lemma 5.7. If H2k is of order n, that is if si n = 4k, then the family B = {H2k} is relatively
complete modulo I2k+2 + 〈∆〉 where ∆ is an invariant given by:

f f

f

n
2

n
2

n
2

Furthermore, using property 3.5 we get:

Lemma 5.8. For all integer k ≥ 1 we have

I2k−1 = I2k

And a direct lemma:

Lemma 5.9. The family A0 := {f} is relatively complete modulo I2

Now, using lemma 4.1, we will have Cov(A0) = Cov(Sn) ; this lemma 5.9 just mean that
every covariant h ∈ Cov(Sn) can be written

h = p(f) + h2 avec h2 ∈ I2 where p is a polynomial

We then define Ak to be a finite family, relatively complete modulo I2k+2, and containing f :
we will show by induction that such a family exist. Let’s first observe that, by lemma 4.1, we
will have for every integer k, Cov(Ak) = Cov(Sn). We will also have Ak ⊂ Ak+1 ; thus, because
for some k we will have I2k+2 = {0}, this induction will give us the desired covariant basis.

The main clue is to construct for every integer k an auxiliary familly Bk :

• If H2k is of order p > n, we take Bk := {H2k} which, by lemma 5.6, will be relatively
complete modulo I2k+2 ; applying theorem 5.5 leads us to the family Ak+1 := C.

• If H2k is of order p = n, we take Bk := {H2k,∆} which, by lemma 5.7, will be relatively
complete modulo I2k+2 + 〈∆〉 ; where ∆ is the invariant

∆ =

f f

f

n

2

n

2
n

2
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In that case a direct induction shows that, applying theorem 5.5, we can take Ak+1 to
be C ∪ {∆}.

• If H2k is of order p < n, we suppose already known a covariant basis of Sp ; we then take
Bk to be this basis, which will be finite and complete, thus finite an relatively complete
modulo I2k+2 ; we directly apply theorem 5.5 to get Ak+1 := C.

Thus in each case we get the construction of the family Ak+1.
Now, depending on n’s parity:

• If n = 2q is even, we know that the family Aq−1 is relatively complete modulo I2q
; furthermore the family Bq−1 only contains the invariant ∆q := {f , f}2q ; finally we
observe that Ap will be given by

Ap := Ap−1 ∪ {∆q}

and it will be relatively complete modulo I2q+2 = {0} ; this gives us the wanted basis.
• If n = 2q + 1 is odd, the family Bq−1 will contain the quadratic form H2q := {f , f}2q ;
we then know that the family Bq−1 will be given by the covariant H2q and the invariant
δq := {H2q,H2q}2. The family Aq obtained using theorem 5.5 will then be relatively
complete modulo I2q+2 = {0} ; which gives us the wanted basis.

Appendix A. Joint covariants of S6 ⊕ S2

We write hd,o to be a covariant of degree d and order o, taken from the covariant basis of S6
in table A, issue from Grace–Young [28], and u to be a quadratic form in S2. By theorem 4.6
we have to consider covariants given by

{h,ur}2r−1 or {h,ur}2r

D/O 0 2 4 6
1 f

2 {f , f}6 h2,4 := {f , f}4
3 h3,2 := {h2,4, f}4 h3,6 := {h2,4, f}2
4 {h2,4,h2,4}4 {h3,2, f}2 h4,6 := {h3,2, f}1
5 {h2,4,h3,2}2 {h2,4,h3,2}1

6 {h3,2,h3,2}2
h6,6a := {h3,8,h3,2}2
h6,6b := {h3,6,h3,2}1

7 {f ,h2
3,2}4 {f ,h2

3,2}3
8 {h2,4,h

2
3,2}3

9 {h3,8,h
2
3,2}4

10 {h3
3,2, f}6 {h3

3,2, f}5
12 {h3,8,h

3
3,2}6

15 {h3,8,h
4
3,2}8
D/0 8 10 12
2 h2,8 := {f , f}2
3 h3,8 := {h2,4, f}1 {h2,8, f}1
4 {h2,8,h2,4}1
5 h5,8 := {h2,8,h3,2}1

Table 2. Covariant basis of S6

Recall the covariant algebra Cov(V ) := Cov(S6 ⊕ S2) is a multi-graded algebra. We can
write

Cov(V ) =
⊕

d1≥0,d2≥0,o≥0

Cov(V )d1,d2,o
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where d1 is the degree in the binary form f ∈ S6, d2 is the degree in the binary form u ∈ S2 and
o the degree in the variable x ∈ C2. We can define the Hilbert series:

H(z1, z2, t) :=
∑

d1,d2,o

dim(Cov(V )d1,d2,o)z
d1
1 zd22 to

Hilbert series of the covariant algebra of S6 ⊕ S2 has been computed using maple package of
Bedratyuk [5].

Thanks to this Hilbert series and theorem 4.6, we finally get a minimal basis of 103 covariants:
it’s worth noting that, by using this algorithm, we had to check invariant homogeneous space’s
dimensions up to degree 15.

• Order 0: 27 invariants

Degree 2 Degree 4 Degree 6 Degree 7 Degree 8 Degree 9 Degree 10

{f , f}6 {h2,4,h2,4}4 {h3,2,h3,2}2 {h5,4,u
2}4 {h7,2,u}2 {h8,2,u}2 {h3

3,2, f}6

{u,u}2 {h3,2,u}2 {h5,2,u}2 {h4,6,u
3}6 {h7,4,u

2}4

{h2,4,u
2}4 {h4,4,u

2}4 {h3,8,u
4}8 {h6,6a,u

3}6

{f ,u3}6 {h3,6,u
3}6 {h6,6b,u

3}6

{h2,8,u
4}8 {h5,8,u

4}8

{h4,10,u
5}10

{h3,12,u
6}12

Degree 11 Degree 13 Degree 15

{h9,4,u
2}4 {h12,2,u}2 {h3,8,h

4
3,2}2

{h10,2,u}2

• Order 2: 33 covariants

Degree 1 Degree 3 Degree 4 Degree 5 Degree 6 Degree 7 Degree 8

u h3,2 {h3,2,u}1 h5,2 {h5,2,u}1 h7,2 h8,2

{f ,u2}4 {h2,4,u
2}3 {h3,4,u}2 {h4,4,u

2}3 {h7,2,u}1

{h2,4,u}2 {f ,u3}5 {h3,6,u
2}4 {h5,4,u}2 {h7,4,u}2

{h2,8,u
3}6 {h3,6,u

3}5 {h6,6a,u
2}4

{h4,6,u
2}4 {h6,6b,u

2}4

{h2,8,u
4}7 {h5,8,u

3}6

{h3,8,u
3}6 {h4,10,u

4}8

{h3,12,u
5}10

Degree 10 Degree 11 Degree 12 Degree 13

h10,2 {h10,2,u}1 h12,2 {h12,2,u}1

{h9,4,u}2 {h9,4,u
2}3

• Order 4: 21 covariants

Degree 2 Degree 3 Degree 4 Degree 5 Degree 7 Degree 9 Degree 10

h2,4 {h2,4,u}1 h4,4 h5,4 h7,4 h9,4 {h9,4,u}1

{f ,u}2 {f ,u2}3 {h3,6,u}2 {h4,4,u}1 {h6,6b,u}2

{h2,8,u
2}4 {h3,6,u

2}3 {h5,8,u
2}4

{h4,6,u}2 {h4,10,u
3}6

{h2,8,u
2}5 {h3,12,u

4}8

{h3,8,u
2}4 {h6,6a,u}2

• Order 6: 12 covariants
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Degree 1 Degree 2 Degree 3 Degree 4 Degree 6

f {f ,u}1 h3,6 h4,6 h6,6a

{h2,8,u}2 {h3,8,u}2 h6,6a

{h3,6,u}1 {h5,8,u}2

{h4,10,u
4}4

{h3,12,u
3}6

• Order 8: 7 covariants

Degree 2 Degree 3 Degree 4 Degree 5

h2,8 h3,8 {h2,8,u
2}3 h5,8

{h2,8,u}1 {h4,10,u}2

{h3,12,u
2}4

• Order 10: 2 degree 4 covariants

h4,10 and {h3,12,u}2

• Order 12: 1 degree 3 covariant h3,12

Appendix B. Covariant bases of S8

Here we have a direct application of constructive theorem 2.10.

(1) As a first step the family A0 is simply the binary form f ∈ S8 ; the set B0 is simply the
form

h2,12 := {f , f}2 ∈ S12

(2) To obtain A1 we have to consider transvectants

{fa,hb
2,12}r

with no reducible molecular covariants modulo I4. From lemma 5.8 we deduce that
necessarily r ≤ 2. Furthermore, if an Aronhold molecule contain the Aronhold molecule

α β

γδ

2

2

2

then we can directly use lemma 2.14 with e0 = 2 and e1 = 2, and conclude that this
Aronhold molecule is in A3, and thus in A4.

We can deduce from all this that A1 is the family

f ; h2,12 ; h3,18 := {f ,h2,12}1

Now the family B1 is simply the form

h2,8 := {f , f}4 ∈ S8

(3) To get A2 we have to consider transvectants

{fa1ha2
2,12h

a3
3,18,h

b
2,8}r

The same kind of argument as above, using lemma such as lemma 2.14 leads to [28, 27]:

Lemma B.1. The family A2 is given by the seven covariants

f ;h2,8 = {f , f}4 ; h2,12 = {f , f}2 ; h3,12 := {f ,h2,8}2 ; h3,14 := {f ,h2,8}1

h3,18 := {f ,h2,12}1 ; h4,18 := {h2,12,h2,8}1
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We also recall that we have to take into account the invariant

{f ,h2,8}8

The family B2 is given by the covariant basis of

h2,4 := {f , f}6 ∈ S4

As a classical result [28], such a basis is given by

h2,4 ; h4,4 := {h2,4,h2,4}2 ; h6,6 := {h2,4, {h2,4,h2,4}2}1

and two invariants

h4,0 := {h2,4,h2,4}4 ; h6,0 := {h2,4, {h2,4,h2,4}2}4

(4) To get family B3, we have to consider transvectants

{fa1ha2
2,8h

a3
2,12h

a4
3,12h

a5
3,14h

a6
3,18h

a7
4,18,h

b1
2,4h

b2
4,4h

b3
6,6}r

which is associated to the integer system
{

8a1 + 8a2 + 12a3 + 12a4 + 14a5 + 18a6 + 18a7 = u+ r

4b1 + 4b2 + 6b3 = v + r
(B.1)

Using Normaliz package [13] of Macaulay2 software [29], we get the integer solutions
of B.1. To get a basis reduction, we make use of the fundamental an well known relation
between covariants of a binary quartic

12h2
6,6 + 6h3

4,4 + 2h6,0h
3
2,4 − 3h2

2,4h4,4h4,0 = 0

From this, we have a bound on b3 in the system (B.1), and this remark leads us to
important reduction on transvectants. With computations in Macaulay2 [29], we finally
get a covariant basis of S8 given bellow.

• Degree 1 : the binary form f of order 8
• Degree 2 : 4 covariants

Order 0 4 8 12
Covariants h2,0 := {f , f}8 h2,4 := {f , f}6 h2,8 h2,12

• Degree 3 : 8 covariants

Order 0 4 6 8 10 12
Covariants {f ,h2,8}8 {f ,h2,4}4 {f ,h2,4}3 {f ,h2,4}2 {f ,h2,4}1 h3,12 := {f ,h2,8}2

Order 14 18
Covariants h3,14 := {f ,h2,8}1 h3,18 := {f ,h2,12}1

• Degree 4 : 12 covariants

Order 0 4 6 8 10
Covariants {h2,4,h2,4}4 h4,4 := {h2,4,h2,4}2 {h2,8,h2,4}3 {h2,12,h2,4}4 {h2,12,h2,4}3

{h2,8,h2,4}4 {h2,8,h2,4}1

Order 12 14 18
Covariants {h2,12,h2,4}2 {h2,12,h2,4}1 {h2,12,h2,8}1

• Degree 5 : 11 covariants

Order 0 2 4 6 8 10 14
Covariants {f ,h2

2,4}8 {f ,h2
2,4}7 {f ,h4,4}4 {f ,h4,4}3 {f ,h4,4}2 {h3,14,h2,4}4 {h3,12,h2,4}1

{f ,h2
2,4}6 {f ,h2

2,4}5 {h3,12,h2,4}3
{f ,h4,4}1

• Degree 6 : 9 covariants
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Order 0 2 4 6
Covariants {h4,4,h2,4}4 {h2,8,h

2
2,4}7 {h2,12,h

2
2,4}8 h6,6 := {h4,4,h2,4}1

{h2,8,h4,4}4 {h2,12,h
2
2,4}7

{h2,8,h4,4}3
Order 8 10

Covariants {h2,12,h4,4}4 {h2,12,h4,4}3

• Degree 7 : 8 covariants

Order 0 2 4 6
Covariants {f ,h2,4h4,4}8 {f ,h6,6}6 {h3,12,h

2
2,4}8 {h3,14,h

2
2,4}8

{f ,h2,4h4,4}7 {f ,h6,6}5 {h3,12,h
2
2,4}7

{f ,h6,6}4

• Degree 8 : 7 covariants

Order 0 2 4 6
Covariants {h2,12,h

3
2,4}12 {h2,12,h

3
2,4}11 {h2,12,h2,4h4,4}8 {h2,12,h6,6}6

{h2,8,h6,6}6 {h2,12,h
3
2,4}10 {h2,12,h2,4h4,4}7

• Degree 9 : 5 covariants

Order 0 2 4
Covariants {h3,12,h

3
2,4}12 {h3,14,h

3
2,4}12 {h3,14,h

3
2,4}11

{h3,12,h
3
2,4}11

{f ,h2
4,4}7

• Degree 10 : 3 covariants

Order 0 2
Covariants {h2,12,h

2
2,4h4,4}12 {h2,12,h2,4h6,6}10

{h2,12,h
2
2,4h4,4}11

• Degree 11 : 2 covariants of order 2

{h3,18,h
4
2,4}16 ; {h3,14,h

2
2,4h4,4}12

• Degree 12 : 1 covariants of order 2

{h4,18,h
4
2,4}16
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